JP2014177088A - 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法 - Google Patents

制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法 Download PDF

Info

Publication number
JP2014177088A
JP2014177088A JP2013054036A JP2013054036A JP2014177088A JP 2014177088 A JP2014177088 A JP 2014177088A JP 2013054036 A JP2013054036 A JP 2013054036A JP 2013054036 A JP2013054036 A JP 2013054036A JP 2014177088 A JP2014177088 A JP 2014177088A
Authority
JP
Japan
Prior art keywords
light
light emitting
led
correction
light amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013054036A
Other languages
English (en)
Inventor
Toru Omine
徹 大嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013054036A priority Critical patent/JP2014177088A/ja
Publication of JP2014177088A publication Critical patent/JP2014177088A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

【課題】発光素子の光量ムラと劣化を抑制する。
【解決手段】 光量補正データ制御部400は、LEDアレイ30内の光量補正ROM31から各LED毎の光量補正データを読み出し、光量補正データ格納メモリ420に書き込む。そして、印刷ジョブ前に、光量ムラ補正値算出部450が、累積ドットカウント値格納メモリ440から各LED毎の累積ドットカウント値を読み出し、それらとレジスタ制御部300からのストローブ時間設定値とに基づき、各LED毎の適正な光量ムラ補正値を取得する。また、その各LED毎の光量ムラ補正値の中から最も大きい値をオフセット値として選択する。光量補正データ補正演算部460は、その各LED毎の光量ムラ補正値とオフセット値とに基づき、光量補正データ格納メモリ420からの各LED毎の光量補正データを補正演算し、LEDアレイ30内の光量補正RAM32に転送して書き込ませる。
【選択図】 図5

Description

この発明は、複数の発光素子を配列した発光素子アレイを制御する制御装置、それを備えた画像形成装置、コンピュータに複数の発光素子を配列した発光素子アレイを制御させるための制御プログラム、複数の発光素子を配列した発光素子アレイに対し、その複数の発光素子の駆動電流を制御する光量ムラ補正方法に関する。
従来から、複数の発光素子を配列した発光素子アレイを備えた画像形成装置では、像担持体の周囲に帯電,露光,現像,転写をそれぞれ行う各部を設けた作像ユニットを備え、例えば次のような作像を含む一連の画像形成(以下「印刷」又は「記録」ともいう)処理を行っている。
すなわち、まず副走査方向に移動するドラム状又はベルト状の像担持体を帯電部によって均一に帯電する。なお、ドラム状の像担持体等が副走査方向に移動することを「回転する」又は「回動する」ともいう。また、ベルト状の像担持体等が副走査方向に移動することを「回動する」ともいう。
このような画像形成装置では、複数の発光ダイオード(LED)等の発光素子を、例えば副走査方向に直交する主走査方向(ライン方向)に並べた発光素子アレイを備えている。そのため、その発光素子アレイから像担持体の帯電面に主走査方向のライン(以下単に「ライン」ともいう)単位で画像データに応じた光照射を行うことにより、帯電面を露光する。それによって、像担持体の帯電面に光照射による静電画像(「静電潜像」ともいう)が書き込まれる。そして、その静電画像を現像部からのトナーで現像してトナー画像とし、転写部により、記録媒体に直接転写するか、ベルト状又はドラム状の中間転写体上に転写した後、記録媒体に転写する。そのトナー画像が転写された記録媒体は、定着部を通してそのトナー画像が定着され、機外に排出される。
ところで、近年、発光素子アレイは、その低コスト化に伴い、A4サイズからA0サイズ以上と多様なサイズの画像形成装置に採用されている。また、低コストに加えて、ポリゴンミラー等を用いるレーザラスタ方式と比較して装置自体の省スペース化も可能であり、特にA0サイズ以上の広幅プリンタ、A3・A4サイズの中低速プリンタに多く採用されている。
発光素子アレイを画像形成装置に使用したときに懸念される課題は、発光素子アレイの製造誤差等による各発光素子の角度誤差等の不均一(バラツキ)によって光量ムラが生じることである。光量ムラは、画像劣化の原因となり、印刷出力した画像に縦スジとなって現れてしまう。
そうした背景から、画像形成装置に使用される発光素子アレイのほとんどは、その内部に、発光素子間の光量を均一にするための補正機能を有している。この補正機能とは、次のようなものである。つまり、個々の発光素子に対し、事前に光量を均一にするための補正値を求め、それらの補正値を示す光量補正データをROM等の記憶部に格納しておく。そして、その各発光素子毎の光量補正データを用い、その各発光素子に対して、駆動電流を個別に補正することにより、光量を均一化する。
一方、例えば特許文献1,2には、以下に示す構成が開示されている。
特許文献1に記載の画像形成装置では、複数の発光素子が配置された露光手段を備え、その各発光素子各々の1点灯当たりの発光時間(点灯パルス幅)を設定し、発光素子を発光状態とする画像データの数を発光素子毎に計測するようにしている。そして、その設定する発光時間と計測する画像データの数とに基づき、発光素子毎の累積発光時間(総発光時間)を算出し、その累積発光時間に基づき、露光手段の使用が可能か否かを判定するようにしている。
特許文献2に記載の画像形成装置では、各発光素子の総駆動時間に基づき、各発光素子の光量が一定となるように該当発光素子の駆動電流を制御して、光量の補正を行うようにしている。
上述したような従来の発光素子アレイを用いた画像形成装置では、発光素子アレイが使用開始の初期段階においては各発光素子毎の光量補正データを用いた光量ムラ補正によって各発光素子の光量は均一に保たれている。しかしながら、使用時間の経過によって各発光素子の総発光時間に比例した光量劣化が進行すると、発光素子個々の総発光時間の不均一により、光量劣化度合いの差が生じることで、発光素子間の光量ムラが発生してしまう。
そこで、上記のような使用時間経過による光量ムラは、発光素子アレイがもつ個々の発光素子に対して光量測定を行い、その測定結果に基づいて個々の発光素子の光量を補正すれば、解消することが可能である。しかしながら、発光素子個々の光量を正確に測定するためのシステムを構築するには、高精度な受光素子、メカ構造が必要であり、非常にコスト高となる。
また、特許文献1に記載の画像形成装置では、発光素子毎の累積発光時間を算出するようにしているが、その算出結果に基づいて発光素子の光量補正を行っておらず、光量ムラの発生を抑制することはできない。
さらに、特許文献2に記載の画像形成装置では、各発光素子の総駆動時間に基づき、光量補正を行っているが、次のような問題がある。つまり、発光素子の総駆動時間(総発光時間)の増加による光量の低下を補正した際、発光素子の駆動電流の増加に伴い、発光素子自身の熱の発生が増加することで、更に発光素子の劣化が進み、寿命が短くなる。
この発明は上記の点に鑑みてなされたものであり、発光素子の光量ムラと劣化を抑制することを目的とする。
この発明は、複数の発光素子を配列した発光素子アレイを制御する制御装置であって、上記の目的を達成するため、上記複数の発光素子のうち最も総発光時間が短い発光素子の駆動電流を基準値よりも低下させつつ、上記複数の発光素子の光量が揃うように上記複数の発光素子の駆動電流を制御する制御手段を備えたものである。
上記構成によれば、発光素子の光量ムラと劣化を抑制することができる。
この発明の一実施形態である制御装置を備える画像形成装置の概略構成を示す図である。 図1のLEDアレイの内部構成及びLEDアレイ制御部との接続関係を示すブロック図である。 同じくLEDアレイの光量補正データの仕様を示す図である。 同じくLEDアレイの光量劣化に関する仕様を示す図である。 同じくLEDアレイ制御部の構成を示すブロック図である。 図5の光量ムラ補正値算出部の構成をその周辺に位置する各部と共に示すブロック図である。 図6の光量ムラ補正値算出部による各LED毎の累積発光時間の算出方法の説明に供するタイムチャートである。 図6の光量ムラ補正値メモリ内のデータテーブルを示す図である。 図1のLEDアレイを構成する各LED毎の使用前の光量と使用時間累積によって劣化が生じた場合の光量を示す図である。 図5の光量補正データ補正演算部460による補正演算についての説明図である。 LEDの光量と書き込みに好適なLED発光時間との関係の例を示すグラフである。 図1に示した画像形成装置による印刷時の処理のメインルーチンを示すフローチャートである。 図12のステップS2における印刷ジョブ中のドットカウント処理を示すフローチャートである。 図12のステップS1における光量ムラ補正処理を示すフローチャートである。
以下、この発明を実施するための形態を図面に基づいて具体的に説明する。
まず、この発明の一実施形態である制御装置を備える電子写真方式の画像形成装置の概略構成について説明する。
図1は、その画像形成装置の概略構成を示す図である。
この画像形成装置100は、メモリコントローラ1、SDRAM2、HDD3、プリンタインタフェース4、FAX(ファックス)モデム5、PCIオプション6、エンジンコントローラ7、操作パネル8、スキャナ9、及びプロッタ50を備えている。それらのうち、メモリコントローラ1とプリンタインタフェース4とFAXモデム5とPCIオプション6とエンジンコントローラ7とは、PCIバス10を介して接続されている。
メモリコントローラ1は、図示しないCPU及びROMを備えたものであり、そのCPUがSDRAM(他のRAMでもよい)2をワークメモリとしてROMに記憶されたプログラムを実行することにより、次の制御を行う。例えば、ホストPC500からプリンタインタフェース4及びPCIバス10を介して画像データを受け取り、SDRAM2又はHDD3へと一旦格納する。
また、FAXモデム5からのFAXデータ(画像データ)やPCIオプション6からの画像データも同様に、PCIバス10を介してメモリコントローラ1が受け取り、SDRAM2又はHDD3へ格納する。更に、スキャナ9からの原稿読み取りデータ(画像データ)をPCIバス10及びエンジンコントローラ7を介してメモリコントローラ1が受け取り、SDRAM2又はHDD3へ格納する。なお、ホストPC500は各種イメージの画像データをメモリコントローラ1に送信するコンピュータである。
エンジンコントローラ7は、CPU11及び画像処理部12を備えている。それらのうち、CPU11は、図示しないRAMをワークメモリとして図示しないROMに記憶されたプログラムを実行することにより、スキャナ9及びプロッタ50を含む機器(画像形成装置100)全体を制御し、各種機能を実現する。例えば、SDRAM2又はHDD3に格納されている画像データの転送をメモリコントローラ1に対して要求し、メモリコントローラ1から転送されてくる画像データを取得する。そして、その取得した画像データを画像処理部12によって画質改善のための画像処理を行わせ、その処理後の画像データを含むデータ信号をプロッタ50内のLEDアレイ制御部20へ転送する。
プロッタ50は、画像形成手段であり、LEDアレイ制御部20及びLEDアレイ(「LEDヘッド」ともいう)30を含む作像部を備えている。
LEDアレイ制御部20は、LEDアレイ30のLED点灯制御を行い、エンジンコントローラ7からのデータ信号及びLED点灯駆動信号のLEDアレイ30への転送を行う。
プロッタ50は、像担持体である感光体ドラム51の周囲に帯電,露光,現像,転写をそれぞれ行う帯電チャージャー(帯電部)52,LEDアレイ30,現像部53,転写チャージャー(転写部)54,クリーニングブレード(クリーニング部)55,及び除電ランプ(除電部)56を設けた作像ユニットを備えている。また、感光体ドラム51上に形成される黒ベタパターン画像の濃度(トナー濃度)を検出する濃度センサ57も備えている。この濃度センサ57は、光反射型のセンサである。
LEDアレイ30は、複数の発光素子である発光ダイオード(LED)が感光体ドラム51の回動方向である副走査方向に直交する主走査方向に配列されている。
プロッタ50は、LEDアレイ30を含む作像ユニットによる作像を含む一連の画像形成(印刷)を行う。
すなわち、まず副走査方向に回動する感光体ドラム51の表面を除電ランプ56によって除電した後、帯電チャージャー52によって均一に帯電する。
次に、LEDアレイ30の各LEDから感光体ドラム51の帯電面に主走査方向のライン単位で画像データに応じた光照射を行うことにより、帯電面を露光する。
それによって、感光体ドラム51の帯電面に光照射による静電潜像が書き込まれる。そして、その静電潜像を現像部53からのトナーで現像してトナー画像とし、転写チャージャー54により、搬送部58からの用紙(他の記録媒体でもよい)に転写分離する。
そのトナー画像が転写された用紙は、定着部59を通してそのトナー画像が熱定着され、機外に排出され、画像形成が完了する。
用紙への転写分離が終了した後の感光体ドラム51上に残ったトナーは、クリーニングブレード55によってクリーニングされる。
なお、印刷画像の濃度を安定させるために、静電潜像生成の露光前に、感光体ドラム51の表面に対して、濃度センサ読み取り専用の黒ベタパターン画像を生成することも行っている。このとき、濃度センサ57の出力電圧をモニタすることで、感光体ドラム51に付着しているトナーの量(トナー濃度)を検出して、現像部53内へのトナー補給量を調節している。
次に、LEDアレイ30の内部構成及び動作について説明する。
図2は、LEDアレイ30の内部構成及びLEDアレイ制御部20との接続関係を示すブロック図である。
LEDアレイ30は、光量補正ROM31、光量補正RAM32、シフトレジスタ33、補正回路34、LED駆動回路35、及び上述した複数のLEDであるLED素子群36を備えている。
光量補正ROM31及び光量補正RAM32は、LEDアレイ30の外部にあるLEDアレイ制御部20からアクセス可能なインタフェース(I/F)を有している。
光量補正ROM31には、LEDアレイ30固有のデータである各LED毎の光量補正データ(以下単に「光量補正データ」ともいう)が格納されている。この光量補正データは、LEDアレイ30を構成するLED素子群36の個々のLEDの初期状態(製造時点)での光量バラツキを補正して光量を均一にするための補正値を示す補正データである。
ここで、LEDアレイ30の使用時間の経過によって各LEDの総発光時間に比例した光量劣化が進行すると、LED個々の総発光時間の不均一により、光量劣化度合いの差が生じることで、光量補正ROM31内の光量補正データを用いても光量ムラが発生してしまう。
そこで、LEDアレイ制御部20は、LEDアレイ30内の光量補正ROM31に格納されている光量補正データを読み込んで後述する補正演算を行い、その補正演算後の光量補正データをLEDアレイ30内の光量補正RAM32に格納する。
シフトレジスタ33は、LEDアレイ制御部20からシリアル転送されてくる画像データ(以下「印字データ」ともいう)をラッチする。
補正回路34は、LEDアレイ制御部20からシフトレジスタ33経由で送られてくる印字データと光量補正RAM32から読み込んだ各LEDの光量補正データとに基づき、LED駆動回路35にLED毎の駆動電流を制御させ、LED毎の光量を均一化させる。
このとき、印字データによって発光が必要な各LEDが決まるので、次のようにする。つまり、その各LEDに光量が均一化するような駆動電流が流れるように、補正回路34は、光量補正RAM32から読み込んだ光量補正データに基づき、発光が必要な各LEDに対応する電流指示信号を生成し、LED駆動回路35へ出力する。この場合、LED駆動回路35は、補正回路34からの電流指示信号に応じて、発光が必要な各LEDに対応する駆動電流を流して、その各LEDを発光させる。なお、この実施形態では、光量補正データ及び印字データを2値データとするが、多値データとしても構わない。
あるいは、各LEDに光量が均一化するような駆動電流が流れるように、補正回路34は、光量補正RAM32から読み込んだ光量補正データに基づき、その各LEDに対応する電流指示信号を生成し、その電流指示信号と共に印字データをLED駆動回路35へ出力する。この場合、LED駆動回路35は、補正回路34からの電流指示信号に応じて対応する各LEDに流す電流値を設定し、補正回路34からの印字データに応じて発光が必要な各LEDに設定駆動電流を流し、その各LEDを発光させる。
次に、図1のLEDアレイ30の光量補正データの仕様について説明する。
図3は、LEDアレイ30の光量補正データの仕様(ドット単位LED電流変化率との関係)を示す図である。
この実施形態では、LEDアレイ30の光量補正データの仕様を図3に示す通り以下の仕様とするが、他の仕様にしても構わない。
・光量補正データ1ディジット(Digit)に対するLEDの電流変化率は、0.5%である。
・LEDの光量はその駆動電流に比例する特性をもつことから、光量補正データ1ディジットに対するLEDの電流変化率と光量変化率は同等の0.5%と考えて良い。
・LEDアレイ30内の光量補正ROM31に格納されている光量補正データは、LED素子群36を構成する全てのLED素子間の初期状態での光量バラツキを補正して光量がフラットになるように、LED素子個々で固有の値である。
・補正範囲が−15.5%〜+16%の光量補正データをもつ。
次に、図1のLEDアレイ30の光量劣化に関する仕様について説明する。
図4は、LEDアレイ30の光量劣化に関する仕様を示す図である。
この実施形態では、LEDアレイ30の光量劣化仕様を図4に示す仕様とするが、他の仕様にしても構わない。
LEDの総発光時間(「累積発光時間」ともいう)に対しての光量ムラはLED自身の特性によるところが大きい。そして例えば図4のLED光量劣化特性の場合、実発光時間20Hで10%の光量劣化が見込まれる。
また、光量劣化による印字画像に対する影響は画像形成装置によって異なり、光量変化に対する画像への影響度を把握することで、適切なタイミングで適切な光量補正を行うことが可能となる。
例えば、光量劣化5%で印字画像の劣化(光量ムラによる縦スジ等)が顕著となる画像形成装置においては、図4の特性を持つLEDを用いると、LED累積発光時間が10Hに達した時に、印字画像が劣化する程度の光量劣化(5%劣化)が起こると考えられる。そこで、累積発光時間が10Hに達したLEDに対して、電流変化率+5%の補正を行えばよい。このことにより、光量を5%増加させ、劣化分を補償して印字画像への影響を防止できる。図3に示した光量補正データ仕様の場合であれば、この補正のためには、光量補正データに+10ディジットの補正処理を行えば良い。
もちろん、もっと劣化の少ない段階で補正を行っても構わない。
次に、図1のLEDアレイ制御部20の構成について説明する。
図5は、LEDアレイ制御部20の構成を示すブロック図である。
このLEDアレイ制御部20は、LEDアレイI/F制御部200、レジスタ制御部300、及び光量補正データ制御部400を備えている。
LEDアレイI/F制御部200は、フォーマット変換部201、ドットカウント部202、データ転送クロック生成部203、ラインSYNC信号生成部204、データラッチ信号生成部205、及びLEDストローブ生成部206を備えている。このLEDアレイI/F制御部200は、エンジンコントローラ7内の画像処理部12より印字データ(画像データ)を受け取り、各部によって後述する処理を行う。
フォーマット変換部201は、LEDアレイI/F制御部200が受け取った印字データを、LEDアレイ30のデータ通信フォーマットに準拠した形態に変換する。
ドットカウント部202は、LEDアレイI/F制御部200が受け取った印字データについて、その印字データに基づく画像形成を行う際の各LEDの書き込みドット数(点灯回数)のカウントを行う。また、累積ドットカウント値格納メモリ440に格納されている過去の印刷においての各LED毎の累積ドットカウント値(点灯回数)を読み込み、その各LED毎の累積ドットカウント値に新たな各LED毎のカウント値を加算する。そして、その加算後の各LED毎の累積ドットカウント値を再び累積ドットカウント値格納メモリ440に格納して更新を行う。その各LED毎の累積ドットカウント値は、過去の全ての印字データに対するものである。
データ転送クロック生成部203は、フォーマット変換部201によってフォーマット変換された印字データをLEDアレイ30へ転送するための転送クロックを生成する。
ラインSYNC信号生成部204は、1ライン毎に行う作像発光のタイミングの同期をとるラインSYNC信号を生成する。
データラッチ信号生成部205は、データラッチ信号を生成する。
LEDストローブ生成部206は、1ライン毎のLED点灯(発光)タイミング及び点灯時間を制御するストローブ信号を生成する。
レジスタ制御部300は、エンジンコントローラ7のCPU11からのLEDアレイ制御に関する設定値を保存しており、上記ラインSYNC信号のアサート間隔、ストローブ信号のアサート時間(=1ラインのLED点灯時間)など、LEDアレイ制御部20内の各処理部へ設定値を提供する。
光量補正データ制御部400は、補正データメモリ制御部410、光量補正データ格納メモリ420、光量補正データ転送制御部430、累積ドットカウント値格納メモリ440、光量ムラ補正値算出部450、及び光量補正データ補正演算部460を備えている。
このうち補正データメモリ制御部410は、アドレス制御部411、リードイネーブル制御部412、及びライトイネーブル制御部413を備えている。
アドレス制御部411は、光量補正データ格納メモリ420のアドレス制御を行う。
リードイネーブル制御部412は、光量補正データ格納メモリ420のリードイネーブル制御を行う。
ライトイネーブル制御部413は、光量補正データ格納メモリ420のライトイネーブル制御を行う。
