JP2014148685A - ポリブタジエンの製造方法 - Google Patents

ポリブタジエンの製造方法 Download PDF

Info

Publication number
JP2014148685A
JP2014148685A JP2014096160A JP2014096160A JP2014148685A JP 2014148685 A JP2014148685 A JP 2014148685A JP 2014096160 A JP2014096160 A JP 2014096160A JP 2014096160 A JP2014096160 A JP 2014096160A JP 2014148685 A JP2014148685 A JP 2014148685A
Authority
JP
Japan
Prior art keywords
polymerization
yttrium
added
solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014096160A
Other languages
English (en)
Other versions
JP5776819B2 (ja
Inventor
Masato Murakami
村上  真人
Koji Shiba
晃司 斯波
Tsuneshi Shoda
恒志 庄田
Mitsuharu Abe
光春 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014096160A priority Critical patent/JP5776819B2/ja
Publication of JP2014148685A publication Critical patent/JP2014148685A/ja
Application granted granted Critical
Publication of JP5776819B2 publication Critical patent/JP5776819B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

【課題】イットリウム化合物を含有する触媒を用いて、溶液粘度が非常に低く加工性が改善された、分岐度が高く、シス−1,4構造含有率が高い共役ジエン重合体を提供する。
また、この重合体を用いた補強剤の分散性に優れたゴム組成物を提供する。
【解決手段】(A)イットリウム化合物、(B)非配位性アニオンとカチオンとからなるイオン性化合物、および(C)有機アルミニウム化合物から得られる触媒の存在下、50〜120℃で共役ジエンを重合することを特徴とする以下の特性を有する共役ジエン重合体の製造方法。
(1)25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2
(2)シス−1,4構造含有率が80%以上、かつ1,2構造含有量が5%未満
【選択図】なし

Description

本発明はシス−1,4構造含有率が高く、分岐度が高い共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物、特にシリカを補強剤として用いたタイヤ用ゴム組成物に関する。
シス−1,4構造含有率が高い共役ジエン重合体を製造する方法は数多く知られており、特にチタン、コバルト、ニッケル、ネオジム等の遷移金属化合物と有機アルミニウム化合物を組み合わせた系がよく用いられる。また、国際公開第06/049016号パンフレット(特許文献1)には嵩高い配位子を有するイットリウム化合物を用いた触媒により、シス−1,4構造含有率が高い共役ジエン重合体を製造する方法が開示されている。通常、これらの触媒系では線状で分岐が少ない共役ジエン重合体が得られる。
しかし、このような分岐が少ない共役ジエン重合体は溶液粘度および溶融粘度が高く、用途によっては加工性が問題になる場合がある。この問題に対して、重合体中に分岐構造を導入することによる改善が検討されてきた。
例えば特開平7−2959号公報(特許文献2)には、有機リチウムを開始剤として共役ジエンを重合したリビング重合体に、カップリング剤としてアルコキシシランを反応させ、分岐状共役ジエン重合体を製造する方法が開示されている。
特開平2−45508号公報(特許文献3)には、コバルト系触媒を用いたポリブタジエンの製造において、水および連鎖移動剤の使用量を調節することにより、シス−1,4構造含有率が高いまま溶液粘度を低減する方法が開示されている。
また、特開2004−204229号公報(特許文献4)には、ランタニド化合物を含む触媒を用いて70〜140℃で共役ジエンを重合する、シス−1,4構造含有率が高く溶液粘度が低い、分岐した共役ジエン重合体の製造方法が開示されている。
共役ジエン重合体の一つであるポリブタジエンは機械的特性や熱的特性に優れたゴムとして知られており、タイヤをはじめ様々な用途に用いられている。近年の環境問題への関心の高まりに伴い、タイヤについても低燃費化の要求が強くなっているが、タイヤの低燃費化には損失正接(tanδ)が低い(低ロス性)ゴム組成物を用いることが有効であることが分かっており、具体的な方法として、補強剤としてシリカを用いる方法が数多く提案されている。
しかしながら、シリカを補強剤として用いた場合、カーボンブラックに比べてゴム成分に対する分散性が悪いため耐摩耗性や機械的特性などが低下する問題がある。これに対して、特許文献5には変性重合体を用いることにより補強剤の分散性を改良する方法が開示されている。
国際公開第06/049016号パンフレット 特開平7−2959号公報 特開平2−45508号公報 特開2004−204229号公報 特開2001−139603号公報
本発明は、イットリウム化合物を含有する触媒を用いて、溶液粘度が非常に低く加工性が改善された、分岐度が高く、シス−1,4構造含有率が高い共役ジエン重合体を提供することを目的とする。また、この重合体を用いた補強剤の分散性に優れたゴム組成物を提供することを目的とする。
本発明者らは、イットリウム化合物を含有する触媒を用いて、通常より高い重合温度で共役ジエン化合物を重合させることにより、比較的高いシス−1,4構造含有率を保ったまま、分岐度が高く、溶液粘度が非常に低い共役ジエン重合体が得られること、また、この重合体を用いたゴム組成物が補強剤の分散性に優れることを見出した。
すなわち、本発明は(A)イットリウム化合物、(B)非配位性アニオンとカチオンとからなるイオン性化合物、および(C)有機アルミニウム化合物から得られる触媒の存在下、50〜120℃で共役ジエンを重合することを特徴とする以下の特性を有する共役ジエン重合体の製造方法である。
(1)25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2
(2)シス−1,4構造含有率が80%以上、かつ1,2構造含有量が5%未満
触媒系におけるイットリウム化合物は、下記一般式(1)で表されるイットリウム化合物であるのが好ましい。
Figure 2014148685
(R、R、Rは水素、または炭素数1〜12の置換基を表し、Oは酸素原子を表し、Yはイットリウム原子を表す。)
また、共役ジエンとしては1,3−ブタジエンが好ましい。
また、本発明は下記の特性(1)〜(3)を有することを特徴とするポリブタジエンである。
(1)25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2
(2)シス−1,4構造含有率が80%以上、かつ1,2構造含有率が5%未満
(3)GPC/MALLS法(ゲルろ過クロマトグラフィー/多角度レーザー光散乱検出法)により測定された絶対分子量と平均回転半径の関係において、300,000g/molにおける分子の平均回転半径が30〜20nm、かつ1,000,000g/molにおける分子の平均回転半径が50〜40nm
また、本発明は前記のポリブタジエンを10重量%以上含有することを特徴とするゴム組成物であり、さらにシリカを含むことを特徴とするタイヤ用ゴム組成物である。
本発明により得られる分岐状共役ジエン重合体はシス−1,4構造含有率が比較的高く、かつ分岐度が非常に高いため、優れたゴム物性と加工性能を有し、これらの特徴を生かす各種用途、例えばタイヤ部材などの原料ゴムとしてとして用いることができる。また、溶液粘度が低いため耐衝撃性ポリスチレン(HIPS)やABS樹脂等における改良剤としても利用できる。さらに、カップリング剤を用いていないため、貯蔵安定性や熱安定性に優れる。特に、この重合体を用いたゴム組成物は補強剤の分散性が良好であり、耐摩耗性、低ロス性に優れたタイヤ用ゴム組成物として好適に用いることができる。
触媒系の(A)成分であるイットリウム化合物の例として、三塩化イットリウム、三臭化イットリウム、三ヨウ化イットリウム、硝酸イットリウム、硫酸イットリウム、トリフルオロメタンスルホン酸イットリウム、酢酸イットリウム、トリフルオロ酢酸イットリウム、マロン酸イットリウム、オクチル酸(エチルヘキサン酸)イットリウム、ナフテン酸イットリウム、バーサチック酸イットリウム、ネオデカン酸イットリウム等のイットリウム塩や、イットリウムトリメトキシド、イットリウムトリエトキシド、イットリウムトリイソプロポキシド、イットリウムトリブトキシド、イットリウムトリフェノキシドなどのアルコキシド、トリスアセチルアセトナトイットリウム、トリス(ヘキサンジオナト)イットリウム、トリス(ヘプタンジオナト)イットリウム、トリス(ジメチルヘプタンジオナト)イットリウム、トリス(テトラメチルヘプタンジオナト)イットリウム、トリスアセトアセタトイットリウム、シクロペンタジエニルイットリウムジクロライド、ジシクロペンタジエニルイットリウムクロライド、トリシクロペンタジエニルイットリウムなどの有機イットリウム化合物、イットリウム塩ピリジン錯体、イットリウム塩ピコリン錯体等の有機塩基錯体、イットリウム塩水和物、イットリウム塩アルコール錯体などを挙げることができる。特に下記の一般式(1)で表されるイットリウム錯体が好ましい。
Figure 2014148685
(R、R、Rは水素、または炭素数1〜12の置換基を表し、Oは酸素原子を表し、Yはイットリウム原子を表す。)
上記一般式で表されるイットリウム化合物の例として、トリス(アセチルアセトナト)イットリウム、トリス(ヘキサンジオナト)イットリウム、トリス(ヘプタンジオナト)イットリウム、トリス(ジメチルヘプタンジオナト)イットリウム、トリス(トリメチルヘプタンジオナト)イットリウム、トリス(テトラメチルヘプタンジオナト)イットリウム、トリス(ペンタメチルヘプタンジオナト)イットリウム、トリス(ヘキサメチルヘプタンジオナト)イットリウム、トリスアセトアセタトイットリウムなどを挙げることができる。
触媒系の(B)成分である非配位性アニオンとカチオンとからなるイオン性化合物は、公知の非配位性アニオン及びカチオンの中から、それぞれ任意に選択して組み合わせたものを用いることができる。
非配位性アニオンの例として、テトラ(フェニル)ボレ−ト、テトラ(フルオロフェニル)ボレ−ト、テトラキス(ジフルオロフェニル)ボレ−ト、テトラキス(トリフルオロフェニル)ボレ−ト、テトラキス(テトラフルオロフェニル)ボレ−ト、テトラキス(ペンタフルオロフェニル)ボレ−ト、テトラキス(3,5−ビストリフルオロメチルフェニル)ボレ−ト、テトラキス(テトラフルオロメチルフェニル)ボレ−ト、テトラ(トルイル)ボレ−ト、テトラ(キシリル)ボレ−ト、トリフェニル(ペンタフルオロフェニル)ボレ−ト、トリス(ペンタフルオロフェニル)(フェニル)ボレ−ト、トリデカハイドライド−7,8−ジカルバウンデカボレ−ト、テトラフルオロボレ−ト、ヘキサフルオロホスフェ−トなどを挙げることができる。
一方、カチオンの例として、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、フェロセニウムカチオンなどを挙げることができる。
カルボニウムカチオンの具体例として、トリフェニルカルボニウムカチオン、トリ置換フェニルカルボニウムカチオンなどの三置換カルボニウムカチオンを挙げることができる。また、トリ置換フェニルカルボニウムカチオンの具体例として、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどを挙げることができる。
アンモニウムカチオンの具体例として、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオンなどのN,N−ジアルキルアニリニウムカチオン、ジ(i−プロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンを挙げることができる。
ホスホニウムカチオンの具体例として、トリフェニルホスホニウムカチオン、テトラフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、テトラ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン、テトラ(ジメチルフェニル)ホスホニウムカチオンなどのアリ−ルホスホニウムカチオンを挙げることができる。
好ましい非配位性アニオンとカチオンの組み合わせは、ホウ素含有化合物とカルボカチオンであり、イオン性化合物の具体例として、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレ−ト、トリフェニルカルボニウムテトラキス(フルオロフェニル)ボレ−ト、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレ−ト、1,1'−ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレ−トなどを挙げることができる。これらイオン性化合物は単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
また、(B)成分である非配位性アニオンとカチオンとからなるイオン性化合物の代わりにアルミノキサンを用いることもできる。アルミノキサンは有機アルミニウム化合物と縮合剤とを接触させることによって得られるものであって、一般式(−Al(R')O−) n で示される鎖状アルミノキサン、あるいは環状アルミノキサンを挙げることができる。
(R' は炭素数1〜10の炭化水素基であり、一部ハロゲン原子及び/又はアルコキシ基で置換されたものも含む。nは重合度であり、5以上、好ましくは10以上である)。R' として、メチル、エチル、プロピル、イソブチル基などが挙げられるが、メチル基が好ましい。アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム及びその混合物などが挙げられる。
それらの中でも、トリメチルアルミニウムとトリブチルアルミニウムの混合物を原料として用いたアルミノキサンンを好適に用いることができる。
上記の縮合剤の典型的なものとしては水が挙げられるが、この他にもトリアルキルアルミニウムが縮合反応する任意のもの、例えば、無機物などの吸着水やジオールなどが挙げられる。
触媒系の(C)成分である有機アルミニウム化合物の例として、トリアルキルアルミニウムのほか、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムセスキクロライド、アルキルアルミニウムセスキブロマイド、アルキルアルミニウムジクロライドなどの有機アルミニウムハロゲン化合物、ジアルキルアルミニウムハイドライドなどの水素化有機アルミニウム化合物などを挙げることができる。
トリアルキルアルミニウムの具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどを挙げることができる。
有機アルミニウムハロゲン化合物の具体例として、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライドなどのジアルキルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライドなどを、また、水素化有機アルミニウム化合物の具体例として、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、エチルアルミニウムセスキハイドライドなどを挙げることができる。
これらの有機アルミニウム化合物は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
触媒成分(A)〜(C)の量およびこれら相互の比は、得られる重合体が目的とする物性を有するよう必要に応じて調整する。通常、(A)成分の量は共役ジエンモノマー100gに対し0.0001〜0.5mmolが好ましく、0.0005〜0.1が特に好ましい。(A)成分と(B)成分のモル比(A)/(B)は1/1.0〜1/5.0が好ましく、1/1.0〜1/3.0が特に好ましい。(A)成分と(C)成分のモル比(A)/(C)は1/1〜1/5000が好ましく、1/10〜1/2000が特に好ましい。
各触媒成分の混合は、重合しようとする共役ジエンの存在下または不存在下のいずれにおいても行うことができる。混合方法にも特に制限はないが、例えば次のように行うことができる。
(1)不活性有機溶媒に(C)成分を添加し、(A)成分と(B)成分を任意の順序で添加する。
(2)不活性有機溶媒に(C)成分を添加し、上述した分子量調節剤を添加した後、(A)成分と(B)成分を任意の順序で添加する。
(3)不活性有機溶媒に(A)成分を添加し、(C)成分と上述した分子量調節剤を任意の順序で添加した後、(B)成分を添加する。
(4)不活性有機溶媒中に(B)成分を添加し、(C)成分と上述した分子量調節剤を任意の順序で添加した後、(A)成分を添加する。
(5)不活性有機溶媒中に(C)成分を添加し、(A)成分と(B)成分を任意の順序で添加した後、上述した分子量調節剤を添加する。
また、成分の一部をあらかじめ混合、熟成してもよい。中でも、(A)成分と(C)成分をあらかじめ混合、熟成することが好ましい。
熟成温度は−50〜80℃、好ましくは−10〜50℃であり、熟成時間は0.01〜24時間、好ましくは0.05〜5時間、特に好ましくは0.1〜1時間である。
上述のようにして得られる触媒は、無機化合物または有機高分子化合物などに担持して用いることもできる。
重合溶媒に制限はなく、例えばブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、上記のオレフィン化合物やシス−2−ブテン、トランス−2−ブテン等のオレフィン系炭化水素等を用いることができる。特にベンゼン、トルエン、シクロヘキサン、あるいは、シス−2−ブテンとトランス−2−ブテンとの混合物などが好ましい。また、モノマーそのものを重合溶媒とする塊状重合(バルク重合)を行うこともできる。
溶液重合における共役ジエンモノマーの濃度は5〜70重量%が好ましく、10〜50重量%が特に好ましい。
本発明における重合温度は50〜120℃の範囲であり、55〜110℃がより好ましく、60〜100℃が特に好ましい。50℃以下では重合体の分岐度が小さく、120℃以上ではゲル分が多くなる。また、重合時間は1分〜12時間の範囲が好ましく、5分〜5時間が特に好ましい。重合温度および重合時間は、得られる重合体が目的とする物性を有するよう必要に応じて調整する。
重合することができる共役ジエンの例として、1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン(ピペリレン)、1,3−ヘキサジエン、1,3−シクロヘキサジエンなどを挙げることができる。これらは単独で用いてもよく、2種類以上を組み合わせて共重合体を得ることもできる。好ましくは1,3−ブタジエンまたはイソプレンである。
共役ジエンを重合する際、水素、水素化金属化合物、または水素化有機金属化合物を分子量調節剤として用いることができるが、特に水素を用いて分子量を調節することが好ましい。
本発明で得られる分岐状共役ジエン重合体は、シス−1,4構造含有率が80%以上であることが好ましく、90%以上であることが特に好ましい。また、1,2構造含有率は5%未満であることが好ましく、3%未満であることが特に好ましい。
重合体の25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)は0.1〜1.2が好ましく、0.2〜1.1であることがより好ましく、特に0.4〜1.0であることが好ましい。Tcp/ML1+4は重合体の分岐度の指標の一つであり、その値が小さいほど分岐度が高いことを示す。
重合体のム−ニ−粘度(ML1+4)は10〜80が好ましく、20〜70が特に好ましい。ム−ニ−粘度(ML1+4)が低すぎると物性に劣り、高すぎると加工性が悪くなる。
前記の製造方法によって1,3−ブタジエンを重合することにより、シス−1,4構造含有率が高く、分岐度が高い、ポリブタジエン得ることができる。
本発明のポリブタジエンは、分岐度の指標の一つである25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2であり、0.3〜1.0であるのが好ましく、0.5〜1.0であることが特に好ましい。Tcp/ML1+4は重合体の分岐度の指標の一つであり、その値が小さいほど分岐度が高いことを示す。
また、もう一つの分岐度の指標として、GPC/MALLS法(ゲルろ過クロマトグラフィー/多角度レーザー光散乱検出法)により測定された絶対分子量と平均回転半径の関係において、300,000g/molおける分子の平均回転半径が30〜20nm、好ましくは30〜23nm、特に好ましくは30〜25nm、かつ1,000,000g/molにおける分子の平均回転半径が50〜40nm、好ましくは50〜43nm、特に好ましくは50〜46nmである。このとき、600,000g/molおける分子の平均回転半径が40〜30nm、好ましくは40〜33nm、特に40〜36nmであることが好ましい。
また、シス−1,4構造含有率が80%以上であり、90%以上であることが好ましい。また、1,2構造含有率は5%未満であり、3%未満であることが好ましい。
本発明のゴム組成物は、前記の特性を有するポリブタジエンを10重量%以上含有することが好ましく、より好ましくは20重量%以上、特に30重量%以上含有するのが好ましい。含有量が10重量%未満では本発明の効果が十分に得られないことがある。
また、本発明のゴム組成物は、前記の特性を有するポリブタジエン以外の他のゴム成分を併用することができる。他のゴム成分としては、前記の特性を有するポリブタジエン以外の一般のポリブタジエンゴム、スチレン−ブタジエンゴム(SBR)、天然ゴム(NR)、ポリイソプレンゴム(IR)、エチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、ブチルゴム、クロロプレンゴムなどを挙げることができる。これらのゴムは変性されていてもよく、例えば、スズ化合物での変性、エポキシ化合物での変性、シラン化合物での変性、マレイン酸での変性などがされていてもよい。また、これらのゴムは単独でも、二種以上組み合せて用いても良い。
本発明のゴム組成物は、さらにゴム補強剤を含有することが好ましい。補強剤としては各種のカーボンブラックやシリカ、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤や、シンジオタクチック−1,2ポリブタジエン、ポリエチレン樹脂、ポリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマロンインデン樹脂及び石油樹脂等の有機補強剤などがあるが、シリカおよび/またはカーボンブラックを用いるのが好ましい。また、シリカを用いる場合、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドなどのジエン系ゴムと反応可能な官能基を有するシランカップリング剤を用いることが好ましい。
本発明のゴム組成物は、特にタイヤ用に用いる場合、前記の特性を有するポリブタジエン(i)10〜90重量%と、(i)以外の他のゴム成分(ii)90〜10重量%とからなるゴム成分の合計(i)+(ii)100重量部と、ゴム補強剤(iii)1〜100重量部とを含む組成物であることが好ましい。
また、本発明のゴム組成物は、必要に応じて、加硫剤、加硫助剤、老化防止剤、充填剤、プロセスオイル、亜鉛華、ステアリン酸など、通常用いられるその他の配合剤をさらに含有していてもよい。
加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。
プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。
本発明のゴム組成物は前記の各成分を通常行われているバンバリーミキサー、オープンロール、ニーダー、二軸混練り機などを用いて混練りすることで得られ、成形加工後に加硫することで各種ゴム製品として用いることができる。例えば、トレッド、カーカス、サイドウォール、ビード部などのタイヤ部材を始め、防振ゴム、防舷材、ベルト、ホースその他の工業品、ゴルフボール、靴底などの用途に用いることができる。
以下に本発明に基づく実施例について具体的に記載する。測定方法は次に示した通りである。
(1)ムーニー粘度(ML1+4):JIS K 6300に準じて100℃で測定した。
(2)5重量%トルエン溶液粘度(Tcp):25℃における5重量%トルエン溶液の粘度を測定した。
(3)ミクロ構造:赤外吸収スペクトル分析によって行った。シス740cm-1、トランス967cm-1、ビニル910cm-1の吸収強度比からミクロ構造を算出した。
(4)固有粘度([η]):トルエン溶液を使用して30℃で測定した。
(5)重量平均分子量(M)、数平均分子量(M)、および分子量分布(M/M):40℃でテトラヒドロフランを溶媒としたGPC(カラム:Shodex KF−805L×2本)により測定した重合体の溶出曲線より、標準ポリスチレン換算の値として求めた。
(6)GPC/MALLS法(ゲルろ過クロマトグラフィー/多角度レーザー光散乱検出法)による絶対分子量と平均回転半径の測定:40℃でテトラヒドロフランを溶媒としたGPC(カラム:TSKgel GMHHR−H、およびTSKgel GMHXL各1本)において、多角度光散乱検出器としてWyatt Technology製DAWN EOSを用いておこなった。
(7)貯蔵弾性率(G’)のひずみ依存性(ペイン効果):アルファーテクノロジー社製のゴム加工性解析装置RPA−2000を使い、120℃、1Hzの周波数の条件で動的ひずみ分析を行った。ペイン効果は、ひずみ0.5%時のG’とひずみ10%時のG’との差ΔG’を比較例7(BR150L)を100とした指数で表示した。ΔG’が小さいほど、補強剤の分散性が良好であることを示す。
(8)硬度:JIS K 6253に規定されている測定法に従って測定した。
(9)引張強度:JIS K 6251に規定されている測定法に従って測定した。同時に100%および300%伸長時の引張応力(M100およびM300)も測定した。
(10)発熱特性:JIS K 6265に準拠し、グッドリッチフレクソメーターを用い、100℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で発熱量(ΔT)と永久歪み(PS)を測定した。
(11)耐摩耗性:JIS K 6264規定されているランボーン摩耗測定法に従って、スリップ率60%で測定し、比較例7(BR150L)を100とした指数で表示した。
(12)低ロス性:GABO社製固体粘弾性測定装置を用いて、温度範囲−120℃〜100℃、周波数10Hz、動的歪み0.3%で測定し、50℃における損失正接(tanδ)を算出した。tanδが小さいほど低ロス性に優れることを示す。
