JP2014132541A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2014132541A
JP2014132541A JP2013000745A JP2013000745A JP2014132541A JP 2014132541 A JP2014132541 A JP 2014132541A JP 2013000745 A JP2013000745 A JP 2013000745A JP 2013000745 A JP2013000745 A JP 2013000745A JP 2014132541 A JP2014132541 A JP 2014132541A
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013000745A
Other languages
English (en)
Inventor
Akihiro Ochiai
章浩 落合
Kaoru Inoue
薫 井上
Yukihiro Okada
行広 岡田
Hideaki Fujita
秀明 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013000745A priority Critical patent/JP2014132541A/ja
Publication of JP2014132541A publication Critical patent/JP2014132541A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】電池の性能劣化(電池容量の低下等)を防止することができる二次電池を提供すること。
【解決手段】
二次電池100は、正極集電体221と、正極集電体221に保持された正極活物質層223と、負極集電体241と、負極集電体241に保持された負極活物質層243とを備える。負極活物質層は243、負極活物質とバインダとを有する。負極活物質層243は、正極活物質層223に対向している対向部位243aと、正極活物質層223に対向していない非対向部位243b1、243b2との境界部R1、R2におけるバインダ濃度Aが、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bよりも大きい(A>B)。
【選択図】図4

Description

本発明は、二次電池に関する。
ここで、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいい、リチウムイオン二次電池(lithium-ion secondary battery)、ニッケル水素電池、ニッケルカドミウム電池などのいわゆる蓄電池ならびに電気二重層キャパシタなどの蓄電素子を包含する用語である。また、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。
二次電池について、例えば、特許文献1には、従来の非水電解液二次電池として、帯状の正極集電体の両面に正極活性物質を塗布して形成された正極合剤層よりなる正極と、帯状の負極集電体の両面に負極活性物質を塗布して形成された負極合剤層よりなる負極とを、ポリプロピレンフィルムよりなるセパレータを介して巻回して巻回電極体を電池容器に収容した二次電池が挙げられている。かかる従来の二次電池について、充電時においてリチウムが析出して電池内部で短絡が生じることを防止するために、正極に対向する負極は、幅及び長さについて正極よりも大きく形成されることが記載されている。
特許文献1では、巻回電極体の巻き始め及び/又は巻き終わりに位置する負極又は正極の非対向部分の少なくとも一部を電解液に不溶の絶縁性樹脂で被覆することが提案されている。その作用として、ここでは、この被覆部分は外部との接触が絶たれた状態に維持されること、電池の充電時において電解液中のリチウムイオンとの反応に殆ど関与しない状態で保持されること、および、負極の正極対向部分から正極非対向部分であるこの被覆部分へのリチウムイオンの拡散が確実に防止されることが挙げられている。
特開平7−130389号公報
リチウムイオン二次電池について、負極活物質層の幅が正極活物質層よりも広い構成では、負極活物質層は、正極活物質層に対向している部位と正極活物質層に対向していない部位とを有する。かかる形態について、本発明者は、正極活物質層の縁部で正極活物質層に含まれる金属(例えば遷移金属)が局所的に溶出する事象を見出した。正極活物質層の縁部で金属が局所的に溶出する事象は、満充電後に高温環境で長期間保存された時などに生じやすい傾向がある。リチウムイオン二次電池の性能を安定させるべく、正極活物質層の縁部で金属が局所的に溶出するのをできる限り少なく抑えたい。
ここで提案される二次電池は、電極体と、電極体を収容する電池ケースとを備えている。電極体は、正極集電体と、正極集電体に保持された正極活物質層と、負極集電体と、負極集電体に保持された負極活物質層と、正極活物質層と負極活物質層との間に介在したセパレータとを備えている。また、負極活物質層は、負極活物質とバインダとを有している。そして、負極活物質層は、正極活物質層に対向している対向部位と、正極活物質層に対向していない非対向部位との境界部におけるバインダ濃度Aが、該境界部を除く負極活物質層の全域のバインダ濃度Bよりも大きい(A>B)。かかる構成によれば、負極活物質層の境界部に電荷体(リチウムイオン二次電池の場合、リチウムイオン)が拡散しにくい。そのため、境界部に近い、正極活物質層の縁部での金属の溶出が抑制される。
ここで、境界部は、例えば、対向部位と非対向部位との境界から非対向部位側へ1mm以上4mm以内の範囲として規定するとよい。また、境界部のバインダ濃度Aと、該境界部を除く負極活物質層の全域のバインダ濃度Bとが、A>2×Bの関係を満たしていてもよい。さらには、境界部のバインダ濃度Aと、該境界部を除く負極活物質層の全域のバインダ濃度Bとが、A>3.5×Bの関係を満たしていてもよい。
また、ここで提案される二次電池の製造方法は、例えば、負極活物質とバインダとを含むペーストを負極集電体上に塗布する塗布工程と、塗布工程において負極集電体上に塗布されたペーストからなる塗膜を乾燥する乾燥工程とを包含しているとよい。そして、乾燥工程において、塗膜のうち対向部位と非対向部位との境界に相当する部位に予め設定された境界領域の温度が、該境界領域を除く領域よりも高くなるように熱を加えるとよい。かかる構成によると、負極活物質層のうち対向部位と非対向部位との境界部におけるバインダ濃度Aが、該境界部を除く負極活物質層の全域のバインダ濃度Bよりも大きい、負極活物質層を形成することができる。
この場合、例えば、境界領域の温度が、該境界領域を除く領域の温度よりも20℃以上高くなるように熱を加えてもよい。また、乾燥工程において、負極集電体に対して、表裏に対向するように配置された一対のヒータによって、境界領域に対して表裏から熱を加えてもよい。この場合、一対のヒータによって、境界領域の集電体側の温度が、表層側の温度よりも(例えば20℃以上、好ましくは40℃以上)高くなるように、熱を加えてもよい。また、負極集電体は帯状のシート材であり、乾燥工程において、負極集電体を長さ方向に搬送しつつ塗膜に対して熱を加えてもよい。この場合、ヒータは、負極集電体の長さ方向に沿うように配置された、棒状または帯板状のヒータであってもよい。
また、ここで提案される二次電池用の電極製造装置は、帯状の集電体を搬送する複数のローラと、複数のローラによって集電体が搬送される搬送経路に沿って設けられた塗布装置と、搬送経路において塗布装置よりも下手側に設けられた乾燥炉と、を備えている。ここで、塗布装置は、複数のローラによって搬送される集電体上に予め定められた幅で集電体の長さ方向に連続して活物質とバインダとを含むペーストを塗布するとよい。また、乾燥炉は、集電体の幅方向の予め定められた位置において、塗膜を局所的に加熱するヒータを備えているとよい。ここで、ヒータは、集電体に対して表裏に対向するように配置されていてもよい。また、ヒータは、乾燥炉において複数のローラによって搬送される集電体の長さ方向に沿って配置された棒状または帯板状のヒータであってもよい。
図1は、リチウムイオン二次電池の構造の一例を示す図である。 図2は、リチウムイオン二次電池の捲回電極体を示す図である。 図3は、図2中のIII−III断面を示す断面図である。 図4は、本発明の一実施形態に係るリチウムイオン二次電池について、捲回電極体の正極シートと負極シートとの積層構造を示す断面図である。 図5は、負極活物質層が形成される工程を示す図である。 図6は、塗膜の塗工パターンの一例を示す図である。 図7は、乾燥炉の内部の構成例を示す図である。 図8は、乾燥炉の内部の構成例を示す図である。 図9は、境界部のバインダ濃度分布を説明するための模式図である。 図10Aは、サンプル1の構成を示す図である。 図10Bは、サンプル2の構成を示す図である。 図10Cは、サンプル3の構成を示す図である。 図11Aは、サンプル3の構成(巻きズレなし)を示す図である。 図11Bは、サンプル3の構成(巻きズレあり)を示す図である。 図12Aは、サンプル1の構成(巻きズレなし)を示す図である。 図12Bは、サンプル1の構成(巻きズレあり)を示す図である。 図13は、幅W1と、高温エージング後の不良率および容量維持率との関係を示すグラフである。 図14は、ペースト温度差と、高温エージング後の不良率および境界部のバインダ濃度との関係を示すグラフである。 図15は、二次電池を搭載した車両を示す図である。
以下、本発明の一実施形態に係る非水系二次電池を図面に基づいて説明する。ここではまず、非水系二次電池の一構造例を説明し、その後、本発明の一実施形態に係る非水系二次電池(リチウムイオン二次電池)について詳細に説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。また、ここでは、非水系二次電池の一構造例と、本発明の一実施形態に係る非水系二次電池(リチウムイオン二次電池)とについて、適宜、共通の図面を基に説明している。
図1は、リチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体200と電池ケース300とを備えている。また、図2は、捲回電極体200を示す図である。図3は、図2中のIII−III断面を示している。
本発明の一実施形態に係るリチウムイオン二次電池100は、図1に示すような扁平な角形の電池ケース(即ち外装容器)300に構成されている。リチウムイオン二次電池100は、図2に示すように、扁平形状の捲回電極体200が、図示しない液状電解質(電解液)とともに、電池ケース300に収容されている。
≪電池ケース300≫
電池ケース300は、一端(電池10の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体320と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる封口板(蓋体)340とから構成される。
電池ケース300の材質は、従来の密閉型電池で使用されるものと同じであればよく、特に制限はない。軽量で熱伝導性の良い金属材料を主体に構成された電池ケース300が好ましく、このような金属製材料としてアルミニウム、ステンレス鋼、ニッケルめっき鋼等が例示される。本実施形態に係る電池ケース300(ケース本体320および封口板340)はアルミニウム若しくはアルミニウムを主体とする合金によって構成されている。
図1に示すように、封口板340には外部接続用の正極端子420および負極端子440が形成されている。封口板340の両端子420、440の間には、電池ケース300の内圧が所定レベル以上に上昇した場合に該内圧を開放するように構成された薄肉の安全弁360と、注液口350が形成されている。なお、図1では、当該注液口350が注液後に封止材によって封止されている。
≪捲回電極体200(電極体)≫
捲回電極体200は、図2に示すように、長尺なシート状正極(正極シート220)と、該正極シート220と同様の長尺シート状負極(負極シート240)とを計二枚の長尺シート状セパレータ(セパレータ262,264)とを備えている。
≪正極シート220≫
正極シート220は、帯箔状の正極集電体(以下、正極集電箔ともいう。)221と正極活物質層223とを備えている。正極集電箔221には、例えば、正極に適する金属箔が好適に使用され得る。この実施形態では、正極集電箔221として、厚さが凡そ15μmの帯状のアルミニウム箔が用いられている。正極集電箔221の幅方向片側の縁部に沿って未塗工部222が設定されている。図示例では、正極活物質層223は、正極集電箔221に設定された未塗工部222を除いて、正極集電箔221の両面に保持されている。正極活物質層223には、正極活物質や導電材やバインダが含まれている。
正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、LiNiCoMnO(リチウムニッケルコバルトマンガン複合酸化物)、LiNiO(ニッケル酸リチウム)、LiCoO(コバルト酸リチウム)、LiMn(マンガン酸リチウム)、LiFePO(リン酸鉄リチウム)などのリチウム遷移金属酸化物が挙げられる。ここで、LiMnは、例えば、スピネル構造を有している。また、LiNiOやLiCoOは層状の岩塩構造を有している。また、LiFePOは、例えば、オリビン構造を有している。オリビン構造のLiFePOには、例えば、ナノメートルオーダーの粒子がある。また、オリビン構造のLiFePOは、さらにカーボン膜で被覆することができる。
例えば、正極活物質に、導電材としてアセチレンブラック(AB)、ケッチェンブラック等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等のバインダを添加することができる。これらを適当な分散媒体に分散させて混練することによって、正極合剤(ペースト)を調製することができる。正極活物質層223は、この正極合剤を正極集電箔221に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。
≪負極シート240≫
負極シート240は、図2に示すように、帯箔状の負極集電体(以下、負極集電箔ともいう。)241と負極活物質層243とを備えている。負極集電箔241には、例えば、負極に適する金属箔が好適に使用され得る。この実施形態では、負極集電箔241には、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電箔241の幅方向片側には、縁部に沿って未塗工部242が設定されている。負極活物質層243は、負極集電箔241に設定された未塗工部242を除いて、負極集電箔241の両面に保持されている。負極活物質層243には、負極活物質や増粘剤やバインダなどが含まれている。
負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボンなどの炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物などが挙げられる。
そして正極と同様、かかる負極活物質を、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロース(CMC)等のバインダとともに適当な分散媒体に分散させて混練することによって、負極合剤(ペースト)を調製することができる。負極活物質層243は、この負極合剤を負極集電箔241に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。
≪セパレータ262、264≫
セパレータ262、264は、図2および図3に示すように、正極シート220と負極シート240とを隔てる部材である。この例では、セパレータ262、264は、微小な孔を複数有する所定幅の帯状のシート材で構成されている。セパレータ262、264には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造のセパレータ或いは積層構造のセパレータを用いることができる。この例では、図2および図3に示すように、負極活物質層243の幅b1は、正極活物質層223の幅a1よりも少し広い。さらにセパレータ262、264の幅c1、c2は、負極活物質層243の幅b1よりも少し広い(c1、c2>b1>a1)。
なお、図2に示す例では、セパレータ262、264は、シート状の部材で構成されている。セパレータ262、264は、正極活物質層223と負極活物質層243とを絶縁するとともに、電解質の移動を許容する部材であればよい。従って、シート状の部材に限定されない。セパレータ262、264は、シート状の部材に代えて、例えば、正極活物質層223または負極活物質層243の表面に形成された絶縁性を有する粒子の層で構成してもよい。ここで、絶縁性を有する粒子としては、絶縁性を有する無機フィラー(例えば、金属酸化物、金属水酸化物などのフィラー)、或いは、絶縁性を有する樹脂粒子(例えば、ポリエチレン、ポリプロピレンなどの粒子)で構成してもよい。
≪電解液(非水電解液)≫
電解液(非水電解液)としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。また、上記支持塩としては、例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等のリチウム塩を用いることができる。一例として、エチレンカーボネートとジエチルカーボネートとの混合溶媒(例えば質量比1:1)にLiPFを約1mol/Lの濃度で含有させた非水電解液が挙げられる。
《本発明の一実施形態に係る非水系二次電池》
以下、上述したリチウムイオン二次電池100を例にして、本発明の一実施形態に係る非水系二次電池を説明する。ここでは、適宜に、上述したリチウムイオン二次電池100の図を参照しつつ、本発明の一実施形態に係る非水系二次電池を説明する。また、ここでは、上述したリチウムイオン二次電池100と特に区別せず、同じ作用を奏する部材または部位について、適宜に同じ符号を用いて説明する。
ところで、上述したリチウムイオン二次電池100は、図2に示すように、負極活物質層243の幅が正極活物質層223よりも広い。この場合、負極活物質層243は、幅方向において、正極活物質層223に対向している部位243aと、正極活物質層223に対向していない部位243b1、243b2とを有している。以下、適宜に、負極活物質層243のうち正極活物質層223に対向している部位を「対向部位」という。また、負極活物質層243のうち正極活物質層223に対向していない部位を、「非対向部位」という。非対向部位243b1は、負極活物質層243の両側の縁に設けられている。
図4は、捲回電極体200(図1参照)中で重ね合わされた負極活物質層243と正極活物質層223を、幅方向(例えば、正極シート220の幅方向)で切断した断面を模式的に示している。なお、図4では、セパレータ262、264は、破線で簡単に示されている。図4に示す例では、上述したように負極活物質層243の幅方向の中間部分が正極活物質層223に対向している。負極活物質層243の幅方向の両側は正極活物質層223に対向していない。なお、図4では、負極活物質層243のうち非対向部位243b1、243b2は、対向部位243aに比べて、実際よりも大きく図示されている。
本発明者は、かかる形態のリチウムイオン二次電池100について、正極活物質層223の縁部223aで正極活物質層223に含まれる金属(例えば遷移金属)が局所的に溶出する事象を見出した。正極活物質層223の縁部223aで金属が局所的に溶出する事象は、満充電後に高温環境で長期間保存された時などに生じやすい傾向があった。リチウムイオン二次電池100の性能を安定させるべく、正極活物質層223の縁部223aで金属が局所的に溶出するのはできる限り少なく抑えられることが望ましい。
正極活物質層223の縁部223aで金属が溶出する事象について、本発明者は鋭意研究し、以下のような推察を得た。すなわち、本発明者の推察によれば、リチウムイオン二次電池100は、充電時に、正極活物質層223からリチウムイオンが電解液中に放出される。この際、負極では、電解液中のリチウムイオンが負極活物質層243に入り込み、負極活物質層243に吸蔵されていく。また、リチウムイオンは、充電当初において負極活物質層243のうち正極活物質層223に対向している対向部位243aに吸蔵されていきやすく、充電が進むにつれて、非対向部位243b1、243b2にも拡散していくと考えられる。
つまり、距離的な近さから、正極から放出されたリチウムイオンは、負極活物質層243の対向部位243aに吸蔵されるやすい。そして、対向部位243aへリチウムイオンが吸蔵されていくと、当該対向部位243aの電位が下がり、負極活物質層243において対向部位243aと非対向部位243b1、243b2とに電位差が生じる。この電位差を解消させるために、負極活物質層243の正極活物質層223に対向していない部位243b1、243b2にもリチウムイオンが吸蔵されていくと考えられる。このように、負極活物質層243は、正極活物質層223に対向している対向部位243aだけでなく、非対向部位243b1、243b2にもリチウムイオンが拡散していく。そして、十分に充電された状態では、非対向部位243b1、243b2にも、相当程度のリチウムイオンが吸蔵された状態になる。
このように、十分に充電された状態では、負極活物質層243は、正極活物質層223に対向している対向部位243aだけでなく、非対向部位243b1、243b2にもリチウムイオンが拡散していく。このため、充電時には正極活物質層223の縁部223aは、負極活物質層243に対向する幅方向の中間部分に比べて、リチウムイオンの放出量が多くなると考えられる。これに対して、放電時には、負極活物質層243から電解液中にリチウムイオンが放出され、正極活物質層223ではリチウムイオンが戻っていくが、この場合は、距離的な近さから、負極活物質層243の対向部位243aは、非対向部位243b1、243b2よりもリチウムイオンを放出しやすい。このため、正極活物質層223では、負極活物質層243に対向する幅方向の中間部分の方が、縁部223aよりもリチウムイオンが戻っていきやすいと考えられる。
このようなことから、リチウムイオン二次電池100が使用可能なSOC(充電状態)の範囲内の上限と下限まで、ハイレートでの充電と放電が繰り返されるような用途では、特に、正極活物質層223の縁部223aが、負極活物質層243に対向する幅方向の中間部分よりも、リチウムイオンが少ない状態が常態化すると考えられる。
また、このような用途において、例えば、使用可能なSOC(充電状態)の範囲内の上限まで充電すると、当該正極活物質層223の縁部223aの電位は、例えば、4.5V程度まで、局所的に著しく上昇する可能性があると考えられる。このように、正極活物質層223の縁部223aの電位が局所的に著しく上昇した状態で、さらに高温環境に長時間(例えば、3日間(72時間)程度)保存すると、正極活物質層223に含まれる金属(例えば遷移金属)の溶出を招く要因になり得る。
本発明者は、このように満充電に近い状態で高温環境で長時間保存された時に、正極活物質層223の縁部223aに含まれる金属が溶出する原因の一つをこのように考えている。本発明者は、リチウムイオン二次電池100の性能を高く維持するため、このような金属の溶出は出来る限り少なくするべきと考えている。このため、リチウムイオン二次電池100について、正極活物質層223の縁部223aに含まれる金属が溶出しにくい新規な構造を提案する。
≪負極活物質層243のバインダ濃度≫
ここで提案されるリチウムイオン二次電池100は、図4に示すように、負極活物質層243は、対向部位243aと、非対向部位243b1、243b2との境界部R1、R2におけるバインダ濃度Aが、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bに比べて大きい(A>B)。
≪境界部R1、R2≫
ここで、境界部R1、R2は、負極活物質層243の対向部位243aと非対向部位243b1、243b2との境界P1、P2から、それぞれ非対向部位243b1、243b2側へ1mm以上(好ましくは2mm以上)の範囲として規定するとよい。また、境界部R1、R2は、負極活物質層243の対向部位243aと非対向部位243b1、243b2との境界P1、P2から、それぞれ非対向部位243b1、243b2側へ4mm以内の範囲として規定するとよい。
≪境界部R1、R2のバインダ濃度A≫
境界部R1、R2のバインダ濃度Aとしては、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bよりも大きければよい。例えば、境界部R1、R2のバインダ濃度Aは、凡そ3質量%以上(例えば3質量%〜10質量%)にすることが適当であり、好ましくは3.5質量%以上(例えば3.5質量%〜8質量%)である。また、境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bとしては、境界部R1、R2のバインダ濃度Aよりも小さければよい。例えば、境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bは、凡そ2質量%以下(例えば0.1質量%〜2質量%)にすることが適当であり、好ましくは1質量%以上(例えば0.5質量%〜1質量%)である。例えば、境界部R1、R2のバインダ濃度Aと、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bとが、A>2×Bの関係を満足することが好ましく、A>3.5×Bの関係を満足することがさらに好ましい。
ここで、負極活物質層243に含まれるバインダの濃度、すなわち、負極活物質層243中のバインダの割合(質量%)は、以下のようにして把握するものとする。例えば、SBRのような炭素‐炭素二重結合を有するバインダを用いた場合には、透過型電子顕微鏡観察から負極活物質層243中のバインダを臭素(Br)もしくはオスミウム(Os)染色して炭素‐炭素二重結合を有する部分を染色した後、EDX分析(エネルギ分散型X線分析:Energy Dispersive Analysis of X-ray (EDAX))によってBr原子もしくはOs原子を定量し、これによって負極活物質層243中のバインダの量と位置を調べるとよい。また、PVDFのようなフッ素原子を含むバインダを用いた場合には、X線マイクロアナライザ(XMA)測定もしくはX線光電子分光(XPS)測定によってフッ素のKα線を測定し、これによって負極活物質層243中のバインダの量と位置を直接定量するとよい。このようにして、負極活物質層243中でバインダがどのように分布しているか、その量と位置を特定することができる。
本発明者の知見によれば、負極活物質層243のうちバインダ濃度が高い部位は、バインダ濃度が低い部位よりも、リチウムイオンの移動(拡散)に対する抵抗が大きい。そのため、負極活物質層243のうちバインダ濃度が高い部位では、バインダ濃度が低い部位よりも、リチウムイオンが拡散しにくい傾向がある。
ここで提案されるリチウムイオン二次電池100では、負極活物質層243は、対向部位243aと非対向部位243b1、243b2との境界部R1、R2におけるバインダ濃度Aが、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bに比べて大きい。このため、境界部R1、R2では、該境界部R1、R2を除く負極活物質層243の全域に比べて、リチウムイオンが拡散しにくい。そのため、境界部R1、R2に近い、正極活物質層223の縁部223aでは、負極活物質層243に対向する幅方向の中間部分に比べて、過度にリチウムイオンが放出される事態が生じ難い。そして、正極活物質層223の縁部223aから過度にリチウムイオンが放出されることに起因して、かかる正極活物質層223の縁部223aで電位が局所的に上昇する事象が緩和される。その結果、満充電に近い状態で高温保存された場合に起こり得る、正極活物質層223の223aでの金属(例えば遷移金属)の溶出を抑制することができる。
≪二次電池の製造方法≫
次に、本発明の一実施形態に係る二次電池の製造方法、特に負極シートの製造方法を説明する。図5は、二次電池の製造方法を具現化した製造装置を示す図である。この二次電池の製造方法は、図5に示すように、ペースト24を負極集電体241に塗布する塗布工程と、負極集電体241に塗布されたペースト24からなる塗膜24を乾燥して負極活物質層243を形成する乾燥工程とを含んでいる。この実施形態では、二次電池の製造方法の一工程として、負極シート240を製造する製造工程においては、搬送経路12、電極材料塗布装置14、乾燥炉16を備えている。なお、この実施形態では、図6に示すように、一枚の集電体241に長さ方向に1列の塗膜24を形成し、当該塗膜24の中央部にスリットを形成する(スリットを形成する位置は、図6中の一転鎖線で示す)。そして、当該スリットで集電体241を切断することで、2枚の負極シート240を製造するものとする。
≪ペースト24≫
ここで、ペースト24は、負極活物質とバインダとを溶媒に分散したペーストである。溶媒には、水性溶媒および非水溶媒の何れも使用可能である。非水溶媒の好適な例としてN−メチル−2−ピロリドン(NMP)、ピロリドン、メチルエチルケトン、メチルイソブチルケトン、シクサヘキサノン、トルエン、ジメチルホルムアミド、ジメチルアセトアミド、等の有機溶剤またはこれらの2種以上の組み合わせが挙げられる。あるいは、水または水を主体とする混合溶媒であってもよい。かかる混合溶媒を構成する水以外の溶媒としては、水と均一に混合し得る有機溶媒(低級アルコール、低級ケトン等)の一種または二種以上を適宜選択して用いることができる。ペースト24に占める固形分の割合(固形分濃度)は特に限定されないが、概ね50質量%以上が適当であり、好ましくは50〜70質量%の範囲であり、より好ましくは52〜70質量%であり、さらに好ましくは54〜70質量%であり、特に好ましくは58〜70質量%である。
≪搬送経路12≫
搬送経路12は、集電体241を走行させる経路である。この実施形態では、搬送経路12には、集電体241を走行させる所定の経路に沿って複数のガイドが配置されている。搬送経路12の始端には、集電体241を供給する供給部32が設けられている。供給部32には、予め巻き芯32aに巻き取られた集電体241が配置されている。供給部32からは適宜に適当な量の集電体241が搬送経路12に供給される。また、搬送経路12の終端には集電体241を回収する回収部34が設けられている。回収部34は、搬送経路12で所定の処理が施された集電体241を巻き芯34aに巻き取る。この実施形態では、回収部34には、例えば、制御部34bと、モータ34cとが設けられている。制御部34bは、回収部34の巻き芯34aの回転を制御するためのプログラムが予め設定されている。モータ34cは、巻き芯34aを回転駆動させるアクチュエータであり、制御部34bに設定されたプログラムに従って駆動する。かかる搬送経路12には、電極材料塗布装置14と、乾燥炉16とが順に配置されている。
≪塗布装置14(塗布工程)≫
塗布装置14は、図5に示すように、塗布部14bとバックロール41とを備えている。バックロール41は、搬送経路12に沿って配設されており、集電体241を支持するローラである。塗布部14bは、ペースト24を吐出する吐出口を有する。塗布部14bには、例えば、スリットコーター、グラビアコーター、ダイコーター、コンマコーター等を用いることができる。図5に示す形態では、塗布部14bにダイコーターが採用されている。塗布部14bは、複数のローラによって搬送される集電体241上に予め定められた幅で集電体241の長さ方向に連続してペーストを塗布し得る。この実施形態では、搬送経路12に沿って集電体241を走行させながら、バックロール41に支持された集電体241に対して、連続してペースト24を供給する。この実施形態では、塗布装置14は、さらにタンク43と、ポンプ44とを備えている。タンク43は、ペースト24を貯留した容器である。ポンプ44は、タンク43から流路14aにペースト24を送り出す装置である。
≪乾燥炉16(乾燥工程)≫
乾燥炉16は、搬送経路12において塗布装置14よりも下手側に設けられており、ペースト24の塗布後に、例えば80℃〜150℃程度の高温の乾燥雰囲気に集電体241および塗膜24を曝して、塗膜24に含まれる溶媒を除去するための装置である。これにより、集電体241上に活物質層243を備えた電極240を製造することができる。この実施形態では、乾燥炉16は、塗膜24の温度が約80℃となるように、熱風を吹き付ける乾燥装置である。また、乾燥炉16は、集電体241の幅方向の予め定められた位置において、塗膜24を局所的に加熱するヒータ17a、17bを備えている。
≪ヒータ17a、17b≫
ヒータ17a、17bは、図7および図8に示すように、塗膜24のうち対向部位243aと非対向部位243b1、243b2との境界に相当する部位に予め設定された境界領域Qを局所的に加熱する装置である。この実施形態では、ヒータ17a、17bは、集電体241に対して表裏に対向するように配置されている。これにより、一対のヒータ17a、17bによって、境界領域Qに対して表裏から熱を加えることができる。また、この実施形態では、ヒータ17a、17bは、乾燥炉16において複数のローラによって搬送される集電体241の長さ方向に沿って配置された棒状または帯板状のヒータである。これにより、集電体241を複数のローラで搬送しつつ、境界領域Qに対して、連続して熱を加えることができる。かかるヒータ17a、17bは、遠赤外線ヒータからなり、例えばセラミックス材料により構成するとよい。なお、ヒータ17a、17bは、乾燥炉16の内部だけでなく、乾燥炉16の外部に設けてもよい。例えば、図5に示すように、乾燥炉16の入口から搬送経路12の上手側に向けて、ヒータ17a、17bをさらに延設してもよい。
かかるヒータ17a、17bは、塗膜24のうち境界領域Qが局所的に加熱されるように、当該境界領域Qに位置を合せて配置される。かかるヒータ17a、17bによって、境界領域Qに対して表裏から熱が加えられる。これにより、境界領域Qの温度が、該境界領域Qを除く領域よりも高くなる。この温度差に起因して、塗膜24内で対流が引き起こされる。また、この温度差によって、塗膜24の境界領域Qが他の領域よりも先に乾き始めるので、上記対流に乗じて移動してきたバインダが境界領域Qで優先的に乾燥され、固化する。その結果、境界領域Qにおけるバインダ濃度が、他の領域よりも大きくなる。これにより、境界部R1、R2におけるバインダ濃度Aが、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bよりも高い(A>B)、負極活物質層243を形成することができる。
上記乾燥時における境界領域Qの温度は特に限定されないが、例えば、境界領域Qの温度が、該境界領域Qを除く領域よりも20℃以上(さらには30℃以上、特には40℃以上)高くなるように熱を加えるとよい。例えば、境界領域Qを除く領域の温度が約80℃の場合、境界領域Qの温度が約100℃(好ましくは約120℃)となるように熱を加えるとよい。これにより、境界領域Qにおいてバインダ濃度が効果的に高まる。その一方で、境界領域Qの温度を高くしすぎると、熱で集電体241が酸化する虞があるため好ましくない。酸化防止の観点からは、温度差の上限は200℃以下であり、好ましくは180℃以下であり、さらに好ましくは150℃以下である。酸化防止の観点からは、ヒータ17a、17bによる局所的な加熱は、境界領域Qの温度が260℃以下となるように行うとよい。
また好ましくは、境界領域Qの集電体241側の温度が、表層側の温度よりも高くなるように、熱を加えるとよい。この場合、境界領域Qの集電体241側が、表層側よりも先に乾き始めるので、境界領域Qの集電体241側のバインダ濃度が、表層側よりも大きくなる。その結果、境界部R1、R2の集電体241側のバインダ濃度が、表層側よりも大きい、負極活物質層243を形成することができる。好ましくは、境界領域Qの集電体241側の温度が、表層側よりも20℃以上(さらには30℃以上、特には40℃以上)高くなるように、表裏から熱を加えるとよい。この実施形態では、境界領域Qの集電体241側の温度が約150℃、表層側の温度が約120℃となるようにヒータ17a、17bが設定される、また、境界領域Qを除く領域の温度が約80℃となるように、乾燥炉16が設定される。
この実施形態では、局所的な加熱によるバインダのマイグレーションを利用してバインダ濃度が高い境界部R1、R2を形成する。そのため、乾燥条件によっては、境界部R1、R2のバインダ濃度に分布が生じる場合がある。例えば、図9に示すように、境界部R1、R2の集電体241側のバインダ濃度が高い部分の幅が、表層側のバインダ濃度が高い部分の幅よりも広くなるような分布が生じ得る。この場合、境界部R1、R2のバインダ濃度は、負極活物質層243の対向部位243aと非対向部位243b1、243b2との境界P1か、P2ら、それぞれ非対向部位243b1側へ所定の幅Wで評価するとよい。例えば、境界部R1、R2のバインダ濃度は、境界P1、P2からそれぞれ非対向部位243b1側へ1mm(好ましくは2mm、より好ましくは3mm、多くとも4mm)までの幅Wで評価するとよい。
乾燥炉16を通過した集電体241は、回収部34において巻き芯34aに巻き取られ、電池製造における次工程に供される。その際には、図示しない切断装置によりスリット(図6中の一転鎖線)で集電体241を切断し、2枚の負極シート240に分割して使用するとよい。
≪試験例1≫
本発明者は、かかる負極シート240の作用効果について試験的に評価した。ここで、評価用セルは角型セル(図1〜図3参照)で構成した。評価用セルは、正極集電体221の上に正極活物質層223が形成された正極シート220と、負極集電体241の上に負極活物質層243が形成された負極シート240とを備えている。負極活物質層243は、正極活物質層223よりも面積が広い。この負極活物質層243は、セパレータ262、264を介在させた状態ではあるが、正極活物質層223と対向している。また、正極集電体221と、負極集電体241は、それぞれ未塗工部224、244をそれぞれ備えている。
(正極シート220)
ここで、正極シート220は、正極活物質層223に含まれる正極活物質粒子としてコバルト酸リチウム(LiCoO)粉末が用いられている。導電材にアセチレンブラック(AB)、バインダとしてPVDFを用いた。ここで、正極活物質層223を形成する際の合剤には、LiCoOと、ABと、PVDFを、質量割合にて、LiCoO:AB:PVDF=91:6:3とし、NMPを分散溶媒として混合したペーストを用意した。そして、かかるペーストを、正極集電体221としてのアルミニウム箔の上に目付量が30mg/cm(固形分基準)となるように帯状に塗布し、乾燥させ、ロールプレスによる圧延を行なって、正極シート220を形成した。正極シート220の未塗工部222の幅は20mm、正極活物質層223の幅は57mmとした。
(セパレータ262、264、電解液)
ここで、セパレータ262、264には、幅63mmのポリエチレンの複合材料からなる多孔質膜を用いた。また、エチレンカーボネートとエチルメチルカーボネートとジエチルカーボネートとを体積比率において、3:5:2で配合し、LiPFを1モル溶解させた電解液を用いた。
(負極シート240)
負極シート240は、負極活物質層243の対向部位243aと、非対向部位243b1、243b2と、境界部R1、R2とに含まれるバインダの濃度を変えた複数のサンプル(ここでは、サンプル1〜3)を形成した。
負極活物質層243を形成する際のペーストは、バインダとしてスチレンブタジエン共重合体(SBR)、増粘材としてカルボキシメチルセルロース(CMC)、溶媒として水を用いた。また、負極活物質として天然黒鉛(平均粒径(D50):約10μm )粉末を用意した。ここでは、負極活物質として天然黒鉛と、結着剤(SBR)と、増粘材(CMC)とを、所定の重量割合で、溶媒としての水に混合した。ここで、天然黒鉛とSBRとCMCの重量割合は、天然黒鉛:SBR:CMC=95:2.5:2.5にした。そして、かかるペーストを、負極集電体241としての銅箔の上に目付量が18mg/cm(固形分基準)となるように帯状に塗布した後、ペースト塗膜を熱風乾燥炉で乾燥させ、ロールプレスによる圧延を行なって、負極シート240を形成した。負極シート240の未塗工部242の幅は20mm、負極活物質層243の幅は60.9mmとした。
≪サンプル1〜3≫
サンプル1〜3は、負極活物質層243の対向部位243aと、非対向部位243b1、243b2と、境界部R1、R2とに含まれるバインダの濃度が異なる。サンプル1〜3は、かかる部位に含まれるバインダの濃度を除き、同じ構成にした。かかるバインダの濃度差は、ペースト(塗膜)の乾燥条件を変えることによりを具現化した。なお、各サンプルのバインダ濃度は、負極活物質層243中のSBRバインダを臭素(Br)で染色した後、EDX分析によって調べた。
ここで、サンプル1では、図10Aに示すように、境界部R1、R2におけるバインダ濃度Aを、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bよりも大きくした(A(3.5質量%)>B(0.9質量%))。サンプル1では、ペーストの乾燥時に、負極集電体241に対して表裏に対向するように配置された一対のヒータ17a、17b(図12参照)によって、境界領域Qに対して表裏から熱を加えた。次いで、ヒータ17a、17bによる局所的な加熱を継続しつつ、負極集電体241を乾燥炉に搬送し、塗膜24全体を乾燥した。ここでは、ヒータ17a、17bは、境界領域Qの集電体側の温度が約150℃、表層側の温度が約120℃となるように設定した。また、ヒータ17a、17bによって局所的に加熱される境界領域Qの幅W1(図8)は約2mmとした。また、乾燥炉は、境界領域Qを除く領域の温度が約80℃となるように設定した。
サンプル2では、図10Bに示すように、従来のとおり、対向部位243aと非対向部位243b1、243b2と境界部R1、R2とで、バインダ濃度に概ね差がない構造(何れも1.0質量%)とした。サンプル2では、ヒータ17a、17bを用いず、乾燥炉のみを使用してペーストを乾燥した。乾燥炉は、塗膜全体の温度が約80℃となるように設定した。
サンプル3では、図10Cに示すように、非対向部位243b1、243b2全体のバインダ濃度(3.5質量%)を、対向部位243aのバインダ濃度(0.95質量%)よりも大きくした。サンプル3では、ペーストの乾燥時に、負極集電体241に対して表裏に対向するように配置された一対のヒータによって、塗膜のうち非対向部位243b1、243b2が形成される領域に対して表裏から熱を加えた。次いで、ヒータによる局所的な加熱を継続しつつ、負極集電体241を乾燥炉に搬送し、塗膜全体を乾燥した。ここではヒータは、塗膜のうち非対向部位243b1、243b2が形成される領域の温度が約120℃となるように設定した。また、乾燥炉は、塗膜のうち対向部位243aが形成される領域の温度が約80℃となるように設定した。
かかる各サンプルの評価用セルについて、初期充電を施した後で、電池エージング後の不良率と低温サイクル後容量維持率とを評価した。
≪初期充電≫
ここでは1C(4A)の定電流で4.2Vまで充電し、定格容量の凡そ100%の充電状態(SOC100%)にした。
≪高温エージング≫
上記初期充電の後、各評価用セルを60℃の恒温槽に収容し、72時間の高温エージングを行った。そして、高温エージング後の開路電圧(open circuit voltage:OCV)を測定して、電圧降下が著しいもの(ここでは4.1V以下)を不良品として選別し、不良率を求めた。結果を表1に示す。
≪初期容量測定≫
上記高温エージング後の良品を、25℃の温度条件下において、端子間電圧が3Vになるまで放電した後、端子間電圧が4.1Vになるまで1Cの定電流にて充電し、続いて電流値が0.01Cになるまで定電圧で充電した(CC−CV充電)。充電完了後、25℃において、4.1Vから3.0Vまで1Cの定電流で放電させ、続いて電流値が0.01Cになるまで定電圧で放電させた。このときの放電容量を各電池の初期容量とした。
≪0℃パルスサイクル後容量維持率≫
上記初期容量測定の電池を、定格容量の凡そ50%の充電状態(SOC50%)に調整した後、0℃の温度条件下において、40A(放電時間率10Cに相当する。)で10秒間のCC放電と40Aで10秒間のCC充電とを行う充放電サイクルを1000回連続して繰り返した。そして、0℃パルスサイクル後の放電容量を、初期容量と同じ条件で測定し、[(0℃パルスサイクル後の放電容量)/(初期容量)]×100(%)から、0℃パルスサイクル後容量維持率を求めた。結果を表1に示す。
Figure 2014132541
表1から明らかなように、負極活物質層内のバインダ濃度に差を設けなかったサンプル2では、サンプル1および3に比べて、高温エージング後の不良率が増大した。サンプル2では、初期充電時に、負極活物質層の非対向部位にリチウムイオンが拡散したため、負極活物質層の非対向部位に近い、正極活物質層の縁部223aでリチウムイオンの放出が、負極活物質層に対向している中間部に比べて過剰となり、正極活物質層の縁部223aで電位が局所的に上昇する。その結果、高温エージング時に正極活物質に含まれる遷移金属の溶出が起こり、微小短絡が発生したものと推測される。これに対し、サンプル1および3では、そのようなリチウムイオンの拡散が抑制されたため、サンプル2に比べて高温エージング後の不良率が低下したものと推測される。
さらに、負極活物質層のうち、対向部位と非対向部位との境界部のみのバインダ濃度を大きくしたサンプル1では、非対向部位全体のバインダ濃度を大きくしたサンプル3に比べて、0℃パルスサイクル後容量維持率が改善されていた。この点について、本発明者は以下のように推察している。
すなわち、サンプル3では、図11Aに示すように、負極活物質層243の非対向部位243b1全体のバインダ濃度を大きくしている。そのため、図11Bに示すように、捲回電極体において、正極が負極に対してはみ出るような巻きズレが生じると、正極活物質層223の縁部223aが負極活物質層243の非対向部位243b1にはみ出してしまう。負極活物質層243の非対向部位243b1はバインダ濃度が高く、リチウムイオンの受入れ速度が低い。そのため、正極活物質層223が負極活物質層243の非対向部位243b1にはみ出すと、正極活物質層223から放出されたリチウムイオンが負極活物質層243の非対向部位243b1にすぐには入りきらず、負極表面に析出する。このようなLiの析出は、電池容量を低下させる要因となり得る。特に、低温(例えば0℃以下)での充電時には、負極活物質の反応性(典型的には、Liイオン挿入反応の活性)や負極活物質層内におけるLiイオンの拡散性が低下傾向となるため、上記電池容量の低下が起こりやすい。
これに対し、サンプル1では、図12Aに示すように、負極活物質層243の対向部位243aと非対向部位243b1との境界部R1のバインダ濃度を局所的に大きくしている。そのため、図12Bに示すように、正極活物質層223の縁部223aが負極活物質層243の非対向部位243b1にはみ出すような位置ズレが生じたとしても、バインダ濃度が大きい部位は、境界部R1の狭いエリアに限定される。そのため、正極活物質層223から放出されたリチウムイオンが、負極活物質層243の非対向部位243b1に入ることが許容される。その結果、非対向部位243b1全体のバインダ濃度を高くした場合に比べて、Liの析出が抑制され、0℃パルスサイクル後容量維持率が高く保たれ得る。
≪試験例2≫
さらに、サンプル1と同様にして、ただし、ヒータ17a、17bによって局所的に加熱される境界領域Qの幅W1(図7参照)を種々変更して負極シートを作成した。具体的には、境界領域Qの幅W1は、0mm、1mm、2mm、3mm、4mm、5mmとした。そして、該負極シートを用いて評価用セルを構築し、高温エージング後の不良率と0℃パルスサイクル後容量維持率を評価した。なお、境界領域Qの幅W1と、境界部R1、R2の幅W(図10A)とは概ね同じである。結果を図13に示す。
図13に示すように、境界領域Qの幅W1(ひいては境界部R1、R2の幅W)が1mmを下回るサンプルは、0℃パルスサイクル後容量維持率は高かったものの、高温エージング後の不良率が増大した。また、境界領域Qの幅W1が5mm以上のサンプルは、高温エージング後の不良率は低かったものの、0℃パルスサイクル後容量維持率が低下傾向になった。高温エージング後の不良率を低下させる観点からは、境界領域Qの幅W1は1mm以上にすることが好ましく、2mm以上がより好ましく、3mm以上が特に好ましい。また、0℃パルスサイクル後容量維持率向上の観点からは、境界領域Qの幅W1は5mm未満にすることが好ましく、4mm以下がより好ましく、3mm以下が特に好ましい。高温エージング後不良率低下と容量維持率向上の両方を満足する観点からは、概ね1mm≦W1<5mm(好ましくは2mm≦W1≦4mm)である。
≪試験例3≫
さらに、サンプル1と同様にして、ただし、ペーストの乾燥条件を種々異ならせて負極シートを作成した。具体的には、乾燥炉において、境界領域Qを除く領域の温度を約80℃に固定する一方で、境界領域Qの集電体側の温度が80℃、100℃、120℃、140℃、160℃、180℃、200℃、220℃、240℃となるようにヒータ17a、17bを設定した。また、境界領域Qの表層側の温度が、集電体側よりも約20℃高くなるように、ヒータ17a、17bを設定した。得られた負極シートを用いて評価用セルを構築し、高温エージング後の不良率と境界部のバインダ濃度とを評価した。結果を図14に示す。図14の横軸は、境界領域Qの表層側の温度と、境界領域Qを除く領域に塗布された塗膜の温度(ここでは80℃)との温度差を表している。
図14に示すように、ペーストを乾燥するときの温度差が大きいほど、境界部のバインダ濃度は増大傾向になった。ここで供試した電池の場合、上記温度差を20℃以上にすることによって、5質量%以上という高い境界部のバインダ濃度を実現できた。特に上記温度差を40℃以上にすることによって、7質量%以上という極めて高い境界部のバインダ濃度を実現できた。また、境界部のバインダ濃度が増大するほど、高温エージング後の不良率が低下することが確認された。高温エージング後の不良率を低下させる観点からは、境界部のバインダ濃度は、凡そ3.5質量%以上にすることが好ましく、5質量%以上がさらに好ましく、7質量%以上が特に好ましい。
以上、種々説明したように、ここで提案される二次電池100は、例えば、図1に示すように、電極体200と、電極体200を収容する電池ケース300とを備え、電極体200は、正極集電体221と、正極集電体221に保持された正極活物質層223と、負極集電体241と、負極集電体241に保持された負極活物質層243と、正極活物質層223と負極活物質層243との間に介在したセパレータ262、264とを備えている。負極活物質層243は、負極活物質とバインダとを有している。そして、図4に示すように、負極活物質層243は、正極活物質層223に対向している対向部位243aと、正極活物質層223に対向していない非対向部位243b1、243b2との境界部R1、R2におけるバインダ濃度Aが、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bよりも大きいとよい(A>B)。
これにより、境界部R1、R2では、リチウムイオンの移動に対する抵抗が大きく、該境界部R1、R2を除く負極活物質層243の全域に比べて、リチウムイオンが拡散しにくい。そのため、境界部R1、R2に近い、正極活物質層223の縁部223aでは、負極活物質層243に対向する幅方向の中間部分に比べて、過度にリチウムイオンが放出される事態が生じ難い。そして、正極活物質層223の縁部223aから過度にリチウムイオンが放出されることに起因して、かかる正極活物質層223の縁部223aで電位が局所的に上昇する事象が緩和される。その結果、例えば、満充電に近い状態で高温保存された場合に起こり得るような、正極活物質層223の縁部223aでの金属(例えば遷移金属)の溶出を抑制することができる。
この場合、境界部R1、R2では、リチウムイオンの拡散を抑制すべく、バインダ濃度を大きくすることが望ましい。例えば、境界部R1、R2のバインダ濃度Aは、凡そ3質量%以上(例えば3質量%〜10質量%)にすることが適当であり、好ましくは3.5質量%以上(例えば3.5質量%〜8質量%)である。
一方、境界部R1、R2を除く負極活物質層243の全域では、電池抵抗を低く抑えるべく、リチウムイオンの移動に対して抵抗を小さくしたい。このため、境界部R1、R2を除く負極活物質層243の全域では、バインダ濃度を小さくすることが望ましい。この観点から、境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bは、凡そ2質量%以下(例えば0.1質量%〜2質量%)にすることが適当であり、好ましくは1質量%以上(例えば0.5質量%〜1質量%)である。
例えば、境界部R1、R2のバインダ濃度Aと、該境界部R1、R2を除く負極活物質層243の全域のバインダ濃度Bとが、A>2×Bの関係を満足することが好ましく、A>3.5×Bの関係を満足することがさらに好ましい。このようなバインダ濃度比(A/B)の関係であると、負極活物質層243全体の電池抵抗を低く抑えつつ、負極活物質層243の境界部R1、R2へのリチウムイオンの拡散を確実に抑制できる。その結果、正極活物質層223の縁部223aでの金属(例えば遷移金属)の溶出を確実に抑制することができる。
また、境界部R1、R2は、対向部位243aと非対向部位243b1、243b2との境界P1、P2から非対向部位243b1、243b2側へ1mm以上4mm以内(好ましくは2mm以上4mm以内)の範囲として規定するとよい。この範囲よりも狭すぎると、該境界部R1、R2を設けたことによる効果が十分に得られない場合がある。一方、この範囲よりも広すぎると、正負極間の位置ズレに起因してLiが析出し易くなることがある。
以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明に係る二次電池は、上述した何れの実施形態にも限定されず、種々の変更が可能である。
≪他の電池形態≫
例えば、他の電池形態として、円筒型電池やラミネート型電池などが知られている。円筒型電池は、円筒型の電池ケースに捲回電極体を収容した電池である。また、ラミネート型電池は、正極シートと負極シートとをセパレータを介在させて積層した電池である。
また、上述したように、本発明は二次電池(例えば、リチウムイオン二次電池)の高温エージング後の不良率低下と容量維持率の向上に寄与し得る。このため、本発明は、ハイブリッド車や、電気自動車の駆動用電池など車両駆動電源用のリチウムイオン二次電池に好適である。すなわち、リチウムイオン二次電池は、例えば、図15に示すように、自動車などの車両1のモータ(電動機)を駆動させる車両駆動用電源1000として好適に利用され得る。車両駆動用電源1000は、複数の二次電池を組み合わせた組電池としてもよい。
1 車両
12 搬送経路
14 電極材料塗布装置
16 乾燥炉
17a、17b ヒータ
24 塗膜
100 リチウムイオン二次電池
200 捲回電極体
220 正極シート
221 正極集電体
223 正極活物質層
224 未塗工部
240 負極シート
241 負極集電体
243 負極活物質層
243a 対向部位
243b1、243b2 非対向部位
262、264 セパレータ

Claims (10)

  1. 電極体と、
    前記電極体を収容する電池ケースと
    を備え、
    前記電極体は、
    正極集電体と、
    前記正極集電体に保持された正極活物質層と、
    負極集電体と、
    前記負極集電体に保持された負極活物質層と、
    前記正極活物質層と前記負極活物質層との間に介在したセパレータと
    を備え、
    前記負極活物質層は、負極活物質とバインダとを有し、
    前記負極活物質層は、
    前記正極活物質層に対向している対向部位と、前記正極活物質層に対向していない非対向部位との境界部におけるバインダ濃度Aが、該境界部を除く負極活物質層の全域のバインダ濃度Bよりも大きい(A>B)、
    二次電池。
  2. 前記境界部は、前記対向部位と前記非対向部位との境界から非対向部位側へ1mm以上4mm以内の範囲として規定される、請求項1に記載された二次電池。
  3. 前記境界部のバインダ濃度Aと、該境界部を除く負極活物質層の全域のバインダ濃度Bとが、A>2×Bの関係を満たす、請求項1または2に記載された二次電池。
  4. 前記境界部のバインダ濃度Aと、該境界部を除く負極活物質層の全域のバインダ濃度Bとが、A>3.5×Bの関係を満たす、請求項1から3までの何れか一項に記載された二次電池。
  5. 正極集電体と、
    前記正極集電体に保持された正極活物質層と、
    負極集電体と、
    前記負極集電体に保持された負極活物質層と、
    を備え、
    前記負極活物質層は、負極活物質とバインダとを有し、
    前記負極活物質層は、
    前記正極活物質層に対向している対向部位と、前記正極活物質層に対向していない非対向部位とを有する、
    二次電池を製造する方法であって、
    負極活物質とバインダとを含むペーストを負極集電体上に塗布する塗布工程と、
    前記塗布工程において前記負極集電体上に塗布された前記ペーストからなる塗膜を乾燥する乾燥工程と、
    を包含し、
    前記乾燥工程において、前記塗膜のうち前記対向部位と前記非対向部位との境界に相当する部位に予め設定された境界領域の温度が、該境界領域を除く領域よりも高くなるように熱を加える、二次電池の製造方法。
  6. 前記境界領域の温度が、該境界領域を除く領域よりも20℃以上高くなるように熱を加える、請求項5に記載された二次電池の製造方法。
  7. 前記乾燥工程において、
    前記負極集電体に対して、表裏に対向するように配置された一対のヒータによって、前記境界領域に対して表裏から熱を加える、請求項5または6に記載された二次電池の製造方法。
  8. 前記一対のヒータによって、前記境界領域の集電体側の温度が、表層側の温度よりも高くなるように熱を加える、請求項7に記載された二次電池の製造方法。
  9. 前記一対のヒータによって、前記境界領域に塗布された塗膜の集電体側の温度が、表層側の温度よりも20℃以上高くなるように熱を加える、請求項8に記載された二次電池の製造方法。
  10. 帯状の集電体を搬送する複数のローラと、
    前記複数のローラによって前記集電体が搬送される搬送経路に沿って設けられた塗布装置と、
    前記搬送経路において塗布装置よりも下手側に設けられた乾燥炉と、
    を備え、
    前記塗布装置は、
    前記複数のローラによって搬送される集電体上に予め定められた幅で前記集電体の長さ方向に連続して活物質とバインダとを含むペーストを塗布し、
    前記乾燥炉は、
    前記集電体の幅方向の予め定められた位置において、前記塗膜を局所的に加熱するヒータを備えた、二次電池用の電極製造装置。
JP2013000745A 2013-01-07 2013-01-07 二次電池 Pending JP2014132541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000745A JP2014132541A (ja) 2013-01-07 2013-01-07 二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000745A JP2014132541A (ja) 2013-01-07 2013-01-07 二次電池

Publications (1)

Publication Number Publication Date
JP2014132541A true JP2014132541A (ja) 2014-07-17

Family

ID=51411524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000745A Pending JP2014132541A (ja) 2013-01-07 2013-01-07 二次電池

Country Status (1)

Country Link
JP (1) JP2014132541A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684458A (zh) * 2017-01-22 2017-05-17 湖南立方新能源科技有限责任公司 一种改善低温充放电性能的锂离子电池及其制备方法
WO2018088204A1 (ja) * 2016-11-10 2018-05-17 三洋電機株式会社 非水電解質二次電池用電極及び非水電解質二次電池
DE102018218556A1 (de) * 2018-10-30 2020-04-30 Robert Bosch Gmbh Kompositfolie, deren Herstellung und deren Verwendung in einer elektrochemischen Festkörperzelle
JP2020129519A (ja) * 2019-02-12 2020-08-27 トヨタ自動車株式会社 全固体電池
CN112420984A (zh) * 2020-11-26 2021-02-26 珠海冠宇电池股份有限公司 一种负极片和锂离子电池
WO2022022520A1 (zh) * 2020-07-27 2022-02-03 珠海冠宇电池股份有限公司 一种负极片及其制备方法和包含该负极片的锂离子电池
JP2022141321A (ja) * 2021-03-15 2022-09-29 株式会社東芝 電極群、二次電池、電池パック及び車両
JP7321204B2 (ja) 2021-03-31 2023-08-04 プライムプラネットエナジー&ソリューションズ株式会社 電極板の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923700B (zh) * 2016-11-10 2022-07-08 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池
US11183678B2 (en) 2016-11-10 2021-11-23 Sanyo Electric Co., Ltd. Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN109923700A (zh) * 2016-11-10 2019-06-21 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池
JPWO2018088204A1 (ja) * 2016-11-10 2019-09-26 三洋電機株式会社 非水電解質二次電池用電極及び非水電解質二次電池
WO2018088204A1 (ja) * 2016-11-10 2018-05-17 三洋電機株式会社 非水電解質二次電池用電極及び非水電解質二次電池
JP7102348B2 (ja) 2016-11-10 2022-07-19 三洋電機株式会社 液体電解質含有非水電解質二次電池用正極及び液体電解質含有非水電解質二次電池
CN106684458A (zh) * 2017-01-22 2017-05-17 湖南立方新能源科技有限责任公司 一种改善低温充放电性能的锂离子电池及其制备方法
DE102018218556A1 (de) * 2018-10-30 2020-04-30 Robert Bosch Gmbh Kompositfolie, deren Herstellung und deren Verwendung in einer elektrochemischen Festkörperzelle
JP2020129519A (ja) * 2019-02-12 2020-08-27 トヨタ自動車株式会社 全固体電池
JP7167752B2 (ja) 2019-02-12 2022-11-09 トヨタ自動車株式会社 全固体電池
WO2022022520A1 (zh) * 2020-07-27 2022-02-03 珠海冠宇电池股份有限公司 一种负极片及其制备方法和包含该负极片的锂离子电池
CN112420984A (zh) * 2020-11-26 2021-02-26 珠海冠宇电池股份有限公司 一种负极片和锂离子电池
JP2022141321A (ja) * 2021-03-15 2022-09-29 株式会社東芝 電極群、二次電池、電池パック及び車両
JP7321204B2 (ja) 2021-03-31 2023-08-04 プライムプラネットエナジー&ソリューションズ株式会社 電極板の製造方法

Similar Documents

Publication Publication Date Title
JP2014132541A (ja) 二次電池
JP5787196B2 (ja) リチウムイオン二次電池
US9673453B2 (en) Method for manufacturing lithium ion secondary battery
US7572548B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
CN103430360B (zh) 非水电解质二次电池及其制造方法
JP6144626B2 (ja) リチウムイオン二次電池
JP5472759B2 (ja) リチウム二次電池
JP6057124B2 (ja) 二次電池
US11205771B2 (en) Method for preparing electrode for secondary battery
JP2018518026A (ja) リチウムイオン混合導体膜がリチウム−硫黄バッテリーおよびその他のエネルギー蓄積装置の性能を改良する
US10601065B2 (en) Method for manufacturing battery
US20130309569A1 (en) Secondary battery
JP2014096269A (ja) 非水系二次電池
CN116093247A (zh) 一种极片及锂离子电池
JP5534370B2 (ja) 電池用電極の製造方法
JP7409762B2 (ja) 非水電解液二次電池および非水電解液二次電池の製造方法
JP6120113B2 (ja) リチウムイオン二次電池
US20220181605A1 (en) Method of Manufacturing Positive Electrode Mixture for All-Solid-State Batteries and Positive Electrode Mixture for All-Solid-State Batteries Manufactured Using the Same
CN115050919A (zh) 二次电池用电极的制造方法及二次电池的制造方法
JP6168356B2 (ja) リチウムイオン二次電池
JP2013118104A (ja) 非水電解液型二次電池用の負極の製造方法および該負極を用いた非水電解液型二次電池の製造方法
EP4310942A1 (en) Lithium secondary battery allowing easy state estimation
JP7328954B2 (ja) 非水電解液二次電池用電極の製造方法および製造装置
US20240186562A1 (en) Electrode Assembly For Secondary Battery And Preparation Method Thereof
EP4310941A1 (en) Lithium secondary battery of which state is easily estimated