光量補正データ格納メモリ420は、LEDアレイ30の光量補正ROM31から読み出した各LED毎の光量補正データを格納する。
光量補正データ転送制御部430は、LEDアレイ30内の光量補正ROM31に対するリード制御と、LEDアレイ30内の光量補正RAM32に対するライト制御を行う。
累積ドットカウント値格納メモリ440は、不揮発性記憶手段であり、LEDアレイI/F制御部200内のドットカウント部202から送られてくるLEDアレイ30を構成する各LED毎の累積ドットカウント値を格納する。
光量ムラ補正値算出部450は、累積ドットカウント値格納メモリ440に格納されている各LED毎の累積ドットカウント値に基づいて、各LED毎の光量ムラ補正値を算出する。
光量補正データ補正演算部460は、光量ムラ補正値算出部450によって算出された各LED毎の光量ムラ補正値に基づき、光量補正データ転送制御部430からの光量補正データに対して各LED毎の光量ムラを補正する補正演算を行う。
光量補正データ制御部400は、補正データメモリ制御部410と光量補正データ転送制御部430とにより、LEDアレイ30内の光量補正ROM31に格納されている光量補正データを読み出して、光量補正データ格納メモリ420に書き込む。その後、光量補正データ格納メモリ420に書き込んだ光量補正データを読み出し、光量補正データ補正演算部460によって補正演算を行い、LEDアレイ30内の光量補正RAM32に書き込む。
次に、図5の光量ムラ補正値算出部450の構成について説明する。
図6は、光量ムラ補正値算出部450の構成をその周辺に位置する各部と共に示すブロック図である。
光量ムラ補正値算出部450は、光量ムラ補正値メモリ451、アドレスデコード部452、及びオフセット値算出部453を備えている。
光量ムラ補正値メモリ451は、例えばROMであり、LEDアレイ30を構成する各LED毎の総発光時間(累積発光時間)に応じた光量ムラ補正値が予め格納されている。ここに記憶させる補正値の詳細については、図8を用いて後に詳述する。
また、この実施形態における光量ムラ補正値の1ディジットに対する光量変化率(%)は光量補正データと同じ値(0.5%)である(図3参照)。LEDの累積発光時間とは、ストローブ信号のアサート時間の設定値(ストローブ時間設定値)と累積ドットカウント値の積で算出する値である。このLEDの累積発光時間の詳細については、図7で説明する。
アドレスデコード部452は、レジスタ制御部300に記憶されているストローブ時間設定値と累積ドットカウント値格納メモリ440に記憶された各LED毎の累積ドットカウント値とが入力されると、次の処理を行う。つまり、それらの入力値から光量ムラ補正値メモリ(ROM)451の読み出しアドレスをデコードする。そして、その読み出しアドレスに基づき、ストローブ時間設定値(各LEDの1度の点灯時間)と各LED毎の積算ドットカウント値(点灯時間)との積である各LED毎の累積発光時間に対応する各LED毎の適正な光量ムラ補正値(図8のデータ補正量)を読み出し、出力させる。
なお、この実施形態のように、ROMを用いて積算する方法は、ハードウエアの演算回路として一般的によく知られている方法である。
オフセット値算出部453は、光量ムラ補正値メモリ451から出力される各LED毎の光量ムラ補正値を読み込み、その中から最も大きい値をオフセット値として選択し、出力する。なお、オフセット値を光量ムラ補正値の最大値としなくても、オフセットの効果はある程度得られる。これについては、図9及び図10を用いて後述する。
光量補正データ補正演算部460は、光量ムラ補正値メモリ451から出力された各LED毎の光量ムラ補正値とオフセット値算出部453から出力されたオフセット値とに基づき、光量補正データ格納メモリ420から転送される各LED毎の光量補正データを補正演算する。つまり、各LED毎の光量補正データに対して各LED毎の光量ムラ補正値を加算し、その加算後の各LEDの光量補正データからオフセット値を減算する。そして、その補正演算した各LED毎の光量補正データをLEDアレイ30内の光量補正RAM32に転送して書き込ませる。
なお、LEDアレイ制御部20にCPUを用い、ソフトウェアによる演算機能により、ストローブ時間設定値と各LED毎の積算ドットカウント値との積である各LED毎の累積発光時間を算出し、その算出値から各LED毎の適正な光量ムラ補正値を算出することもできる。更に、その算出した各LED毎の光量ムラ補正値から最も大きい値をオフセット値として選択し、それと上記算出した各LED毎の光量ムラ補正値とに基づき、各LED毎の光量補正データを補正することもできる。
次に、図6の光量ムラ補正値算出部450による各LED毎の累積発光時間の算出方法について説明する。
図7は、その算出方法の説明に供するタイムチャートである。
LEDアレイ制御部20は、ラインSYNC信号のアサート間隔で2回の印字データの転送により1ライン分のデータ転送を行い、同じくラインSYNCのアサート間隔で2回のラッチ信号のアサート、2回のストローブ信号(STROBE)のアサートで1ライン分の各LEDの発光を行う。各LEDは、ストローブ信号のアサート期間中に発光する。
以上より、図6の累積ドットカウント値格納メモリ440内の各LED毎の累積ドットカウント値と、レジスタ制御部300に保存されているストローブ信号のアサート時間(ストローブDUTY)の設定値であるストローブ時間設定値とによって決定される1ライン当たりのLED点灯時間の積で各LED毎の累積発光時間を計算できる。
ハードウエアでの掛け算は、光量ムラ補正値メモリ451を使用することで回路規模の短縮及び高速化が可能である。例えば、ストローブ時間設定値を読み出しアドレスの上位4ビット、32ビットで表したLEDの累積ドットカウント値の上位12ビットを読み出しアドレスの下位12ビットとしてアドレスデコード部452へ入力する。アドレスデコード部452は、その各入力値から光量ムラ補正値メモリ451の読み出しアドレスをデコードして、光量ムラ補正値メモリ451の、そのアドレスに格納されている補正値を、当該LEDの光量ムラ補正値として出力する。以上のアドレスデコード及び補正値の出力は、LEDアレイ30のLED毎に行う。
次に、図6の光量ムラ補正値メモリ451内のデータテーブルについて説明する。
図8は、そのデータテーブルを示す図である。
LEDアレイ30の各LEDのいずれかで光量ダウンが発生し、その光量ダウンに対して敏感に画像劣化が起こる画像形成装置においては、段階的に各LEDの光量ムラを補正するとよい。
図8に示す光量ムラ補正値メモリ451内のデータテーブルには、LEDアレイ30を構成するLEDの光量が2%,4%,6%と段階的に劣化(低下)して光量ムラ補正を行う際に使用する光量ムラ補正値が記憶されている。
上述したアドレスデコード部452の読み出しアドレスと使用する光量ムラ補正値(補正データ)の決定方法は、次の通りである。
すなわち、上記読み出しアドレスに関しては、ストローブ時間と対応する4ビット(16進数1桁)の設定値を最上位の4ビットとする。また、32ビット(16進数8桁)で表したLEDの累積ドットカウント値の上位12ビット(16進数3桁)を読み出しアドレスの下位12ビットとする。
なお、ストローブ時間の設定は必ずしも10μs単位でなくてよいが、アドレスをデコードする際には、四捨五入等により10μs単位に丸めた値を用いればよい。
そして、各ストローブ時間につき、光量劣化が2〜4%と想定される累積ドットカウント値と対応するアドレスには、光量2%増加を示す補正量「0100B」(10進数で「4」)を記憶させておく。同様に、光量劣化が4〜6%と想定される累積ドットカウント値と対応するアドレスには、光量4%増加を示す補正量「1000B」(10進数で「8」)を記憶させておく。光量劣化が6%以上と想定される累積ドットカウント値と対応するアドレスには、光量6%増加を示す補正量「1100B」(10進数で「12」)を記憶させておく。その他のアドレスには、光量補正を行わないことを示す補正量「0000B」(10進数で「0」)を記憶させておく。
例えば、ストローブ時間が100μs(マイクロ秒)の場合、ストローブ時間と対応する設定値は「8H」である。また、累積ドットカウント値が144,000,000(ドット数換算、10進の欄)で累積発光時間が2%の光量劣化が想定される14,400秒(累積発光時間の欄)に達する。このときの累積ドットカウント値を16進数で示すと08954400H(ドット数換算、16進の欄)である。そして、2%光量劣化時の累積ドットカウント値と対応するアドレスは、最上位4ビットが「8H」、下位12ビットが「089H」であり、「8089H」となる。
また、累積ドットカウント値が288,000,000で累積発光時間が4%の光量劣化が想定される28,800秒に達する。このときの累積ドットカウント値を16進数で示すと112A8800Hである。そして、4%光量劣化時の累積ドットカウント値と対応するアドレスは、同様に「8112H」となる。
従って、光量劣化が2〜4%と想定される累積ドットカウント値と対応するアドレス範囲は8089(スタートアドレス)〜8111(エンドアドレス)であり、この範囲に補正量「0100B」を記憶させておく。
他の累積ドットカウント値及びストローブ時間についても同様である。
このようにすることにより、上述のようにストローブ時間と累積ドットカウント値から求めた読み出しアドレスから補正値を読み出すだけで、そのときのLEDの累積点灯時間に応じた光量劣化を補正するための補正量を取得することができる。すなわち、光量補正データ補正演算部460において、光量補正データ格納メモリ420から読み出された光量補正データに対し、光量ムラ補正値メモリ451の上記アドレスから読み出した補正量を加算することにより、LEDの光量を、累積点灯時間に応じた光量劣化を補正する分だけ増加させることができる。ただし、累積点灯時間が短い場合、この増加量が0になることもある。
次に、LEDアレイ30を構成する各LED毎の使用前の光量と使用時間累積によって劣化が生じた場合の光量について説明する。
図9は、それらの光量を示す図である。
図9(a)はLEDアレイ30を構成する各LEDの使用前の光量を、図9(b)はその各LEDの使用時間累積によって劣化が生じた場合の光量をそれぞれ示している。
図9(b)において、LEDアレイ30を構成するLED(1),LED(2),LED(3),・・・,LED(n)に着目し、LED(1)は累積発光時間が全く無いものを想定している。
LED(n)は、累積発光時間がLEDアレイ30を構成する各LEDのうち最も長いものを想定している。
LED(2)とLED(3)の累積発光時間は、LED(1)とLED(n)の中間を想定している。
使用前のLEDアレイ30においては、図9(a)に示すように、全てのLEDの光量はLEDアレイ30の光量補正ROM31に格納されている光量補正データによって狙いの光量(デフォルト光量)でフラットに調整されている。
しかし、画像形成を繰り返すと、LEDアレイ30の使用時間累積により、図9(b)に示すように、LED(2),LED(3),・・・,LED(n)は累積発光時間に応じた光量劣化が発生する。
図9(b)の例では、LED(1)は累積発光時間が無いため、光量劣化が全く無い状態である。LED(2)、LED(3)、・・・,LED(n)はそれぞれ累積発光時間が異なり、LED光量劣化も一律とはならず、光量ムラが発生する。
以上のようにLEDアレイ30の使用時間累積により発生したLEDの光量ムラは、縦スジ等の画像劣化の原因となる。
次に、図5の光量補正データ補正演算部460による補正演算(光量ムラ補正値加算及びオフセット値減算)について説明する。
図10は、その補正演算について説明するための説明図であり、図9(b)に示した各LEDの光量劣化発生時における光量補正データに対する光量ムラ補正値の加算とオフセット値の減算を行ったときの各LEDの光量を示している。
図9の(b)に示したようなLEDアレイ30の使用時間累積による光量劣化の度合いは、LEDアレイ30を構成するLEDの光量劣化仕様(図4)と各LEDの累積発光時間とに基づいて予測することが可能である。
上記光量劣化の予測値(%)を補償するための光量ムラ補正値は、図8を用いて説明したように光量ムラ補正値メモリ451から読み出して取得することができる。もちろん、演算回路等を用いて他の手法で取得することもできる。そしてその値を補正対象LEDの光量補正データに加算することで、各LEDの光量を図9(a)に示したものと同じ、製造時の光量の目標値であるデフォルト光量に揃えることが可能である。
図10(a)においては、光量補正データ補正演算部460が、LED(2),LED(3),・・・,LED(n)に対して、それぞれの累積発光時間に応じた光量ムラ補正値を光量補正データに加算する。LED(1)については、加算する光量ムラ補正値はゼロである。これによって、図2の補正回路34及びLED駆動回路35が、その加算後の光量補正データを用いることにより、各LEDの総発光時間に応じてその各LEDの駆動電流を増加させることになる。
図10の(a)の状態は、図9の(a)の時に比べて光量に変化はないが、LED(2)、LED(3)、LED(n)は、光量補正データに対して補正値を加算した分だけ、駆動電流が増大している。
LEDの駆動電流の増大は、デバイス自身の発熱を増大させるため、光量劣化の進行が早くなり、寿命が短くなるという副作用がある。
図10の(b)は、(a)の状態から、光量補正データ補正演算部460が、LEDアレイ30を構成する全てのLEDに対して、上記加算後の光量補正データからオフセット値を一律で減算して、デフォルト光量からターゲット光量を下げた状態を示している。これによって、補正回路34及びLED駆動回路35が、各LEDの駆動電流を、増加させた電流値の最大幅に基づき定めたオフセット値分だけ減少させることになる。なお、LEDのデフォルト光量発光時の駆動電流値が基準値に相当する。
図10の(b)では、LEDアレイ30を構成する全てのLEDで光量ムラ補正値が最大であるLED(n)について光量ムラ補正値メモリ451から読み出した光量ムラ補正値を、オフセット値としている。そして、全LEDの発光光量(駆動電流)を、そのオフセット値だけ減じるようにしている。
この結果、光量ムラ補正値とオフセット値の合計としては、全LEDについて、光量補正データ格納メモリ420から読み出された光量補正データに対し、駆動電流を低下させる方向での補正を行うことになる。従って、図10の(b)に破線で示すように、累積点灯時間に応じた光量ムラ補正による駆動電流値の増大分は0以下となり、「光量劣化の進行が早くなる」、「寿命が短くなる」という副作用の心配は全く無くなる。
なお、図10(b)の例では、LEDアレイ制御部20が、補正回路34及びLED駆動回路35と共に、各LEDの光量が、最も総発光時間が長いLEDであるLED(n)の光量に揃うように各LEDの駆動電流を制御していることになる。
この制御を行うに当たり、LEDアレイ制御部20が、LEDアレイ30内の補正回路34及びLED駆動回路35と共に、制御手段としての機能を果す。
次に、オフセット値に対するLED発光時間の補正について説明する。
図10において、LED(1),LED(2),LED(3),・・・,LED(n)それぞれの光量ムラ補正値を0%,2%,1%,3%、オフセット値を3%とする。
この場合、図10(b)に示した光量補正を行うと、全LEDの光量が、デフォルト光量から3%低下した状態となる。そして、この状態では、感光体ドラム51に対する露光光量が低下することにより、画質劣化(特に画像濃度が薄くなる劣化)が生じる可能性がある。
そこで、全体的な露光光量の低下を補正するために、1ライン毎のストローブ信号のアサート時間(=LED発光時間)を長くすることによって、感光体ドラム51に対する露光量を増やすことが有効である。
上記LED発光時間を長くする補正は、図5のLEDストローブ生成部206で行う。このLEDストローブ生成部206が補正手段としての機能を有する。
図11は、図1の感光体ドラム51への一定露光量を保つためのLED光量と発光時間との関係の例を示している。この関係は、感光体ドラム51の露光特性も考慮したものである。
LEDストローブ生成部206が、図11の露光特性に従い、オフセット値分のLED発光時間を補正することにより、オフセット前のデフォルト光量状態とオフセット後のターゲット光量ダウン状態とで、LEDの発光(点灯)による感光体ドラム51への露光量を一定にすることができる。つまり、LEDの駆動電流の制御前と、制御後とで、LEDの発光による露光量が変化しないように、LED発光時間の補正を行うことができる。
図11の例では、デフォルト光量が0.60μW、3%のオフセットによるターゲット光量ダウン後の光量が0.58μWである。それに対するLED発光時間の補正は、デフォルト時72.75μSに対して、オフセット後は75.00μSに補正すれば良い。この補正値は、図11中にある計算式(y=43.648x−1)にて算出できる。
なお、図11に基づいてLED発光時間を補正すると、実際のLEDの累積点灯時間が、ストローブ時間と累積ドットカウント値との積とは一致しなくなる。しかし、ストローブ時間はさほど大きく変更されないため、ストローブ時間の現在値あるいはデフォルト値のいずれかを用いて累積点灯時間を見積もっても、光量の補正に対して大きな影響はない。しかし、ジョブ実行毎、ストローブ時間の変更毎等に、それまでの累積ドットカウント値を累積点灯時間に換算して保存しておけば、より正確に累積点灯時間を算出可能である。
次に、画像形成装置100による印刷時の処理について説明する。
図12は、その処理のメインルーチンを示すフローチャートである。
画像形成装置100のエンジンコントローラ7は、メモリコントローラ1からの印刷指示を受け付けた場合に、図12に示す処理を開始する。
エンジンコントローラ7は、この処理においてまず、ステップS1でLEDアレイ制御部20にLEDアレイ30の光量ムラ補正を指示する。この光量ムラ補正は、図9及び図10を用いて説明したものである。次に、エンジンコントローラ7は、ステップS2でLEDアレイ30内の光量補正RAM32に格納された光量ムラ補正後の光量補正データを用いて印刷ジョブを実行し、図12の処理を終了する。なお、上記光量ムラ補正は、エンジンコントローラ7が電源オン後の1回目の印刷指示を受け付けた場合にのみ行うようにしても良い。あるいは、電源オン後、自動的に1回のみ、あるいは定期的に行うようにしても良い。
図13は、図12のステップS2における印刷ジョブ中のドットカウント処理を示すフローチャートである。
エンジンコントローラ7は、図13に示す印刷ジョブを開始すると、LEDアレイ制御部20に印刷ジョブ時の処理を指示する。
LEDアレイ制御部20は、その指示を受けると、ステップS11〜S13のドットカウント処理を行う。
まず、ステップS11では、LEDアレイI/F制御部200内のドットカウント部202(図5)が、フォーマット変換部201からの印字データのドット数(発光画素に相当する)を、LEDアレイ30を構成する各LED毎にカウントする。
例えば、LEDアレイ30がA4サイズ(幅210mm)で600dpiの解像度であれば、約5000(≒210×600÷25.4)個のLEDでアレイを構成する必要がある。そのため、LEDを5000個と仮定すると、各LEDが1回の印刷で何ドット分発光したかという5000通りのカウント結果が生成される。
ステップS11でのカウントは、1回の印刷の最終ラインが終了するまで実施する必要があり、その終了をステップS12でドットカウント部202が判断すると、ステップS13へ進む。
ステップS13では、ドットカウント部202が、光量補正データ制御部400内の累積ドットカウント値格納メモリ440に格納されている過去の印刷においての各LED毎の累積ドットカウント値を読み込み、その各LED毎の累積ドットカウント値に新たな各LED毎のカウント値を加算する。そして、その加算後の各LED毎の累積ドットカウント値を再び累積ドットカウント値格納メモリ440に格納して更新を行う。
これらの一連のドットカウント処理は、印刷ジョブ毎に必ず実施する。
図14は、図12のステップS1における光量ムラ補正処理を示すフローチャートである。
LEDアレイ制御部20内の光量補正データ制御部400は、補正データメモリ制御部410と光量補正データ転送制御部430とにより、LEDアレイ30内の光量補正ROM31から各LED毎の光量補正データを読み出して、光量補正データ格納メモリ420に書き込んでおく。この処理は、電源オン後、最低でも1回以上は行う。また、LEDアレイ制御部20内のレジスタ制御部300が、ストローブ信号のアサート時間の設定値(ストローブ時間設定値)を光量補正データ制御部400内の光量ムラ補正値算出部450へ出力する。
一方、光量補正データ制御部400では、印刷ジョブ実行前にLEDアレイ30の光量ムラ補正の指示を受けると、光量ムラ補正値算出部450が、光量補正データ格納メモリ420に格納されている各LED毎の光量補正データに対して図14のステップS21〜S26の手順で光量ムラ補正処理を実施する。
まず、ステップS21では、光量ムラ補正値算出部450が、累積ドットカウント値格納メモリ440から各LED毎の累積ドットカウント値(ドットカウント積算値)を読み出す。
次のステップS22では、光量ムラ補正値算出部450が、読み出した各LED毎の累積ドットカウント値とレジスタ制御部300からのストローブ時間設定値とをアドレスデコード部452に入力することにより、上述したように各LED毎の光量ムラ補正値を読み出すためのアドレスをアドレスデコード部452に生成させる。そして、光量ムラ補正値メモリ451のそのアドレスのデータを読み出すことにより、光量ムラ補正値を取得する。
次のステップS23では、オフセット値算出部453が、ステップS22で取得した各LED毎の光量ムラ補正値を読み込み、その中から最も大きい値をオフセット値として選択し、出力する。
次のステップS24では、光量補正データ補正演算部460が、光量ムラ補正値メモリ451から出力された各LED毎の光量ムラ補正値とオフセット値算出部453から出力されたオフセット値とに基づき、上述したように光量補正データ格納メモリ420から転送される各LED毎の光量補正データを補正演算する。
次のステップS25では、光量補正データ制御部400が、光量補正データ補正演算部460によって補正演算した各LED毎の光量補正データをLEDアレイ30内の光量補正RAM32に転送して書き込ませる。
次のステップS26では、光量ムラ補正値算出部450が、LEDストローブ生成部206に対し、ステップS23で選択したオフセット値と対応するストローブ時間の調整(図11参照)を指示する。以上で処理を終了する。
なお、光量補正データ制御部400が、各LEDの累積発光時間に基づき、前回補正時から所定幅以上光量の低下したLEDがあると判断する度に、光量ムラ補正処理(各LEDについて駆動電流の更新)を行うようにすることもできる。
以上の実施形態では、以下の(1)〜(7)に示す作用効果を得ることができる。
(1)LEDアレイ制御部20等が、複数のLED(発光素子)のうち最も総発光時間が短いLEDの駆動電流を基準値(光量補正ROM31に記憶されている補正値に従った駆動電流)よりも低下させつつ、上記複数のLEDの光量が揃うように上記複数のLEDの駆動電流を制御する。このことにより、駆動電流の増加によるLEDの劣化速度上昇を抑えつつ、LEDの光量ムラを補正することができる。
なお、上述した実施形態では、上記複数のLEDの光量が、最も総発光時間が長い発光素子の光量に揃うようにした(オフセット値を最も総発光時間が長いLEDのムラ補正値に基づき定めた)。しかし、オフセット値の決定法はこれに限られない。他のLEDの光量ムラ補正値や、各LEDの光量ムラ補正値の平均等、任意の基準でオフセット値を求めてもよい。少なくとも、最も総発光時間が短いLEDについて、光量ムラ補正値とオフセット値の合計による駆動電流の補正量が、その駆動電流を基準値より低下させる方向であれば、程度の違いはあれ、同様な効果を得ることができる。LEDの補正後の発光光量の目標値がデフォルト光量よりも低下していればよいという考え方もできる。
(2)LEDアレイ制御部20等が、上記複数のLEDの光量が、最も総発光時間が長い発光素子の光量に揃うように上記複数のLEDの駆動電流を制御する。このことにより、上記複数のLEDの光量を簡単に揃えることができる。
(3)LEDアレイ制御部20等が、上記各LEDの総発光時間に応じてそのLEDの駆動電流を増加させ、上記各LEDの駆動電流を、その増加の最大幅に基づき定めたオフセット値だけ減少させる。このことにより、図8に示したような光量ムラ補正値を用いた光量補正を行うアーキテクチャが既にある場合に、これを有効に活用しつつ、上述の実施形態における光量補正を行うことができる。
(4)LEDアレイ制御部20内のLEDストローブ生成部206が、上記のように揃えられた光量に応じて、上記LEDの点灯時間を補正する。このことにより、画像濃度が薄くなる等の画像劣化を抑制することが可能になる。
(5)LEDストローブ生成部206が、駆動電流の制御前と、制御後とで、LEDの点灯による露光量が変化しないように、LEDの点灯時間の補正を行う。このことにより、画像濃度が薄くなる等の画像劣化を確実に抑制することができる。
(6)LEDアレイ制御部20等が、上記各LEDの点灯回数と、1度の点灯時間とに基づいてそのLEDの総発光時間を求め、予め記憶された、その総発光時間と対応する補正値に従い、そのLEDの駆動電流を制御する。そうすれば、光量ムラ補正値を低い処理負荷で取得し、高速な補正が可能である。また、補正精度も向上させることができる。
(7)LEDアレイ制御部20等が、上記各LEDの総発光時間に基づき、前回補正時から所定幅以上光量の低下した発光素子があると判断する度に、上記各LEDについて駆動電流を更新する。そうすれば、LEDの経時で進行する光量劣化対して継続的に光量補正することが可能となる。また、補正精度の向上が期待できる。
〔この実施形態におけるプログラム〕
この発明の実施形態であるプログラムは、LEDアレイ制御部20及びLEDアレイ30を制御するCPU(コンピュータ)に上述した機能を実現させるためのプログラムである。そして、このようなプログラムをコンピュータに実行させることにより、上述したような効果を得ることができる。
このようなプログラムは、はじめからコンピュータに備えるHDD(ハードディスク装置)、あるいはROMや他の不揮発性記憶媒体(フラッシュメモリ,EEPROM等)などに格納しておいてもよい。しかし、記録媒体であるCD−ROM、あるいはメモリカード,フレキシブルディスク,MO,CD−R,CD−RW,DVD+R,DVD+RW,DVD−R,DVD−RW,又はDVD−RAM等の不揮発性記録媒体に記録して提供することもできる。それらの記録媒体に記録されたプログラムをコンピュータにインストールして実行させることにより、上述した各手順を実行させることができる。
さらに、ネットワークに接続され、プログラムを記録した記録媒体を備える外部装置あるいはプログラムを記憶手段に記憶した外部装置からダウンロードし、コンピュータにインストールして実行させることも可能である。
〔変形例〕
以上で各実施形態の説明を終了するが、この発明において、各部の具体的な構成や処理の内容、通信の手順等は、実施形態で説明したものに限るものではない。
例えば、この発明を電子写真方式の画像形成装置に適用した実施形態について説明したが、この発明はこれに限らず、感光紙を直接露光させる方式等の画像形成装置にも適用可能である。
また、発光素子としては、LED以外のものを使用しても良い。
さらに、発光素子の配列は直線には限らない。つまり、曲線でも、2次元でもよい。
さらにまた、発光素子の用途も画像形成(書き込み)には限らない。画像表示の用途も考えられる。
また、上述した画像形成装置の機能(特にLEDの駆動電流の補正に関する機能)は、2以上の装置に分散して設け、これらの装置に協働させて当該機能を実現させるようにしてもよい。
また、この発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが対象となることは言うまでもない。
さらに、以上説明してきた実施形態、動作例及び変形例の構成は、相互に矛盾しない限り任意に組み合わせて実施可能であることは勿論である。
1:メモリコントローラ、2:SDRAM、3:HDD、4:プリンタインタフェース
5:FAXモデム、6:PCIオプション、7:エンジンコントローラ、8:操作パネル、9:スキャナ、11:CPU、12:画像処理部、20:LEDアレイ制御部、30:LEDアレイ、31:光量補正ROM、32:光量補正RAM、33:シフトレジスタ、34:補正回路、35:LED駆動回路、36:LED素子群、
50:プロッタ、51:感光体ドラム、52:帯電チャージャー、53:現像部、54:転写チャージャー、55:クリーニングブレード、56:除電ランプ、57:濃度センサ、58:搬送部、59:定着部、100:画像形成装置、200:LEDアレイI/F制御部、201:フォーマット変換部、202:ドットカウント部、203:データ転送クロック生成部、204:ラインSYNC信号生成部、205:データラッチ信号生成部、206:LEDストローブ生成部、300:レジスタ制御部、400:光量補正データ制御部、410:補正データメモリ制御部、411:アドレス制御部、412:リードイネーブル制御部、413:ライトイネーブル制御部、420:光量補正データ格納メモリ、430:光量補正データ転送制御部、440:累積ドットカウント値格納メモリ、450:光量ムラ補正値算出部、451:光量ムラ補正値メモリ、452:アドレスデコード部、453:オフセット値算出部、460:光量補正データ補正演算部
特開2009−23145号公報 特開2000−94742号公報

Claims (10)

  1. 複数の発光素子を配列した発光素子アレイを制御する制御装置であって、
    前記複数の発光素子のうち最も総発光時間が短い発光素子の駆動電流を基準値よりも低下させつつ、前記複数の発光素子の光量が揃うように前記複数の発光素子の駆動電流を制御する制御手段を備えたことを特徴とする制御装置。
  2. 請求項1に記載の制御装置であって、
    前記制御手段は、前記複数の発光素子の光量が、最も総発光時間が長い発光素子の光量に揃うように前記複数の発光素子の駆動電流を制御することを特徴とする制御装置。
  3. 請求項1又は2に記載の制御装置であって、
    前記制御手段は、前記各発光素子の総発光時間に応じて該発光素子の駆動電流を増加させる手段と、前記各発光素子の駆動電流を、該増加の最大幅に基づき前記駆動電流が前記基準値より低下するように定めたオフセット値だけ減少させる手段とを備えることを特徴とする制御装置。
  4. 請求項1乃至3のいずれか一項に記載の制御装置であって、
    前記制御手段により揃えられた光量に応じて、前記発光素子の点灯時間を補正する補正手段を備えたことを特徴とする制御装置。
  5. 請求項4のいずれか一項に記載の制御装置であって、
    前記補正手段は、前記制御手段による駆動電流の制御前と、制御後とで、前記発光素子の点灯による露光量が変化しないように、前記点灯時間の補正を行うことを特徴とする制御装置。
  6. 請求項1乃至5のいずれか一項に記載の制御装置であって、
    前記制御手段は、前記各発光素子の点灯回数と、1度の点灯時間とに基づいて該発光素子の総発光時間を求め、予め記憶された、該総発光時間と対応する補正値に従い、該発光素子の駆動電流を制御することを特徴とする制御装置。
  7. 請求項1乃至6のいずれか一項に記載の制御装置であって、
    前記制御手段が、前記各発光素子の総発光時間に基づき、前回補正時から所定幅以上光量の低下した発光素子があると判断する度に、前記各発光素子について駆動電流を更新することを特徴とする制御装置。
  8. 請求項1乃至7のいずれか一項に記載の制御装置と、
    複数の発光素子を配列した発光素子アレイを有する画像形成手段とを備え、
    前記制御装置が該発光素子アレイを制御することを特徴とする画像形成装置。
  9. コンピュータに、複数の発光素子を配列した発光素子アレイを制御する機能を実現させるための制御プログラムであって、
    前記コンピュータを、前記複数の発光素子のうち最も総発光時間が短い発光素子の駆動電流を基準値よりも低下させつつ、前記複数の発光素子の光量が揃うように前記複数の発光素子の駆動電流を制御する制御手段として機能させるためのプログラムを含むことを特徴とする制御プログラム。
  10. 複数の発光素子を配列した発光素子アレイに対し、前記複数の発光素子のうち最も総発光時間が短い発光素子の駆動電流を基準値よりも低下させつつ、前記複数の発光素子の光量が揃うように前記複数の発光素子の駆動電流を制御することを特徴とする光量ムラ補正方法。
JP2013054036A 2013-03-15 2013-03-15 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法 Pending JP2014177088A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054036A JP2014177088A (ja) 2013-03-15 2013-03-15 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054036A JP2014177088A (ja) 2013-03-15 2013-03-15 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法

Publications (1)

Publication Number Publication Date
JP2014177088A true JP2014177088A (ja) 2014-09-25

Family

ID=51697518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054036A Pending JP2014177088A (ja) 2013-03-15 2013-03-15 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法

Country Status (1)

Country Link
JP (1) JP2014177088A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099582A (ja) * 2014-11-26 2016-05-30 コニカミノルタ株式会社 発光装置及び画像形成装置
JP2016182741A (ja) * 2015-03-26 2016-10-20 コニカミノルタ株式会社 光書込み装置及び画像形成装置
JP2017087454A (ja) * 2015-11-04 2017-05-25 コニカミノルタ株式会社 光書き込み装置及び画像形成装置
US20170168413A1 (en) * 2015-12-15 2017-06-15 Konica Minolta, Inc. Optical writing device and image forming device
JP2017159635A (ja) * 2016-03-11 2017-09-14 コニカミノルタ株式会社 光書込み装置及び画像形成装置
US10313551B2 (en) 2016-01-08 2019-06-04 Ricoh Company, Ltd. Control system configured to correct variations in optical output of light emitting devices, image forming system, control method, and computer-readable recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099582A (ja) * 2014-11-26 2016-05-30 コニカミノルタ株式会社 発光装置及び画像形成装置
JP2016182741A (ja) * 2015-03-26 2016-10-20 コニカミノルタ株式会社 光書込み装置及び画像形成装置
JP2017087454A (ja) * 2015-11-04 2017-05-25 コニカミノルタ株式会社 光書き込み装置及び画像形成装置
US20170168413A1 (en) * 2015-12-15 2017-06-15 Konica Minolta, Inc. Optical writing device and image forming device
US9829824B2 (en) * 2015-12-15 2017-11-28 Konica Minolta, Inc. Optical writing device and image forming device
US10313551B2 (en) 2016-01-08 2019-06-04 Ricoh Company, Ltd. Control system configured to correct variations in optical output of light emitting devices, image forming system, control method, and computer-readable recording medium
JP2017159635A (ja) * 2016-03-11 2017-09-14 コニカミノルタ株式会社 光書込み装置及び画像形成装置

Similar Documents

Publication Publication Date Title
JP2014177088A (ja) 制御装置,画像形成装置,制御プログラム,及び光量ムラ補正方法
US10514646B2 (en) Image forming apparatus and image forming method
JP2011215340A (ja) 画像形成装置
JP2013045051A (ja) 画像形成装置
JP4647353B2 (ja) 画像形成装置
JP2008089701A (ja) 画像記録装置
JP4830464B2 (ja) 濃度補正装置及び画像形成装置
US10613463B2 (en) Image processing apparatus, method, and non-transitory computer-readable storage medium having tone correction based on status
JP2018132723A (ja) 画像形成システム、画像形成方法、及び画像形成プログラム
JP5402878B2 (ja) ヒータ制御装置、印刷装置、ヒータ制御方法、及び、プログラム
JP6440424B2 (ja) 画像形成装置
JP6071266B2 (ja) 画像形成装置
JP2004188665A (ja) 画像形成装置、補正データ生成装置および光プリントヘッドの光量補正方法
JP2006255976A (ja) 画像形成装置及びプリントヘッドの制御方法
JP6700717B2 (ja) 画像形成装置
JP6160429B2 (ja) 光走査装置、画像形成装置
JP6467461B2 (ja) 画像形成装置および露光装置
JP6127557B2 (ja) 画像装置およびコンピュータプログラム
JP6206068B2 (ja) 光走査装置、及び画像形成装置
JP4236643B2 (ja) 画像形成装置
JP2010113104A (ja) 画像形成装置および画像形成方法
JP5849467B2 (ja) 画像形成装置、および画像形成方法
KR100574509B1 (ko) 광량편차보정 기능이 지원되는 인쇄 장치 및 그 인쇄 방법
JP2013052650A (ja) 露光装置、画像形成装置、及びプログラム
JP5267386B2 (ja) 印刷装置及び印刷方法