(実施例1)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込み、溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、80℃まで昇温した。80℃で15分重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液をエタノールに投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(実施例2)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン650ml及びブタジエン350mlからなる溶液を仕込み、溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)5.63mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.25mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)6.25mlを添加し、80℃まで昇温した。80℃で15分重合後、老化防止剤を含むエタノール溶液10mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液をエタノールに投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(実施例3)
トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)を6.25mlとしたほかは、実施例1と同様に重合を行った。重合結果を表1に示した。
(実施例4)
トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)を6.88mlとしたほかは、実施例1と同様に重合を行った。重合結果を表1に示した。
(実施例5)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込み、溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)3.0mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、60℃まで昇温した。60℃で25分重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液をエタノールに投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(実施例6)
トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)を3.75mlとしたほかは、実施例5と同様に重合を行った。重合結果を表1に示した。
(実施例7)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.04MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、60℃まで昇温した。60℃で25分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(実施例8)
水素ガスの圧力を0.06MPa/cmとしたほかは、実施例7と同様に重合を行った。重合結果を表1に示した。
(実施例9)
水素ガスの圧力を0.08MPa/cmとしたほかは、実施例7と同様に重合を行った。重合結果を表1に示した。
(比較例1)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込み、溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加して重合を開始した。40℃で15分重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。重合液にエタノールを投入した後、オートクレーブの内部を放圧し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(比較例2)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込み、溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)4.0mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.8mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.43mol/L)0.185mlを添加して重合を開始した。40℃で30分重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。重合液にエタノールを投入した後、オートクレーブの内部を放圧し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表1に示した。
(実施例10)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.06MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、60℃まで昇温した。60℃で25分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例11)
水素ガスの圧力を0.04MPa/cmとしたほかは、実施例10と同様に重合を行った。重合結果を表2に示した。
(実施例12)
水素ガスの圧力を0.08MPa/cmとしたほかは、実施例10と同様に重合を行った。重合結果を表2に示した。
(実施例13)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.06MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例14)
水素ガスの圧力を0.04MPa/cmとしたほかは、実施例13と同様に重合を行った。重合結果を表2に示した。
(実施例15)
水素ガスの圧力を0.08MPa/cmとしたほかは、実施例13と同様に重合を行った。重合結果を表2に示した。
(実施例16)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.08MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.25mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.2mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)5.0mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例17)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.08MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.0mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.3mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.43mol/L)0.07mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。
重合結果を表2に示した。
(実施例18)
水素ガスの圧力を0.06MPa/cmとしたほかは、実施例16と同様に重合を行った。重合結果を表2に示した。
(実施例19)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.08MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.25mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.2mlを添加して、30℃で30分間攪拌したのち、40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)5.0mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例20)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.06MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.1mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)2.5mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。
重合結果を表2に示した。
(実施例21)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン300ml及びブタジエン300mlからなる溶液を仕込んだ。次いで水素ガス0.06MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例22)
トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)を2.25mlとしたほかは、実施例21と同様に重合を行った。重合結果を表2に示した。
(実施例23)
トルエンを350ml及びブタジエンを250mlとしたほかは、実施例21と同様に重合を行った。重合結果を表2に示した。
(実施例24)
水素ガスの圧力を0.07MPa/cmとしたほかは、実施例21と同様に重合を行った。重合結果を表2に示した。
(実施例25)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン350ml及びブタジエン250mlからなる溶液を仕込んだ。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、80℃まで昇温した。80℃で7.5分間重合した時点で、水素ガス0.08MPa/cmを添加し、さらに7.5分間重合を行った。老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例26)
水素ガスの圧力を0.06MPa/cmとしたほかは、実施例25と同様に重合を行った。重合結果を表2に示した。
(実施例27)
水素ガスの添加時間を重合開始から5分後とし、添加後の重合時間を10分間としたほかは、実施例25と同様に重合を行った。重合結果を表2に示した。
(実施例28)
水素ガスの添加時間を重合開始から2.5分後とし、添加後の重合時間を12.5分間としたほかは、実施例25と同様に重合を行った。重合結果を表2に示した。
(実施例29)
水素ガスの添加時間を重合開始から4分後とし、添加後の重合時間を11分間としたほかは、実施例25と同様に重合を行った。重合結果を表2に示した。
(実施例30)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン580ml及びブタジエン420mlからなる溶液を仕込んだ。次いで水素ガス0.1MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.25mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.43mol/L)0.06mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液5mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液を取り出し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(実施例31)
水素ガスの圧力を0.15MPa/cmとしたほかは、実施例30と同様に重合を行った。重合結果を表2に示した。
(実施例32)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.03MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.25mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、60℃まで昇温した。60℃で30分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。また、GPC/MALLSによる測定結果を表2に示した。
(実施例33)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.03MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.25mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.15mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.004mol/L)3.75mlを添加し、80℃まで昇温した。80℃で15分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。また、GPC/MALLSによる測定結果を表2に示した。
(比較例3)
内容量1.5Lのオートクレーブの内部を窒素置換し、トルエン390ml及びブタジエン210mlからなる溶液を仕込んだ。次いで水素ガス0.04MPa/cmを添加した。溶液の温度を30℃とした後、トリエチルアルミニウム(TEA)のシクロヘキサン溶液(2mol/L)1.5mlを添加し、毎分500回転で3分間攪拌した。次に、イットリウム(III)トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオエート)のトルエン溶液(0.05mol/L)0.6mlを添加して40℃まで加温した。2分間攪拌したのち、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートのトルエン溶液(0.43mol/L)0.14mlを添加した。40℃で25分間重合後、老化防止剤を含むエタノール溶液3mlを添加し、重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで回収したポリブタジエンを80℃で3時間真空乾燥した。重合結果を表2に示した。
(比較例4)
水素ガスの圧力を0.06MPa/cmとしたほかは、比較例3と同様に重合を行った。重合結果を表2に示した。
(比較例5)
宇部興産株式会社製ポリブタジエンゴム BR150Lについて、GPC/MALLSにより絶対分子量および平均回転半径の測定を行った。測定結果を表3に示した。
(比較例6)
宇部興産株式会社製ポリブタジエンゴム BR150Bについて、GPC/MALLSにより絶対分子量および平均回転半径の測定を行った。測定結果を表3に示した。
Figure 2014148685
Figure 2014148685
Figure 2014148685
Figure 2014148685
(実施例34)
実施例32と同様に重合を行って得られたポリブタジエンを用いて、以下に示す配合表により硫黄と加硫促進剤以外をバンバリーミキサー中で混合する一次配合を行い、次に、硫黄および加硫促進剤をロールで混合する二次配合を行なった。得られた配合ゴムを150℃で15分間プレス加硫して加硫物を得た。各物性の測定結果を表4に示した。
Figure 2014148685
(比較例7)
実施例32と同様に重合を行って得られたポリブタジエンの代わりに、宇部興産株式会社製ポリブタジエンゴム BR150Lを用いた以外は実施例34と同様に行った。各物性の測定結果を表4に示した。
(比較例8)
実施例32と同様に重合を行って得られたポリブタジエンの代わりに、宇部興産株式会社製ポリブタジエンゴム BR150Bを用いた以外は実施例34と同様に行った。各物性の測定結果を表4に示した。
Figure 2014148685

Claims (7)

  1. (A)イットリウム化合物、(B)非配位性アニオンとカチオンとからなるイオン性化合物、および(C)有機アルミニウム化合物から得られる触媒の存在下、50〜120℃で共役ジエンを重合することを特徴とする以下の特性を有する共役ジエン重合体の製造方法。
    (1)25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2
    (2)シス−1,4構造含有率が80%以上、かつ1,2構造含有量が5%未満
  2. イットリウム化合物が下記一般式(1)で表されるイットリウム化合物である請求項1に記載の共役ジエン重合体の製造方法。
    Figure 2014148685
    (R、R、Rは水素、または炭素数1〜12の置換基を表し、Oは酸素原子を表し、Yはイットリウム原子を表す。)
  3. 共役ジエンが1,3−ブタジエンであることを特徴とする請求項1又は2に記載の共役ジエン重合体の製造方法。
  4. 下記の特性(1)〜(3)を有することを特徴とするポリブタジエン。
    (1)25℃で測定した5重量%トルエン溶液粘度(Tcp)と100℃におけるム−ニ−粘度(ML1+4)との比(Tcp/ML1+4)が0.1〜1.2
    (2)シス−1,4構造含有率が80%以上、かつ1,2構造含有率が5%未満
    (3)GPC/MALLS法(ゲルろ過クロマトグラフィー/多角度レーザー光散乱検出法)により測定された絶対分子量と分子の平均回転半径の関係において、300,000g/molにおける分子の平均回転半径が30〜20nm、かつ1,000,000g/molにおける分子の平均回転半径が50〜40nm
  5. イットリウムを含有する触媒で1,3−ブタジエンを重合して得られること特徴とする請求項4に記載のポリブタジエン。
  6. 請求項4または5に記載のポリブタジエンを10重量%以上含有することを特徴とするゴム組成物。
  7. 請求項4または5に記載のポリブタジエンを10重量%以上含有し、補強剤として少なくともシリカを含有することを特徴とするタイヤ用ゴム組成物。
JP2014096160A 2008-12-19 2014-05-07 ポリブタジエンの製造方法 Expired - Fee Related JP5776819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014096160A JP5776819B2 (ja) 2008-12-19 2014-05-07 ポリブタジエンの製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008323292 2008-12-19
JP2008323293 2008-12-19
JP2008323292 2008-12-19
JP2008323293 2008-12-19
JP2014096160A JP5776819B2 (ja) 2008-12-19 2014-05-07 ポリブタジエンの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009092731A Division JP2010163590A (ja) 2008-12-19 2009-04-07 共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物

Publications (2)

Publication Number Publication Date
JP2014148685A true JP2014148685A (ja) 2014-08-21
JP5776819B2 JP5776819B2 (ja) 2015-09-09

Family

ID=51571906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014096160A Expired - Fee Related JP5776819B2 (ja) 2008-12-19 2014-05-07 ポリブタジエンの製造方法

Country Status (1)

Country Link
JP (1) JP5776819B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060331A (ja) * 2014-09-17 2016-04-25 横浜ゴム株式会社 タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049016A1 (ja) * 2004-11-01 2006-05-11 Ube Industries, Ltd. 共役ジエン重合体の重合用触媒及びそれを用いた共役ジエン重合体の製造方法、タイヤ用ゴム組成物並びにゴルフボール用ゴム組成物
JP2007161799A (ja) * 2005-12-12 2007-06-28 Ube Ind Ltd ポリブタジエンの製造方法
EP2028196A1 (en) * 2006-05-22 2009-02-25 Ube Industries, Ltd. Method for producing polybutadiene
WO2010071037A1 (ja) * 2008-12-19 2010-06-24 宇部興産株式会社 共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049016A1 (ja) * 2004-11-01 2006-05-11 Ube Industries, Ltd. 共役ジエン重合体の重合用触媒及びそれを用いた共役ジエン重合体の製造方法、タイヤ用ゴム組成物並びにゴルフボール用ゴム組成物
JP2007161799A (ja) * 2005-12-12 2007-06-28 Ube Ind Ltd ポリブタジエンの製造方法
EP2028196A1 (en) * 2006-05-22 2009-02-25 Ube Industries, Ltd. Method for producing polybutadiene
WO2010071037A1 (ja) * 2008-12-19 2010-06-24 宇部興産株式会社 共役ジエン重合体の製造方法、ポリブタジエンおよびそれを用いたゴム組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060331A (ja) * 2014-09-17 2016-04-25 横浜ゴム株式会社 タイヤ

Also Published As

Publication number Publication date
JP5776819B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
KR101623569B1 (ko) 공액 다이엔 중합체의 제조방법, 폴리뷰타다이엔 및 그것을 이용한 고무 조성물
JP4720745B2 (ja) 共役ジエン重合体の製造方法
WO2005007740A1 (ja) 空気入りタイヤ
CN102015871A (zh) 橡胶组合物和使用其的轮胎以及改性共轭二烯类聚合物及其生产方法
JP6964178B2 (ja) 共役ジエン重合用触媒の製造方法、触媒、およびそれを用いた共役ジエン系重合体の製造方法
JP6394589B2 (ja) 変性共役ジエン重合体、その製造方法及びそれを用いたゴム組成物
JP2020512460A (ja) 変性共役ジエン系重合体およびその製造方法
WO2014142274A1 (ja) 共役ジエン重合用触媒及びそれを用いた共役ジエン重合体、変性共役ジエン重合体、それらの製造方法、タイヤ用ゴム組成物、並びにゴムベルト用ゴム組成物
JP5810763B2 (ja) ゴム組成物
KR20190059038A (ko) 공액디엔계 중합체 및 이의 제조방법
JP5810764B2 (ja) ゴム組成物
JP5776819B2 (ja) ポリブタジエンの製造方法
JP5581990B2 (ja) ポリブタジエンの製造方法およびゴム組成物の製造方法
WO2016039004A1 (ja) ポリブタジエン、及びゴム組成物
JP6769262B2 (ja) 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
JP6769261B2 (ja) 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
WO2016039003A1 (ja) ゴム組成物
JP6790888B2 (ja) 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
JP2022134694A (ja) 重合体用変性剤、変性共役ジエン重合体の製造方法、変性共役ジエン重合体、及びゴム用添加物
JP2018087324A (ja) 変性共役ジエン重合体、ゴム組成物、変性共役ジエン重合体の製造法
JP2021161171A (ja) 共役ジエン重合体用触媒、共役ジエン重合体およびその製造方法、変性共役ジエン重合体およびその製造方法、それらを含む組成物、並びにタイヤ、ゴムベルト
JP2022001647A (ja) ゴム組成物及びその製造方法
JP2016117876A (ja) 共役ジエン重合用触媒、共役ジエン重合体の製造方法、共役ジエン重合体、共役ジエン重合体組成物、タイヤ、及びゴムベルト

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees