JP2014132549A - 負極材料、負極活物質、負極およびアルカリ金属イオン電池 - Google Patents

負極材料、負極活物質、負極およびアルカリ金属イオン電池 Download PDF

Info

Publication number
JP2014132549A
JP2014132549A JP2013114369A JP2013114369A JP2014132549A JP 2014132549 A JP2014132549 A JP 2014132549A JP 2013114369 A JP2013114369 A JP 2013114369A JP 2013114369 A JP2013114369 A JP 2013114369A JP 2014132549 A JP2014132549 A JP 2014132549A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
ion battery
metal ion
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013114369A
Other languages
English (en)
Other versions
JP5681753B2 (ja
Inventor
Koji Ono
幸治 小野
Takeshi Takeuchi
健 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013114369A priority Critical patent/JP5681753B2/ja
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to CN201380063232.5A priority patent/CN104838525A/zh
Priority to KR1020157017782A priority patent/KR20150092262A/ko
Priority to US14/648,997 priority patent/US20150333316A1/en
Priority to EP13860232.1A priority patent/EP2942829A4/en
Priority to PCT/JP2013/082008 priority patent/WO2014087911A1/ja
Priority to TW102144184A priority patent/TWI489684B/zh
Publication of JP2014132549A publication Critical patent/JP2014132549A/ja
Application granted granted Critical
Publication of JP5681753B2 publication Critical patent/JP5681753B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】黒鉛質材料に比べて大きい(002)面の平均層面間隔を有しつつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を提供する。
【解決手段】本発明の負極材料は、アルカリ金属イオン電池に用いられる炭素質の負極材料であり、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である。本発明の負極材料は、ハロゲン含有量が0.5ppm以上50ppm未満である。
【選択図】なし

Description

本発明は、負極材料、負極活物質、負極およびアルカリ金属イオン電池に関する。
アルカリ金属イオン電池用の負極材料としては、一般的に、黒鉛質材料が用いられている。しかし、黒鉛質材料はリチウムなどのアルカリ金属イオンのドープ・脱ドープにより結晶子の層間が伸縮するため、結晶子に歪みが生じやすい。そのため、黒鉛質材料は充放電の繰り返しによる結晶構造の破壊が起こりやすく、黒鉛質材料を負極材料に用いたアルカリ金属イオン電池は充放電サイクル特性に劣るとされている。
特許文献1(特開平8−279358公報)には、リチウムの吸蔵に適した微細構造を有し且つ50〜10000ppmのハロゲン含有量を有する電池電極用炭素質材料が記載されている。
このような炭素質材料は結晶子の層間が黒鉛質材料に比べて大きく、充放電の繰り返しによる結晶構造の破壊が黒鉛質材料に比べて起こり難いため、充放電サイクル特性に優れるとされている(特許文献1、2参照)。
特開平8−279358号公報 国際公開第2007/040007号パンフレット
ところが、特許文献1、2に記載されているような、結晶子の層間が黒鉛質材料に比べて大きい炭素質材料は、黒鉛質材料に比べて大気中で劣化し易く、保存特性が劣っていた。そのため、製造直後から不活性ガス雰囲気などで保存する必要があり、黒鉛質材料に比べて取り扱い難いとされていた。
一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献2参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献2参照)。
しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を行ってみたところ、負極材料を完全に再生させることはできなかった。また、特許文献2のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。
そこで、本発明では、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有しつつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を提供する。
本発明者らは、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有し、かつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を実現するために鋭意検討した。その結果、ハロゲン含有量が特定の範囲内にある負極材料が保存特性および充放電容量に優れることを見出し、本発明に到達した。
本発明によれば、
線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
ハロゲン含有量が0.5ppm以上50ppm未満である、アルカリ金属イオン電池用負極材料が提供される。
さらに、本発明によれば、
上記負極材料を含む、負極活物質が提供される。
さらに、本発明によれば、
上記負極活物質を含む負極活物質層と、
負極集電体と、
がこの順番で積層された、アルカリ金属イオン電池用負極が提供される。
さらに、本発明によれば、
上記アルカリ金属イオン電池用負極と、電解質と、正極とを少なくとも備えた、アルカリ金属イオン電池が提供される。
本発明によれば、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有しつつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を提供することができる。
本発明に係る実施形態のリチウムイオン電池の一例を示す模式図である。
以下に、本件各発明の実施形態について、図面を用いて説明する。なお、図は概略図であり、実際の寸法比率とは必ずしも一致していない。
<負極材料>
本実施形態に係る負極材料は、リチウムイオン電池やナトリウムイオン電池などのアルカリ金属イオン電池に用いられる炭素質の負極材料であって、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002(以下、「d002」とも呼ぶ。)が0.340nm以上であり、好ましくは0.350nm以上であり、より好ましくは0.365nm以上である。d002が上記下限値以上であると、リチウムなどのアルカリ金属イオンのドープ・脱ドープの繰り返しによる結晶構造の破壊が抑制されるため、負極材料の充放電サイクル特性を向上させることができる。
平均層面間隔d002の上限は特に限定されないが、通常は0.400nm以下であり、好ましくは0.395nm以下であり、より好ましくは0.390nm以下である。d002が上記上限値以下であると、負極材料の不可逆的容量を抑制することができる。
このような、平均層面間隔d002を有する炭素質の材料は、一般的に、難黒鉛化性の炭素と呼ばれている。
また、本実施形態に係る負極材料は、必須成分としてハロゲンを含んでいる。上記ハロゲンとしては、フッ素、塩素、臭素、ヨウ素などが挙げられる。これらの中でも、塩素が特に好ましい。
また、本実施形態に係る負極材料は、ハロゲン含有量が0.5ppm以上であり、より好ましくは0.8ppm以上である。本実施形態に係る負極材料は、ハロゲン含有量が上記下限値以上であると、当該負極材料を用いて得られるアルカリ金属イオン電池の充放電容量を向上させることができる。
また、本実施形態に係る負極材料は、ハロゲン含有量が50ppm未満であり、より好ましくは15ppm以下であり、さらに好ましくは12ppm以下であり、特に好ましくは10ppm以下である。本実施形態に係る負極材料は、ハロゲン含有量が上記上限値以下であると、当該負極材料の保存特性を向上させることができる。
このように、ハロゲン含有量が上記範囲内である、本実施形態に係る負極材料は、保存特性および充放電容量のバランスに優れている。
本実施形態に係る負極材料のハロゲン含有量は、炭素化処理に際して用いる処理ガス中のハロゲンガス濃度や、負極材料の原料に含まれるハロゲン量を調整することにより制御することができる。ハロゲン含有量は、負極材料を燃焼し、生成した燃焼ガス中のハロゲン水素ガスを水酸化ナトリウムに吸収させた後、この溶液中のハロゲン含有量をイオンクロマトグラフィー分析装置で定量することにより、算出できる。
上記のような本実施形態に係る負極材料が、d002が0.340nm以上であるにもかかわらず、保存特性および充放電容量に優れる理由は必ずしも明らかではないが、ハロゲンを特定量含むことにより、リチウムの吸蔵に適した微細構造が形成されるとともに、負極材料の表面が化学吸着水の吸着が起き難い構造になっているからだと考えられる。すなわち、ハロゲンを特定量含むことにより、高容量化に寄与する領域と、保存特性の向上に寄与する領域が適切な形で形成されているからだと考えられる。
特許文献1(特開平8−279358公報)には、ハロゲン含有量が50〜10000ppm、好ましくは100〜5000ppm、さらに好ましくは200〜3000ppmであり、かつ、d002が黒鉛質材料に比べて大きい負極材料をリチウムイオン電池用の負極材料として用いることが記載されている。このような負極材料は充放電容量に優れるとされている。
しかし、本発明者らの検討によれば、このような負極材料は、黒鉛質材料に比べて大気中で劣化し易く、保存特性が劣っていることが明らかになった。そのため、製造直後から不活性ガス雰囲気などで保存する必要があり、黒鉛質材料に比べて取り扱い難かった。
一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献2参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献2参照)。
しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を試みたところ、負極材料を完全に再生させることはできなかった。また、特許文献2のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。
そこで、本発明者らは、さらに鋭意検討した。その結果、負極材料のハロゲン含有量を従来の基準よりも大幅に減らすことにより、保存特性により優れると共に充放電容量にも優れる負極材料が得られることを明らかにし、本発明を完成させた。
本実施形態に係る負極材料は、リチウムイオン電池、ナトリウムイオン電池などのアルカリ金属イオン電池の負極材料として用いられる。とくに、本実施形態に係る負極材料は、リチウムイオン二次電池等のリチウムイオン電池の負極材料として好適に用いられる。
(カールフィッシャー電量滴定法による水分量)
本実施形態に係る負極材料は、温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、予備乾燥した後の負極材料から発生した水分量が、上記予備乾燥した後の負極材料100質量%に対し、好ましくは0.20質量%以下であり、より好ましくは0.15質量%以下であり、特に好ましくは0.10質量%以下である。
上記水分量が上記上限値以下であると、本実施形態に係る負極材料を大気中で長期間保存したとしても、負極材料の劣化をより一層抑制することができる。なお、上記水分量は、200℃で、30分間保持することにより脱離する化学吸着水の吸着量の指標を意味する。
上記水分量の下限は特に限定されないが、通常は0.01質量%以上である。
上記カールフィッシャー電量滴定法による水分量が上記上限値以下であると、負極材料の劣化をより一層抑制することができる理由は必ずしも明らかではないが、上記水分量が少ない負極材料ほど、水分の吸着が起き難い構造になっているからだと考えられる。
本発明者らの検討によると、負極材料に吸着する水分には大きく分けて物理吸着水と化学吸着水とが存在し、化学吸着水の吸着量がより少ない負極材料ほど保存特性により優れると共に充放電容量にもより優れることが明らかになった。すなわち、化学吸着水の吸着量という尺度が、保存特性および充放電容量に優れた負極材料を実現するための設計指針として有効であることを見出した。
ここで、物理吸着水とは、負極材料の表面に主に水分子として物理的に存在している吸着水をいう。一方、化学吸着水とは、負極材料の表面の第一層に配位または化学的に結合して存在している吸着水をいう。
化学吸着水の吸着量が少ない負極材料は、その表面が水分を配位または化学的に結合し難い構造になっている、あるいは大気中に放置してもそのような構造に変化し難い構造になっていると考えられる。したがって、上記水分量が上記上限値以下であると、大気中で長期間保存したとしても、水分の吸着が起き難い、あるいは表面構造が変化し難いため、保存特性により一層優れていると考えられる。
なお、本実施形態では、温度130℃、窒素雰囲気の条件下で1時間保持する上記予備乾燥において負極材料から脱離する水分を物理吸着水と呼び、予備乾燥した後の負極材料を200℃、30分間保持する上記操作において負極材料から脱離する水分を化学吸着水と呼ぶ。
(結晶子のサイズ)
本実施形態に係る負極材料は、X線回折法により求めたc軸方向の結晶子の大きさ(以下「Lc(002) 」と略記することがある。)が、好ましくは5nm以下であり、より好ましくは3nm以下であり、さらに好ましくは2nm以下である。
(平均粒径)
本実施形態に係る負極材料は体積基準の累積分布における50%累積時の粒径(D50、平均粒径)が、1μm以上50μm以下であることが好ましく、2μm以上30μm以下であることがより好ましい。これにより、高密度の負極を作製することができる。
(比表面積)
本実施形態の負極材料は、窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下であることが好ましく、3m/g以上8m/g以下であることがより好ましい。
窒素吸着におけるBET3点法による比表面積が上記上限値以下であることにより、負極材料と電解液との不可逆的な反応をより一層抑制することができる。
また、窒素吸着におけるBET3点法による比表面積が上記下限値以上であることにより、電解液の負極材料への適切な浸透性を得ることができる。
比表面積の算出方法は以下のとおりである。
下記(1)式より単分子層吸着量Wを算出し、下記(2)式より総表面積Stotalを算出し、下記(3)式より比表面積Sを求める。
1/[W・{(P/P)−1}]={(C−1)/(W・C)}(P/P)(1/(W・C)) (1)
上記式(1)中、P:吸着平衡にある吸着質の気体の圧力、P:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、W:単分子層吸着量、C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E−E)RT})[E:第一層の吸着熱(kJ/mol)、E:吸着質の測定温度における液化熱(kJ/mol)]
total=(WNAcs)M (2)
上記式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積
S=Stotal/w (3)
式(3)中、w:サンプル重量(g)
(炭酸ガスの吸着量)
本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは10ml/g未満であり、より好ましくは8ml/g以下であり、さらに好ましくは6ml/g以下である。炭酸ガスの吸着量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。
また、本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは0.05ml/g以上であり、より好ましくは0.1ml/g以上である。炭酸ガスの吸着量が上記下限値以上であると、リチウムの充電容量をより一層向上させることができる。
なお、炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP−2000Mを使用して行うことができる。
(細孔容積)
本実施形態に係る負極材料は、充填密度向上の観点から、水銀圧入法により求めた細孔直径が0.003μm〜5μmの細孔容積が好ましくは0.55ml/g未満であり、より好ましくは0.53ml/g以下であり、さらに好ましくは0.50ml/g以下である。
また、本実施形態に係る負極材料は、不可逆容量の低減の観点から、水銀圧入法により求めた細孔直径が0.003μm〜5μmの細孔容積が好ましくは0.10ml/g以上であり、より好ましくは0.20ml/g以上であり、さらに好ましくは0.30ml/g以上である。
ここで、水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定することができる。
(放電容量)
本実施形態の負極材料は、後述する条件で作製したハーフセルについて、後述する充放電条件で充放電をおこなった際の放電容量が、好ましくは360mAh/g以上であり、より好ましくは380mAh/g以上であり、さらに好ましくは400mAh/g以上であり、特に好ましくは420mAh/g以上である。上記放電容量の上限は特に限定されず、多ければ多いほど好ましいが、現実的には700mAh/g以下であり、通常は500mAh/g以下である。なお、本明細書では、「mAh/g」は負極材料1gあたりの容量を示す。
(ハーフセル作製条件)
上述したハーフセルの作製条件について説明する。
使用する負極は、当該負極材料により形成したものを用いる。より具体的には、負極材料とカルボキシメチルセルロースとスチレン・ブタジエンゴムとアセチレンブラックとを、重量比で100:1.5:3.0:2.0の割合で混合した組成物を用いて電極を形成したものを用いる。
対極は、金属リチウムを用いる。
電解液は、カーボネート系溶媒(エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒)に1Mの割合でLiPFを溶解させたものを用いる。
上記負極は、例えば、以下のようにして作製することができる。
まず、所定量の負極材料と、カルボキシメチルセルロースと、スチレン・ブタジエンゴムと、アセチレンブラックと、水とを撹拌混合し、スラリーを調製する。得られたスラリーを集電体である銅箔上に塗布し、60℃で2時間予備乾燥を行い、その後、120℃で15時間真空乾燥する。次いで、所定の大きさに切り出すことにより、負極材料により構成された負極を得ることができる。
また、上記負極は、直径13mmの円盤状とし、負極活物質層(負極から集電体を除いた部分)は、厚さ50μmの円盤状とし、対極(金属リチウムで構成された電極)は、直径12mm、厚さ1mmの円盤状とすることができる。
また、上記ハーフセルの形状は、2032型コインセル形状とすることができる。
(充放電条件)
上述したハーフセルの充放電条件は以下のとおりである。
測定温度:25℃
充電方式:定電流定電圧法、充電電流:25mA/g、充電電圧:0mV、充電終止電流:2.5mA/g
放電方式:定電流法、放電電流:25mA/g、放電終止電圧:2.5V
なお、ハーフセルについての「充電」とは、電圧の印加により、金属リチウムで構成された電極から負極材料により構成された電極にリチウムイオンを移動させることをいう。「放電」とは、負極材料により構成された電極から金属リチウムで構成された電極にリチウムイオンが移動する現象のことをいう。
<負極材料の製造方法>
次に、本実施形態に係る負極材料の製造方法について説明する。
本実施形態に係る負極材料は、例えば、樹脂組成物を原料として、適切な条件で炭化処理することにより製造することができる。
樹脂組成物を原料として、負極材料を製造すること自体は従来技術においても行われてきた。しかし、本実施形態では、炭化処理を行う雰囲気中のハロゲンガスの量を高度に制御している。すなわち、本実施形態に係る負極材料を得るためには、炭化処理を行う雰囲気中のハロゲンガスの量を高度に制御することが重要となる。
以下、本実施形態に係る負極材料の製造方法の一例を示す。ただし、本実施形態に係る負極材料の製造方法は、以下の例に限定されない。
(樹脂組成物)
はじめに、負極材料の原料として、炭化処理すべき樹脂組成物を選定する。
本実施形態に係る負極材料の原材料となる樹脂組成物に含まれる樹脂としては、例えば、熱硬化性樹脂;熱可塑性樹脂;エチレン製造時に副生する石油系のタールやピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分やピッチ、石炭の液化により得られるタールやピッチなどのような石油系または石炭系のタール若しくはピッチ;さらには上記タールやピッチなどを架橋処理したもの;やし殻や木材等の天然高分子物質;などが挙げられる。これらのうち1種または2種以上を組み合わせて用いることができる。これらの中でも、原料段階での精製が可能であり、不純物の少ない負極材料が得られ、かつ、精製に要する工程を大幅に短縮できコスト低減に繋がる点から、熱硬化性樹脂が好ましい。
上記熱硬化性樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂;シアネート樹脂;フラン樹脂;ケトン樹脂;不飽和ポリエステル樹脂;ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。
これらの中でも、残炭率が高いという理由からホルムアルデヒドを用いる樹脂である、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂が好ましい。
また、熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。
用いられる硬化剤としては、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、パラホルムアルデヒドなどを用いることができる。レゾール型フェノール樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂の場合はヘキサメチレンテトラミンなどを用いることができる。
硬化剤の配合量は、通常は上記熱硬化性樹脂100質量部に対して0.1質量部以上50質量部以下である。
また、負極材料の原材料としての樹脂組成物においては、上記熱硬化性樹脂、硬化剤の他に添加剤を配合することができる。
ここで用いられる添加剤としては特に限定されないが、例えば、200℃以上800℃以下にて炭化処理した炭素材前駆体、有機酸、無機酸、含窒素化合物、含酸素化合物、芳香族化合物、非鉄金属元素などを挙げることができる。これら添加剤は、用いる樹脂の種類や性状などにより、1種または2種類以上を組み合わせて用いることができる。
樹脂組成物の調製方法としては特に限定されず、例えば、(1)上記樹脂と、これ以外の成分とを溶融混合する方法、(2)上記樹脂と、これ以外の成分とを溶媒に溶解して混合する方法、(3)上記樹脂と、これ以外の成分とを粉砕して混合する方法などにより調製することができる。
樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。溶解混合を行う場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製時、混合(攪拌、混練など)に際して付与される機械的エネルギーおよびこれが変換された熱エネルギーにより、その一部を化学的に反応させたものであってもよい。具体的には、機械的エネルギーによるメカノケミカル的反応や、熱エネルギーによる化学反応をさせてもよい。
(炭化処理)
つぎに、得られた樹脂組成物を炭化処理する。
ここで炭化処理の条件としては、例えば、常温から1℃/時間以上200℃/時間以下で昇温して、800℃以上1500℃以下、0.01Pa以上101kPa(1気圧)以下で、0.1時間以上50時間以下、好ましくは0.5時間以上10時間以下保持して行うことができる。
(炭化処理時の雰囲気)
また、本実施形態に係る負極材料を得るには、炭化処理を行う雰囲気中のハロゲンガスの量を高度に制御することが重要となる。
具体的には、炭化処理は、不活性ガスとハロゲンガスとの混合ガス雰囲気下で行う。不活性ガス/ハロゲンガスの混合割合は、好ましくは体積比97/3〜56/44、より好ましくは体積比96/4〜58/42、特に好ましくは体積比94/6〜60/40の範囲内に設定する。
上記ハロゲンガスとしては塩素ガス、臭素ガス、ヨウ素ガス、フッ素ガスなどが挙げられる。これらの中でも、塩素ガスが特に好ましい。
上記不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガスなどが挙げられる。これらの中でも、窒素ガスが特に好ましい。
このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望のハロゲン含有量を有する負極材料を得ることができる。
このような炭化処理時の温度、時間などの条件は、負極材料の特性を最適なものにするため適宜調整することができる。
なお、上記炭化処理を行う前に、プレ炭化処理を行ってもよい。
ここで、プレ炭化処理の条件としては特に限定されないが、例えば、200℃以上1000℃以下で1時間以上10時間以下行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物を不融化させ、炭化処理工程前に樹脂組成物などの粉砕処理を行った場合でも、粉砕後の樹脂組成物などが炭化処理時に再融着するのを防ぎ、所望とする負極材料を効率的に得ることができるようになる。
また、このプレ炭化処理の前に、樹脂組成物の硬化処理を行ってもよい。
硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、熱硬化性樹脂と硬化剤とを併用する方法などにより行うことができる。これにより、プレ炭化処理を実質的に固相でできるため、熱硬化性樹脂の構造をある程度維持した状態で炭化処理またはプレ炭化処理を行うことができ、負極材料の構造や特性を制御することができるようになる。
なお、上記炭化処理あるいはプレ炭化処理を行う場合には、上記樹脂組成物に、金属、顔料、滑剤、帯電防止剤、酸化防止剤などを添加して、所望する特性を負極材料に付与することもできる。
上記硬化処理またはプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておいてもよい。こうした場合には、炭化処理時の熱履歴のバラツキを低減させ、得られる負極材料の表面状態の均一性を高めることができる。そして、処理物の取り扱い性を向上させることができる。
以上の手順により、本実施形態に係る負極材料を得ることができる。
<負極活物質>
以下、本実施形態に係る負極活物質について説明する。
負極活物質とは、アルカリ金属イオン電池において、リチウムイオンなどのアルカリ金属イオンを出し入れすることができる物質のことをいう。本実施形態に係る負極活物質は、上述した本実施形態に係る負極材料を含むものである。
本実施形態に係る負極活物質は、上述した負極材料とは異なる種類の負極材料をさらに含んでもよい。このような負極材料としては、例えば、シリコン、一酸化ケイ素、黒鉛質材料など一般的に公知の負極材料が挙げられる。
これらの中でも、本実施形態に係る負極活物質は、上述した本実施形態に係る負極材料に加え、黒鉛質材料を含むことが好ましい。これにより、得られるアルカリ金属イオン電池の充放電容量を向上させることができる。そのため、得られるアルカリ金属イオン電池を充放電容量および充放電効率のバランスが特に優れたものとすることができる。
使用する黒鉛質材料の体積基準の累積分布における50%累積時の粒径(平均粒径)は、2μm以上50μm以下が好ましく、5μm以上30μm以下がより好ましい。これにより、高い充放電効率を維持したまま高密度の負極を作製することができる。
<アルカリ金属イオン電池用負極、アルカリ金属イオン電池>
以下、本実施形態に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池について説明する。
本実施形態に係るアルカリ金属イオン電池用負極(以下、単に負極と呼ぶこともある。)は、上述した本実施形態に係る負極活物質を用いて製造されたものである。これにより、保存特性および充放電容量に優れた負極を提供することができる。
また、本実施形態に係るアルカリ金属イオン電池は、本実施形態に係る負極を用いて製造されたものである。これにより、保存特性および充放電容量に優れたアルカリ金属イオン電池を提供することができる。
本実施形態に係るアルカリ金属イオン電池は、例えば、リチウムイオン電池またはナトリウムイオン電池である。以下、リチウムイオン電池の場合を例に説明する。
図1は、本実施形態に係るリチウムイオン電池の一例を示す模式図である。
リチウムイオン電池10は、図1に示すように、負極13と、正極21と、電解液16と、セパレーター18とを有している。
負極13は、図1に示すように、負極活物質層12と負極集電体14とを有している。
負極集電体14としては特に限定されず、一般的に公知の負極用集電体を用いることができ、例えば、銅箔またはニッケル箔などを用いることができる。
負極活物質層12は、上述した本実施形態に係る負極活物質により構成されている。
負極13は、例えば、以下のようにして製造することができる。
上記負極活物質100重量部に対して、一般的に公知の有機高分子結着剤(例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系高分子;スチレン・ブタジエンゴム、ブチルゴム、ブタジエンゴムなどのゴム状高分子;など)1重量部以上30重量部以下、および適量の粘度調整用溶剤(N−メチル−2−ピロリドン、ジメチルホルムアミドなど)または水を添加して混練して、負極スラリーを調製する。
得られたスラリーを圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極活物質層12を得ることができる。そして、このようにして得られた負極活物質層12と負極集電体14とを積層することにより、負極13を得ることができる。
また、得られた負極スラリーを負極集電体14に塗布して乾燥することにより、負極13を製造することもできる。
電解液16は、正極21と負極13との間を満たすものであり、充放電によってリチウムイオンが移動する層である。
電解液16としては特に限定されず、一般的に公知の電解液を用いることができ、例えば、非水系溶媒に電解質となるリチウム塩を溶解したものが用いられる。
この非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトンなどの環状エステル類;ジメチルカーボネート、ジエチルカーボネートなどの鎖状エステル類;ジメトキシエタンなどの鎖状エーテル類;あるいはこれらの混合物などを用いることができる。
電解質としては特に限定されず、一般的に公知の電解質を用いることができ、例えば、LiClO、LiPFなどのリチウム金属塩を用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリルなどに混合し、固体電解質として用いることもできる。
セパレーター18としては特に限定されず、一般的に公知のセパレーターを用いることができ、例えば、ポリエチレン、ポリプロピレンなどの多孔質フィルム、不織布などを用いることができる。
正極21は、図1に示すように、正極活物質層20と正極集電体22とを有している。
正極活物質層20としては特に限定されず、一般的に公知の正極活物質により形成することができる。正極活物質としては特に限定されず、例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)などの複合酸化物;ポリアニリン、ポリピロールなどの導電性高分子;などを用いることができる。
正極集電体22としては特に限定されず、一般的に公知の正極集電体を用いることができ、例えば、アルミニウム箔を用いることができる。
そして、本実施形態における正極21は、一般的に公知の正極の製造方法により製造することができる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、「部」は「重量部」を示す。
[1]負極材料の評価方法
はじめに、後述する実施例および比較例で得られた負極材料の評価方法を説明する。
1.粒度分布
堀場製作所社製レーザー回折式粒度分布測定装置LA−920を用いて、レーザー回折法により、負極材料の粒度分布を測定した。測定結果から、負極材料について、体積基準の累積分布における50%累積時の粒径(D50、平均粒径)を求めた。
2.比表面積
ユアサ社製のNova−1200装置を使用して窒素吸着におけるBET3点法により測定した。具体的な算出方法は、上述したとおりである。
3.負極材料のd002 およびLc(002)
島津製作所製・X線回折装置「XRD−7000」を使用して(002)面の平均層面間隔d002を測定した。
負極材料のX線回折測定から求められるスペクトルより、(002)面の平均層面間隔d002を以下のBragg式より算出した。
λ=2dhklsinθ Bragg式 (dhkl=d002
λ:陰極から出力される特性X線Kα1の波長
θ:スペクトルの反射角度
また、Lc(002)は以下のようにして測定した。
X線回折測定から求められるスペクトルにおける002面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc(002)=0.94 λ/(βcosθ) ( Scherrerの式)
Lc(002) : 結晶子の大きさ
λ : 陰極から出力される特性X線Kα1の波長
β : ピークの半値幅( ラジアン)
θ : スペクトルの反射角度
4.炭酸ガスの吸着量
炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP−2000Mを使用して行った。
測定用試料管に測定試料0.5gを入れ、0.2Pa以下の減圧下、300℃で3時間以上減圧乾燥を行い、その後、炭酸ガスの吸着量の測定を行った。
吸着温度は0℃とし、測定試料を入れた試料管の圧力が0.6Pa以下になるまで減圧にした後、炭酸ガスを試料管に導入し、試料管内の平衡圧力が0.11MPa(相対圧力0.032に相当)に達するまでの炭酸ガスの吸着量を定容法により求め、ml/g単位で表した。吸着量は標準状態(STP)に換算した値である。
5.カールフィッシャー電量滴定法による水分量の測定
カールフィッシャー電量滴定法による水分量は、以下の手順で測定した。
(手順1)小型環境試験器(ESPEC社製SH−241)の装置内で、温度40℃、相対湿度90%RHの条件下で1gの負極材料を120時間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。
(手順2)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、Mitsubishi Chemical Analytech社製CA−06を用いて、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定した。
6.全吸水量の測定
負極材料1gについて、200℃にて24時間真空乾燥を行った後、負極材料の重量を測定した。次いで、小型環境試験器(ESPEC社製SH−241)の装置内で、温度40℃、相対湿度90%RHの条件下で120時間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。その後、負極材料の重量を測定し、下記の式より全吸水量を測定した。
全吸水量[%] =100×(120時間保持後の重量−真空乾燥後の重量)/(真空乾燥後の重量)
7.保存特性
製造直後の負極材料および以下の保存試験後の負極材料について、以下の方法に従って初期効率をそれぞれ測定した。次いで、初期効率の変化率をそれぞれ算出した。
(保存試験)
負極材料1gについて、小型環境試験器(ESPEC社製SH−241)の装置内で、温度40℃、相対湿度90%RHの条件下で7日間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。その後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して乾燥した。
(1)ハーフセルの作製
後述する実施例、比較例で得られた負極材料100部に対して、カルボキシメチルセルロース(ダイセルファインケム製、CMCダイセル2200)1.5部、スチレン・
ブタジエンゴム(JSR製、TRDー2001)3.0部、アセチレンブラック(電気化学工業製、デンカブラック)2.0部、および、蒸留水100部を加え、自転・公転ミキサーで撹拌・混合し、負極スラリーを調製した。
調製した負極スラリーを厚み14μmの銅箔(古河電気工業製、NC−WS)の片面に塗布し、その後、60℃で2時間空気中で予備乾燥を行い、次に、120℃で15時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径13mmの円盤状として切り出し負極を作製した。負極活物質層の厚さは50μmであった。
金属リチウムを直径12mm、厚さ1mmの円盤状に形成し対極を作製した。また、セパレーターとして、ポリオレフィンの多孔質膜(セルガード社製、商品名;セルガード2400)を用いた。
上記の負極、対極、セパレーターを用い、電解液としてエチレンカーボネートとジエチルカーボネートとを体積比で1:1で混合した混合溶媒に1Mの割合でLiPFを加えたものを用いて、アルゴン雰囲気下のグローブボックス内で2032型コインセル形状の二極式ハーフセルを製造し、当該ハーフセルについて以下に述べる評価を行った。
(2)ハーフセルの充放電
以下の条件で充放電をおこなった。
測定温度:25℃
充電方式:定電流定電圧法、充電電流:25mA/g、充電電圧:0mV、充電終止電流:2.5mA/g
放電方式:定電流法、放電電流:25mA/g、放電終止電圧:2.5V
また、上記の条件で求められた充電容量および放電容量の値に基づいて、負極材料の1g当たりの充電容量および放電容量[mAh/g]をそれぞれ求めた。また、下記式より初期効率および初期効率の変化率を求めた。
初期効率 [%] = 100×(放電容量)/(充電容量)
初期効率の変化率 [%] = 100×(保存試験後の初期効率)/(製造直後の初期効率)
8.細孔容積
水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定した。
負極材料を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。ついで水銀を試料容器内に導入し、徐々に加圧して水銀を負極材料の細孔へ圧入する(最高圧力414MPa)。このときの圧力と水銀の圧入量の関係から以下の式を用いて負極材料の細孔容積分布を測定する。細孔直径5μmに相当する圧力(0.25MPa)から最高圧力(414MPa:細孔直径3nm相当)までに負極材料に圧入された水銀の体積を、細孔直径5μm以下の細孔容積とした。細孔直径の算出は、直径Dの円筒形の細孔に水銀を圧力Pで圧力する場合、水銀の表面張力γ、水銀と細孔壁との接触角をθとすると、表面張力と細孔断面に働く圧力の釣り合いから、次式が成り立つ。
−πDγcosθ=π(D/2)・P
D=(−4γcosθ)/P
ここで、水銀の表面張力を484dyne/cm、水銀と炭素との接触角を130度とし、圧力PをMPa、細孔直径Dをμmで表示し、下記式により圧力Pと細孔直径Dの関係を求めた。
D =1.27/P
9.塩素の含有量
酸水素炎燃焼装置を用いて負極材料を燃焼させ、生成した燃焼ガス中のHClを0.01モルのNaOH水溶液に吸収させた。次いで、この水溶液中の塩素の含有量をイオンクロマトグラフィー分析装置で定量した。なお、イオンクロマトグラフィー分析装置の検量線は、イオンクロマトグラフィー用塩化物イオン標準液(塩化ナトリウム水溶液、塩素イオン濃度1000ppm、関東化学社製)を希釈することにより調製した溶液を分析して作成した。
[2]負極材料の製造
(実施例1)
特許文献1(特開平8−279358号公報)の段落0051に記載の方法に準じて、石油ピッチから酸化ピッチを作製した。次いで、この酸化ピッチを原料として、以下の工程(a)〜(f)の順で処理を行い、負極材料1を得た。
(a)熱処理炉内に510gの酸化ピッチを静置した。その後、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温した。
(b)次いで、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理した後、冷却した。
(c)得られた粉末を振動ボールミルで微粉砕した。
(d)その後、熱処理炉内に、得られた粉末204gを静置した。次いで、不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温した。
(e)窒素ガス/塩素ガスの混合ガス(体積比65/35)流通下、1200℃で8時間保持し、炭化処理した。
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却した。
(実施例2)
熱硬化性樹脂であるフェノール樹脂PR−55321B(住友ベークライト社製)を原料として、以下の工程(a)〜(f)の順で処理を行い、負極材料2を得た。
(a)熱処理炉内に510gの熱硬化性樹脂を静置した。その後、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温した。
(b)次いで、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理した後、冷却した。
(c)得られた粉末を振動ボールミルで微粉砕した。
(d)その後、熱処理炉内に、得られた粉末204gを静置した。次いで、不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温した。
(e)窒素ガス/塩素ガスの混合ガス(体積比60/40)流通下、1200℃で8時間保持し、炭化処理した。
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却した。
(実施例3)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比85/15)流通下に変更した以外は実施例2と同様の方法で負極材料3を作製した。
(実施例4)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比90/10)流通下に変更した以外は実施例2と同様の方法で負極材料4を作製した。
(実施例5)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比94/6)流通下に変更した以外は実施例2と同様の方法で負極材料5を作製した。
(比較例1)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比50/50)流通下に変更した以外は実施例1と同様の方法で負極材料6を作製した。
(比較例2)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比55/45)流通下に変更した以外は実施例2と同様の方法で負極材料7を作製した。
(比較例3)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比99/1)流通下に変更した以外は実施例1と同様の方法で負極材料8を作製した。
(比較例4)
工程(e)の炭化処理雰囲気を、窒素ガス/塩素ガスの混合ガス(体積比98/2)流通下に変更した以外は実施例2と同様の方法で負極材料9を作製した。
以上の実施例および比較例により得られた負極材料1〜9について、前述した各種評価をおこなった。以上の結果を表1に示す。
実施例1〜5で得られた負極材料は、塩素含有量が0.5ppm以上50ppm未満であった。
このような塩素含有量の負極材料を用いたリチウムイオン電池は、保存特性および充放電容量に優れていた。
一方、比較例1〜2で得られた負極材料は、塩素含有量が50ppm以上であった。このような塩素含有量の負極材料を用いたリチウムイオン電池は、製造直後の充放電容量に優れていたものの、初期効率の変化率が低く、保存特性に劣っていた。
また、比較例3〜4で得られた負極材料は、塩素含有量が0.5ppm未満であった。このような塩素含有量の負極材料を用いたリチウムイオン電池は、保存特性および充放電容量が劣っていた。
Figure 2014132549
10 リチウムイオン電池
12 負極活物質層
13 負極
14 負極集電体
16 電解液
18 セパレーター
20 正極活物質層
21 正極
22 正極集電体
本発明によれば、
線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d0020.350nm以上である、アルカリ金属イオン電池に用いられる難黒鉛化性の炭素質の負極材料であって、
ハロゲン含有量が0.5ppm以上50ppm未満である、アルカリ金属イオン電池用負極材料が提供される。
本発明によれば、
線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.350nm以上である、アルカリ金属イオン電池に用いられる難黒鉛化性の炭素質の負極材料であって、
塩素含有量が0.5ppm以上50ppm未満である、アルカリ金属イオン電池用負極材料が提供される。

Claims (11)

  1. 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
    ハロゲン含有量が0.5ppm以上50ppm未満である、アルカリ金属イオン電池用負極材料。
  2. 請求項1に記載の負極材料において、
    温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
    前記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、前記予備乾燥した後の前記負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、
    前記予備乾燥した後の前記負極材料から発生した水分量が、前記予備乾燥した後の前記負極材料100質量%に対し、0.20質量%以下である、負極材料。
  3. 請求項1または2に記載の負極材料において、
    負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
    25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の
    放電容量が360mAh/g以上である、負極材料。
  4. 請求項1乃至3いずれか一項に記載の負極材料において、
    炭酸ガスの吸着量が10ml/g未満である、負極材料。
  5. 請求項1乃至4いずれか一項に記載の負極材料において、
    水銀圧入法により求めた細孔直径が0.003μm〜5μmの細孔容積が0.55ml /g未満である、負極材料。
  6. 請求項1乃至5いずれか一項に記載の負極材料を含む、負極活物質。
  7. 請求項6に記載の負極活物質において、
    前記負極材料とは異なる種類の負極材料をさらに含む、負極活物質。
  8. 請求項7に記載の負極活物質において、
    異なる種類の前記負極材料が黒鉛質材料である、負極活物質。
  9. 少なくとも請求項6乃至8いずれか一項に記載の負極活物質を含む負極活物質層と、
    負極集電体と、
    がこの順番で積層された、アルカリ金属イオン電池用負極。
  10. 請求項9に記載のアルカリ金属イオン電池用負極と、電解質と、正極とを少なくとも備えた、アルカリ金属イオン電池。
  11. リチウムイオン電池またはナトリウムイオン電池である、請求項10に記載のアルカリ金属イオン電池。
JP2013114369A 2012-12-07 2013-05-30 負極材料、負極活物質、負極およびアルカリ金属イオン電池 Expired - Fee Related JP5681753B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013114369A JP5681753B2 (ja) 2012-12-07 2013-05-30 負極材料、負極活物質、負極およびアルカリ金属イオン電池
KR1020157017782A KR20150092262A (ko) 2012-12-07 2013-11-28 부극 재료, 부극 활물질, 부극 및 알칼리 금속 이온 전지
US14/648,997 US20150333316A1 (en) 2012-12-07 2013-11-28 Negative-electrode material, negative-electrode active material, negative electrode, and alkali metal ion battery
EP13860232.1A EP2942829A4 (en) 2012-12-07 2013-11-28 NEGATIVE ELECTRODE MATERIAL, NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE, AND METAL ION ALKALINE BATTERY
CN201380063232.5A CN104838525A (zh) 2012-12-07 2013-11-28 负极材料、负极活性物质、负极以及碱金属离子电池
PCT/JP2013/082008 WO2014087911A1 (ja) 2012-12-07 2013-11-28 負極材料、負極活物質、負極およびアルカリ金属イオン電池
TW102144184A TWI489684B (zh) 2012-12-07 2013-12-03 負極材料、負極活性物質、負極及鹼金屬離子電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012268645 2012-12-07
JP2012268645 2012-12-07
JP2013114369A JP5681753B2 (ja) 2012-12-07 2013-05-30 負極材料、負極活物質、負極およびアルカリ金属イオン電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014053020A Division JP2014132592A (ja) 2012-12-07 2014-03-17 負極材料、負極活物質、負極およびアルカリ金属イオン電池

Publications (2)

Publication Number Publication Date
JP2014132549A true JP2014132549A (ja) 2014-07-17
JP5681753B2 JP5681753B2 (ja) 2015-03-11

Family

ID=50883330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114369A Expired - Fee Related JP5681753B2 (ja) 2012-12-07 2013-05-30 負極材料、負極活物質、負極およびアルカリ金属イオン電池

Country Status (7)

Country Link
US (1) US20150333316A1 (ja)
EP (1) EP2942829A4 (ja)
JP (1) JP5681753B2 (ja)
KR (1) KR20150092262A (ja)
CN (1) CN104838525A (ja)
TW (1) TWI489684B (ja)
WO (1) WO2014087911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116290A (ja) * 2013-08-02 2014-06-26 Sumitomo Bakelite Co Ltd 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
TWI578602B (zh) * 2014-10-02 2017-04-11 Method for manufacturing carbon fiber anode material for lithium ion battery
JP6621442B2 (ja) 2016-05-17 2019-12-18 財團法人工業技術研究院Industrial Technology Research Institute 金属イオンバッテリー

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279358A (ja) * 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd 電池電極用炭素質材料、その製造方法、電極構造体および電池
JPH0955203A (ja) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd 非水電池
JPH0992283A (ja) * 1995-09-19 1997-04-04 Petoca:Kk 非水リチウム二次電池用炭素材及びその製造方法
JP2006185812A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 電極板の製造方法、および電極板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653105B2 (ja) * 1993-02-25 2005-05-25 呉羽化学工業株式会社 二次電池電極用炭素質材料
EP0726606B1 (en) * 1995-02-09 2002-12-04 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for battery and process for production thereof
CN1100605C (zh) * 1995-04-27 2003-02-05 日本酸素株式会社 炭吸附剂及其制造方法和气体分离法及其装置
JP3540478B2 (ja) * 1995-11-24 2004-07-07 鹿島石油株式会社 リチウムイオン二次電池用負極材
KR20000064574A (ko) * 1997-01-09 2000-11-06 쓰치야 히로오 다공성 탄소재 및 그 제조방법
JP4187804B2 (ja) * 1997-04-03 2008-11-26 ソニー株式会社 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
TW200723579A (en) 2005-09-09 2007-06-16 Kureha Corp Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
JP5049820B2 (ja) * 2008-02-29 2012-10-17 日立ビークルエナジー株式会社 リチウムイオン二次電池
CN101323447B (zh) * 2008-07-21 2012-02-22 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极的石墨粉及其制备方法
WO2011052452A1 (ja) * 2009-10-27 2011-05-05 日立化成工業株式会社 リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US9437344B2 (en) * 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode
JP5365611B2 (ja) * 2010-11-26 2013-12-11 住友ベークライト株式会社 リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
TWI536647B (zh) * 2012-08-29 2016-06-01 住友電木股份有限公司 負極材料、負極活性物質、負極及鹼金屬離子電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279358A (ja) * 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd 電池電極用炭素質材料、その製造方法、電極構造体および電池
JPH0955203A (ja) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd 非水電池
JPH0992283A (ja) * 1995-09-19 1997-04-04 Petoca:Kk 非水リチウム二次電池用炭素材及びその製造方法
JP2006185812A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd 電極板の製造方法、および電極板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Also Published As

Publication number Publication date
EP2942829A1 (en) 2015-11-11
TW201436351A (zh) 2014-09-16
EP2942829A4 (en) 2016-09-21
WO2014087911A1 (ja) 2014-06-12
JP5681753B2 (ja) 2015-03-11
KR20150092262A (ko) 2015-08-12
US20150333316A1 (en) 2015-11-19
CN104838525A (zh) 2015-08-12
TWI489684B (zh) 2015-06-21

Similar Documents

Publication Publication Date Title
WO2014034431A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP2014132592A (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
Zhang et al. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries
EP3179543B1 (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US20220393147A1 (en) Non-Aqueous Lithium Power Storage Element
JP5454272B2 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2014132555A (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP5681753B2 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP5297565B1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
WO2015025785A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP4170006B2 (ja) 炭素材およびこれを用いた二次電池用負極材
JP5346406B1 (ja) 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
WO2017119428A1 (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
WO2017110796A1 (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
JP6065713B2 (ja) アルカリ金属イオン二次電池用負極材料、アルカリ金属イオン二次電池用負極活物質、アルカリ金属イオン二次電池用負極およびアルカリ金属イオン二次電池
JP2014154546A (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP2014116290A (ja) 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
WO2014115721A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン二次電池
JP2017183233A (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
JP2013222551A (ja) 負極用材料、負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140410

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees