JP2014137081A - 電磁クラッチ - Google Patents

電磁クラッチ Download PDF

Info

Publication number
JP2014137081A
JP2014137081A JP2013004616A JP2013004616A JP2014137081A JP 2014137081 A JP2014137081 A JP 2014137081A JP 2013004616 A JP2013004616 A JP 2013004616A JP 2013004616 A JP2013004616 A JP 2013004616A JP 2014137081 A JP2014137081 A JP 2014137081A
Authority
JP
Japan
Prior art keywords
magnetic
electromagnetic clutch
pulley
driven
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013004616A
Other languages
English (en)
Inventor
Toru Okuma
亨 大隈
Motohiko Ueda
元彦 上田
Yosuke Yamagami
洋介 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013004616A priority Critical patent/JP2014137081A/ja
Priority to PCT/JP2014/000029 priority patent/WO2014112327A1/ja
Publication of JP2014137081A publication Critical patent/JP2014137081A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/008Details relating to the magnetic circuit, or to the shape of the clutch parts to achieve a certain magnetic path

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Pulleys (AREA)

Abstract

【課題】電磁クラッチ20の軽量化を図る。
【解決手段】プーリ30と、プーリ30に連結されることによって回転駆動力が伝達されるアーマチャ40と、アルミワイヤが回巻きされて形成されて、プーリ30およびアーマチャ40の間の境界を磁束が複数回通過する磁気回路Mを構成してプーリ30とアーマチャ40とを連結させるための吸引磁力を発生させる電磁コイル51とを備える。アーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とは、それぞれ回転軸2aの径方向にオフセットされている。磁気回路Mでは、磁束がアーマチャ40とプーリ30との間の境界を6回通過する。このため、磁気回路Mを流れる磁束量が減る。このため、磁気回路Mの断面積を小さくすることができる。
【選択図】図2

Description

本発明は、電磁クラッチに関するものである。
従来、特許文献1に示すように、プーリとアーマチャとを連結させる吸引磁力を発生させる電磁コイルを構成する巻線材として、アルミニウム材のワイヤ(以下、アルミワイヤという)を用いた電磁クラッチが提案されている。
アルミワイヤを用いた電磁クラッチは、従来の銅材のワイヤ(以下、銅ワイヤという)を用いた電磁クラッチに対して、第1に電磁コイル自体の重量を低減できること(銅比重:8.96、アルミニウム比重:2.7)、第2に銅に対して比較的安価なアルミニウム材で製造することによって電磁コイルの製造コストを低減できる等のメリットを有する。
特開2009−243678号公報
しかしながら、アルミワイヤを用いた電磁クラッチは、銅ワイヤを用いた電磁クラッチに比べ、電磁クラッチの体格が大きくなり、それに伴って電磁クラッチの重量も重くなってしまうという問題がある。
ここで、銅ワイヤを用いた電磁クラッチと同一体格(クラッチ径、クラッチ軸長)を維持しながら、アルミワイヤを使用することもできる。しかしこの際、アルミワイヤの抵抗値は、銅ワイヤの抵抗値よりも大きい。このため、同一出力電圧の車両電源(一般的には出力電圧が12V)を用いて、銅ワイヤを用いた電磁コイルの負過電流と、銅ワイヤと同一ワイヤ径のアルミワイヤを用いた電磁コイルの負過電流とを計測すると、アルミワイヤを用いた電磁コイルの負荷電流は、銅ワイヤを用いた電磁コイルの負荷電流に比べて、小さくなる。
この結果、負荷電流×巻回数(=AT値)にて表される電磁クラッチにおける吸引力(すなわち、プーリとアーマチャとを連結させる吸引力)が低下する。これに伴い、電磁クラッチの伝達トルクが低下するので、所望の伝達力が得られない。
一方、銅ワイヤを用いた電磁クラッチと同一体格になるように、アルミワイヤを用いて電磁クラッチを構成した場合に、所望の伝達トルクを得るためには、アルミワイヤの線径を銅ワイヤの線径よりも大きくしたもので電磁コイルを形成することにより、負荷電流を大きくすることで対応可能である。
しかしながら、負荷電流が上昇することにより、電磁クラッチのON時の消費電力(W=VI)の増大、これに伴う車両燃費の低下、併せて電磁コイルの温度上昇による電磁クラッチの性能低下等の背反が避けられない。
このため、アルミワイヤのこれら背反に対応するためには、アルミワイヤの線径も大きくしつつ、前出のように電磁コイル体格を大きくすることでワイヤ巻回数を増やしてアルミワイヤを用いた電磁クラッチのAT値を、銅ワイヤを用いた電磁コイルのAT値相当に設計することが必要になる。
しかし、この場合、電磁コイルの体格の増大化に伴って、電磁コイルを格納する鉄製コイルハウジングが大型化する。これによって、コイルハウジングを外側から覆う鉄製ロータ(プーリ)の大型化を招く。この結果、電磁クラッチ全体での大型化、ひいては重量の増大化を招くという課題があった。
以下に、従来クラッチの銅ワイヤをアルミワイヤに置換した場合に、電磁クラッチが大型化する因果関係を示す。
第1に、アルミワイヤの単位長さ辺りの抵抗値rAIと銅ワイヤの単位長さ辺りの抵抗値rCuは、以下の関係にある。
Figure 2014137081
第2に電磁コイルの吸引力を表すAT値(=電流×コイルの巻回数)は以下の関係にある。
Figure 2014137081
ここで、Aは負荷電流、Tはコイル巻回数、Vは電源電圧、Rはコイル抵抗、rはワイヤの単位長さ辺りの抵抗、Dmは電磁コイルの呼び直径である。
第3にワイヤの電気抵抗値は、線径の二乗と反比例する関係にある。
Figure 2014137081
以上の関係から、アルミワイヤが銅ワイヤと同一の単位長さ辺りの抵抗値を有するためには、アルミワイヤの線径として、銅ワイヤの線径の1.3倍の大きさが必要である。
したがって、アルミワイヤを用いる電磁クラッチが銅ワイヤを用いる電磁クラッチと同一AT値を得るためには、銅ワイヤに対して1.3倍の線径を持つアルミワイヤを用いて、銅ワイヤを用いた電磁コイルと同じ巻回数(T)を確保することが必要になる。
このため、アルミワイヤを用いる電磁クラッチにおいて電磁コイルを収納する巻線スペースも、銅ワイヤを用いる電磁クラッチの巻線スペースに対して、1.3倍の大きさが必要となる。
したがって、銅ワイヤを用いた4極の電磁クラッチの電磁コイルの軸方向寸法に比べて、アルミワイヤを用いた4極の電磁クラッチの電磁コイルの軸方向寸法(すなわち、軸長)が大きくなる。
このような電磁コイルの大型化に伴い、電磁コイルを格納して電磁コイルの磁気回路を構成する鉄製ステータハウジング、およびその外側に配置されて鉄製ステータハウジングに対してクリアランスを確保しつつ回転軸に対して回転自在に支持されているプーリについても大型化する。この結果、電磁クラッチの体格の増大化を招くことになる。
このような電磁クラッチの体格の増大化に伴って重量の増大化となってしまう。これにより、車両の搭載性はもちろん、燃費にも著しい悪影響を与えてしまう。
以下に、従来の銅ワイヤを用いた4極の電磁クラッチと、アルミワイヤを用いた4極の電磁クラッチとを同一伝達トルク性能の下で比較した結果を示す。
以下、便宜上、銅ワイヤを用いた4極の電磁クラッチを銅ワイヤ電磁クラッチとし、アルミワイヤを用いた4極の電磁クラッチをアルミワイヤ電磁クラッチとする。
図15(a)(b)では、Cuは、銅ワイヤ電磁クラッチを示し、AL(1)は、銅ワイヤ電磁クラッチと同一の体格を備えるアルミワイヤ電磁クラッチを示し、AL(2)は、銅ワイヤ電磁クラッチと同一消費電力を消費するアルミワイヤ電磁クラッチを示している。
図15(a)中のCu、AL(1)に示すように、同一体格の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの消費電力を100%とすると、アルミワイヤ電磁クラッチの消費電力の百分率は、160%になる。
図15(b)のCu、AL(1)に示すように、同一体格の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの重量を100%とすると、アルミワイヤ電磁クラッチの重量の百分率は、90%になる。
図15(b)のCu、AL(2)に示すように、同一消費電力の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの重量を100%とすると、アルミワイヤ電磁クラッチの重量の百分率は、105%になる。
このように銅ワイヤ電磁クラッチと同一の体格のアルミワイヤ電磁クラッチを構成すると、アルミワイヤ電磁クラッチの消費電力は、銅ワイヤ電磁クラッチの消費電力に比べて格段に大きくなる。銅ワイヤ電磁クラッチと同一の消費電力のアルミワイヤ電磁クラッチを構成すると、アルミワイヤ電磁クラッチ、銅ワイヤ電磁クラッチに比べて重くなる。このようにワイヤの材料としてアルミニウムを採用することの狙いであった製品の軽量化を達成することができないことがわかる。
本発明は上記点に鑑みて、電磁コイルの巻線としてアルミワイヤを用いた電磁クラッチにおいて、軽量化を図るようにすることを目的とする。
上記目的を達成するため、請求項1に記載の発明では、駆動源からの回転駆動力によって回転する駆動側回転体(30)と、
前記駆動側回転体に連結されることによって前記回転駆動力が伝達される従動側回転体(40)と、
アルミニウム材からなるワイヤが回巻きされて形成されて、前記駆動側回転体および前記従動側回転体の間の境界を磁束が複数回通過する磁気回路を構成して前記駆動側回転体と前記従動側回転体とを連結させるための吸引磁力を発生させる電磁コイル(51)とを備え、
前記磁気回路を流れる磁束が前記境界を通過する回数を極数としたときに、前記磁気回路の極数が6以上になるように前記駆動側回転体と前記従動側回転体とが構成されていることを特徴とする。
