JP2014178186A - 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム - Google Patents

画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム Download PDF

Info

Publication number
JP2014178186A
JP2014178186A JP2013051980A JP2013051980A JP2014178186A JP 2014178186 A JP2014178186 A JP 2014178186A JP 2013051980 A JP2013051980 A JP 2013051980A JP 2013051980 A JP2013051980 A JP 2013051980A JP 2014178186 A JP2014178186 A JP 2014178186A
Authority
JP
Japan
Prior art keywords
image
pixel
raindrop
detection
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013051980A
Other languages
English (en)
Other versions
JP6273682B2 (ja
Inventor
Makoto Watanabe
慎 渡邉
Nobuyori Tanaka
信頼 田中
Koichiro Kajitani
浩一郎 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2013051980A priority Critical patent/JP6273682B2/ja
Publication of JP2014178186A publication Critical patent/JP2014178186A/ja
Application granted granted Critical
Publication of JP6273682B2 publication Critical patent/JP6273682B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】降雨時に、雨滴を物体として誤検出するのを十分に抑えることができる技術を提供する。
【解決手段】画像センサ部12が光を検知エリアに照射し、その反射光を受光することで検知エリアの距離画像、および受光強度画像を一対の検知用画像として取得する。画像処理部13は、一対の検知用画像として取得した距離画像、および受光強度画像の各画素について、雨滴の影響を受けた雨滴影響画素であるかどうかを判定する。また、画像処理部13は、一対の検知用画像として取得した距離画像を処理して、撮像されているオブジェクトを仮検出する。さらに、画像処理部13は、仮検出したオブジェクトが雨滴の影響によるノイズであるかどうかを、この仮検出したオブジェクトにかかる画素であって、雨滴影響画素であると判定した画素の個数を用いて判定する。
【選択図】図2

