JP2014183055A - 発光素子及びその製造方法 - Google Patents

発光素子及びその製造方法 Download PDF

Info

Publication number
JP2014183055A
JP2014183055A JP2013054474A JP2013054474A JP2014183055A JP 2014183055 A JP2014183055 A JP 2014183055A JP 2013054474 A JP2013054474 A JP 2013054474A JP 2013054474 A JP2013054474 A JP 2013054474A JP 2014183055 A JP2014183055 A JP 2014183055A
Authority
JP
Japan
Prior art keywords
layer
germanium
light emitting
silicon
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013054474A
Other languages
English (en)
Inventor
Kazuki Tani
和樹 谷
Katsuya Oda
克矢 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013054474A priority Critical patent/JP2014183055A/ja
Publication of JP2014183055A publication Critical patent/JP2014183055A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能な発光素子を提供する。
【解決手段】基板上に設けられたIV族元素を含む単結晶で構成されたキャリア閉じ込め層と、該キャリア閉じ込め層に挟持されるように基板上に設けられた発光層と、キャリア閉じ込め層の一端に接続された第1の導電型を有する第1の電極と、キャリア閉じ込め層の他端に接続された第1の導電型と異なる伝導型の第2の導電型を有する第2の電極と、を有し、発光層は、上方に伸張歪みを印加する属性を有する誘電体膜が設けられ伸張歪みが印加されたゲルマニウム単結晶層で構成され、発光層の主面と水平な方向における発光層の結晶格子間隔は、キャリア閉じ込め層の結晶格子間隔よりも大きいことを特徴とする発光素子。
【選択図】図4B

Description

本発明は、IV族元素を用いた発光素子及びその製造方法に関する。
インターネット産業を支えるブロード・バンド・ネットワークでは、光通信が採用されている。この光通信における光の送受信には、III-V族やII-VI族などの化合物半導体を用いたレーザ・ダイオードが使用されている。
一方、情報処理や記憶はシリコンを基幹としたLSI上で行われており、情報の送信は化合物半導体を基幹としたレーザによって行われている。シリコンのチップ間やチップ内といった近距離の光配線をシリコンを用いた光学素子で実現しようとする研究分野はシリコン・フォトニクスと呼ばれている。これは、世界的に広く普及している洗練されたシリコン・ラインを用いて、光学素子を作ろうとする技術である。現在はこれらのシリコン・ラインで、CMOS(Complementary Metal-Oxide-Semiconductorの略、相補的MOS型トランジスタ)に基づくLSI(Large Scale Integrationの略、大規模集積回路)が生産されているが、将来的には、このようなシリコン・フォトニクスによる光回路をCMOS回路と集積したフォトニクスとエレクトロニクスの融合回路技術が実現すると考えられている。
シリコン・フォトニクスにおいて最もチャレンジングな課題であるのが光源である。なぜならバルク状態のシリコンやゲルマニウムは間接遷移半導体であるため、極めて発光効率が悪いからである。
そこで、シリコンやゲルマニウムを高効率で発光させるために直接遷移半導体へ変化させる方法が提案されている。
ゲルマニウムを直接遷移半導体へと変える方法のひとつとして、伸長歪みを印加させる方法が知られている。ゲルマニウムに伸長歪みを印加すると、歪みの大きさに応じて伝導帯のΓ点のエネルギーが小さくなる。伸長歪みを与えた結果、Γ点のエネルギーがL点のエネルギーよりも小さくなればゲルマニウムは直接遷移型の半導体に変化する(特許文献1〜6、非特許文献1、2)。
非特許文献1では、約2GPaの伸長歪みを印加することによってゲルマニウムが直接遷移半導体に変化することが報告されている。
また、作成方法として特許文献1には、ゲルマニウム層をシリコンウェハー上に直接エピタキシャル成長させ、シリコンとゲルマニウムの熱膨張係数の差を利用して、ゲルマニウム層に伸長歪みを印加させる方法が開示されている。また、ゲルマニウムの伝導帯の底であるL点と直接遷移のエネルギーであるΓ点ではエネルギーギャップが0.136eVと小さいため、完全に直接遷移にならずとも、キャリアを高密度に注入すればΓ点にもキャリアが注入され、電子と正孔は直接遷移型の再結合を行うことができる。
特許文献2にはシリコン基板上に0.25%の引張歪みを印加したゲルマニウム層をエピタキシャル成長して、直接遷移型にはなっていないものの高濃度のキャリアを注入することによって発光させ、レーザ・ダイオードを作成する技術が開示されている。
非特許文献2では、シリコン基板上にエピタキシャル成長したゲルマニウム層を用いて作成したLight Emitting Diode(以下、LEDと称する)が開示されている。
特許文献3には、シリコンに伸長歪みを印加することによって、発光素子を形成する技術が開示されている。
また、特許文献4にはゲルマニウム層に光を強く閉じ込めることによって生じるパーセル効果を用いたゲルマニウム・レーザ・ダイオードが開示されている。
伸長歪みを用いる方法の他に間接遷移半導体を直接遷移半導体へと変化させる技術として、シリコンのナノ構造を用いるバレー・プロジェクションという方法が知られている。ナノ構造中のシリコンでは、空間的に電子が動き回る領域が制限されているため、電子の運動量が実効的に小さくなる。シリコンやゲルマニウムなど、物質は固有のバンド構造に基づいて電子が運動量を持つ方向が決まっている。バレー・プロジェクションは電子が運動量を持つ方向に対してナノ構造に電子を閉じこめる手法である。その結果、電子の運動量が実効的に0になる。即ち、実効的に伝導帯のエネルギーの谷がΓ点になり、擬似的に直接遷移化する手法である。たとえばシリコンのバルクにおけるバンド構造では伝導帯底がX点付近に存在するので、(100)面を表面とし、シリコンの膜厚を薄くすることによって、実効的にエネルギーの谷をΓ点とすることが出来、擬似的に直接遷移半導体とすることができる。また、ゲルマニウムの場合にはバルクではL点に伝導帯底があるため、(111)面を表面とする薄膜を形成することによって実効的にエネルギーの谷をΓ点とすることが出来、擬似的に直接遷移半導体とすることが出来る。
特許文献5には、(100)面を表面に持つ極薄単結晶シリコンに直接電極を接続させ、基板と水平方向にキャリアを注入することによって、効率良く極薄単結晶シリコンを発光させる素子が開示されている。
また、特許文献6にはシリコンとゲルマニウムのダブルへテロ構造において、ゲルマニウム上に薄膜シリコンを積層して極薄シリコンの膜厚方向へ電流を流す構造が開示されている。
特表2005−530360号公報 特表2009−514231号公報 特開2007−173590号公報 特開2009−76498号公報 特開2007−294628号公報 特表2008−508702号公報
F. Zhang, V.H. Crespi, フィジカル・レビュー・レターズ(Physical Review Letters), 102, 2009年, p.156401 X. Sun, J. Liu, L. C. Kimerling, J. Michel, オプティクス・レターズ(Optics Letters), Vol.34, No. 8, 2009年, p.1198
上述のようにシリコンのチップ内光配線、あるいはチップ間光配線のための発光素子として、ゲルマニウムの直接遷移化やゲルマニウムへの効率的なキャリア注入を実現するために研究が行われている。しかしながら、これらの材料を用いたレーザは発光効率が低く,実用化されていない。
発明者等の検討によれば、電流注入によるゲルマニウム・レーザ・ダイオードの発光効率を向上するには、発光層に効率よくキャリアを閉じ込めることが有効である。発光層にキャリアを閉じ込める有効な手段として化合物半導体レーザではクラッド層として活性層とバンドギャップエネルギーが異なる半導体層を接続するダブルへテロ構造が用いられている。この際、伝導帯エネルギーについてはクラッド層の方が活性層より大きく、価電子帯については活性層の方がクラッド層より高くなるように設計することによって電子及び正孔を活性層に閉じ込めやすくすることができる。
ところが、シリコン・ラインと整合性の高い半導体材料であるシリコンとゲルマニウムでは伝導帯エネルギー及び価電子帯エネルギーいずれについてもゲルマニウムの方がシリコンより大きく、ゲルマニウムを活性層として利用する場合、ホールを閉じ込めることは可能であるが、電子を活性層に閉じ込めることが困難である。ゲルマニウムへのキャリア閉じ込めに関し、特許文献6に記載の薄膜シリコン層は、量子閉じ込め効果が発現する程度に薄膜化することにより、ゲルマニウムに電子を閉じ込める手段として利用することができる。すなわち、バルク状態ではシリコンの伝導帯エネルギーはゲルマニウムのそれよりも小さいが、ナノスケールに加工することにより、量子閉じ込め効果によってシリコンのバンドギャップエネルギーが増大するためである。
しかしながら、特許文献6に開示されているように、薄膜に対して垂直方向に電流を流す場合、量子閉じ込め効果を大きくするために薄膜化すると、それ伴って電子のトンネル確率が大きくなり、実効的にキャリアを閉じ込めることが困難になることが予想された。すなわち、バリア層として電子を閉じ込める機能に関して量子閉じ込め効果とトンネル効果がトレードオフの関係になっているという問題がある。
従って、ゲルマニウム活性層に効率的に電子を閉じ込めるバリア層を実現することが必要である。
そこで、本発明の目的は、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能な発光素子を提供することにある。
上記目的を達成するために、本願発明になる発光素子の特徴は以下の通りである。
基板上に設けられたIV族元素を含む単結晶で構成されたキャリア閉じ込め層と、該キャリア閉じ込め層に挟持されるように基板上に設けられた発光層と、キャリア閉じ込め層の一端に接続された第1の導電型を有する第1の電極と、キャリア閉じ込め層の他端に接続された第1の導電型と異なる伝導型の第2の導電型を有する第2の電極と、を有し、発光層は、上方に伸張歪みを印加する属性を有する誘電体膜が設けられ伸張歪みが印加されたゲルマニウム単結晶層で構成され、発光層の主面と水平な方向における発光層の結晶格子間隔は、キャリア閉じ込め層の結晶格子間隔よりも大きいことを特徴とする。
また、本願発明になる発光素子の製造方法の特徴は以下の通りである。
半導体基板上に形成された絶縁膜上にシリコン層を形成する工程と、シリコン層上に所定の領域に開口部を有する半導体絶縁膜を堆積する工程と、半導体絶縁膜上にシリコン・ゲルマニウム層を堆積する工程と、開口部に残存するシリコン・ゲルマニウム層を濃縮酸化法により酸化することで基板上に発光層となるゲルマニウム層を形成する工程と、シリコン層に、選択的に第1導電型を有するドーパントと前記第1導電型と異なる導電型の第2導電型を有するドーパントとを導入し、それぞれ第1の電極と第2の電極とを形成する工程と、ゲルマニウム層の上方に、誘電体膜を形成する工程とを有し、発光層の主面と水平な方向における発光層の結晶格子間隔を前記キャリア閉じ込め層の結晶格子間隔よりも大きくすることを特徴とする。
本発明によれば、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能な発光素子を提供することができる。
実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための上面模式図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための上面模式図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための上面模式図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための断面図である。 実施例1に係る発光素子の製造工程を説明するための上面模式図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための上面模式図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための上面模式図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための断面図である。 実施例2に係る発光素子の製造工程を説明するための上面模式図である。 実施例3に係る発光素子の製造工程を説明するための断面図である。 実施例3に係る発光素子の製造工程を説明するための断面図である。 実施例3に係る発光素子の製造工程を説明するための上面模式図である。 実施例4に係る発光素子の製造工程を説明するための断面図である。 実施例4に係る発光素子の製造工程を説明するための断面図である。 実施例4に係る発光素子の製造工程を説明するための上面模式図である。 (a)は本発明の一実施形態の断面図であり、(b)はIV族半導体に印加される歪みを表わす分布図であり、(c)はIV属半導体の伝導帯のエネルギーの模式図である。 ゲルマニウムにおける歪み量とバンドギャップエネルギーの相関を示す図である。
本発明者等は、効率よく発光層へキャリアを閉じ込める構成について検討し、IV族半導体への局所歪みの印加によるバンドの変調に思い至った。すなわち、本実施の形態によるIV族元素を用いた発光素子は、正孔を注入するための電極と発光層が、歪みによってバンドギャップ・エネルギーが大きくなった単結晶のシリコンやゲルマニウム等のIV族元素から成るキャリア閉じ込め層を介して電気的に接続されており、電流を前記キャリア閉じ込め層中に流すことによって正孔を注入するための電極と発光層を電気的に接続している。
本発明における局所歪みを持ちいいたバンド変調による電子閉じ込めの機構を図10A、図10Bを用いて説明する。図10Aの(a)は本発明の1実施形態の断面図であり、(b)はIV族半導体に印加される歪みを表し、(c)はIV属半導体7の伝導帯のエネルギーの模式図を示し、図10Bはゲルマニウムにおける歪み量とバンドギャップエネルギーの相関を示す。
図10A(a)は、絶縁体(二酸化シリコン層2)の表面上にIV族半導体(ゲルマニウム層7)が設けられ、絶縁膜(二酸化シリコン層13)を介して誘電体(窒化シリコン10)が設けられている。窒化シリコン10により、ゲルマニウム層7に対して伸張歪が印加され、図10A(b)に示すような歪み分布、すなわち、窒化シリコン10の直下に位置するゲルマニウム層7には伸張(tensile)歪が生じていることを示している。また、図10A(c)に示すように、この歪み分布に起因してゲルマニウム層7のエネルギー分布は、窒化シリコン10の直下においてエネルギーは低下している。
図10Bにおいて、点線はΓ点における伝導帯(Ec)と価電子帯(Ev)とのエネルギーバンドギャップの歪み(Strain)依存性を示し、実線はL点における伝導帯(Ec)と価電子帯(Ev)とのエネルギーバンドギャップの歪み(Strain)依存性を示している。
本図の横軸(Strain)がプラス側では、伸張歪みが発生しており、マイナス側では圧縮歪みが生じている。図より、窒化シリコン10により、ゲルマニウム層7に対して伸張歪を印加することにより、Γ点におけるエネルギーバンドギャップがL点におけるエネルギーバンドギャップに接近していることが明瞭に分かる。
つまり、IV族半導体の近傍に歪みを与える誘電体を配置すると誘電体近傍に位置するIV族半導体には伸張(圧縮)歪みが印加され、伝導帯のエネルギーが低下する。一方、IV族半導体の伸張(圧縮)歪みを印加されている領域の周囲は応力の釣り合いのために反対方向の圧縮(伸張)歪みが印加され、伝導帯のエネルギーが上昇する。その結果、IV族半導体の伸張歪みが印加されている領域の伝導帯のエネルギーは周囲の圧縮歪みが印加されている領域の伝導体のエネルギーよりも低くなり、IV族半導体中の伸張歪みが印加されている領域に効率良く電子を閉じ込める事ができる。
一般的に、半導体の発光現象においては、伝導帯のΓ点で起きるキャリアの再結合によって高効率な発光が得られるため、前記キャリア閉じ込め層のエネルギー障壁が伝導帯のΓ点より高い事がより望ましい。本実施の形態によると、例えば、発光層が1%の伸長歪みを有するゲルマニウムであり、キャリア閉じ込め層が1%の圧縮歪みを有するゲルマニウムである場合には、キャリア閉じ込め層の伝導体底のL点は発光層のΓ点より0.072eV高くなっており、キャリア閉じ込め層によって発光層のΓ点に効率良くキャリアを閉じ込める事ができる。本実施の形態によるゲルマニウム・レーザ・ダイオード等の発光素子では正孔を注入するための電極と発光層を歪みが印加されてバンドギャップエネルギーが大きくなっているバリア層によって接続しており、前記バリア層中に電流を流すことによって、発光層に効率良く電子を閉じ込めることが可能となり、閾値電流の低いゲルマニウム・レーザ・ダイオードを作成することができる。
以下、実施例により詳細に説明する。
第1の実施例に係る発光素子について図1A〜図4A、図1B〜図4B、図1C〜図4Cを用いて説明する。本実施例では、通常のシリコン・プロセスを用いて容易に形成可能な方法によって作成したゲルマニウム・レーザ・ダイオード及びその製造方法について説明する。
図1A〜図4A、図1B〜図4Bは、製造工程順の発光素子の断面構造を示す。また、図1C〜図4Cは、上から見た製造工程順の発光素子の模式図を示す。ここで、図1A図〜図4A、図1B〜図4Bは、図1C〜図4Cに示す水平ライン23、及び垂直ライン24でそれぞれ切り出した時の断面構造を表している。本実施例におけるデバイスの完成図は図4A、図4B及び図4Cである。
以下、順を追って製造工程を説明する。
まず、図1A、図1B及び図1Cに示すように、支持基板として、シリコン基板1、埋め込み酸化膜として二酸化シリコン層2及びSilicon On Insulator(以下SOIと略す)層3が積層されたSOI基板を用意する。本実施例で試作したSOI層3は表面に(100)面を有しており、プロセス前の初期膜厚は70nmであった。また、二酸化シリコン層2の膜厚は2000nmであった。
図1Aに示すように、シリコン基板1の裏面にも二酸化シリコン層2が形成されている。これは、シリコン基板1のウェハの反りを防止するためのものである。2000nmと厚い二酸化シリコン層2を形成しているため、シリコン基板1に強い圧縮応力が印加されており、表面と裏面に同じ膜厚だけ形成させることでウェハ全体として反りが低減、あるいは防止される。この裏面の二酸化シリコン層2もプロセス中に無くならないように注意を払わなくてはならない。洗浄やウェットエッチングのプロセス中に裏面の二酸化シリコン層2が消失してしまうとウェハ全体が反ってしまい、静電チャックにウェハが吸着されないようになり、その後の製造プロセスが行えなくなる懸念がある。
次に、図2A、図2B、及び図2Cに示すように、レジストを塗布した後に、フォトリソグラフィーによるマスク露光によって、所望の領域にのみレジストを残した後に、異方性ドライエッチングを施すことによって、SOI層3をメサ形状に加工した。この工程によって、SOI層を島状(メサ形状)に分離する。また、本実施例で行ったようにSOI層3をメサ形状に加工する代わりに、Shallow Trench Isolation(STI)やLocal Oxidation of Si(LOCOS)工程などによって分離を施しても差し支えない。
引き続き、洗浄工程を施した後、表面を保護するために、SOI層3の表面を酸化して厚さ約30nmの二酸化シリコン層4を形成した。二酸化シリコン層4はこの後のプロセスで導入されるイオン注入によってSOI層3が受けるダメージを軽減するばかりでなく、活性化熱処理によって不純物が大気中に抜けるのを抑制する役割がある。この際、裏面にも二酸化シリコン層4は形成される(図示せず)。また、二酸化シリコン層4は必ずしも熱酸化プロセスによって形成する必要もなく、Chemical Vapor Deposition(CVD)などの装置を用いて、表面にのみ堆積させる工程を用いても差し支えない。
次に、CVDなどの装置を用いて窒化シリコン層5を全面に堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、異方性ドライエッチングを施すことによって、窒化シリコン層5の所望の領域に開口部を設けた。引き続き、洗浄工程を施した後、酸化処理による二酸化シリコン層形成とフッ酸を用いた二酸化シリコン層のウェットエッチングを交互に行い、最終的に開口部のSOI層3を局所的に膜厚が10nmとなるように薄膜化を行った後、SOI層3の開口部へ厚さ40nmのゲルマニウム組成30%のシリコン・ゲルマニウム6を選択エピタキシャル成長を行い、図2A、図2B、及び図2Cの状態とした。
引き続き、濃縮酸化法と呼ばれる酸化処理によって二酸化シリコン層形成を行い、厚さ12nmのゲルマニウム層7を形成し、図3A、図3B、及び図3Cの状態とした。濃縮酸化法を用いると、シリコン・ゲルマニウム6を酸化するとシリコン原子のみが選択的に酸化されるので酸化されなかったシリコン・ゲルマニウム6中のゲルマニウム組成が上昇し、最終的には純粋なゲルマニウム層7を形成する事が出来る。この濃縮酸化法で形成されたゲルマニウム層7は発光層としての機能を持つ。また、濃縮酸化中に下地のBOXに対してシリコン・ゲルマニウムの格子が容易に滑る事ができたため、最終的に形成されたゲルマニウム層7中の貫通転位密度は10cm−2以下と少なかった。
次に、熱燐酸を用いたウェットエッチングと洗浄工程によって窒化シリコン層5を除去した後に、イオン注入によって不純物をSOI層3の所望の領域に入れる。不純物注入に際しては、まず、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残した後に、BFイオンをイオン注入することによって、SOI層3中に、p型拡散層電極8を形成した。引き続き、レジストを除去した後に、再び、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残した後に、Pイオンをイオン注入することによってSOI層3中にn型拡散層電極9を形成した。p型拡散層電極8及びn型拡散層電極9はデバイス完成後にそれぞれ正孔及び電子を注入するための電極としての役割がある。
このイオン注入工程においては、イオンが注入された部分のSOI層3がアモルファス化するため、結晶性が悪くなる。そこで、図には示していないが、SOI層3の表面のみがアモルファス化し、SOI層3が二酸化シリコン層2と隣接している領域には結晶シリコンが残るようにしていることが重要である。イオン注入の加速電圧を高く設定しすぎると、イオン注入した領域のSOI層3の全てを非晶質化してしまうため、その後のアニール処理を施しても、単結晶性が回復せず、多結晶になってしまうという問題が生じる。本実施例ではSOI層3の表面のみがアモルファス化するような条件でイオン注入を行うことにより、二酸化シリコン層2と隣接している領域には結晶シリコン層が残っているため、イオン注入後の活性化熱処理などによって結晶性を回復させることができる。効率良く発光させるためには、単結晶性が良いことは極めて重要である。
引き続き900℃の窒素雰囲気中で20分間のアニール処理を行うことによって、不純物を活性化させると同時にSOI層3の結晶性を回復させた。
次に、図4A、図4B、図4Cに示すように、厚さ200nmの窒化シリコン10を全面に堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、異方性ドライエッチングを施すことによって、窒化シリコン10を細線形状に加工した。この際、窒化シリコン10は圧縮歪みの膜であるため、ゲルマニウム層7のうち、窒化シリコン10直下に位置する領域には伸張歪みが印加された伸張歪みゲルマニウム発光層11となった。
一方、伸長歪みが印加された領域の周囲のゲルマニウム7は応力が釣り合うように圧縮歪みが印加され、圧縮歪みゲルマニウム層12となった。伸長歪みゲルマニウム発光層11の伝導帯のエネルギーは伸長歪みによって下がっており、電子がたまりやすい状態となっている。一方、圧縮歪みゲルマニウム層12の伝導帯のエネルギーは圧縮歪みによって上がっており、伸長歪みゲルマニウム発光層11に対して伝導帯のエネルギーが高い状態となっている。また価電子帯についても、伸長歪みゲルマニウム発光層11のエネルギーが圧縮歪みゲルマニウム層12のエネルギーよりも高くなる。
従って、p型拡散層電極8及びn型拡散層電極9から伸長歪みゲルマニウム発光層11に電流が注入される際には圧縮歪みゲルマニウム層12がキャリア閉じ込め層として働き、伸張歪みゲルマニウム発光層11にキャリアを閉じ込める機能を有する。また、窒化シリコン10はデバイス完成後に光閉じ込め層としての役割も担うので本実施例では窒化シリコン10が細線状の光共振器になるように設計されている。
また、本実施例には図示していないが、窒化細線状の窒化シリコン層10の両端部を周期的に配置された複数個の小片になるように加工をすることによって分布ブラッグ反射型(Distributed Bragg Reflector; DBR)のミラーを形成し、DBRレーザを作製する事も可能である。
また、本実施例には図に示していないが、窒化シリコン層10を周期的に配置された複数個の小片になるように設計することによって、窒化シリコン10は伝搬する光に周期的な屈折率変化を印加することが可能な光閉じ込め層とする分布帰還型(Distributed Feed Back; DFB)レーザを作成する事も可能である。
また、本実施例では図示していないが、窒化シリコンをリング状に設計することによって、窒化シリコン層10をリング型の光共振器とするリング型レーザを作製する事も可能である。
次に、CVD等で二酸化シリコン層13堆積した後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、フッ酸を持ちいいたウェットエッチングによって所望の領域の二酸化シリコン層を除去した。なお、加工方法は異方性ドライエッチングを用いても差し支えない。引き続き、全面にTiN及びAl層を堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって庶務の領域のみにレジストを残し、Al層をウェットエッチングで加工した後にTiN層をウェットエッチングで加工し、その結果TiN電極14及びAl電極15を形成した。なお、加工方法は異方性ドライエッチングを用いても差し支えない。引き続き、水素アニール処理を施し、プロセス中に生じた欠陥を水素終端する処理を行うことで図4A、図4B,図4Cの状態としてデバイスを完成させた。
図4Aを用いて、上記で作製したデバイス、すなわちゲルマニウム・レーザの構成と動作特性について説明する。
伸張歪みゲルマニウム発光層11が、p型拡散層電極8及びn型拡散層電極9と、圧縮ひずみゲルマニウム層12を介して電気的に接続されている。この際、伝導帯については伸張歪みゲルマニウム発光層11より圧縮歪みゲルマニウム層12がエネルギーが高い一方、価電子帯については圧縮歪みゲルマニウム層12より伸張歪みゲルマニウム発光層11のエネルギーが高いため、圧縮歪みゲルマニウム層12は伸張歪みゲルマニウム発光層11に効率良く電子及び正孔を閉じ込めるバリア層として機能する。なお、伸張歪みゲルマニウム発光層11から発光した光はファブリ・ペロー型の光共振器である窒化シリコン10中を伝搬しレーザ発振を実現する。
また、本実施例では図に示していないが、細線状に加工された窒化シリコン層10の長手方向の両端近傍にアモルファス・シリコンからなる小片を周期的な間隔で配置することによって分布ブラッグ反射型(Distributed Bragg Reflector:DBRと略)のミラーを形成し、DBRゲルマニウム・レーザ・ダイオードを作製することも出来る。DBRミラーは周囲の絶縁膜との屈折率の差から構成される誘電体ミラーであり、99.9%以上もの高反射率達成することができる。このような高反射率のミラーをシリコン・プロセスによって簡便に形成出来るため、たとえゲルマニウムからの発光が微弱であったとしてもレーザ発振を達成することが可能となる。
p型拡散層電極8とn型拡散層電極9の間に順方向電流を流すことによって、伸張歪みゲルマニウム発光層11にキャリアが高濃度に注入され、電子と正孔が再結合して発光した。発光した光は窒化シリコン10に強く閉じ込められ、閾値以上の電流を流すと誘導放出が引き起こされ、レーザ発振した。発光層には伸長歪みが印加されており、発振波長は設計波長である約1600nmであった。レーザ光はシリコン基板1に対して平衡に出射されるため、オンチップ上での光配線などの用途に最適であることも実証された。
ところで、上述の図4A、図4B及び図4Cでは配線工程の前までの工程とその構造を示したが、光集積回路を形成する場合には、この後所望の配線処理を施せばよい。また、電子回路と混載させる時には、上述の工程の幾つかをトランジスタ形成の工程と同時に行うことが出来る。このように通常のシリコン・プロセスを通して光デバイスを作製すると、電子デバイスとの混載は容易である。特に、本発明に基づくゲルマニウム・レーザ・ダイオードは光ファイバの伝送ロスの少ない1550nm付近での発振が可能であるため、従来の光通信のインフラをそのまま活用して、高信頼、低価格のレーザを提供できることが明らかになった。
以上、本実施例によれば、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能なレーザ・ダイオードを提供することができる。
第2の実施例について、図1Aと図5A〜図7A、図1Bと図5B〜図7B、および図1Cと図5C〜図7Cを用いて説明する。なお、実施例1に記載された事項は特段の事情がない限り本実施例にも適用することができ、重複した記載は省いている。本実施例では、基板に垂直方向に形成された薄膜状の単結晶(以下、フィンと略)が発光層として機能するDFB型ゲルマニウム・フィン・レーザ・ダイオード及びその製造方法を開示する。
図1Aと図5A〜図7A、図1Bと図5B〜図7Bは、製造工程順の発光素子の断面構造を示す。また、図1Cと図5C〜図7Cは、上から見た製造工程順の発光素子の模式図を示す。ここで、図1Aと図5A〜図7A、図1Bと図5B〜図7Bは、図1Cと図5C〜図7Cにおける水平ライン23、及び垂直ライン24でそれぞれ切り出した時の断面構造を表している。本実施例におけるデバイスの完成図は、図7A、図7B及び図7Cである。
以下、順を追って製造工程を説明する。
まず、図1A、図1B及び図1Cに示すように、支持基板として、シリコン基板1、二酸化シリコン層2及びSOI層3が積層されたSOI基板を用意する。本実施例で試作したSOI層3は表面に(100)面を持ち、プロセス前の初期膜厚は200nmであった。また、二酸化シリコン層2の膜厚は2000nmであった。
レジストを塗布した後に、フォトリソグラフィーによるマスク露光によって、所望の領域にのみレジストを残した後に、異方性ドライエッチングを施すことによって、SOI層3をメサ形状に加工した。この際、後に発光層となる領域のSOI層3をフィン形状に加工した。図5Bには、図示の都合上、フィンが5個しか示されていないが、実際には任意にフィンの数を増やすことが可能で、発光強度を大きくすることができる。また、二酸化シリコン層4はこの後のプロセスで導入されるイオン注入によってSOI層3が受けるダメージを軽減するばかりでなく、活性化熱処理によって不純物が大気中に抜けるのを抑制する役割がある。この際、裏面にも二酸化シリコン層4は形成される。
引き続き、洗浄工程を施した後、SOI層3の表面を酸化して二酸化シリコン層4を形成し、フィン形状に加工した領域のSOI層3を基板に対して垂直に形成された薄膜単結晶に加工した。次に、CVDなどの装置を用いて窒化シリコン層5を全面に堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、異方性ドライエッチングを施すことによって、窒化シリコン層5の所望の領域に開口部を設けた。引き続き、洗浄工程を施した後、SOI層3の両側の側壁へ厚さ20nmのゲルマニウム組成30%のシリコン・ゲルマニウム6を選択エピタキシャル成長を行い、図5A、図5B、及び図5Cの状態とした。
引き続き、濃縮酸化法と呼ばれる酸化処理によって二酸化シリコン層形成を行い、厚さ12nmのゲルマニウム・フィン107を形成し、図6A、図6B、及び図6Cの状態とした。濃縮酸化法を用いると、シリコン・ゲルマニウム6を酸化するとシリコン原子のみが選択的に酸化されるので酸化されなかったシリコン・ゲルマニウム6中のゲルマニウム組成が上昇し、最終的には純粋なゲルマニウム・フィン107を形成する事が出来る。この濃縮酸化法で形成されたゲルマニウム・フィン107は発光層としての機能を持つ。また、3次元構造のフィンでは下地の二酸化シリコン層2から歪みを受けにくい構造であるため,濃縮酸化中に下地の二酸化シリコン層2から圧縮歪みを受ける事がなく、最終的に形成されたゲルマニウム・フィン107中の貫通転位密度は10cm−2以下と少なかった。
次に、熱燐酸を用いたウェットエッチングと洗浄工程によって窒化シリコン層5を除去した後に、イオン注入によって不純物をSOI層3の所望の領域に入れる。不純物注入に際しては、まず、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみnレジストを残した後に、BFイオンをイオン注入することによって、SOI層3中に、p型拡散層電極8を形成した。引き続き、レジストを除去した後に、再び、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残した後に、Pイオンをイオン注入することによってSOI層3中にn型拡散層電極9を形成した。p型拡散層電極8及びn型拡散層電極9はデバイス完成後にそれぞれ正孔及び電子を注入するための電極としての役割がある。
このイオン注入工程においては、イオンが注入された部分のSOI層3がアモルファス化するため、結晶性が悪くなる。そこで、図には示していないが、SOI層3の表面のみがアモルファス化し、SOI層3が二酸化シリコン層2と隣接している領域には結晶シリコンがのこるようにしていることが重要である。イオン注入の加速電圧を高く設定しすぎると、イオン注入した領域のSOI層3の全てを非晶質化してしまうため、その後のアニール処理を施しても、単結晶性が回復せず、多結晶になってしまうという問題が生じる。本実施例ではSOI層3の表面のみがアモルファス化するような条件でイオン注入を行うことにより、二酸化シリコン層2と隣接している領域には結晶シリコン層が残っているため、イオン注入後の活性化熱処理などによって結晶性を回復させることができる。効率良く発光させるためには、単結晶性が良いことは極めて重要である。
引き続き900℃の窒素雰囲気中で20分間のアニール処理を行うことによって、不純物を活性化させると同時にSOI層3の結晶性を回復させた。
次に、厚さ200nmの窒化シリコン10を全面に堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、異方性ドライエッチングを施すことによって、窒化シリコン10を細線形状に加工した。この際、窒化シリコン10は圧縮歪みの膜であるため、ゲルマニウム・フィン107のうち、窒化シリコン10直下に位置する領域には伸張歪みが印加された伸張歪みゲルマニウム・フィン発光層111となった。
一方、伸長歪みが印加された領域の周囲のゲルマニウム・フィン107は応力が釣り合うように圧縮歪みが印加され、圧縮歪みゲルマニウム・フィン112となった。伸長歪みゲルマニウム・フィン発光層111の伝導帯のエネルギーは伸長歪みによって下がっており、電子がたまりやすい状態となっている。
一方、圧縮歪みゲルマニウム・フィン112の伝導帯のエネルギーは圧縮歪みによって上がっており、伸長歪みゲルマニウム・フィン発光層111に対して伝導帯のエネルギーが高い状態となっている。また価電子帯についても、伸長歪みゲルマニウム・フィン発光層111のエネルギーが圧縮歪みゲルマニウム・フィン112のエネルギーよりも高くなる。従って、p型拡散層電極8及びn型拡散層電極9から伸長歪みゲルマニウム発光層111に電流が注入される際には圧縮歪みゲルマニウム層112がキャリア閉じ込め層として働き、伸張歪みゲルマニウム・フィン発光層111にキャリアを閉じ込める機能を有する。
また、窒化シリコン10はデバイス完成後に光閉じ込め層としての役割も担うので本実施例では窒化シリコン10が細線状の光共振器になるように設計されている。
また、予め複数個のゲルマニウム・フィンが周期的に配置されるように設計することによって、窒化シリコン10を伝搬する光に周期的な屈折率変化を印加することが可能な光閉じ込め層とする分布帰還型(Distributed Feed Back; DFB)レーザを作成する事も可能である。
また、本実施例では図示していないが、窒化シリコンをリング状に設計することによって、窒化シリコン10をリング型の光共振器とするリング型レーザを作製する事も可能である。
次に、CVD等で二酸化シリコン層13を堆積した後、フォトリソグラフィーを用いたレジストパターニングによって、所望の領域のみにレジストを残し、フッ酸を持ちいいたウェットエッチングによって所望の領域の二酸化シリコン層を除去した。なお、加工方法は異方性ドライエッチングを用いても差し支えない。引き続き全面にTiN及びAl層を堆積させた後、フォトリソグラフィーを用いたレジストパターニングによって庶務の領域のみにレジストを残し、Al層をウェットエッチングで加工した後にTiN層をウェットエッチングで加工し、その結果TiN電極14及びAl電極15を形成した。なお、加工方法は異方性ドライエッチングを用いても差し支えない。引き続き、水素アニール処理を施し、プロセス中に生じた欠陥を水素終端する処理を行うことで図4A、図4B、図4Cの状態としてデバイスを完成させた。
図4Aを用いて、上記で作製したデバイス、すなわちゲルマニウム・レーザの構成と動作特性について説明する。
伸張歪みゲルマニウム・フィン発光層111が、p型拡散層電極8及びn型拡散層電極9と、圧縮ひずみゲルマニウム・フィン112を介して電気的に接続されている。この際、伝導帯については伸張歪みゲルマニウム・フィン発光層111より圧縮歪みゲルマニウム・フィン112がエネルギーが高い一方、価電子帯については圧縮歪みゲルマニウム・フィン112より伸張歪みゲルマニウム・フィン発光層111のエネルギーが高いため、圧縮歪みゲルマニウム・フィン112は伸張歪みゲルマニウム・フィン発光層111に効率良く電子及び正孔を閉じ込めるバリア層として機能する。なお、伸長歪みゲルマニウム・フィン発光層111は周期的に複数個配列されており、DFB型の光共振器としての役割も担っている。DFBミラーの設計に際しては伸長歪みゲルマニウム・フィン発光層111の小片の幅と間隔が重要なパラメータであり、それらを媒質中の発光波長の約1/2の整数倍になるように設計されている。
なお、伸張歪みゲルマニウム・フィン発光層111から発光した光は窒化シリコン10中を伝搬しレーザ発振を実現する。p型拡散層電極8とn型拡散層電極9の間に順方向電流を流すことによって、伸張歪みゲルマニウム・フィン発光層111にキャリアが高濃度に注入され、電子と正孔が再結合して発光した。発光した光は窒化シリコン10に強く閉じ込められ、閾値以上の電流を流すと誘導放出が引き起こされ、レーザ発振した。発光層には伸長歪みが印加されており、発振波長は設計波長である約1600nmであった。レーザ光はシリコン基板1に対して平衡に出射されるため、オンチップ上での光配線などの用途に最適であることも実証された。
ところで、上述の図4A、図4B及び図4Cでは配線工程の前までの工程とその構造を示したが、光集積回路を形成する場合には、この後所望の配線処理を施せばよい。また、電子回路と混載させる時には、上述の工程の幾つかをトランジスタ形成の工程と同時に行うことが出来る。このように通常のシリコン・プロセスを通して光デバイスを作製すると、電子デバイスとの混載は容易である。特に、本発明に基づくゲルマニウム・レーザ・ダイオードは光ファイバの伝送ロスの少ない1550nm付近での発振が可能であるため、従来の光通信のインフラをそのまま活用して、高信頼、低価格のレーザを提供できることが明らかになった。
以上、本実施例によれば、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能なレーザ・ダイオードを提供することができる。
第3の実施例について、図8A、図8B、および図8Cを用いて説明する。なお、実施例1、2に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。本実施例では、シリコン・ゲルマニウムによって圧縮歪みが印加されたゲルマニウム層をキャリア閉じ込めのバリア層として用いるゲルマニウム・レーザ・ダイオードを開示する。
図8Aを用いて、上記で作製したデバイス、すなわちゲルマニウム・レーザの構成と動作特性について説明する。
伸張歪みゲルマニウム発光層11が、p型拡散層電極8及びn型拡散層電極9と、圧縮ひずみゲルマニウム層12とシリコン・ゲルマニウム圧縮歪み印加層16を介して電気的に接続されている。シリコン・ゲルマニウム圧縮歪み印加層16のゲルマニウム組成は90%であり、シリコン・ゲルマニウム圧縮歪み印加層16と接触している圧縮歪みゲルマニウム層12には圧縮歪みが印加されており、応力の釣り合いのために、シリコン・ゲルマニウム圧縮歪み印加層16と接触していない伸張歪みゲルマニウム発光層11には伸張歪みが印加されている。
ゲルマニウムとゲルマニウムに格子整合したシリコン・ゲルマニウムが接続された系ではゲルマニウム組成が80%以上の時に、シリコン・ゲルマニウムの伝導帯のエネルギーがゲルマニウムの伝導帯のエネルギーが高くなる事が知られている。このため、シリコン・ゲルマニウム圧縮歪み印加層16の伝導帯のエネルギーは圧縮歪みゲルマニウム層12の伝導帯のエネルギーより高くなっている。
また、伸張歪みゲルマニウム発光層11の伝導帯より圧縮歪みゲルマニウム層12の伝導帯がエネルギーが高い一方、価電子帯については圧縮歪みゲルマニウム層12より伸張歪みゲルマニウム発光層11のエネルギーが高いため、圧縮歪みゲルマニウム層12は伸張歪みゲルマニウム発光層11に効率良く電子及び正孔を閉じ込めるキャリア閉じ込め層として機能する。なお、伸張歪みゲルマニウム発光層11から発光した光はファブリ・ペロー型の光共振器である窒化シリコン10中を伝搬しレーザ発振を実現する。
また、本実施例では図に示していないが、細線状に加工された窒化シリコン層10の長手方向の両端近傍にアモルファス・シリコンからなる小片を周期的な間隔で配置することによって分布ブラッグ反射型(Distributed Bragg Reflector:DBRと略)のミラーを形成し、DBRゲルマニウム・レーザ・ダイオードを作製することも出来る。DBRミラーは周囲の絶縁膜との屈折率の差から構成される誘電体ミラーであり、99.9%以上もの高反射率達成することができる。このような高反射率のミラーをシリコン・プロセスによって簡便に形成出来るため、たとえゲルマニウムからの発光が微弱であったとしてもレーザ発振を達成することが可能となる。p型拡散層電極8とn型拡散層電極9の間に順方向電流を流すことによって、伸張歪みゲルマニウム発光層11にキャリアが高濃度に注入され、電子と正孔が再結合して発光した。発光した光は窒化シリコン10に強く閉じ込められ、閾値以上の電流を流すと誘導放出が引き起こされ、レーザ発振した。発光層には伸長歪みが印加されており、発振波長は設計波長である約1600nmであった。レーザ光はシリコン基板1に対して平衡に出射されるため、オンチップ上での光配線などの用途に最適であることも実証された。
ところで、上述の図8A、図8B及び図8Cでは配線工程の前までの工程とその構造を示したが、光集積回路を形成する場合には、この後所望の配線処理を施せばよい。また、電子回路と混載させる時には、上述の工程の幾つかをトランジスタ形成の工程と同時に行うことが出来る。このように通常のシリコン・プロセスを通して光デバイスを作製すると、電子デバイスとの混載は容易である。特に、本発明に基づくゲルマニウム・レーザ・ダイオードは光ファイバの伝送ロスの少ない1550nm付近での発振が可能であるため、従来の光通信のインフラをそのまま活用して、高信頼、低価格のレーザを提供できることが明らかになった。
以上、本実施例によれば、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能なレーザ・ダイオードを提供することができる。
第4の実施例について、図9A、図9B、および図9C、を用いて説明する。なお、実施例1、2、3に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。本実施例では、発光層にゲルマニウム・スズを用いるゲルマニウム・レーザ・ダイオードを開示する。
図9Aを用いて、上記で作製したデバイス、すなわちゲルマニウム・レーザの構成と動作特性について説明する。
ゲルマニウム・スズ発光層17が、p型拡散層電極8及びn型拡散層電極9と、ゲルマニウム層7を介して電気的に接続されている。この際、伝導帯についてはゲルマニウム・スズ発光層17よりゲルマニウム層7がエネルギーが高い一方、価電子帯についてはゲルマニウム層7よりゲルマニウム・スズ発光層17のエネルギーが高いため、ゲルマニウム層7はゲルマニウム・スズ発光層17に効率良く電子及び正孔を閉じ込めるキャリア閉じ込め層として機能する。なお、ゲルマニウム・スズ発光層17は発光層のみならずファブリ・ペロー型の光共振器としても機能するよう設計されているので、発光した光はゲルマニウム・スズ発光層17を伝搬しレーザ発振を実現する。
また、本実施例では図に示していないが、細線状に加工されたゲルマニウム・スズ発光層17の長手方向の両端近傍にアモルファス・シリコンからなる小片を周期的な間隔で配置することによって分布ブラッグ反射型(Distributed Bragg Reflector:DBRと略)のミラーを形成し、DBRゲルマニウム・レーザ・ダイオードを作製することも出来る。DBRミラーは周囲の絶縁膜との屈折率の差から構成される誘電体ミラーであり、99.9%以上もの高反射率達成することができる。このような高反射率のミラーをシリコン・プロセスによって簡便に形成出来るため、たとえゲルマニウム・スズ発光層7からの発光が微弱であったとしてもレーザ発振を達成することが可能となる。p型拡散層電極8とn型拡散層電極9の間に順方向電流を流すことによって、ゲルマニウム・スズ発光層17にキャリアが高濃度に注入され、電子と正孔が再結合して発光した。発光した光はゲルマニウム・スズ発光層17に強く閉じ込められ、閾値以上の電流を流すと誘導放出が引き起こされ、レーザ発振した。発振波長は設計波長である約1600nmであった。レーザ光はシリコン基板1に対して平衡に出射されるため、オンチップ上での光配線などの用途に最適であることも実証された。
ところで、上述の図9A、図9B及び図9Cでは配線工程の前までの工程とその構造を示したが、光集積回路を形成する場合には、この後所望の配線処理を施せばよい。また、電子回路と混載させる時には、上述の工程の幾つかをトランジスタ形成の工程と同時に行うことが出来る。このように通常のシリコン・プロセスを通して光デバイスを作製すると、電子デバイスとの混載は容易である。特に、本発明に基づくゲルマニウム・レーザ・ダイオードは光ファイバの伝送ロスの少ない1550nm付近での発振が可能であるため、従来の光通信のインフラをそのまま活用して、高信頼、低価格のレーザを提供できることが明らかになった。
以上、本実施例によれば、IV族元素で構成された発光層に電子を効率良く注入することができ、高効率で発光可能なレーザ・ダイオードを提供することができる。
なお、以上の実施形態から把握できる本願発明の他の特徴を以下に列挙する。
(1)第1の基板上の第1の領域から第2の領域まで延伸して設けられた第1のIV族元素を含む単結晶で構成されたキャリア閉じ込め層と、
前記第1の領域において前記キャリア閉じ込め層に接続された第1の導電型を有する第1の電極と、
前記第2の領域において前記基板の主面に平行して前記キャリア閉じ込め層と接続されたゲルマニウムとスズの混晶で構成された発光部と、
前記発光部に接続された第2の導電型を有する第2の電極とを備え、
前記発光層の格子間隔は前記キャリア閉じ込め層の格子間隔よりも大きいことを特徴とする発光素子。
(2)上記(1)記載の発光素子において、
前記第1の基板は、シリコン基板、またはシリコン基板上に形成された二酸化シリコン層であることを特徴とする発光素子。
(3)上記(2)記載の発光素子において、
前記第1の導電型はp型であり、
前記第2の導電型はn型であることを特徴とする発光素子。
(4)上記(3)記載の発光素子において、
前記第1のIV族元素はゲルマニウムであることを特徴とする発光素子。
(5)上記(4)記載の発光素子において、
前記第1のIV族元素はシリコンとゲルマニウムの混晶であることを特徴とする発光素子。
(6)上記(5)記載の発光素子において、
前記キャリア閉じ込め層の主面に水平方向に圧縮歪みを印加する誘電体が前記キャリア閉じ込め層近傍に配置されている、または前記発光層の主面に水平方向に伸張歪みを印加する誘電体が前記発光層近傍に配置されている事を特徴とする発光素子。
(7)上記(6)記載の発光素子において、
前記誘電体が、窒化シリコン、単結晶シリコン、多結晶シリコン、アモルファスシリコン、SiON,Al,Ta,HfO,TiOのいずれか、またはその組み合わせである事を特徴とする発光素子。
(8)上記(3)記載の発光素子において、
前記キャリア閉じ込め層及び前記発光層は、前記基板の周面に対して垂直に一つまたは複数配列されたフィン形状である事を特徴とする発光素子。
(9)上記(5)記載の発光素子において、
前記キャリア閉じ込め層及び前記発光層は、前記基板の周面に対して垂直に一つまたは複数配列されたフィン形状である事を特徴とする発光素子。
1…シリコン基板、2…二酸化シリコン層、3…SOI層、4…二酸化シリコン層、5…窒化シリコン層、6…シリコン・ゲルマニウム、7…ゲルマニウム層、8…p型拡散層電極、9…n型拡散層電極、10…窒化シリコン、11…伸張歪みゲルマニウム発光層、12…圧縮歪みゲルマニウム層、13…二酸化シリコン層、14…TiN電極、15…Al電極、16…シリコン・ゲルマニウム圧縮歪み印加層、17…ゲルマニウム・スズ発光層、107…ゲルマニウム・フィン、111…伸張歪みゲルマニウム・フィン発光層、112…圧縮歪みゲルマニウム・フィン。

Claims (15)

  1. 基板上に設けられたIV族元素を含む単結晶で構成されたキャリア閉じ込め層と、
    該キャリア閉じ込め層に挟持されるように前記基板上に設けられた発光層と、
    前記キャリア閉じ込め層の一端に接続された第1の導電型を有する第1の電極と、
    前記キャリア閉じ込め層の他端に接続された前記第1の導電型と異なる伝導型の第2の導電型を有する第2の電極と、を有し、
    前記発光層は、上方に伸張歪みを印加する属性を有する誘電体膜が設けられ伸張歪みが印加されたゲルマニウム単結晶層で構成され、
    前記発光層の主面と水平な方向における前記発光層の結晶格子間隔は、前記キャリア閉じ込め層の結晶格子間隔よりも大きいことを特徴とする発光素子。
  2. 前記基板は、シリコン基板、またはシリコン基板上に形成された二酸化シリコン層であることを特徴とする請求項1に記載の発光素子。
  3. 前記第1の導電型はp型であり、
    前記第2の導電型はn型であることを特徴とする請求項2に記載の発光素子。
  4. 前記IV族元素は、ゲルマニウムであることを特徴とする請求項3に記載の発光素子。
  5. 前記IV族元素で構成されるキャリア閉じ込め層には、圧縮歪みが印加されることを特徴とする請求項3に記載の発光素子。
  6. 前記IV族元素は、シリコンとゲルマニウムの混晶であることを特徴とする請求項3に記載の発光素子。
  7. 前記シリコンとゲルマニウムの混晶のゲルマニウム組成は、80%以上99%以下であることを特徴とする請求項6に記載の発光素子。
  8. 前記誘電体を前記キャリア閉じ込め層近傍に配置することにより、前記キャリア閉じ込め層の主面に水平方向に圧縮歪みを印加することを特徴とする請求項5に記載の発光素子。
  9. 前記誘電体が、窒化シリコン、単結晶シリコン、多結晶シリコン、アモルファスシリコン、SiON、Al、Ta、HfO、TiOのいずれか、またはその組み合わせであることを特徴とする請求項8に記載の発光素子。
  10. 前記キャリア閉じ込め層及び前記発光層は、前記基板の主面に対して垂直方向に配列されたフィン形状を有することを特徴とする請求項1に記載の発光素子。
  11. 前記発光層は、ゲルマニウムとスズの混晶で構成されていることを特徴とする請求項1に記載の発光素子。
  12. 半導体基板上に形成された絶縁膜上にシリコン層を形成する工程と、
    前記シリコン層上に所定の領域に開口部を有する半導体絶縁膜を堆積する工程と、
    前記半導体絶縁膜上にシリコン・ゲルマニウム層を堆積する工程と、
    前記開口部に残存するシリコン・ゲルマニウム層を濃縮酸化法により酸化することで前記基板上に発光層となるゲルマニウム層を形成する工程と、
    前記シリコン層に、選択的に第1導電型を有するドーパントと前記第1導電型と異なる導電型の第2導電型を有するドーパントとを導入し、それぞれ第1の電極と第2の電極とを形成する工程と、
    前記ゲルマニウム層の上方に、誘電体膜を形成する工程と、を有し、
    前記発光層の主面と水平な方向における前記発光層の結晶格子間隔を前記キャリア閉じ込め層の結晶格子間隔よりも大きくすることを特徴とする発光素子の製造方法。
  13. 前記シリコン・ゲルマニウム層は、シリコンとゲルマニウムの混晶であり、該混晶におけるゲルマニウム組成は、80%以上99%以下であることを特徴とする請求項12に記載の発光素子の製造方法。
  14. 前記発光層は、ゲルマニウムとスズの混晶で構成されていることを特徴とする請求項12に記載の発光素子の製造方法。
  15. 前記誘電体膜が、窒化シリコン、単結晶シリコン、多結晶シリコン、アモルファスシリコン、SiON、Al、Ta、HfO、TiOのいずれか、またはその組み合わせであることを特徴とする請求項12に記載の発光素子の製造方法。
JP2013054474A 2013-03-18 2013-03-18 発光素子及びその製造方法 Pending JP2014183055A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054474A JP2014183055A (ja) 2013-03-18 2013-03-18 発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054474A JP2014183055A (ja) 2013-03-18 2013-03-18 発光素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2014183055A true JP2014183055A (ja) 2014-09-29

Family

ID=51701524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054474A Pending JP2014183055A (ja) 2013-03-18 2013-03-18 発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2014183055A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092345A (ja) * 2014-11-11 2016-05-23 日本電信電話株式会社 光能動素子
WO2016151759A1 (ja) * 2015-03-24 2016-09-29 株式会社日立製作所 半導体光素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092345A (ja) * 2014-11-11 2016-05-23 日本電信電話株式会社 光能動素子
WO2016151759A1 (ja) * 2015-03-24 2016-09-29 株式会社日立製作所 半導体光素子およびその製造方法

Similar Documents

Publication Publication Date Title
JP5468011B2 (ja) 発光素子並びに受光素子及びその製造方法
JP5923121B2 (ja) 半導体光素子
WO2011111436A1 (ja) ゲルマニウム発光素子
US7838894B2 (en) Optical device having photoelectric conversion layer
JP5917978B2 (ja) 半導体装置及びその製造方法
TWI398061B (zh) Semiconductor device
US8222657B2 (en) Light emitting apparatus
US20100207254A1 (en) Strained semiconductor materials, devices and methods therefore
KR102210325B1 (ko) Cmos 소자 및 그 제조 방법
WO2013088490A1 (ja) 半導体光素子
JP2009514231A (ja) シリコン上のゲルマニウムレーザーの方法と構造
US20150115321A1 (en) Substrate structure, complementary metal oxide semiconductor device, and method of manufacturing complementary metal oxide semiconductor device
JP2015046429A (ja) 受光素子およびその製造方法
JP5205729B2 (ja) 半導体レーザ装置及びその製造方法
JP6228874B2 (ja) 半導体光素子
JP2014183055A (ja) 発光素子及びその製造方法
JP2014175526A (ja) 半導体光素子およびその製造方法
WO2011093226A1 (ja) ゲルマニウム光学素子
JP6228873B2 (ja) 半導体光素子の製造方法
WO2015092849A1 (ja) ゲルマニウム発光素子およびその製造方法
WO2016021057A1 (ja) 半導体光素子及び半導体光素子の製造方法
JP2000058978A (ja) 半導体量子ドット素子とその製造方法
JPH05175535A (ja) 量子化Si光半導体装置
EP0895292A1 (en) Electroluminescent device
JP2009004637A (ja) 半導体デバイス

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140908