請求項1に記載の発明によれば、磁気回路の極数が6以上になるので、アルミニウム材からなるワイヤを用いて極数が4になる電磁クラッチに比べて、磁気回路を流れる磁束量を減らすことができる。このため、磁気回路を構成する部材の肉厚寸法を小さくすることができる。これにより、電磁クラッチの軽量化を図ることができる。これに伴い、電磁クラッチの体格を維持しつつ、電磁コイルを収納するコイルスペースを大きくすることができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明のクラッチ構造が適用される第1実施形態の冷凍サイクル装置の全体構成を示す図である。 第1実施形態のクラッチ構造の断面図である。 図2中III−III断面図である。 図2中のプーリ単体を圧縮機の回転軸の軸線方向一端側から視た図である。 プーリの一部を軸線方向一端側から視た斜視図である。 アーマチャ単体を軸線方向一端側から視た図である。 (a)はプーリおよびアーマチャが離れている状態を示し、(b)プーリおよびアーマチャが連結している状態を示している。 極数、磁束の比、および極面積の比の関係を示す図表である。 4極クラッチ、および6極クラッチの寸法関係を示す図である。 電磁クラッチの吸引力、および起磁力を示す図である。 1極〜6極の磁束密度を示す図である。 4極クラッチ、および6極クラッチにおいて、巻き線使用量、および重量の比較を示す図である。 本発明の第2実施形態のクラッチ構造の断面図である。 本発明の変形例のプーリの斜視図である。 銅ワイヤを用いる電磁クラッチとアルミワイヤを用いる電磁クラッチとの比較を示す図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
図1は、本実施形態の電磁クラッチが適用された車両用空調装置の冷凍サイクル装置1の全体構成図である。
冷凍サイクル装置1は、圧縮機2、放熱器3、膨張弁4、および、蒸発器5を接続したものである。圧縮機2は、冷媒を吸入して圧縮する。放熱器3は、圧縮機2の吐出冷媒を放熱させる。膨張弁4は、放熱器3から流出される冷媒を減圧膨張させる。蒸発器5は、膨張弁4にて減圧された冷媒を蒸発させて吸熱作用を発揮させる。
圧縮機2は、車両のエンジンルームに設置されている。圧縮機2は、走行用駆動源としてのエンジン10から電磁クラッチ20を介して与えられる回転駆動力によって圧縮機構を駆動させることにより、蒸発器5から冷媒を吸入して圧縮する。
なお、圧縮機構としては、吐出容量が固定された固定容量型圧縮機構、あるいは、外部からの制御信号によって吐出容量を調整可能に構成された可変容量型圧縮機構のいずれを採用してもよい。
本実施形態の電磁クラッチ20は、圧縮機2に連結されたプーリ一体型の電磁クラッチである。電磁クラッチ20は、エンジン側プーリ11からVベルト12を介して与えられるエンジン10の回転駆動力を圧縮機2に伝達する。エンジン側プーリ11は、エンジン10の回転駆動軸に連結されているものである。
電磁クラッチ20は、プーリ30およびアーマチャ40を備える。プーリ30はエンジン10からのVベルト12を介して与えられる回転駆動力によって回転する駆動側回転体を構成する。アーマチャ40は、圧縮機2の回転軸2aに連結された従動側回転体を構成する。電磁クラッチ20は、プーリ30とアーマチャ40との間を連結あるいは分離することで、エンジン10から圧縮機2への回転駆動力の伝達を断続するものである。
つまり、電磁クラッチ20がプーリ30とアーマチャ40とを連結すると、エンジン10の回転駆動力が圧縮機2に伝達されて、冷凍サイクル装置1が作動する。一方、電磁クラッチ20がプーリ30とアーマチャ40とを離すと、エンジン10の回転駆動力が圧縮機2に伝達されることはなく、冷凍サイクル装置1も作動しない。
次に、本実施形態の電磁クラッチ20の詳細構成について図2を用いて説明する。
図2は、電磁クラッチ20の軸方向断面図である。この軸方向断面図は、電磁クラッチ20において圧縮機2の回転軸2aの軸線を含んで、かつ軸線に沿う断面図である。図3は図2のIII-III断面図である。図2では、プーリ30とアーマチャ40とを離した状態を図示している。図4はプーリ30単体を圧縮機2の回転軸2aの軸線方向一端側から視た図、図5はプーリ30の一部を軸線方向一端側から視た斜視図、図6はアーマチャ40単体を軸線方向一端側から視た図である。
図2に示すように、電磁クラッチ20は、プーリ30、アーマチャ40とともに、ステータ50を備える。
まず、プーリ30は、外側円筒部31、内側円筒部32、および、端面部33を有している。
外側円筒部31は、圧縮機2の回転軸2aの軸線(図2中一点鎖線)を中心線とする円筒状に形成されている。外側円筒部31は、磁性材(例えば、鉄)にて形成されている。外側円筒部31の外周側には、Vベルト12が掛けられるV溝(具体的には、ポリV溝)が形成されている。
内側円筒部32は、外側円筒部31の内周側に配置されて圧縮機2の回転軸2aの軸線を軸線とする円筒状に形成されている。内側円筒部32は、磁性材(例えば、鉄)によって形成されている。
内側円筒部32の内周側には、ボールベアリング34の外側レースが固定されている。ボールベアリング34は、圧縮機2の外殻を形成するハウジング2cに対して、回転軸2aの軸線を中心線としてプーリ30を回転自在に固定するものである。そのため、ボールベアリング34の内側レースは、圧縮機2のハウジング2cに対してスナップリング等によって固定されている。ボールベアリング34の内側レースは、圧縮機2のハウジング2cに設けられたハウジングボス部2bに対して径方向外側に配置されている。ハウジングボス部2bは、圧縮機2の回転軸2aの軸線を中心線とする円筒状に形成されている。
端面部33は、外側円筒部31回転軸方向一端側と内側円筒部32の回転軸方向一端側との間に亘って形成されている。
端面部33は、回転軸2aの軸心を中心とするリング状に形成されている。具体的には、端面部33は、図4または図5に示すように、リング部材60、61、62、63を備える。
リング部材60、61、62、63は、回転軸2aの軸心を中心するリング状に形成されている。リング部材60、61、62、63は、回転軸2aの径方向にオフセットして配置されている。
本実施形態のリング部材60は、リング部材61に対して内周側に配置されている。リング部材61は、リング部材62に対して内周側に配置されている。リング部材62は、リング部材63に対して内周側に配置されている。そして、リング部材60、61、62、63は、それぞれ、磁性材(例えば、鉄)によって形成されている。
リング部材60、61の間には、非磁性の金属材料からなる非磁性部67が配置されている。非磁性部67は、回転軸2aの軸心を中心とするリング状に形成されて、リング部材60、61の間を接続する。
リング部材61、62の間には、非磁性の金属材料からなる非磁性部66が配置されている。非磁性部66は、回転軸2aの軸心を中心とするリング状に形成されて、リング部材61、62の間を接続する。
リング部材62、63の間には、非磁性の金属材料からなる非磁性部65が配置されている。非磁性部65は、回転軸2aの軸心を中心とするリング状に形成されて、リング部材62、63の間を接続する。
本実施形態の非磁性部67、66、65を構成する材料としては、SUS304(ステンレス鋼)、或いは銅等の非磁性の金属材が用いられる。
本実施形態では、プーリ30は、一体に成形されたものである。このため、外側円筒部31と端面部33のリング部材63とが繋がっている。端面部33のリング部材60と内側円筒部32とが繋がっている。そして、外側円筒部31、端面部33のリング部材60、61、62、63、および内側円筒部32は、後述するように、磁気回路Maを構成する。
また、端面部33の他端側面は、プーリ30とアーマチャ40が連結された際に、アーマチャ40と接触する摩擦面を形成している。そこで、本実施形態では、端面部33の非磁性部65の表面側には、端面部33の摩擦係数を増加させるための摩擦部材35が配置されている。摩擦部材35は、回転軸2aの軸心を中心とするリング状に形成されている。摩擦部材35は、非磁性材で形成されており、具体的には、アルミナを樹脂で固めたものや、金属粉末(例えば、アルミニウム粉末)の焼結材を採用できる。
アーマチャ40は、プーリ30の端面部33に対して軸線方向他端側に配置されている。具体的には、アーマチャ40は、回転軸2aに直交する方向に広がるとともに、中央部にその表裏を貫通する貫通穴が形成された円板状部材である。アーマチャ40の回転中心は、回転軸2aの軸心に一致している。
アーマチャ40は、図6に示すように、リング部材80、81、82から構成されている。リング部材80、81、82は、回転軸2aの軸心を中心するリング状に形成されている。リング部材80、81、82は、回転軸2aの径方向にオフセットして配置されている。
本実施形態のリング部材80は、リング部材81に対して内周側に配置されている。リング部材81は、リング部材82に対して内周側に配置されている。そして、リング部材80、81、82は、それぞれ、磁性材(例えば、鉄)によって形成されている。
リング部材80、81の間には、非磁性の金属材料からなる非磁性部83が配置されている。非磁性部83は、回転軸2aの軸心を中心とするリング状に形成されている。非磁性部83は、リング部材80、81の間を接続する。
リング部材81、82の間には、非磁性の金属材料からなる非磁性部84が配置されている。非磁性部84は、回転軸2aの軸心を中心とするリング状に形成されている。非磁性部84は、リング部材81、82の間を接続する。
本実施形態の非磁性部83、84を構成する材料としては、SUS304(ステンレス鋼)や、銅の非磁性の金属材が用いられる。
ここで、アーマチャ40の一端側の平面は、プーリ30の端面部33に対向している。プーリ30とアーマチャ40が連結された際に、プーリ30と接触する摩擦面を形成している。
さらに、アーマチャ40の他端側の平面には、リベット41によって略円盤状のアウターハブ42が連結されている。
アウターハブ42は、後述するインナーハブ43とともに、アーマチャ40と圧縮機2の回転軸2aとを連結する連結部材を構成している。アウターハブ42とインナーハブ43は、それぞれ回転軸方向に延びる円筒部42a、43aを有しており、アウターハブ42の円筒部42aの内周面およびインナーハブ43の円筒部43aの外周面には、弾性部材である円筒状のゴム45が加硫接着されている。このゴム45の材質としては、EPDM(エチレン・プロピレン・ジエン三元共重合ゴム)等を採用できる。
さらに、インナーハブ43は、圧縮機2の回転軸2aに設けられたネジ穴にボルト44によって締め付けられることによって固定されている。なお、インナーハブ43と圧縮機2の回転軸2aとの固定には、スプライン(セレーション)あるいはキー溝などの締結手段を用いてもよい。
これにより、アーマチャ40、アウターハブ42、ゴム45、インナーハブ43、圧縮機2の回転軸2aが連結され、プーリ30とアーマチャ40が連結されると、アーマチャ40、アウターハブ42、ゴム45、インナーハブ43、圧縮機2の回転軸2aがプーリ30とともに回転する。
また、ゴム45は、アウターハブ42に対してプーリ30からアーマチャ40が離れる方向に弾性力を作用させている。この弾性力により、プーリ30とアーマチャ40が離れた状態では、アウターハブ42に連結されたアーマチャ40の一側端面とプーリ30の他側端面との間に予め定めた所定間隔の隙間M1(図7参照)が形成される。
また、ステータ50は、電磁コイル51およびステータハウジング52を備えるステータアッセンブリである。
電磁コイル51は、プーリ30の外側円筒部31と内側円筒部32との間に配置されて、回転軸2aの軸線を中心とするリング状に形成されている。本実施形態の電磁コイル51は、アルミニウムからなるワイヤ(以下、アルミワイヤという)が樹脂製スプールに複列・複層に巻き付けることにより構成されている。本実施形態の電磁コイル51は、ステータハウジング52に対して嵌合・締結等により固定されている。
ステータハウジング52は、外側円筒部52a、内側円筒部52b、および端面部52cを有している。
外側円筒部52aは、電磁コイル51とプーリ30の外側円筒部31との間に
配置されている。外側円筒部52aは、回転軸2aの軸線を中心線とする円筒状に形成されている。外側円筒部52aは、プーリ30の外側円筒部31との間に隙間M3(図3参照)を形成する
内側円筒部52bは、電磁コイル51とプーリ30の内側円筒部52bとの間に配置されている。内側円筒部52bは、回転軸2aの軸線を中心線とする円筒状に形成されている。
端面部52cは、外側円筒部52aの軸線方向一端側と内側円筒部32の軸線方向一端側との間に亘って形成されている。端面部52cは、回転軸2aの軸心を中心とするリング状に形成されている。
本実施形態の外側円筒部52a、内側円筒部52b、および端面部52cは、磁性材(例えば、鉄)にて形成されている。
本実施形態のステータハウジング52は、圧縮機2のハウジング2cに対してスナップリング100などの固定手段によって固定されている。このことにより、
電磁コイル51およびステータハウジング52がハウジング2cに対して固定されていることになる。そして、ステータハウジング52の内側円筒部52bとプーリ30の内側円筒部32との間には隙間M2(図3参照)が設けられている。
また、図1の制御装置6は、エアコンECU(電子制御装置)から出力される制御信号に基づいて、電磁コイル51への通電を制御する。
次に、本実施形態の電磁クラッチ20の作動について図7を参照して説明する。図7は、図2のB部の断面図を用いた説明図である。
まず、制御装置6が電磁コイル51に対して通電を実施していないときには、図7(a)に示すように、ゴム45の弾性力によって、アーマチャ40とプーリ30との間に隙間M1が形成される。すなわち、電磁クラッチ20がOFF状態にある。
次に、制御装置6が電磁コイル51に対して通電を開始する。このとき、図7(b)の太鎖線に示すように、ステータハウジング52、外側円筒部31、端面部33、アーマチャ40、端面部33、アーマチャ40、端面部33、アーマチャ40、端面部33、内側円筒部32、およびステータハウジング52を磁束が通過する磁気回路Mが形成される。
具体的には、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とを避けて通過する。
すなわち、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40のリング部材80、81、82とプーリ30のリング部材60、61、62、63とを通過する。このため、アーマチャ40とプーリ30との間の境界を6回通過することになる。
ここで、図7(b)の太鎖線に示す磁気回路Mによって生じる磁力は、プーリ30とアーマチャ40とを連結させる吸引磁力となっている。このため、磁気回路Mから生じる磁力によって、プーリ30とアーマチャ40とを連結させることができる。すなわち、電磁クラッチ20がON状態になる。このため、電磁クラッチ20によってエンジン10からの回転駆動力を圧縮機2に伝達することができる。
その後、制御装置6が電磁コイル51に対する通電を終了する。このため、磁気回路Mが形成されなくなり、図7(a)の状態に戻る。これにより、ゴム45の弾性力によって、アーマチャ40とプーリ30との間に隙間M1が形成されることになる。これにより、エンジン10から圧縮機2への回転駆動力の伝達が停止される。
以上説明した本実施形態によれば、エンジン10からの回転駆動力によって回転するプーリ30と、プーリ30に連結されることによって回転駆動力が伝達されるアーマチャ40と、アルミワイヤが回巻きされて形成されて、プーリ30およびアーマチャ40の間の境界を磁束が複数回通過する磁気回路Mを構成してプーリ30とアーマチャ40とを連結させるための吸引磁力を発生させる電磁コイル51とを備える。
ここで、アーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とは、それぞれ回転軸2aの径方向にオフセットされている。このため、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とを避けて通過する。これにより、アーマチャ40とプーリ30との間の境界を6回通過することになる。
ここで、磁気回路Mを通過する磁束がプーリ30およびアーマチャ40の間の境界を通過する回数を極数とし、また磁気回路Mを通過する磁束がプーリ30およびアーマチャ40の間の境界を通過する面を極と定義する。この定義に従うと、本実施形態の磁気回路Mの極数が6になる。
一方、特許文献1の電磁クラッチの磁気回路Mの極数は4である。このため、本実施形態の磁気回路Mの極数は、特許文献1の電磁クラッチの磁気回路Mの極数に比べて大きい。
図8の表に、磁気回路Mの極数を4極から6極とする場合に、同じ吸引力、即ち同じトルクを得るための条件を示す。ただし、極数が4極、6極のいずれであっても、アーマチャ40とプーリ30との間の摩擦面の内外径(すなわち、内径、外径)はいずれも同じ寸法であるとする。
図8の表は下の数4、数5の式に基づくものである。
Figure 2014137081
Figure 2014137081
伝達トルクTは、摩擦係数μ、摩擦面吸引力F、摩擦面有効平均半径Rの積で表される。吸引力Fは、極数nと磁束量Φと真空の透磁率μ0と極面積Sで表される。
ここで、摩擦面有効平均半径Rは、アーマチャ40とプーリ30との間の摩擦面における半径である。伝達トルクTは、アーマチャ40とプーリ30との間で伝達される伝達トルクである。μはアーマチャ40とプーリ30との間の摩擦面の摩擦係数である。Fはアーマチャ40とプーリ30との間の吸引力である。Rは摩擦面有効平均半径である。nは極数、Φは磁気回路Mを流れる磁束量、μ0は真空の透磁率である。Sは極面積である。本実施形態では当該極面積を複数存在する極の1つ当たりの面積と定義する。
ここで、極数が4の場合における極面積をS4とし、極数が6の場合における極面積をS6とすると、先述のようにアーマチャ40とプーリ30との間の摩擦面の内外径は、極数が4の場合、および極数が6の場合のいずれの場合も同じである。このため、S4とS6の比率は1対2/3となる。そして、極数が4である場合と極数が6とである場合とで各極を通過する磁束密度が同一であるものとすると、各極を通過する磁束量Φの比率も極面積Sの比率と同じであり、Φ4とΦ6の比率は1対2/3となる。極数がn(≧4)の場合における磁束量をΦnとする。
ここで、極数が6である電磁クラッチ(以下、6極クラッチという)の磁気回路M(図9(b)参照)と極数が4である電磁クラッチ(以下、4極クラッチという)の磁気回路Ma(図9(a)参照)とが互いに同一の吸引磁力を発生させる場合において、6極クラッチの磁気回路Mを流れる磁束量は、4極クラッチの磁気回路Maを流れる磁束量の2/3となる。
このことから、磁気回路Mのうち磁束が通過する通路の断面積を2/3にしても磁束密度(単位面積当たりの磁束量)は、磁気回路Mの磁束密度と同じとなり、磁気飽和を起こすことがない。
したがって、磁気回路Mを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚(t1〜t7)は、磁気回路Maを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚(T1〜T7)の2/3にすることができる。これにより、アーマチャ40、プーリ30、およびステータハウジング52の軽量化、ひいては電磁クラッチ20の軽量化を図ることができる。板厚とは、磁束の流れる方向と直交する方向の寸法のことである。
以上の効果により、軽量化を図り、かつ電磁クラッチ20の体格を維持しつつ、電磁コイルの51を構成するコイルスペース(図中の実線の四角形部分)を大きくすることができる。したがって、銅ワイヤと同一の抵抗値を得るためには線径を太くせねばならないアルミニウムワイヤを銅ワイヤと同一回数巻くために必要なコイルスペースを確保することができる。
これに加えて、上述の如く、磁気回路Mを流れる磁束が少なくなることにより、電磁クラッチ20のON状態を維持するために必要な電磁コイル51における起磁力も小さくすることができる。例えば、ある所定のトルク(伝達トルク)を得るために、4極クラッチでは680ATであった起磁力は、6極クラッチでは680ATの約2/3である410AT(≒680AT×2/3)となる。
さらに、コイルスペースを、上述の如く、大きくすることができるので、アルミワイヤの線径も大きくしたり、或いはアルミワイヤの巻回数を増やしたりすることができる。このため、電磁コイルを流れる負荷電流を大きくしたり、アルミワイヤの巻回数を増やしたりすることができる。
以上により、6極クラッチにより、アルミニウムワイヤを用いた場合でも、所定のトルク(伝達トルク)を得るために必要なAT値を、電磁クラッチ20の体格を増大化することなく、確保することが可能になる。
次に、実際の6極クラッチの磁場解析の結果について説明する。磁場解析を実施した6極クラッチは、アルミコイルからなる電磁コイル51を収納するための最低限必要なスペースを確保できるようにアーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくしている。
図11は縦軸が磁束密度を示し、横軸が1極、2極、3極、4極、5極、6極を示している。図11中の1極〜6極は、6極クラッチのプーリ30およびアーマチャ40の間の境界に形成される極を示し、数が大きくなるほど、中心側から外周側に近づくことになる。
この磁場解析から分かるように、6極クラッチでは、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくすることにより、磁気回路Mの断面積が低減されているにも関わらず、各磁極の磁束密度は鉄材の飽和磁束密度(≒2テスラ)以下であり、薄肉化による磁束漏れ(=消費電力の浪費)も起こっていないことがわかる。もちろん、伝達トルク性能に関わる吸引力(AT値)についても低下はない。(いずれのモデルも摩擦面外径φ101、内径φ52とした。)
参考までに、4極クラッチで、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくして、磁気回路Mの断面積を低減した場合、各磁極の磁束密度が鉄材の飽和磁束密度に達し、磁気が周囲へ漏洩することにより、必要以上の電力を消費することになってしまう。
図12に、銅ワイヤをコイル材として用いる4極クラッチと、本発明によりアルミワイヤをコイル材として用いる6極クラッチについて、巻線使用量及び電磁クラッチ主要構成部品であるプーリ30、ステータハウジング52、電磁コイル51の重量を比較した。また、電磁クラッチの体格(胴径、軸長)は両クラッチで同一である。
グラフに示すように、6極クラッチは、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくした効果とアルミワイヤの使用の効果とにより、電磁コイル51の軽量化を達成するとともに、プーリ30・ステータハウジング52・電磁コイル51の合計重量の軽量化を達成することができる。
また、一般的に銅ワイヤよりもアルミワイヤの方が素材費は安く、かつ本発明により巻線使用量も低減可能なため、電磁コイルのコストも大幅に低減可能となる。
このようなアーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくする際(つまり、薄肉化)の背反として、プーリ30の強度確保が上げられる。
磁気性能上の上記板厚の限界は、前出(図11)の、各極(1極〜6極)の磁束密度が鉄材の飽和磁束密度(≒2テスラ)を超え、磁気漏洩が発生する板厚である。一方、プーリ30は、例えば車両のエンジン10のエンジン側プーリ11(クランクプーリ)よりVベルト12を介して回転駆動力を得ているが、Vベルト12のテンションが常に負荷されている状態であるため、これによる応力により変形や疲労破壊が耐用年数において発生しない板厚設計が必要となる。
ここで、Vベルト12のテンションは車両毎に異なるため、Vベルト12のテンションによる強度限界と磁気性能上からくる磁気飽和限界を比較しながら、いずれかの特性を満たすことができなくなり始める板厚が最小板厚となる。
現在市場に流通している電磁クラッチの各部板厚をベースとすると、図9(a)、(b)において、t1/T1=0.7〜0.8程度になるようにプーリ30を薄肉化とすることで、磁気性能及び一般的車両(特殊的にベルトテンションが高い車両を除く)のベルトテンションに対する強度の両方の条件を満たすことができ、かつクラッチの体格UPを伴わずにアルミコイルを使用することができるがこれに限定したものではない。
本実施形態では、プーリ30の非磁性部65、66、67として、SUS304(ステンレス鋼)、或いは銅等の非磁性の金属材によってリング状に形成されているものを用いた。このため、Vベルト12のテンションに対する強度確保、および更なる磁気漏れ防止が可能になる。
(第2実施形態)
上記第1実施形態では、アーマチャ40とプーリ30とによって磁気回路Mの極数を6なるように構成した例について説明したが、これに代えて、本実施形態では、磁気回路Mの極数が8となるようにアーマチャ40とプーリ30とを構成した例について説明する。
図13に本実施形態の電磁クラッチ20の部分断面図を示す。
本実施形態のアーマチャ40は、上記第1実施形態のアーマチャ40にリング部材85および非磁性部86を追加したものである。このため、本実施形態のアーマチャ40は、リング部材80、81、82、85、および非磁性部83、84、86を備えることになる。リング部材85は、磁性材からなるもので、回転軸2aの軸心を中心するリング状に形成されている。非磁性部86は、非磁性材からなるもので、回転軸2aの軸心を中心するリング状に形成されている。
リング部材85および非磁性部86は、非磁性部83およびリング部材81の間に配置されていることになる。リング部材85は、非磁性部83、86の間に配置されていることになる。非磁性部86は、リング部材81、85の間に配置されていることになる。
本実施形態のプーリ30は、上記第1実施形態のプーリ30の端面部33にリング部材64および非磁性部69が追加されたものである。このため、本実施形態のプーリ30の端面部33は、リング部材60、61、62、63、64、および非磁性部65、66、67、69を備えることになる。
リング部材64および非磁性部69は、リング部材61および非磁性部66の間に配置されている。リング部材64は、磁性材からなるもので、回転軸2aの軸心を中心するリング状に形成されている。非磁性部69は、回転軸2aの軸心を中心するリング状に形成されている。リング部材64は、非磁性部66、69の間に配置されている。非磁性部69は、リング部材61、64の間に配置されている。
このように構成されている本実施形態の電磁クラッチ20では、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84、86とプーリ30の非磁性部65、66、67、69とを避けて通過する。
すなわち、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40のリング部材80、81、82、85とプーリ30のリング部材60、61、62、63、64とを通過する。このため、アーマチャ40とプーリ30との間の境界を8回通過することになる。したがって、本実施形態の磁気回路Mの極数が8になる。
以上説明した本実施形態によれば、本実施形態の磁気回路Mの極数が上記第1実施形態の磁気回路Mの極数に比べて大きくなる。したがって、本実施形態の磁気回路Mと上記第1実施形態の磁気回路Mとが互いに同一の吸引磁力を発生させる場合において、本実施形態では、上記第1実施形態に比べて磁気回路Mを流れる磁束は少なくなる。
したがって、磁気回路Mを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚をより一層小さくすることができる。このため、電磁クラッチ20においてより一層の軽量化を図ることができる。
(他の実施形態)
上記第1の実施形態では、磁気回路Mの極数が6になるようにアーマチャ40およびプーリ30を構成した例について説明し、かつ上記第2の実施形態では、磁気回路Mの極数が8になるようにアーマチャ40およびプーリ30を構成した例について説明したが、これに限らず、磁気回路Mの極数が10以上になるようにアーマチャ40およびプーリ30を構成してもよい。
つまり、上記第1、第2の実施形態では、磁気回路Mの極数が6、8になる電磁クラッチ20を構成した例について説明したが、これに限らず、磁気回路Mの極数が6以上になる電磁クラッチ20であるならば、磁気回路Mの極数が10以上になる電磁クラッチ20も本発明の特許請求の範囲に含まれるものとする。
なお、極数が10以上になる電磁クラッチ20を実施するには、極数が8である場合に比べて、アーマチャ40の非磁性部の個数とプーリ30の非磁性部の個数とを増やせばよい。
上記第1の実施形態では、プーリ30の非磁性部65、66、67として、非磁性の金属材からなるリング状の部材を用いた例について説明したが、これに代えて、非磁性部65、66、67をそれぞれ空隙とブリッジ部とから構成してもよい。
例えば、図14の非磁性部65は、複数の空隙と複数のブリッジ部110とから構成されている。複数の空隙は、回転軸2aの軸線を中心とする円弧状に形成されている。複数のブリッジ部110は、非磁性の金属材料(或いは、磁性の金属材料)からなるもので、リング部材62、63の間を接続するものである。非磁性部65において、複数の空隙と複数のブリッジ部110とは、円周方向に交互に並べられている。非磁性部66、67は、非磁性部65と同様に、複数の空隙と複数のブリッジ部110とから構成されている。
また、図示を省略するが、アーマチャ40の非磁性部83を、プーリ30の非磁性部65、66、67と同様に、複数の空隙と複数のブリッジ部とから構成してもよい。アーマチャ40の非磁性部83において、複数の空隙と複数のブリッジ部は、円周方向に交互に並べられている。非磁性部83を構成する複数のブリッジ部は、リング部材80、81の間を接続する部材である。
同様に、アーマチャ40の非磁性部84を、複数の空隙と複数のブリッジ部とから構成してもよい。アーマチャ40の非磁性部84において、複数の空隙と複数のブリッジ部は、円周方向に交互に並べられている。非磁性部84を構成する複数のブリッジ部は、リング部材81、82の間を接続する部材である。
同様に、上記第2の実施形態におけるプーリ30の端面部33の非磁性部69を複数の空隙と複数のブリッジ部とから構成してもよい。さらに、上記第2の実施形態における非磁性部86を複数の空隙と複数のブリッジ部とから構成してもよい。
上記第1、2の実施形態では、電磁コイル51への通電により生じる吸引磁力によって、アーマチャ40とプーリ30とを連結させる電磁クラッチ20について説明したが、これに代えて、特開2011−80579号公報に示す自己保持型の電磁クラッチに本発明を適用してもよい。
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
6 制御装置(第1、第2の制御手段)
20 電磁クラッチ
30 プーリ(駆動側回転体)
40 アーマチャ(従動側回転体)
50 ステータ
51 電磁コイル
56 ステータハウジング
60、61、62、63、64 リング部材(駆動側磁性部)
65、66、67、69 非磁性部(駆動側非磁性部)
80、81、82、85 リング部材(従動側磁性部)
83、84、86 非磁性部(従動側非磁性部)
M 磁気回路

Claims (6)

  1. 駆動源からの回転駆動力によって回転する駆動側回転体(30)と、
    前記駆動側回転体に連結されることによって前記回転駆動力が伝達される従動側回転体(40)と、
    アルミニウム材からなるワイヤが回巻きされて形成されて、前記駆動側回転体および前記従動側回転体の間の境界を磁束が複数回通過する磁気回路を構成して前記駆動側回転体と前記従動側回転体とを連結させるための吸引磁力を発生させる電磁コイル(51)とを備え、
    前記磁気回路を流れる磁束が前記境界を通過する回数を極数としたときに、前記磁気回路の極数が6以上になるように前記駆動側回転体と前記従動側回転体とが構成されていることを特徴とする電磁クラッチ。
  2. 前記駆動側回転体は、磁性材によって前記駆動側回転体自体の回転中心を中心とするリング状に形成されている複数の駆動側磁性部(60、61、62、63、64)を備えており、前記複数の駆動側磁性部は、前記回転中心を中心とする径方向にそれぞれオフセットして配置されており、
    前記複数の駆動側磁性部のうち前記径方向に並ぶ2つの駆動側磁性部の間には、非磁性材から構成されている駆動側非磁性部(65、66、67、69)が配置されており、
    前記従動側回転体は、磁性材によって前記従動側回転体自体の回転中心を中心とするリング状に形成されている複数の従動側磁性部(80、81、82、85)を備えており、前記複数の従動側磁性部は、前記回転中心を中心とする径方向にそれぞれオフセットして配置されており、
    前記複数の従動側磁性部のうち前記径方向に並ぶ2つの第2の磁性部の間には、非磁性材から構成されている従動側非磁性部(83、84、86)が配置されており、
    前記駆動側回転体と前記従動側回転体とは、前記駆動側回転体のうち前記駆動側非磁性部以外の前記複数の駆動側磁性部と前記従動側回転体のうち前記従動側非磁性部以外の前記複数の従動側磁性部とを前記磁束が通過することにより、前記磁気回路の極数が6以上になるように構成されていることを特徴とする請求項1に記載の電磁クラッチ。
  3. 前記駆動側非磁性部は、前記非磁性材によってリング状に形成されていることを特徴とする請求項2に記載の電磁クラッチ。
  4. 前記駆動側非磁性部は、前記非磁性材によって形成されて前記径方向に並ぶ2つの駆動側磁性部の間を接続する複数のブリッジ部(110)と、複数の空隙部とから構成されており、
    前記複数のブリッジ部および前記複数の空隙部は、前記駆動側回転体の回転中心を中心とする円周方向に、交互に配置されていることを特徴とする請求項2に記載の電磁クラッチ。
  5. 前記従動側非磁性部は、前記非磁性材によってリング状に形成されていることを特徴とする請求項2ないし4のいずれか1つに記載の電磁クラッチ。
  6. 前記従動側非磁性部は、前記非磁性材によって形成されて前記径方向に並ぶ2つの従動側磁性部の間を接続する複数のブリッジ部と、複数の空隙部とから構成されており、
    前記複数のブリッジ部および前記複数の空隙部は、前記従動側回転体の回転中心を中心とする円周方向に、交互に配置されていることを特徴とする請求項2ないし4のいずれか1つに記載の電磁クラッチ。
JP2013004616A 2013-01-15 2013-01-15 電磁クラッチ Pending JP2014137081A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013004616A JP2014137081A (ja) 2013-01-15 2013-01-15 電磁クラッチ
PCT/JP2014/000029 WO2014112327A1 (ja) 2013-01-15 2014-01-08 電磁クラッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004616A JP2014137081A (ja) 2013-01-15 2013-01-15 電磁クラッチ

Publications (1)

Publication Number Publication Date
JP2014137081A true JP2014137081A (ja) 2014-07-28

Family

ID=51209428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004616A Pending JP2014137081A (ja) 2013-01-15 2013-01-15 電磁クラッチ

Country Status (2)

Country Link
JP (1) JP2014137081A (ja)
WO (1) WO2014112327A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838068A (zh) * 2016-12-21 2017-06-13 安徽创新电磁离合器有限公司 一种双制动电磁制动器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874254B2 (en) * 2016-01-29 2018-01-23 Warner Electric Technology Llc Electromagnetic brake for a power transmission assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655721A (en) * 1979-10-08 1981-05-16 Hitachi Ltd Electromagnetic clutch
JPS58181029U (ja) * 1982-05-27 1983-12-03 三菱電機株式会社 電磁連結装置
JPH0756301B2 (ja) * 1989-04-07 1995-06-14 春馬 田中 電磁クラツチの製造方法
US5119918A (en) * 1991-10-11 1992-06-09 Dana Corporation Electromagnetic clutch with permanent magnet brake
JPH0744360U (ja) * 1993-02-22 1995-11-14 サンデン株式会社 電磁クラッチ
JPH11141572A (ja) * 1997-11-11 1999-05-25 Mitsubishi Heavy Ind Ltd 電磁クラッチ
JP2005344876A (ja) * 2004-06-04 2005-12-15 Denso Corp 電磁クラッチ
KR100931361B1 (ko) * 2008-03-31 2009-12-11 한라공조주식회사 압축기용 전자클러치의 필드코일 어셈블리
JP5765706B2 (ja) * 2011-04-28 2015-08-19 サンデンホールディングス株式会社 電磁連結装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838068A (zh) * 2016-12-21 2017-06-13 安徽创新电磁离合器有限公司 一种双制动电磁制动器
CN106838068B (zh) * 2016-12-21 2019-04-05 安徽创新电磁离合器有限公司 一种双制动电磁制动器

Also Published As

Publication number Publication date
WO2014112327A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP5712882B2 (ja) 電動圧縮機用の電動モータ
US6836051B2 (en) Motor
CN102086908B (zh) 离合器机构和具有离合器机构的离合器系统
WO2014076867A1 (ja) クラッチ機構
JP4529500B2 (ja) アキシャルギャップ回転電機
JP5043834B2 (ja) 回転結合装置
WO2016103600A1 (ja) 電磁クラッチ
WO2016076103A1 (ja) モータロータおよびそれを用いたモータ並びに電動圧縮機
WO2014112327A1 (ja) 電磁クラッチ
US7213695B2 (en) Electromagnetic clutch
JP5983385B2 (ja) クラッチ
JP6256119B2 (ja) 摩擦クラッチ
WO2018110167A1 (ja) 動力伝達装置
JP2011158003A (ja) 電磁クラッチ
WO2016103665A1 (ja) 電磁クラッチおよびその製造方法
JP2017198304A (ja) クラッチ
WO2018110168A1 (ja) 動力伝達装置
JP5327160B2 (ja) ロックセンサ
JP2016121802A (ja) 電磁クラッチおよびその製造方法
WO2005010392A1 (ja) 電磁クラッチ
JP2012031739A (ja) ロックセンサの取付構造
JP2018132145A (ja) 電磁クラッチ
WO2018092433A1 (ja) 軸受構造体およびその軸受構造体の製造方法
JP2008025598A (ja) 電磁クラッチ
JP5904111B2 (ja) クラッチ