Description

この発明は、検知エリアに照射した光の反射光を受光することによって撮像した、この検知エリアの距離画像を処理して、検知エリア内に位置するオブジェクトを検出する技術に関する。
従来、正弦波変調光を検知エリアに投光し、拡散反射光を受光することにより、検知エリアの距離画像、および受光強度画像を同じタイミングで撮像した一対の撮像画像として取得するTOF(Time Of Flight)カメラがある(例えば、特許文献1参照)。TOFカメラは、正弦波変調光(赤外光)を検知エリアに投光する発光素子を有する投光部、およびn×m個の受光素子をマトリクス状に配置したイメージセンサを有する受光部、を備えている。
TOFカメラは、赤外光を検知エリアに投光し、その反射光(拡散反射光)をイメージセンサの各受光素子で受光することにより、受光強度画像を取得する。
また、TOFカメラは、各受光素子で、赤外光を撮像エリアに投光してから、その反射光を受光するまでの時間(飛行時間)を計測する。TOFカメラは、撮像エリアに照射した赤外光と、受光した反射光と、の位相差を計測することによって、飛行時間を得る。TOFカメラは、各受光素子で得た飛行時間から、投光した光を反射した反射面までの距離を算出することにより、距離画像を取得する。
また、鉄道会社では、乗降客が駅ホームから線路内に落ちるのを防止するために、駅ホームの側端部に沿って落下防止柵を設置することを進めている。落下防止柵には、駅ホームに停車した列車のドア(車両ドア)に対向する位置に、水平方向にスライドして開閉するスライドドアを設けたものがある。この落下防止柵は、列車が駅ホームに停車した後に、乗降客の通路を確保するためにスライドドアを一時的に開する。列車は、乗降客の乗降が完了し、落下防止柵のスライドドアが閉された後に発車する。
列車の発車時における安全性を確保するため、この列車と、落下防止柵と、の間に位置する物体の有無をセンサで検出している。最近では、物体の有無を検出することができない死角が生じるのを防止する観点(物体の見逃しを防止する観点)から、透過型や反射型の光電センサを用いるのではなく、上述のTOFカメラで撮像した一対の撮像画像(距離画像、および受光強度画像)を処理して、撮像されている物体(列車と落下防止柵との間に位置する物体)を検出することが検討されている。
特表2010−534000号公報
しかしながら、TOFカメラを用いた構成では、降雨時に、雨滴の影響を受けた画素(雨滴影響画素)が発生することがある。雨滴影響画素には、雨滴で反射された反射光を受光した雨画素や、撮像レンズに付着した雨滴を透過した反射光を受光した雨滴付着画素がある。この雨滴影響画素は、ノイズである。したがって、雨滴影響画素が多くなるにつれて、物体が誤検出される可能性が高くなる(実際に存在していない物体を検出する可能性が高くなる。)。
例えば、上述した列車と、落下防止柵と、の間に位置する物体の有無の検出にTOFカメラを利用した場合、降雨時に、ノイズである雨滴影響画素によって、列車と落下防止柵との間に位置する物体(実際には存在していない物体)が誤検出されると、駅での列車の停車時間が無駄に長くなり、ダイヤを乱すことになる。列車の運転手は、列車と、落下防止柵と、の間に位置する物体が検出されると、駅係員等が安全を確認するまで、列車を発車させない。また、安全確認を行う、駅係員の作業負担を増大させることになる。
この発明の目的は、降雨時に、雨滴の影響を受けた雨滴影響画素の発生にともなうオブジェクトの誤検出が抑えられる技術を提供することにある。
この発明の画像処理装置は、上記課題を解決し、その目的を達するために、以下のように構成している。
画像取得部は、撮像装置が光を検知エリアに照射し、その反射光を受光することで撮像した検知エリアの距離画像、および受光強度画像を一対の検知用画像として取得する。撮像装置は、例えば、公知のTOF(Time Of Flight)カメラを用いてもよいし、レーザ光を照射する光源、反射光を受光する受光素子、および検知エリア内において光源から照射されたレーザ光を走査する走査部を有する構成としてもよい。撮像装置は、検知エリアの距離画像、および受光強度画像が同じタイミングで撮像できる構成であればよい。
なお、TOFカメラは単眼で距離画像を得ることができ、ステレオ画像処理方式に比べて低コストで小型化できる点で注目されている。
雨滴影響画素判定部は、画像取得部が一対の検知用画像として取得した距離画像、および受光強度画像の各画素について、雨滴の影響を受けた雨滴影響画素であるかどうかを判定する。雨滴影響画素には、例えば雨滴からの反射光を受光した雨画素や、撮像レンズに付着している雨滴を透過した反射光を受光した雨滴付着画素がある。
なお、この発明で言う画素とは、撮像素子の1つの受光素子(1ピクセル)であってもよいし、隣接する複数の受光素子(例えば、縦横2ずつの受光素子(2×2ピクセル))で構成されるブロックであってもよい。この発明の画像処理装置は、距離画像や受光強度画像を、ここで言う画素単位で処理する(受光素子単位で処理するとは限らない。)。
降雨時に検出される雨滴からの反射光は、比較的近い位置で反射されている。また、雨滴の反射率を考慮し、その反射率が大きく異なる受光強度の反射光については、雨滴で反射された反射光ではなく、オブジェクトで反射された反射光である可能性が高い。したがって、雨画素であるかどうかにかかる判定は、その画素において取得した距離や受光強度を用いることで判定精度を確保できる。
特に、雨滴の反射率は、その雨滴の後方に位置する物体(背景を含む)の反射率によって変化する。したがって、その画素において取得した距離、および基準受光強度画像と検知用画像の受光強度画像とにおける当該画素の受光強度の差、を用いることで、雨滴からの反射光を検知した雨画素であるかどうかの判定が、雨滴の後方に位置する物体(背景を含む)の反射率を考慮して行える。したがって、雨滴からの反射光を検知した雨画素であるかどうかの判定精度を一層向上できる。
なお、基準受光強度画像とは、検知エリアの背景受光強度画像に相当する画像である。
また、撮像レンズに付着している雨滴を透過した反射光を受光した雨滴付着画素は、受光強度が低下する傾向にあることを実験により確認した。また、雨滴付着画素の多くは、受光光量の低下量がある範囲に収まることも実験で確認した。これは、撮像レンズに付着している雨滴の透過にともなう反射光量の減衰により生じた現象であると考えられる。また、雨滴付着画素の多くは、距離の変化がある範囲に収まることも確認した。これは、撮像レンズに付着している雨滴の透過時に反射光が屈折し、この反射光を受光する画素が、隣接する画素や近辺の画素にずれることにより生じた現象であると考えられる。
したがって、雨滴付着画素については、上述の距離や受光強度の変化の傾向に基づき、撮像レンズに付着している雨滴の影響を受けた雨滴付着画素であるかどうかを判定することにより、その判定精度を確保できる。
特に、雨滴付着画素の多くは、距離の変化がある範囲に収まること、および受光光量の低下量がある範囲に収まることから、基準距離画像と検知用画像の距離画像とにおける当該画素の距離の差が、設定した範囲内(距離の変化が収まる範囲内)であり、且つ、基準受光強度画像と検知用画像の受光強度画像とにおける受光強度の差が設定した範囲内(受光光量の低下量が収まる範囲内)である画素を雨滴付着画素と判定するのが好ましい。これにより、撮像レンズに付着した雨滴の影響を受けた雨滴付着画素であるかどうかの判定精度を一層向上できる。
なお、基準距離画像とは、検知エリアの背景距離画像に相当する画像であり、また、基準受光強度画像とは、検知エリアの背景受光強度画像に相当する画像である。
また、雨滴影響画素(雨画素、および雨滴付着画素)における、距離、および受光強度の変化は、撮像装置の特性や撮像環境等の要因によって異なると考えられるので、本装置の設置時に、これらの傾向を確認し、雨滴影響画素であるかどうかを判定する判定基準を設定するのが好ましい。
オブジェクト仮検出部は、画像取得部が一対の検知用画像として取得した距離画像を処理して、撮像されているオブジェクトを仮検出する。例えば、オブジェクト仮検出部は、画像取得部が一対の検知用画像として取得した距離画像と、検知エリアの基準距離画像(所謂、検知エリアの背景距離画像)と、の差分画像を生成し、撮像されているオブジェクトを仮検出する。このオブジェクト仮検出部は、雨滴影響画素によってオブジェクトを誤検出することがある。
判定部は、オブジェクト仮検出部が仮検出したオブジェクトが雨滴影響画素によるノイズであるかどうかを判定する。この判定は、この仮検出したオブジェクトにかかる画素であって、雨滴影響画素判定部が雨滴影響画素であると判定した画素の個数を用いて判定する。例えば、オブジェクト仮検出部が仮検出したオブジェクトにおいて、雨滴影響画素が占める比率が予め定めた判定値(例えば、50%)を超えているとき、この仮検出したオブジェクトを雨滴の影響によるノイズであると判定する。
これにより、降雨時に、雨滴の影響を受けた雨滴影響画素の発生にともなうオブジェクトの誤検出が抑えられる。
また、オブジェクト仮検出部が仮検出したオブジェクトについて、判定部において雨滴の影響によるノイズであると判定されたオブジェクトの個数をカウントし、このカウント値に基づいて、判定値を定める判定値設定部を設けてもよい。このように構成すれば、降雨量等に応じて判定値を変化させることができ、オブジェクトの誤検出が一層抑えられる。
また、この発明にかかるオブジェクト検出方法は、上述の画像取得部、雨滴画素判定部、オブジェクト仮検出部、および判定部の構成に相当する処理をコンピュータに実行させる発明である。
さらに、この発明にかかるオブジェクト検出プログラムは、コンピュータにインストールすることで、上述の画像取得部、雨滴画素判定部、オブジェクト仮検出部、および判定部の構成に相当する処理を、このコンピュータに実行させる発明である。
この発明によれば、降雨時に、雨滴の影響を受けた雨滴影響画素の発生にともなうオブジェクトの誤検出を十分に抑えることができる。
落下防止柵が設置されている駅ホームを示す概略図である。 画像処理装置の主要部の構成を示すブロック図である。 オブジェクトまでの距離を求める既知の原理を説明する図である。 TOFカメラの取付例を示す図である。 画像処理装置の動作を示すフローチャートである。 基準画像取得処理を示すフローチャートである。 オブジェクト検出処理を示すフローチャートである。 雨画素であるかどうかの判定手法を説明する図である。 雨滴付着画素にかかる実験結果を示す図である。 雨滴付着画素であるかどうかの判定手法を説明する図である。 オブジェクト仮検出処理を示すフローチャートである。 判定処理を示すフローチャートである。 判定値設定処理を示すフローチャートである。
以下、この発明の実施形態である画像処理装置について説明する。
この例にかかる画像処理装置は、乗降客が駅ホームから線路内に落ちるのを防止するために、駅ホームの側端部に沿って設置している落下防止柵と、列車と、の間の空間を検知エリアとしたものである。画像処理装置は、この検知エリア内に位置するオブジェクトを検出する。
まず、駅ホームの側端部に沿って設置している落下防止柵について簡単に説明しておく。
図1は、落下防止柵が設置されている駅ホームを示す概略図である。図1(A)は、駅ホームの俯瞰図であり、図1(B)は、線路側から駅ホームを見た平面図である。落下防止柵は、戸袋として機能する筐体1と、この筐体1に対してスライド自在に取り付けたスライドドア2を有する。図1は、スライドドア2を閉している状態を示している。スライドドア2は、設置している駅ホームに停車する列車の各ドアが対向する位置に設けている。スライドドア2は、開したときに、筐体1内(戸袋)に収納される。スライドドア2は、図1において、左右方向にスライドする。
この例にかかる画像処理装置がオブジェクトを検出する検知エリアは、スライドドア2が設けられている位置における、落下防止柵と線路との間である。
図2は、この例にかかる画像処理装置の主要部の構成を示すブロック図である。画像処理装置10は、制御部11と、画像センサ部12と、画像処理部13と、出力部14と、を備えている。この画像処理装置10は、ハードウェアとして上述の構成を有するパーソナルコンピュータ等の情報処理装置を利用することができる。ハードウェアとして利用する情報処理装置は、この発明で言うオブジェクト検出プログラムをインストールすることで、後述する処理(図5、図6、図7、図11、図12および図13に示すフローチャートにかかる処理)を実行する。
制御部11は、画像処理装置10本体各部の動作を制御する。
画像センサ部12は、赤外光を検知エリアに照射し、その反射光を受光することにより検知エリアの距離画像、および受光強度画像を撮像するTOF(Time Of Flight)カメラを有する。
TOFカメラは、検知エリア(撮像エリア)に赤外光を照射する光源、およびn×m個の受光素子をマトリクス状に配置した撮像素子(n×m画素の撮像素子)を有する。TOFカメラは、赤外光を検知エリアに照射してから、反射光を受光するまでの時間(飛行時間)を画素毎に計測する。TOFカメラは、検知エリアに照射した光と、受光した反射光と、の位相差を計測することによって、オブジェクト(光反射した対象物体の反射面)までの距離を得る。
オブジェクトまでの距離を求める既知の原理を説明すると、光源から照射される光は、発光強度が変調されたものを用いる。検知エリアからの反射光を受光する際に伝播距離に応じて変調位相がずれる。光源からの光の一部を受光素子の一部で直接受光することで照射光の位相をモニタし、反射光として受光した光の位相とのズレを求める。位相ずれを求める既知の原理は、図3(A)に示すように、照射光の変調周期Tに対してT/2期間ごとにサンプリングした受光信号(A0、A2)と、さらに図3(B)に示すように、T/4ずらしたタイミングでサンプリングした受光信号(A1,A3)と、に基づいて伝播距離によって位相のずれ量φを算出する。位相のずれ量φは、
φ=arctan{(A3−A1)/(A0−A2)}
により算出できる。
また、ここで求めた位相のずれφからオブジェクトまでの距離Dを求めることができる。オブジェクトまでの距離Dは、
D=Lmax×φ/2π
により算出できる。ここでLmaxはφ=2πとなるときの物体までの距離(測定最大距離)であり、変調周波数が20MHzであればLmaxは7.5m、10MHzであれば15mとなる。
なお、撮像素子における説明をすると、隣接する縦横それぞれ2つずつ(合計4つ)の受光素子(4ピクセル)を1組とし、これを1画素として扱う。各受光素子(ピクセル)は、T/4期間ごとずらしたサンプリングタイミングで光電変換された電荷を蓄積する。これにより、T/4期間ごとの蓄積電荷に基づいて、前述のA0,A1,A2,A3の受光信号を得ることができる。また、他の既知技術として、2つの受光素子を1画素として扱い、前述のA0〜A3の受光信号を得る方式もある。
ここでいう「画素」とは、上述したように、位相のずれまたは距離を求めてオブジェクトを検知するために画像処理を行うときの単位となる受光素子(ピクセル)のブロックであり、撮像素子の1つの受光素子(1ピクセル)であってもよいし、隣接する複数の受光素子(例えば、縦横2ずつの受光素子(2×2ピクセル))で構成されるブロックであってもよい。この発明の画像処理装置は、距離画像や受光強度画像を、ここで言う画素単位で処理する(受光素子単位で処理するとは限らない。)。
TOFカメラにおける実際の画像処理においては、前述の照射光の変調の1周期だけの受光電荷では量的に少なすぎるので、カメラの露光時間を適宜設定し、その期間に蓄積された電荷量を用いて位相のずれを算出し、オブジェクトまでの距離を求める。これで求めた画素(上述したように、画像処理をするうえで単位となるブロックの意味である。)毎の距離情報を全て集めることにより、画素毎に反射面までの距離を対応付けた距離画像を取得する。また、TOFカメラは、画素毎に所定期間分(複数周期分)の蓄積電荷を全て集めることにより、画素毎にその画素が受光した反射光の強度(反射光量)を対応付けた受光強度画像を取得する。TOFカメラは、同じ露光タイミング(露光期間)で撮像した検知エリアの距離画像、および受光強度画像を得ることができる。
なお、上述のTOFカメラにかえて、レーザ光を照射する光源、反射光を受光する受光素子、および検知エリア内において光源から照射されたレーザ光を走査する走査部を有する構成の撮像装置を用いてもよい。画像センサ部12が有する撮像装置は、検知エリアの距離画像、および受光強度画像が同じ露光タイミング(露光期間)で撮像できる構成であればよい。このTOFカメラは、例えば、1秒間に5〜10フレーム程度の距離画像、および受光強度画像(一対の撮像画像)の撮像が行える。
図4は、TOFカメラの取付例を示す図である。TOFカメラは、図1に示した検知エリアが撮像エリア内に収まるように、筐体1の比較的上方に取り付け、撮像方向を斜め下方に向けている。また、TOFカメラは、スライドドア2よりも線路側に取り付けている。
また、TOFカメラは、検知エリアを撮像エリア内に収めることができれば、図4に示すように、落下防止柵の筐体1に取り付けなくても、駅ホームに立設している支柱等に取り付けてもよい。
画像処理部13は、画像センサ部12が同じタイミングで撮像した検知エリアの距離画像、および受光強度画像を、一対の検知用画像(検知用距離画像、および検知用受光強度画像)として処理する場合もあれば、一対の基準画像(基準距離画像、および基準受光強度画像)の生成に用いる場合もある。画像処理部13は、生成した一対の基準画像を記憶するメモリ(不図示)を有している。また、画像処理部13は、メモリに記憶している一対の基準画像を用いて、一対の検知用画像を処理し、検知エリア内に位置するオブジェクトを検出する。オブジェクトを検出する処理の詳細については、後述する。
出力部14は、画像処理部13におけるオブジェクトの検出結果を、接続されている落下防止柵や、警報装置に出力する。オブジェクトが検出された場合、オブジェクトの検出結果が入力された装置は、警告音による報知や、警告灯の点灯等により、その旨(オブジェクトが検出されたこと)を駅係員等に知らせる。
以下、画像処理装置10の動作について説明する。図5は、画像処理装置の動作を示すフローチャートである。
落下防止柵は、上述したように、駅ホームに列車が停車していないとき、スライドドア2を閉している。画像処理装置10は、駅ホームに列車が停車する毎に、図5に示す処理を実行する。
画像処理装置10は、駅ホームに列車が停車すると、このタイミングで、画像センサ部12がTOFカメラで撮像した一対の撮像画像(距離画像、および受光強度画像)に基づく、基準距離画像、および基準受光強度画像(一対の基準画像)を生成し、取得する基準画像取得処理を実行する(s1)。この基準画像取得処理は、駅ホームに停車した列車のドア、および落下防止柵のスライドドア2が閉している状態で、TOFカメラが撮像した一対の撮像画像を用いる。すなわち、一対の基準画像は、検知エリア内にオブジェクトが存在していない背景画像(背景距離画像、および背景受光強度画像)として用いることができる。また、この一対の基準画像は、駅ホームに停車している列車を背景とした画像である。
画像処理装置10が一対の基準画像を生成し、取得すると、駅ホームに停車した列車のドア、および落下防止柵のスライドドア2が開され、列車に対する乗降客の乗降が許可される。列車に対する乗降客の乗降が完了すると、駅ホームに停車している列車のドア、および落下防止柵のスライドドア2が閉される。
画像処理装置10は、駅ホームに停車している列車のドア、および落下防止柵のスライドドア2が閉された後、画像センサ部12がTOFカメラで撮像した一対の撮像画像(距離画像、および受光強度画像)を、一対の検知用画像として取得する検知用画像取得処理を実行する(s2)。
画像処理装置10は、s1で生成し、取得した一対の基準画像、およびs2で取得した一対の検知用画像を用いて、検知エリア内に位置するオブジェクトを検出するオブジェクト検出処理を行う(s3)。s3では、s1で取得した一対の基準画像に撮像されていないオブジェクトが、s2で取得した一対の検知用画像に撮像されているかどうかを検出する処理である。したがって、駅ホームに停車している列車や、駅ホームに設置されている支柱や、落下防止柵等の構造物を、s3でオブジェクトとして検出することはない。
画像処理装置10は、出力部14おいて、s3にかかるオブジェクト検出処理の検出結果を出力する(s4)。
検出結果が入力された装置は、検知エリア内に位置するオブジェクトが検出されていれば、警告報知等を行って、駅係員や、列車の運転手等にその旨を通知する。列車の運転手は、画像処理装置10におけるオブジェクト検出処理で、検知エリア内に位置するオブジェクトが検出されなければ、駅ホームから列車を発車させる。反対に、検知エリア内に位置するオブジェクトが検出されていれば、駅係員が確認を行った後に、駅ホームから列車を発車させる。
なお、列車の運行を管理している運行管理システム等が、画像処理装置10に対して、s1にかかる基準画像取得処理の開始タイミングや、s2にかかる検知用画像取得処理の開始タイミングを指示する構成とすればよい。また、これらの開始タイミングの指示は、列車の運転手や駅係員による入力操作で行う構成としてもよい。
また、画像処理装置10は、次の列車が駅ホームに停車するまでの間、s2〜s4にかかる処理を繰り返している。この間は、最新の基準画像(基準距離画像、および基準受光強度画像)を用いて、s3にかかる処理を行う。
次に、s1にかかる基準画像取得処理、s2にかかる検知用画像取得処理、およびs3にかかるオブジェクト検出処理を、詳細に説明する。
図6は、基準画像取得処理を示すフローチャートである。
画像センサ部12は、TOFカメラで一対の撮像画像(距離画像、および受光強度画像)を予め設定されているフレーム数(例えば、5フレーム)撮像する(s11)。画像処理部13は、s11で撮像されたフレーム数の距離画像を用いて、基準距離画像を生成する(s12)。s12では、画素毎に、その画素に対応する各フレームの距離の平均値を対応付けた距離画像を生成し、これを基準距離画像として取得する処理である。
また、画像処理部13は、s11で撮像されたフレーム数の受光強度画像を用いて、基準受光強度画像を生成する(s13)。s13では、画素毎に、その画素に対応する各フレームの受光強度の平均値を対応付けた受光強度画像生成し、これを基準受光強度画像として取得する処理である。
s12、およびs13にかかる処理を実行する順番は、上記と逆であってもよい。
画像処理部13は、s12で生成し、取得した基準距離画像、およびs13で生成し、取得した基準受光強度画像を、一対の基準画像として画像メモリ(不図示)に記憶する(s14)。
このように、この例では、基準距離画像を複数フレームの距離画像から生成し、基準受光強度画像を複数フレームの受光強度画像から生成する構成としたので、各フレームに生じているノイズの影響を抑えた基準距離画像、および基準受光強度画像を生成し、取得することができる。
なお、画像処理部13は、設定しているフレーム数を1フレームとし、画像センサ部12で撮像した距離画像、および受光強度画像を、基準距離画像、および基準受光強度画像として画像メモリに記憶する構成としてもよい。
s2にかかる検知用画像取得処理は、TOFカメラで一対の撮像画像(距離画像、および受光強度画像)を撮像し、これを検知用距離画像、および検知用受光強度画像とした一対の検知用画像を取得する処理である。
図7は、オブジェクト検出処理を示すフローチャートである。画像処理部13は、検知用画像の画素毎に、その画素が雨滴からの反射光を受光した画素(以下、雨画素と言う。)であるかどうかを判定する雨画素判定処理を行う(s21)。
なお、前述のように、雨画素の「画素」の意味は、画像処理を行うときの単位となる受光素子(ピクセル)のブロックである。ただし、このブロックは、撮像素子の1つの受光素子(1ピクセル)であってもよいし、隣接する複数の受光素子(例えば、縦横2ずつの受光素子(2×2ピクセル))で構成されるブロックであってもよい。
s21にかかる雨画素判定処理は、以下に示す(1)〜(3)のいずれかの方法で行う。
(1)雨滴からの反射光は、比較的近い位置で反射されることに注目し、図8(A)に示すように、検知用距離画像において対応付けられている距離(図8(A)における横軸)が、予め定めた距離D1未満である画素を雨画素と判定し、予め定めた距離D1以上である画素を雨画素でないと判定する。
(2)また、雨滴の反射率も考慮し、図8(B)に示すように、距離と受光強度との一次関数で、雨画素であるかどうかを判定する判定直線を予め定めておき、検知用距離画像において対応付けられている距離(図8(B)における横軸)と、検知用受光強度画像に対応付けられている受光強度(図8(B)における縦軸)と、に基づいてプロットした点が、図8(B)にハッチングで示す領域内に位置する画素を雨画素と判定し、このハッチングで示す領域内に位置しない画素を雨画素でないと判定する。
(3)さらに、雨滴の反射率は、その雨滴の後に位置する反射面の反射率によって変化することを考慮してもよい。図8(C)に示すように、距離と受光強度差(検知用受光強度画像における受光強度と、基準受光強度画像における受光強度との差の絶対値)との一次関数で、雨画素であるかどうかを判定する判定直線を予め定めておく。そして、検知用距離画像において対応付けられている距離(図8(C)における横軸)と、検知用受光強度画像における受光強度と基準受光強度画像における受光強度との差の絶対値(図8(C)における縦軸)と、に基づいてプロットした点が、図8(C)にハッチングで示す領域内に位置する画素を雨画素と判定し、このハッチングで示す領域内に位置しない画素を雨画素でないと判定する。
図8(A)、(B)、(C)に示す、雨画素と判定する領域は、検知エリアの撮像環境や、画像センサ部12の撮像特性(例えば、TOFカメラの画素密度や、撮像レンズの焦点距離)によって変化するので、画像処理装置10の設置時に調整している。
ここで言う、受光強度差は、上述したように、基準受光強度画像と、検知用受光強度画像と、において対応する画素の受光強度の差の絶対値である。絶対値を用いる理由は、基準受光強度画像の画素が雨滴からの反射光を検出した雨画素で、検知用受光強度画像の対応する画素が雨滴からの反射光を検出していない画素であった場合を考慮するためである。また、基準受光強度画像、および検知用受光強度画像の両方において、雨滴からの反射光を検出した画素については、後述する差分画像生成処理で、背景と判定される可能性が高い。
雨画素判定処理は、(1)、(2)、(3)の順番に精度が向上する。また、雨画素判定処理は、(1)、(2)、(3)の順番に計算量が増加するので、処理時間が増加する。雨画素判定処理を、上述した(1)〜(3)のいずれの方法で行うかについては、精度、および処理時間を考慮して決めればよい。
次に、画像処理部13は、検知用画像の画素毎に、その画素が撮像レンズに付着した雨滴の影響を受けた画素(以下、雨滴付着画素と言う。)であるかどうかを判定する雨滴付着画素判定処理を行う(s22)。
s22にかかる雨滴付着画素判定処理は、以下に示す(4)〜(6)のいずれかの方法で行う。
撮像レンズに付着した雨滴の影響を受けた雨滴付着画素について、距離、および受光強度の変化の傾向を実験により確認した。雨滴付着画素は、受光強度が低下することを確認した。また、雨滴付着画素の多くは、受光光量の低下量がある範囲に収まることを確認した。これは、撮像レンズに付着している雨滴の透過にともなう反射光量の減衰により生じた現象であると考えられる。
図9(A)は、撮像レンズに雨滴が付着した画素にかかる受光光量の変化量を測定した測定結果である。棒グラフは、受光強度の変化量に対する画素数を示す。また、折れ線グラフは、雨滴影響画素における、受光強度の変化量に対する画素の累計の割合(百分率)を示す。この実験では、図9(A)に示すように、雨滴付着画素の約94%が、受光強度の変化量が100以下であることが確認された。ただし、ここで言う受光強度の変化量は、発明者が本実験を実施した環境によるものであり、その数値については、環境によって異なることはいうまでもない。
また、雨滴付着画素の多くは、距離の変化がある範囲に収まることも確認した。これは、撮像レンズに付着している雨滴の透過時に反射光が屈折し、この反射光を受光する画素が、隣接する画素や近辺の画素にずれることにより生じた現象であると考えられる。
図9(B)は、撮像レンズに雨滴が付着した画素にかかる距離の変化量を測定した測定結果である。棒グラフは、距離の変化量に対する画素数を示す。また、折れ線グラフは、雨滴影響画素における、距離の変化量に対する画素の累計の割合(百分率)を示す。この実験では、図9(B)に示すように、雨滴付着画素の約73%が、距離の変化量が350mm以下であることが確認された。また、距離の変化量が150mm以下である雨滴付着画素の割合が約3%であることも確認された。ただし、ここで言う距離の変化量も、発明者が本実験を実施した環境によるものであり、その数値については、環境によって異なることはいうまでもない。
したがって、雨滴付着画素について実験により確認した、上述の距離、および受光強度の変化の傾向に基づき、撮像レンズに付着した雨滴の影響を受けた雨滴付着画素であるかどうかを判定することにより、その判定精度を確保できる。
(4)基準受光強度画像と、検知用受光強度画像において、受光強度の差の絶対値が、図10(A)に示すP1(上記の実験では、例えばP1=100である。)以下である画素を、雨滴付着画素と判定し、その他の画素を雨滴付着画素でないと判定する。
(5)基準距離画像と、検知用距離画像において、距離の差の絶対値が、図10(B)に示すDminと、Dmax(上記の実験では、例えばDmin=150、Dmax=350である。)との間である画素を、雨滴付着画素と判定し、その他の画素を雨滴付着画素でないと判定する。
(6)基準受光強度画像と、検知用受光強度画像において、受光強度の差の絶対値が、図10(C)に示すP1以下であり、且つ、基準距離画像と、検知用距離画像において、距離の差の絶対値が、図10(C)に示すDminと、Dmaxとの間である画素を、雨滴付着画素と判定し、その他の画素を雨滴付着画素でないと判定する。
図10(A)、(B)、(C)に示す、雨滴付着画素と判定する領域を決定するP1、Dmin、Dmaxは、検知エリアの撮像環境や、画像センサ部12の撮像特性(例えば、TOFカメラの画素密度や、撮像レンズの焦点距離)によって変化するので、画像処理装置10の設置時に調整する。
この雨滴付着画素判定処理は、(4)、(5)、(6)の順番に精度が向上する。また、この雨滴付着画素判定処理も、上述した雨画素判定処理と同様に、対応する画素の受光強度の差の絶対値、および対応する画素の距離の差の絶対値を用いる理由は、基準受光強度画像の画素が雨滴付着画素で、検知用受光強度画像の対応する画素が雨滴付着画素でなかった場合を考慮するためである。
なお、s21にかかる処理と、s22にかかる処理とは、上記の順番に限らず、その順番を入れ替えてもよい。
画像処理部13は、s21またはs22の少なくとも一方で雨画素、または雨滴付着画素と判定した画素を雨滴影響画素、その他の画素(s21で雨画素でないと判定され、且つs22で雨滴影響画素でないと判定された画素)を非雨滴影響画素とした雨滴影響画像(2値画像)を生成する(s23)。
画像処理部13は、オブジェクト仮検出処理を行う(s24)。図11は、このオブジェクト仮検出処理を示すフローチャートである。
画像処理部13は、s12で生成し取得した基準距離画像と、s2で取得した検知用距離画像と、の差分画像を生成する(s31)。s31では、距離がほぼ同じ画素(例えば距離の差の絶対値が140mm未満)である画素を背景画素、それ以外の画素を前景画素とした差分画像(2値化画像)を生成する。s31で生成する差分画像は、距離画像にかかる背景差分画像である。
また、s31では、s2で取得した検知用受光強度画像における受光強度が予め定めた閾値以上であるかどうかを条件に加えて背景画素、または前景画素にかかる判定を行ってもよい。具体的には、距離がほぼ同じでなく(例えば距離の差の絶対値が140mm以上)、且つ、受光強度が閾値以上である画素を前景画素と判定し、その他の画素を背景画素と判定した差分画像を生成する処理としてもよい。受光強度の閾値は、予め設定しておけばよく、比較的遠い反射面からの反射光を受光した画素を背景画素と判定する条件である。具体的には、上述したように、画像処理装置10は、列車が発車した後も、s2〜s4にかかる処理を繰り返しているので、列車が発車した後に、列車で反射されず、比較的遠い反射面で反射された反射光を受光した画素を前景画素と判定しないための条件である。比較的遠い反射面は、列車の後側(列車を挟んで、TOFカメラの反対側)に位置する背景からの反射光である。
画像処理部13は、s31で生成した差分画像に対して、前景画素をグルーピングするグルーピング処理を行う(s32)。s32は、差分画像上において、周辺に位置する前景画素を1つのオブジェクトとして纏める処理である。このとき、周辺に位置する前景画素であっても、s2で取得した検知用距離画像において距離が略同じでない前景画素については、異なるグループにグルーピングする。これにより、TOFカメラの撮像方向に重なっている複数のオブジェクトにかかる前景画素を、オブジェクト毎にグルーピングできる。
画像処理部13は、s32でグルーピングした各オブジェクト(画素の集合)に識別符号を付与するラベリングを行う(s33)。ここでラベリングされたオブジェクトが、仮検出されたオブジェクトである。仮検出されたオブジェクトは、適正に検出されたオブジェクトだけでなく、雨滴影響画素により誤検出されたオブジェクトもある。
画像処理部13は、s24にかかるオブジェクト仮検出処理を完了すると、仮検出したオブジェクト(s33で識別符号を付与したオブジェクト)が、適正に検出されたオブジェクトであるか、雨滴影響画素により誤検出されたオブジェクトであるかを判定する判定処理を行う(s25)。
図12は、この判定処理を示すフローチャートである。図12では、仮検出した1つのオブジェクトに対する処理を示している。図12に示す判定処理は、s33で識別符号を付与したオブジェクト毎に(s24で仮検出したオブジェクト毎に)、この判定処理を繰り返す。
画像処理部13は、処理対象のオブジェクト(s24で仮検出したオブジェクト)にかかる画素が所定の画素数(例えば、10画素)以上であるかどうかを判定する(s41)。画像処理部13は、s41で予め設定した所定の画素数未満であると判定すると、処理対象のオブジェクト(仮検出されたオブジェクト)を、オブジェクトであると判定する(s44)。
なお、画像処理部13は、所定の画素数(例えば、10画素)未満であるオブジェクトについては、その判定精度を十分に確保することができないため、オブジェクトの見逃しを防止する観点からs44でオブジェクトであると判定している。また、画像処理部13は、下限の画素数(例えば、2画素)を設定しておき、この下限の画素数以下のオブジェクトをオブジェクトでないと判定するように構成してもよい。
画像処理部13は、s41で予め設定した画素以上であると判定すると、処理対象のオブジェクト(仮検出されたオブジェクト)にかかる画素の総数aと、この処理対象のオブジェクトにかかる画素であって、且つ雨滴影響画素の個数bとの比率(b/a×100%)が、予め定めた判定値以上であるかどうかを判定する(s42)。s42では、処理対象のオブジェクトにおいて、雨滴影響画素が占める比率が判定値以上であるかどうかを判定している。この判定値は、例えば50%である。
画像処理部13は、上記比率が予め定めた判定値未満であれば、s44で処理対象のオブジェクトをオブジェクトであると判定する。一方、画像処理部13は、上記比率が予め定めた判定値以上であれば、処理対象のオブジェクトを雨滴の影響により誤検出されたオブジェクト(オブジェクトでない。)と判定する(s43)。
なお、この判定処理における上述したs42にかかる判定は、雨滴影響画素の個数が、予め設定した閾値画素数以上であるかどうかによって行う処理に置き換えてもよい。
画像処理装置10は、出力部14において、s25にかかる判定処理の結果(オブジェクトの検出結果)を上位装置に出力する。
このように、この例にかかる画像処理装置は、s25にかかる判定処理を行うことで、雨滴影響画素により誤検出されたオブジェクト(仮検出されたオブジェクト)を、オブジェクトでない(背景である。)と判定することができる。これにより、降雨時におけるオブジェクトの誤検出を抑えることができる。
また、s42にかかる判定で用いる判定値については降雨状態に応じて変化させる構成としてもよい。ここでは、判定値を2段階(通常値と、下限値)で切り換える例について説明する。図13は、判定値設定処理を示すフローチャートである。
画像処理装置10は、s3にかかるオブジェクト検出処理を行う毎に、当該オブジェクト検出処理において、s24で仮検出した総画素数が所定数(例えば、30画素)以上であるオブジェクトであって、且つs25で滴影響画素により誤検出されたオブジェクトであると判定した回数(判定回数)をカウントアップする(s51)。この判定回数は、制御部11、または画像処理部13がメモリに記憶している。
画像処理装置10は、s51でカウントアップした判定回数が、予め定めた所定回数(例えば、100)に達したかどうかを判定する(s52)。s52では、雨滴影響画素によるオブジェクトの誤検出が多くなっているかどうかを判定している。通常、降雨量が多くなるにつれて、雨滴影響画素によるオブジェクトの誤検出も多くなる。
画像処理装置10は、s52で判定回数のカウント値が定めた所定回数に達したと判定すると、s42にかかる判定で用いる判定値を下限値に変更する(s53)。s53では、判定値を小さくする。例えば、通常時50%であった判定値を、30%に設定する。これにより、降雨量が比較的多いときにおけるオブジェクトの誤検出を抑えることができるとともに、降雨量が比較的少ないときにおけるオブジェクトの見逃しが抑えられる。
また、画像処理装置10は、s52で判定回数のカウント値が予め定めた所定回数に達していないと判定すると、今回のオブジェクト検出処理で雨滴影響画素によるオブジェクトの誤検出があったかどうかを判定する(s54)。画像処理装置10は、s54で雨滴影響画素によるオブジェクトの誤検出があれば、すなわち雨滴影響画素によるオブジェクトの誤検出が発生している状況(降雨時)であれば、フレーム数のカウント値をリセットする(s55)。このフレーム数のカウント値は、制御部11、または画像処理部13がメモリに記憶している。また、このフレーム数のカウント値は、以下に示すように、s42にかかる判定で用いる判定値を下限値から通常値に戻すかどうかの判定に用いる。
画像処理装置10は、s54で雨滴影響画素によるオブジェクトの誤検出がないと判定すると、すなわち雨滴影響画素によるオブジェクトの誤検出が発生していない状況(晴天時や曇天時等)であれば、フレーム数のカウント値を1カウントアップする(s56)。画像処理装置10は、s56でカウントアップしたフレーム数のカウント値が、予め定めたフレーム上限数(所定フレーム数)に達したかどうかを判定する(s57)。
上記の説明から明らかなように、フレーム数のカウント値は、雨滴影響画素によるオブジェクトの誤検出が発生しなかったフレーム(s2で取得した検知よう画像)が連続した回数である。
画像処理装置10は、s57でフレーム数のカウント値が予め定めたフレーム上限数に達していないと判定すると、本処理を終了する。
一方、画像処理装置10は、s57でフレーム数のカウント値が予め定めたフレーム上限数に達したと判定すると、s42にかかる判定で用いる判定値を通常値(例えば、50%)に設定し(s58)、このフレーム数のカウント値をリセットした後に、本処理を終了する(s59)。s58では、直前における判定値が通常値であった場合、この判定値が実際に変更されることはない。
この図13に示す判定値設定処理は、s3にかかるオブジェクト検出処理を行う毎に繰り返し実行する。この判定値設定処理を行うことで、降雨時における雨滴影響画素によるオブジェクトの誤検出を抑えるために、s42にかかる判定で用いる判定値を下限値に設定した後に、天気の回復により、雨滴影響画素によるオブジェクトの誤検出が発生しにくい状況になると、この判定値を通常値に戻すことができる。これにより、天候の回復後におけるオブジェクトの見逃しが抑えられる。
また、s59にかかる処理は、雨滴影響画素によるオブジェクトの誤検出が発生していない状況(晴天時や曇天時等)が継続しているときに、s58にかかる処理が毎回行われることによる処理負荷を抑えるものであり、特に設けなくてもよい。
また、上記の判定値設定処理では、雨滴影響画素によるオブジェクトの誤検出が発生しなかったフレームが予め定めているフレーム上限数に達したタイミングでs42にかかる判定で用いる判定値を通常値に戻すとしたが、s53で判定値を下限値に設定したタイミングから所定時間経過したときに、この判定値を通常値に戻す構成としてもよいし、他の手法で判定値を通常値に戻す構成としてもよい。
さらに、上記の例では、s42にかかる判定で用いる判定値を2段階で変化させる例を示したが、この判定値については3段階以上で変化させるようにしてもよい。この場合には、s53にかかる処理を現時点よりも1段階下(下限値側)の判定値に設定する処理とし、s58にかかる処理を現時点よりも1段階上(通常値側)の判定値に設定する処理とすればよい。
なお、上記の例では、オブジェクトを検出する検知エリアを、スライドドア2が設けられている位置における、落下防止柵と線路との間とした画像処理装置10を例にして本願発明の説明を行ったが、例えば、工場やマンション等に出入口を検知エリアとし、侵入者を検知する用途等で使用することもできる。この場合、侵入者を検知したときには、警備室や管理室に滞在している警備員にその旨を通知する構成とすればよい。
10…画像処理装置
11…制御部
12…画像センサ部
13…画像処理部
14…出力部

Claims (8)

  1. 撮像装置が光を検知エリアに照射し、その反射光を受光することで撮像した前記検知エリアの距離画像、および受光強度画像を一対の検知用画像として取得する画像取得部と、
    前記画像取得部が一対の検知用画像として取得した前記距離画像、および前記受光強度画像の各画素について、雨滴の影響を受けた雨滴影響画素であるかどうかを判定する雨滴影響画素判定部と、
    前記画像取得部が一対の検知用画像として取得した前記距離画像を処理して、撮像されているオブジェクトを仮検出するオブジェクト仮検出部と、
    前記オブジェクト仮検出部が仮検出したオブジェクトが雨滴の影響を受けた雨滴影響画素によるノイズであるかどうかを、この仮検出したオブジェクトにかかる画素であって、前記雨滴影響画素判定部が前記雨滴影響画素であると判定した画素の個数を用いて判定する判定部と、を備えた画像処理装置。
  2. 前記判定部は、前記オブジェクト仮検出部が仮検出したオブジェクトにおいて、前記雨滴影響画素が占める比率が予め定めた判定値を超えているとき、この仮検出したオブジェクトを雨滴の影響によるノイズであると判定する、請求項1に記載の画像処理装置。
  3. 前記オブジェクト仮検出部が仮検出したオブジェクトについて、前記判定部が雨滴の影響によるノイズであると判定したオブジェクトの個数をカウントしたカウント値に応じて、前記判定値を定める判定値設定部を備えた請求項2に記載の画像処理装置。
  4. 前記オブジェクト仮検出部は、前記画像取得部が一対の検知用画像として取得した前記距離画像と、前記検知エリアの基準距離画像と、の差分画像を生成し、撮像されているオブジェクトを仮検出する、請求項1〜3のいずれかに記載の画像処理装置。
  5. 前記雨滴影響画素判定部は、各画素について、前記画像取得部が一対の検知用画像として取得した前記距離画像における当該画素において取得した距離、および前記画像取得部が一対の検知用画像として取得した前記受光強度画像と前記基準受光強度画像とにおける当該画素の受光強度の差、を用いて前記雨滴影響画素であるかどうかを判定する、請求項1〜4のいずれかに記載の画像処理装置。
  6. 前記雨影響画素判定部は、各画素について、前記画像取得部が一対の検知用画像として取得した前記距離画像と前記検知エリアの基準距離画像とにおける当該画素の距離の差、および前記画像取得部が一対の検知用画像として取得した前記受光強度画像と前記基準受光強度画像とにおける当該画素の受光強度の差、を用いて前記雨滴影響画素であるかどうかを判定する、請求項1〜5のいずれかに記載の画像処理装置。
  7. コンピュータが、
    撮像装置が光を検知エリアに照射し、その反射光を受光することで撮像した前記検知エリアの距離画像、および受光強度画像を一対の検知用画像として取得する画像取得ステップと、
    前記画像取得ステップが一対の検知用画像として取得した前記距離画像、および前記受光強度画像の各画素について、雨滴の影響を受けた雨滴影響画素であるかどうかを判定する雨滴影響画素判定ステップと、
    前記画像取得ステップが一対の検知用画像として取得した前記距離画像を処理して、撮像されているオブジェクトを仮検出するオブジェクト仮検出ステップと、
    前記オブジェクト仮検出ステップが仮検出したオブジェクトが雨滴の影響を受けた雨滴影響画素によるノイズであるかどうかを、この仮検出したオブジェクトにかかる画素であって、前記雨滴影響画素判定ステップで前記雨滴影響画素であると判定された画素の個数を用いて判定する判定ステップと、
    を実行するオブジェクト検出方法。
  8. 撮像装置が光を検知エリアに照射し、その反射光を受光することで撮像した前記検知エリアの距離画像、および受光強度画像を一対の検知用画像として取得する画像取得ステップと、
    前記画像取得ステップが一対の検知用画像として取得した前記距離画像、および前記受光強度画像の各画素について、雨滴の影響を受けた雨滴影響画素であるかどうかを判定する雨滴影響画素判定ステップと、
    前記画像取得ステップが一対の検知用画像として取得した前記距離画像を処理して、撮像されているオブジェクトを仮検出するオブジェクト仮検出ステップと、
    前記オブジェクト仮検出ステップが仮検出したオブジェクトが雨滴の影響を受けた雨滴影響画素によるノイズであるかどうかを、この仮検出したオブジェクトにかかる画素であって、前記雨滴影響画素判定ステップで前記雨滴影響画素であると判定された画素の個数を用いて判定する判定ステップと、
    をコンピュータに実行させるオブジェクト検出プログラム。
JP2013051980A 2013-03-14 2013-03-14 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム Expired - Fee Related JP6273682B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013051980A JP6273682B2 (ja) 2013-03-14 2013-03-14 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013051980A JP6273682B2 (ja) 2013-03-14 2013-03-14 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム

Publications (2)

Publication Number Publication Date
JP2014178186A true JP2014178186A (ja) 2014-09-25
JP6273682B2 JP6273682B2 (ja) 2018-02-07

Family

ID=51698293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013051980A Expired - Fee Related JP6273682B2 (ja) 2013-03-14 2013-03-14 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム

Country Status (1)

Country Link
JP (1) JP6273682B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523604A (ja) * 2017-06-16 2020-08-06 ビーイーエー エス.エー.Bea S.A. 監視領域を監視するためのレーザスキャナ
US11321858B2 (en) 2019-05-30 2022-05-03 Fanuc Corporation Distance image generation device which corrects distance measurement abnormalities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0816308D0 (en) 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
US11358224B2 (en) 2015-11-16 2022-06-14 Renishaw Plc Module for additive manufacturing apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010233A (ja) * 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd レーザ式障害物検知方法およびセンサ
JP2002040138A (ja) * 2000-07-26 2002-02-06 Denso Corp 物体認識方法及び装置、記録媒体
JP2006261761A (ja) * 2005-03-15 2006-09-28 Secom Co Ltd 画像信号処理装置
JP2007226605A (ja) * 2006-02-24 2007-09-06 Secom Co Ltd 画像センサ
JP2011016421A (ja) * 2009-07-08 2011-01-27 Higashi Nippon Transportec Kk 支障物検知装置及びこれを備えたプラットホームドアシステム並びに支障物検知方法
JP2011020656A (ja) * 2009-07-21 2011-02-03 Nippon Signal Co Ltd:The ホームドア確認システム
JP2012021896A (ja) * 2010-07-15 2012-02-02 Hokuyo Automatic Co 信号処理装置、及び走査式測距装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010233A (ja) * 1996-06-24 1998-01-16 Mitsui Eng & Shipbuild Co Ltd レーザ式障害物検知方法およびセンサ
JP2002040138A (ja) * 2000-07-26 2002-02-06 Denso Corp 物体認識方法及び装置、記録媒体
JP2006261761A (ja) * 2005-03-15 2006-09-28 Secom Co Ltd 画像信号処理装置
JP2007226605A (ja) * 2006-02-24 2007-09-06 Secom Co Ltd 画像センサ
JP2011016421A (ja) * 2009-07-08 2011-01-27 Higashi Nippon Transportec Kk 支障物検知装置及びこれを備えたプラットホームドアシステム並びに支障物検知方法
JP2011020656A (ja) * 2009-07-21 2011-02-03 Nippon Signal Co Ltd:The ホームドア確認システム
JP2012021896A (ja) * 2010-07-15 2012-02-02 Hokuyo Automatic Co 信号処理装置、及び走査式測距装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523604A (ja) * 2017-06-16 2020-08-06 ビーイーエー エス.エー.Bea S.A. 監視領域を監視するためのレーザスキャナ
US11520048B2 (en) 2017-06-16 2022-12-06 Bea S.A. Laser scanner for monitoring a monitoring region
JP7261751B2 (ja) 2017-06-16 2023-04-20 ビーイーエー エス.エー. 監視領域を監視するためのレーザスキャナ
US11321858B2 (en) 2019-05-30 2022-05-03 Fanuc Corporation Distance image generation device which corrects distance measurement abnormalities

Also Published As

Publication number Publication date
JP6273682B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6123377B2 (ja) 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
JP6070306B2 (ja) 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
JP5065744B2 (ja) 個体検出器
JP5076070B2 (ja) 対象検出装置、対象検出方法、および対象検出プログラム
JP6273682B2 (ja) 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
JP6031908B2 (ja) 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
JP5648168B2 (ja) 信号処理装置、及び走査式測距装置
JP5904069B2 (ja) 画像処理装置、オブジェクト検出方法、およびオブジェクト検出プログラム
US20050207616A1 (en) Movable barrier operator with an obstacle detector
JP6874592B2 (ja) 時間測定装置、距離測定装置、移動体、時間測定方法、及び距離測定方法
WO2020105527A1 (ja) 画像解析装置、画像解析システム、および制御プログラム
JP6465772B2 (ja) レーザレーダ装置
JP2011093514A (ja) プラットホームドアの安全装置
JP6015296B2 (ja) 画像処理装置、周囲環境推定方法、および周囲環境推定プログラム
EP2466560A1 (en) Method and system for monitoring the accessibility of an emergency exit
JP4692437B2 (ja) 監視カメラ装置
US10962645B2 (en) Reception apparatus, reception method, transmission apparatus, transmission method, and communication system
JP6739074B2 (ja) 距離測定装置
RU2689564C1 (ru) Способ измерения параметров контактного провода электротранспорта и устройство для его реализации
JP2006323652A (ja) 防犯センサ
JP2016170076A (ja) オブジェクト検知装置、オブジェクト検知方法、およびオブジェクト検知プログラム
JP7204356B2 (ja) 監視装置
JP3736989B2 (ja) 画像監視装置
JP4920073B2 (ja) 走行体の先頭位置検出方法及び装置
JP6129475B2 (ja) 監視装置及び監視方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees