JP2014124482A - Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals - Google Patents

Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals Download PDF

Info

Publication number
JP2014124482A
JP2014124482A JP2012285318A JP2012285318A JP2014124482A JP 2014124482 A JP2014124482 A JP 2014124482A JP 2012285318 A JP2012285318 A JP 2012285318A JP 2012285318 A JP2012285318 A JP 2012285318A JP 2014124482 A JP2014124482 A JP 2014124482A
Authority
JP
Japan
Prior art keywords
water
raw water
reverse osmosis
osmosis membrane
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012285318A
Other languages
Japanese (ja)
Inventor
Tomohiro Takada
倫宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2012285318A priority Critical patent/JP2014124482A/en
Publication of JP2014124482A publication Critical patent/JP2014124482A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of sterilizing a pure water production apparatus for pharmaceuticals capable of improving the hot water sterilizing efficiency and of ultimately inhibiting effects exerted onto an electric deionizer at the time of a hot water sterilizing treatment; and a pure water production apparatus for pharmaceuticals.SOLUTION: A provided method of sterilizing a pure water production apparatus is a method of sterilizing a pure water production apparatus furnished not only with a pump, a heat exchanger, a reverse osmotic membrane device, and an electric deionizer in proper order along a treatment line connecting a raw water tank and a pure water tank or use point but also with circulatory lines connecting, to the raw water tank via ON-OFF valves, the respective outlet-side pipelines of the reverse osmotic membrane device and the electric deionizer wherein hot water is circulated through the treatment line and the circulatory lines, wherein concentrated water within the reverse osmotic membrane device is subsequently discharged out of the system while non-heated raw water is being fed into the raw water tank, and wherein the non-heated raw water is circulated through the treatment line and the circulatory lines.

Description

本発明は、医薬品用の純水製造装置の殺菌方法及び医薬品用の純水製造装置に係り、特に、逆浸透膜装置と電気脱イオン装置とを備えた医薬品用の純水製造装置を熱水で殺菌する殺菌方法及び医薬品用の純水製造装置に関する。   The present invention relates to a method for sterilizing a pure water production apparatus for pharmaceuticals and a pure water production apparatus for pharmaceuticals, and more particularly, to a pure water production apparatus for pharmaceuticals comprising a reverse osmosis membrane device and an electrodeionization device. The present invention relates to a sterilization method for sterilization by using water and an apparatus for producing pure water for pharmaceuticals.

従来、医薬品用の純水製造装置として、原水を貯留する原水タンクと純水タンク又はユースポイントとの間の処理ラインに、逆浸透膜装置と電気脱イオン装置とを順に配置した純水製造装置が知られている。医薬品用の純水は、このような純水製造装置により、市水等の原水からイオン成分、微粒子、有機物等が除去されて製造されている。   Conventionally, as a pure water manufacturing apparatus for pharmaceuticals, a pure water manufacturing apparatus in which a reverse osmosis membrane apparatus and an electrodeionization apparatus are sequentially arranged in a processing line between a raw water tank for storing raw water and a pure water tank or a use point It has been known. Pure water for pharmaceuticals is produced by removing ionic components, fine particles, organic substances, and the like from raw water such as city water using such a pure water production apparatus.

この純水製造装置を用いて医薬品用の純水を製造する場合には、医薬品用という性質上、定期的に系内の生菌を低減させる殺菌処理を行うことが日本薬局方によって要求されている。   When producing pure water for pharmaceuticals using this pure water production device, the Japanese Pharmacopoeia requires that sterilization treatment that periodically reduces viable bacteria in the system is performed due to the nature of pharmaceutical use. Yes.

この系内の殺菌の処理は、例えば65℃以上の熱水を原水タンクから逆浸透膜装置と電気脱イオン装置を含む処理ラインに所定の時間通水させることにより行われる。十分な殺菌処理を行うために、殺菌処理は所定の時間以上、系内の熱水の温度が上記したような温度以上で安定に維持されるよう精密に管理することが望まれる。   The sterilization process in the system is performed, for example, by passing hot water of 65 ° C. or higher from a raw water tank through a processing line including a reverse osmosis membrane device and an electrodeionization device for a predetermined time. In order to perform a sufficient sterilization treatment, it is desired that the sterilization treatment is precisely controlled so that the temperature of the hot water in the system is stably maintained at the above-described temperature or more for a predetermined time or more.

また、殺菌処理の際には、電気脱イオン装置への高温での圧力によるダメージを避けるため、熱水は、通常運転時より低い圧力で通水することが望まれる。しかし、逆浸透膜装置の通水圧を低くした場合には逆浸透膜装置の透過水の水質が悪化して、電気脱イオン装置の通水基準に達しない水質の水が電気脱イオン装置に供給されるおそれがある。   Moreover, in the case of sterilization treatment, in order to avoid damage to the electrodeionization apparatus due to high-temperature pressure, it is desirable that hot water be passed at a pressure lower than that during normal operation. However, when the water flow pressure of the reverse osmosis membrane device is lowered, the quality of the permeated water of the reverse osmosis membrane device deteriorates, and water of water quality that does not meet the water flow standard of the electrodeionization device is supplied to the electrodeionization device. There is a risk of being.

このため、あらかじめ、逆浸透膜装置を含む処理ラインの、電気脱イオン装置の直前までを熱水で殺菌処理しておき、次に、熱水殺菌の済んだ逆浸透膜装置によって常温で処理された高い水質の水を熱交換器で加熱し電気脱イオン装置に通水して殺菌する方法がとられている(例えば、特許文献1参照)。   For this reason, the processing line including the reverse osmosis membrane device is sterilized with hot water up to just before the electrodeionization device, and then processed at room temperature by the reverse osmosis membrane device after the hot water sterilization. In addition, a method in which high quality water is heated with a heat exchanger and passed through an electrodeionization apparatus to sterilize is used (for example, see Patent Document 1).

また、別の方法として、純水製造装置で処理された軟水を貯留するサブタンクを配置し、原水タンクをサブタンク内の軟水で置換するように循環系を構成した純水製造装置を用いる方法も提案されている(例えば、特許文献2参照)。   As another method, a method is also proposed in which a sub-tank for storing soft water treated by the pure water production apparatus is arranged, and a pure water production apparatus in which the circulation system is configured to replace the raw water tank with the soft water in the sub-tank is also proposed. (For example, refer to Patent Document 2).

この方法によれば、殺菌処理の際に、純水製造装置で処理された軟水を加熱して循環させるため、通常運転時より低い圧力でも逆浸透膜装置の透過水をそのまま電気脱イオン装置に供給して殺菌処理を行うことができる。   According to this method, during the sterilization treatment, the soft water treated with the pure water production apparatus is heated and circulated, so that the permeated water of the reverse osmosis membrane apparatus is directly used as an electrodeionization apparatus even at a lower pressure than during normal operation. It can be supplied and sterilized.

特許第3570304号明細書Japanese Patent No. 3570304 特許第4617696号明細書Japanese Patent No. 4617696

ここで、逆浸透膜装置と電気脱イオン装置をそれぞれ殺菌処理する方法では、殺菌処理に時間がかかるという問題や、加熱のための蒸気を大量に使用するため殺菌処理のランニングコストが高くなってしまうという問題がある。   Here, in the method of sterilizing the reverse osmosis membrane device and the electrodeionization device, the sterilization process takes time, and a large amount of steam for heating increases the sterilization running cost. There is a problem of end.

一方、逆浸透膜装置と電気脱イオン装置を一括で通水して殺菌する方法では、例えば電気脱イオン装置へのダメージを防ぐように逆浸透膜装置への供給水圧を調節しつつ行うため、殺菌処理効率が低下するという問題がある。さらに、殺菌用の軟水を製造したり貯留したりする装置が必要であるので、生菌増殖の起こりやすい滞留部が多くなり、殺菌処理に時間がかかるという問題もある。   On the other hand, in the method of passing and sterilizing the reverse osmosis membrane device and the electrodeionization device at once, for example, while adjusting the supply water pressure to the reverse osmosis membrane device so as to prevent damage to the electrodeionization device, There is a problem that the sterilization efficiency decreases. Furthermore, since a device for producing or storing soft water for sterilization is required, there is a problem that the number of staying portions where viable bacteria are likely to grow increases and sterilization treatment takes time.

また、熱水通水後の系内の冷却に際しても、軟水を循環させて冷却する方法や、自然放冷する方法等が提案されている。しかしながら、前者の方法では滞留部を多くするという問題があり、後者の方法では冷却時間が長くなるという問題や、電気脱イオン装置の電圧を停止する時間が長くなって電気脱イオン装置への硬度蓄積量が多くなる等の問題があった。   In addition, for cooling the system after passing hot water, a method of cooling by circulating soft water, a method of naturally cooling, and the like have been proposed. However, the former method has a problem of increasing the number of staying portions, and the latter method has a problem that the cooling time becomes long, and the time for stopping the voltage of the electrodeionization device becomes long, and the hardness of the electrodeionization device is increased. There was a problem that the amount of accumulation increased.

また、熱水殺菌では、熱水温度が高いほど殺菌時間は短くてよいが、一方で高温であるほど純水製造装置を構成する部材がダメージを受けやすいという問題があり、熱水殺菌時間を短縮して熱水殺菌による各部材へのダメージを抑制し、かつ、熱水殺菌後の系内の生菌数を十分に低減することで、長期間安定して純水を製造できるようにすることも望まれている。   Moreover, in hot water sterilization, the higher the hot water temperature, the shorter the sterilization time may be. On the other hand, the higher the temperature, the more easily the members constituting the pure water production apparatus are damaged. By shortening and suppressing damage to each member due to hot water sterilization, and sufficiently reducing the number of viable bacteria in the system after hot water sterilization, it will be possible to produce pure water stably for a long time It is also desired.

本発明は上記した問題を解消するためになされたものであり、逆浸透膜装置と電気脱イオン装置を、原水を用いて一括して熱水殺菌処理することができるとともに、熱水殺菌時間、特に降温時間を短縮し、殺菌処理効率を向上させることができる医薬品用の製造装置の殺菌方法及び純水製造装置を提供することを目的とする。
さらに、電気脱イオン装置への影響を極力抑え、純水製造装置の寿命を延長することのできる医薬品用の純水製造装置の殺菌方法及び医薬品用の純水製造装置を提供することを目的とする。
The present invention has been made to solve the above-described problems, and the reverse osmosis membrane device and the electrodeionization device can be subjected to a hot water sterilization treatment using raw water at the same time, and a hot water sterilization time, In particular, an object of the present invention is to provide a sterilization method for a pharmaceutical production apparatus and a pure water production apparatus capable of shortening the temperature drop time and improving the sterilization efficiency.
Furthermore, it aims at providing the sterilization method of the pure water manufacturing apparatus for pharmaceuticals which can suppress the influence on an electrodeionization apparatus as much as possible, and can extend the lifetime of a pure water manufacturing apparatus, and the pure water manufacturing apparatus for pharmaceuticals To do.

熱水殺菌処理時には、熱水を循環させるだけでなく循環水の温度を変化(昇温、降温)させるため、純水製造装置内で様々な現象が起こり得る。例えば、温度上昇により水の粘度が低下することで逆浸透膜装置の透過水圧が上昇するだけでなく、熱水殺菌処理時に熱水を通水すると、純水製造装置を構成する各部材が膨張するなど局所的な変形が生じることも考えられる。そして、この水の粘度の低下や部材の変形により循環水の流量が当初設定した設定値から変動する可能性もある。循環水の流量の変動は、昇温速度や降温速度の変動につながり、十分な殺菌処理の妨げになったり、各装置を劣化させる原因となったりするおそれもある。   At the time of the hot water sterilization treatment, not only the hot water is circulated but also the temperature of the circulating water is changed (temperature increase and temperature decrease), so various phenomena can occur in the pure water production apparatus. For example, not only does the permeated water pressure of the reverse osmosis membrane device increase due to a decrease in the viscosity of water due to temperature rise, but if hot water is passed during the hot water sterilization treatment, each member constituting the pure water production device expands. It is also possible that local deformation occurs. And the flow volume of circulating water may fluctuate from the preset value by the fall of the viscosity of this water, or a deformation | transformation of a member. The fluctuation in the flow rate of the circulating water leads to fluctuations in the temperature raising rate and the temperature lowering rate, which may hinder sufficient sterilization treatment or cause each device to deteriorate.

医薬品用の純水製造装置において水質の悪化や各装置の劣化が生じた場合には、純水製造装置の運転を停止し、構成部材の交換等を行う必要がある。そして、純水製造時においても、定期的に装置の点検や水質検査を行い、水処理装置のメンテナンスを行う必要がある。そのため、このような保守点検管理の頻度を削減し、長期間安定して純水を製造できるよう、熱水殺菌処理時には次の2点、第1に系内が十分に殺菌されること、第2に、各装置の劣化を極力抑制すること、が重要である。   When water quality deteriorates or each device deteriorates in a pharmaceutical pure water production apparatus, it is necessary to stop the operation of the pure water production apparatus and replace components. Even during the production of pure water, it is necessary to periodically inspect the apparatus and perform water quality inspection and maintain the water treatment apparatus. Therefore, in order to reduce the frequency of such maintenance and inspection management and to produce pure water stably for a long period of time, the following two points must be first sterilized in the hot water sterilization treatment: Secondly, it is important to suppress deterioration of each device as much as possible.

ちなみに、逆浸透膜装置と電気脱イオン装置を直結した状態で、処理水水質が低下するまで長時間熱水通水を行ったときの電気脱イオン装置のイオン交換膜には、劣化による不可逆的な変形が発見されている。   By the way, the ion exchange membrane of the electrodeionization device when hot water is passed for a long time until the quality of the treated water decreases with the reverse osmosis membrane device and the electrodeionization device directly connected is irreversible due to deterioration. Has been discovered.

そこで、本発明者らは上記した2点を前提とした上で、殺菌処理の降温工程で原水を純水製造装置系内に供給して降温することで、循環水を冷却するための部材、装置や冷却水の使用を省略するとともに、降温に際し、純水製造装置系内の保水量を制御することで、降温時間を短縮することを見出した。   Therefore, the present inventors based on the above two points, a member for cooling the circulating water by supplying the raw water into the pure water production system in the temperature reduction process of the sterilization process and cooling the temperature, The present inventors have found that the use of the apparatus and the cooling water is omitted, and the temperature lowering time is shortened by controlling the amount of water retained in the pure water producing apparatus system when the temperature is lowered.

本発明はかかる知見に基づいてなされたものであり、本発明の医薬品用の純水製造装置の殺菌方法は、原水タンクと純水タンク又はユースポイントとを結ぶ処理ラインに沿って、ポンプ、熱交換器、逆浸透膜装置及び電気脱イオン装置とを順に備えるとともに、前記逆浸透膜装置及び前記電気脱イオン装置の各出口側配管と前記原水タンクとを開閉バルブを介して接続する循環ラインを備えた純水製造装置の殺菌方法であって、熱水を前記処理ライン及び前記循環ラインに循環させた後に、非加熱の原水を前記原水タンクに供給しつつ前記逆浸透膜装置の濃縮水を系外に排出して前記非加熱の原水を前記処理ライン及び前記循環ラインに循環させることを特徴とする。   The present invention has been made on the basis of such knowledge, and the sterilization method for a pharmaceutical pure water production apparatus according to the present invention includes a pump, a heat pump along a treatment line connecting a raw water tank and a pure water tank or a use point. A circulation line comprising an exchanger, a reverse osmosis membrane device, and an electrodeionization device in this order, and connecting each outlet side pipe of the reverse osmosis membrane device and the electrodeionization device to the raw water tank via an open / close valve. A method for sterilizing a pure water production apparatus comprising: after circulating hot water through the treatment line and the circulation line, supplying concentrated water from the reverse osmosis membrane device while supplying unheated raw water to the raw water tank The unheated raw water is discharged out of the system and circulated through the treatment line and the circulation line.

本発明の殺菌方法は、前記非加熱の原水の供給流量と前記逆浸透膜装置の濃縮水の排出流量を同量とすることが好ましい。   In the sterilization method of the present invention, it is preferable that the supply flow rate of the unheated raw water and the discharge flow rate of the concentrated water of the reverse osmosis membrane device are the same.

本発明の殺菌方法は、前記逆浸透膜装置の濃縮水排出配管に開度可変バルブを介装し、前記非加熱の原水を供給するとともに前記開度可変バルブの開度を調節することで前記逆浸透膜装置の濃縮水排出流量を調節することが好ましい。   In the sterilization method of the present invention, an opening variable valve is interposed in the concentrated water discharge pipe of the reverse osmosis membrane device to supply the non-heated raw water and adjust the opening of the variable opening valve. It is preferable to adjust the concentrated water discharge flow rate of the reverse osmosis membrane device.

またさらに、前記処理ラインの前記逆浸透膜装置の透過水配管内に圧力センサーを配置するとともに前記ポンプを回転数可変ポンプとして、熱水を前記処理ライン及び前記循環ラインに循環させつつ、前記圧力センサーの出力が一定となるよう前記回転数可変ポンプの回転数を制御することが好ましい。この場合、純水製造装置の系内を定常化して熱水殺菌できるため、純水製造装置の寿命を延長することができる。   Still further, a pressure sensor is disposed in the permeate pipe of the reverse osmosis membrane device of the treatment line, and the pressure is changed while the pump is used as a rotation speed variable pump, and hot water is circulated through the treatment line and the circulation line. It is preferable to control the rotation speed of the variable speed pump so that the output of the sensor becomes constant. In this case, since the inside of the pure water production apparatus can be made steady and sterilized with hot water, the life of the pure water production apparatus can be extended.

さらに、前記原水タンクへの原水の供給を停止して、前記原水タンクに貯留されている原水を前記循環ラインに循環させ前記原水の少なくとも一部を系外に排出しつつ前記原水を前記熱交換器により加熱して前記熱水を生成することが好ましい。このようにして循環水を昇温させることで昇温効率を向上させることができる。さらに、原水を循環させて殺菌処理を行うことができるため、低コストで殺菌処理を行うことができ、滞留部を極力有しない純水装置を構成することができる。   Furthermore, the supply of the raw water to the raw water tank is stopped, the raw water stored in the raw water tank is circulated to the circulation line, and at least a part of the raw water is discharged out of the system, while the heat exchange of the raw water is performed. It is preferable to produce the hot water by heating with a vessel. Thus, the temperature rise efficiency can be improved by raising the temperature of the circulating water. Furthermore, since the raw water can be circulated and sterilized, the sterilization can be performed at low cost, and a pure water apparatus that has as little a stagnant portion as possible can be configured.

また、前記熱水の温度が60℃以上であることが好ましい。   Moreover, it is preferable that the temperature of the hot water is 60 ° C. or higher.

本発明の医薬品用の純水製造装置は、原水タンクと純水タンク又はユースポイントとを結ぶ処理ラインに沿って、ポンプ、逆浸透膜装置及び電気脱イオン装置を順に備え、前記逆浸透膜装置の濃縮水配管、前記電気脱イオン装置の濃縮水配管並びに電極水配管及び前記電気脱イオン装置の処理水配管を前記原水タンクと開閉バルブを介してそれぞれ接続する循環ラインを備えた純水製造装置であって、前記逆浸透膜装置の濃縮水配管から開度可変バルブを介装して分枝して設けられた濃縮水排出配管と、前記処理ラインの前記逆浸透膜装置の透過水配管内に設置された圧力センサーと、前記原水タンクに非加熱の原水を供給して前記純水製造装置系内を冷却するに際し、前記非加熱の原水の供給流量と前記逆浸透膜装置の濃縮水の排出流量が同量となるように、前記圧力センサーの出力により前記濃縮水排出配管に介装された開度可変バルブの開度を制御する制御装置とを備えたことを特徴とする。   The pure water production apparatus for pharmaceuticals of the present invention comprises a pump, a reverse osmosis membrane device, and an electrodeionization device in this order along a processing line connecting the raw water tank and the pure water tank or use point, and the reverse osmosis membrane device Concentrated water piping, concentrated water piping of electrodeionization device, electrode water piping, and treated water piping of electrodeionization device are connected to the raw water tank through open / close valves, respectively. A concentrated water discharge pipe provided by branching from a concentrated water pipe of the reverse osmosis membrane device via an opening degree variable valve, and a permeated water pipe of the reverse osmosis membrane device of the treatment line When the unheated raw water is supplied to the raw water tank to cool the inside of the pure water production system, the supply flow rate of the unheated raw water and the concentrated water of the reverse osmosis membrane device are The discharge flow rate is So that the amount, characterized by comprising a control device for controlling the opening of the pressure sensor opening variable valve interposed in the concentrated water discharge pipe by the output of.

本発明によれば、逆浸透膜装置と電気脱イオン装置を、原水を用いて一括通水して殺菌処理することができる。さらに、本発明によれば、純水製造装置を冷却するための装置や冷却水を削減するとともに、降温(冷却)時間を短縮することができる。   ADVANTAGE OF THE INVENTION According to this invention, a reverse osmosis membrane apparatus and an electrodeionization apparatus can be sterilized by carrying out water flow collectively using raw water. Furthermore, according to this invention, while reducing the apparatus and cooling water for cooling a pure water manufacturing apparatus, temperature fall (cooling) time can be shortened.

本発明の純水製造装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the pure water manufacturing apparatus of this invention. 実施例の殺菌方法による原水タンク出口水温及び逆浸透膜装置の透過水水質の変化を示すグラフである。It is a graph which shows the change of the raw water tank exit water temperature by the sterilization method of an Example, and the permeated water quality of a reverse osmosis membrane apparatus. 比較例の殺菌方法による原水タンク出口水温及び逆浸透膜装置の透過水水質の変化を示すグラフである。It is a graph which shows the change of the raw water tank exit water temperature by the sterilization method of a comparative example, and the permeated water quality of a reverse osmosis membrane apparatus.

以下に、本発明を実施するための形態を、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではない。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail, referring drawings. The present invention is not limited to the following embodiments.

図1は、本発明の純水製造装置の一実施形態を示す概略構成図である。
純水製造装置1は、原水を受け入れて貯留する原水タンク10、原水タンク10に貯留された原水を処理ライン及び循環ラインに循環させるためのポンプP1、ポンプP1の後段に備えられ、循環水の温度を調節する熱交換器11、熱交換器11で熱交換された循環水を逆浸透膜装置12へ供給するポンプP2、循環水からイオン成分や微粒子、有機物を除去する逆浸透膜装置12、逆浸透膜装置12の透過水中のイオン成分をさらに除去する電気脱イオン装置13を処理ラインであるラインL1に沿って備えている。
FIG. 1 is a schematic configuration diagram showing an embodiment of the pure water production apparatus of the present invention.
The pure water production apparatus 1 includes a raw water tank 10 that receives and stores raw water, a pump P1 that circulates the raw water stored in the raw water tank 10 to a treatment line and a circulation line, and a rear stage of the pump P1, A heat exchanger 11 for adjusting the temperature, a pump P2 for supplying the circulated water heat-exchanged in the heat exchanger 11 to the reverse osmosis membrane device 12, a reverse osmosis membrane device 12 for removing ionic components, fine particles and organic substances from the circulated water, An electrodeionization device 13 for further removing ionic components in the permeated water of the reverse osmosis membrane device 12 is provided along the line L1, which is a treatment line.

本実施形態の純水製造装置1は、原水タンク10の直下の処理ラインL1内に温度測定手段16を備えている。   The pure water production apparatus 1 according to the present embodiment includes a temperature measuring unit 16 in the treatment line L1 directly below the raw water tank 10.

純水製造装置1は、原水を原水タンク10に供給するラインL2と、原水タンク10から、図示しない純水タンク又はユースポイントまでの流路を構成するラインL1と、逆浸透膜装置12の濃縮水を排出するラインL3と、電気脱イオン装置13の濃縮水及び電極水を排出するラインL5を備えている。また、ラインL3から分岐されて原水タンク10に接続されたラインL4、ラインL5から分枝されて原水タンク10に接続されたラインL6、ラインL1の電気脱イオン装置13の後段から分枝され原水タンク10に接続されたラインL7をそれぞれ備えている。
純水製造装置1は、このようにラインL1、ラインL4、ラインL6及びラインL7により、原水タンク10を介した循環ラインが構成されている。
The pure water production apparatus 1 includes a line L2 for supplying raw water to the raw water tank 10, a line L1 constituting a flow path from the raw water tank 10 to a pure water tank or a use point (not shown), and a concentration of the reverse osmosis membrane apparatus 12. A line L3 for discharging water and a line L5 for discharging concentrated water and electrode water of the electrodeionization device 13 are provided. Moreover, the line L4 branched from the line L3 and connected to the raw water tank 10, the line L6 branched from the line L5 and connected to the raw water tank 10, and the raw water branched from the subsequent stage of the electrodeionization device 13 of the line L1. Lines L7 connected to the tank 10 are provided.
In the pure water production apparatus 1, a circulation line through the raw water tank 10 is constituted by the line L1, the line L4, the line L6, and the line L7 as described above.

ラインL1上の純水タンク又はユースポイントの近傍にはバルブV1が介在されている。また、ラインL2〜ラインL7にはバルブV2〜バルブV7が介在されている。   A valve V1 is interposed in the vicinity of the pure water tank or use point on the line L1. Further, valves V2 to V7 are interposed in the lines L2 to L7.

そして、ポンプP1,P2は必要に応じて回転数可変のポンプとする。また、各バルブを必要に応じて開度可変バルブとする。例えば、少なくともバルブV4を開度可変バルブとする。   The pumps P1 and P2 are pumps with variable rotation speeds as necessary. Each valve is a variable opening valve as required. For example, at least the valve V4 is a variable opening valve.

また、純水製造装置1の処理ラインの、逆浸透膜装置12の透過水配管内の電気脱イオン装置13の直前に、電気脱イオン装置13に供給される循環水の圧力を測定する圧力センサー14が配置されている。   Moreover, the pressure sensor which measures the pressure of the circulating water supplied to the electrodeionization apparatus 13 just before the electrodeionization apparatus 13 in the permeate piping of the reverse osmosis membrane apparatus 12 of the processing line of the pure water manufacturing apparatus 1. 14 is arranged.

純水製造装置1は、ポンプの回転数やバルブの開度を、原水タンクへの原水の供給流量、逆浸透膜装置12の透過水流量、濃縮水流量などに応じて制御する制御装置15を備えている。また、制御装置15は、あらかじめ設定された昇温速度や降温速度、各工程での熱水温度に応じて、熱交換器に供給する熱媒体流量や原水の供給流量を制御するようになっている。   The pure water production apparatus 1 includes a control device 15 that controls the number of rotations of the pump and the opening of the valve according to the supply flow rate of the raw water to the raw water tank, the permeate flow rate of the reverse osmosis membrane device 12, the concentrated water flow rate, and the like. I have. The control device 15 controls the heat medium flow rate and raw water supply flow rate supplied to the heat exchanger according to a preset temperature increase rate, temperature decrease rate, and hot water temperature in each step. Yes.

純水製造装置1には、上記した水処理装置以外にも、原水や製造される純水の水質等に応じて従来公知の水処理装置が備えられていてもよい。例えば、より高水質の医薬品用の純水を得るために、逆浸透膜装置12と電気脱イオン装置13の間に、脱気膜装置が備えられていてもよく、電気脱イオン装置13の後段に紫外線酸化装置が備えられていてもよい。   In addition to the above-described water treatment apparatus, the pure water production apparatus 1 may be provided with a conventionally known water treatment apparatus according to the quality of raw water or the produced pure water. For example, a deaeration membrane device may be provided between the reverse osmosis membrane device 12 and the electrodeionization device 13 in order to obtain higher quality pure water for pharmaceuticals. May be equipped with an ultraviolet oxidation device.

純水製造装置1による純水製造時には、バルブV1〜V3及びバルブV5が開放され、バルブV4,V6,V7は閉じられている。原水がラインL2から原水タンク10に供給され、原水タンク10からポンプP1を介して処理ラインL1に送り出される。原水は、熱交換機11を経てポンプP1,P2により加圧されて逆浸透膜装置12、電気脱イオン装置13で不純物が除去されて純水タンク又はユースポイントへ供給される。   When pure water is produced by the pure water production apparatus 1, the valves V1 to V3 and the valve V5 are opened, and the valves V4, V6 and V7 are closed. Raw water is supplied from the line L2 to the raw water tank 10, and is sent from the raw water tank 10 to the treatment line L1 via the pump P1. The raw water is pressurized by the pumps P1 and P2 through the heat exchanger 11, impurities are removed by the reverse osmosis membrane device 12 and the electrodeionization device 13, and supplied to a pure water tank or a use point.

本実施形態の純水製造装置1では、純水を製造する前に、実施形態の殺菌方法により殺菌処理する。殺菌処理を行い、純水製造装置1が純水の製造に適した温度に冷却されてから、原水タンクに原水を導入する水張り工程を行い、純水を製造する通常運転を行う。
次に、本実施形態の殺菌方法について説明する。
In the pure water manufacturing apparatus 1 of this embodiment, before manufacturing pure water, it sterilizes with the sterilization method of embodiment. After the sterilization treatment is performed and the pure water production apparatus 1 is cooled to a temperature suitable for the production of pure water, a water filling step for introducing the raw water into the raw water tank is performed, and a normal operation for producing pure water is performed.
Next, the sterilization method of this embodiment will be described.

[水抜き工程]
本実施形態では、殺菌処理の初期に、原水タンク10に貯水されていた原水の少なくとも一部を系外に排出する水抜き工程を行う。
[Draining process]
In the present embodiment, at the initial stage of the sterilization treatment, a water draining process is performed in which at least a part of the raw water stored in the raw water tank 10 is discharged out of the system.

水抜き工程では、原水タンク10に原水が貯留された状態で原水の供給を停止し、この原水をポンプP1で熱交換器11に供給し、熱交換器11により温度測定手段16による測定温度が38〜40℃程度となるまで加熱する。加熱された原水をポンプP2により所定の圧力で逆浸透膜装置12に供給し、逆浸透膜装置12の透過水を続いて電気脱イオン装置13に供給し、電気脱イオン装置13の処理水を原水タンク10に循環させる。   In the water draining process, the raw water supply is stopped in a state where the raw water is stored in the raw water tank 10, the raw water is supplied to the heat exchanger 11 by the pump P 1, and the temperature measured by the temperature measuring means 16 is changed by the heat exchanger 11. Heat to about 38-40 ° C. The heated raw water is supplied to the reverse osmosis membrane device 12 at a predetermined pressure by the pump P2, the permeated water of the reverse osmosis membrane device 12 is subsequently supplied to the electrodeionization device 13, and the treated water of the electrodeionization device 13 is supplied. Circulate to the raw water tank 10.

このとき、バルブV1,V2,V6を閉鎖し、バルブV3〜V5,V7を開放して、原水タンク10の貯水量が通常運転時の20〜30%程度となるように逆浸透膜装置12の濃縮水の一部を系外に排出し、残りを原水タンク10に循環させる。電気脱イオン装置13の濃縮水及び電極水は系外に排出する。   At this time, the valves V1, V2, and V6 are closed, and the valves V3 to V5 and V7 are opened, so that the amount of water stored in the raw water tank 10 is about 20 to 30% of that during normal operation. A part of the concentrated water is discharged out of the system, and the rest is circulated to the raw water tank 10. The concentrated water and electrode water of the electrodeionization apparatus 13 are discharged out of the system.

水抜き工程で、原水タンクの貯水量を上記した範囲とすることで、循環水の昇温時間を短縮することができる。そのため、殺菌処理効率を向上させることができる。さらに、熱水殺菌時に所定の水質以上の水を循環させることができる。そのため、熱水殺菌のために原水を処理する設備を削減できるし、原水を処理した循環水をあらかじめ貯留するためのタンクや、この循環水を導入する配管や部材など滞留部となりうる部材を削減することができる。   By setting the amount of water stored in the raw water tank in the above-described range in the draining process, the temperature rise time of the circulating water can be shortened. Therefore, the sterilization efficiency can be improved. Furthermore, water of a predetermined quality or higher can be circulated during hot water sterilization. Therefore, facilities for treating raw water for hot water sterilization can be reduced, and tanks for storing circulating water that has been treated with raw water and pipes and members for introducing this circulating water can be reduced. can do.

原水は、水抜き工程において逆浸透膜装置に通水されて水質が向上しているため、電気脱イオン装置への負荷を軽減することができる。また、水抜き工程では、後述する熱水殺菌工程で循環させる熱水の水質をより向上させ、各装置に備えられる膜の劣化を抑制するために、電気脱イオン装置は電圧を印加させていてもよい。   Since the raw water is passed through the reverse osmosis membrane device in the water draining process and the water quality is improved, the load on the electrodeionization device can be reduced. In addition, in the draining process, the electrodeionization apparatus applies a voltage in order to further improve the quality of hot water circulated in the hot water sterilization process, which will be described later, and to suppress deterioration of the membrane provided in each apparatus. Also good.

[昇温工程及び熱水殺菌工程]
昇温工程に次いで、循環水を熱交換器11によって60℃程度以上、より好ましくは90℃程度まで加熱しつつ循環させる昇温工程を行う。
[Temperature raising process and hot water sterilization process]
Following the temperature raising step, a temperature raising step is performed in which the circulating water is circulated while being heated to about 60 ° C. or higher, more preferably about 90 ° C. by the heat exchanger 11.

具体的には、水抜き工程において温度測定手段16により測定される循環水の温度が40℃となったときにポンプP2を停止する。バルブV1,V2,V3,V5を閉じ、バルブV4,V6,V7を開くとともに、熱交換器11に熱源の蒸気を供給して、原水タンク10の原水を加熱しつつ処理ラインL1、循環ラインL4,L6,L7に循環させる。そして、循環水の温度が60℃〜90℃になったところで、熱水温度を前記した温度で保ちつつ循環させる熱水殺菌工程を行う。熱水殺菌工程では、熱交換機11の熱源の蒸気量を温度測定手段16の検出値に基づいて調節し、循環水がほぼ一定温度となるようにして循環させる。
逆浸透膜装置や電気脱イオン装置へのダメージを軽減するために、昇温工程での昇温速度は1〜2℃/分程度であることが好ましい。
Specifically, the pump P2 is stopped when the temperature of the circulating water measured by the temperature measuring means 16 in the water draining process reaches 40 ° C. The valves V1, V2, V3, and V5 are closed, the valves V4, V6, and V7 are opened, the steam of the heat source is supplied to the heat exchanger 11, and the raw water in the raw water tank 10 is heated to treat the processing line L1 and the circulation line L4. , L6 and L7. And when the temperature of circulating water becomes 60 to 90 degreeC, the hot-water sterilization process circulated while keeping hot water temperature at the above-mentioned temperature is performed. In the hot water sterilization step, the amount of steam of the heat source of the heat exchanger 11 is adjusted based on the detected value of the temperature measuring means 16, and the circulating water is circulated so as to have a substantially constant temperature.
In order to reduce damage to the reverse osmosis membrane device and the electrodeionization device, the temperature raising rate in the temperature raising step is preferably about 1-2 ° C./min.

本実施形態では、耐熱性を有する部材を用いた逆浸透膜装置及び電気脱イオン装置を使用するが、熱水殺菌工程では、高温の熱水がこれらの部材と所定の時間接触することとなる。そのため、熱水殺菌工程における逆浸透膜やイオン交換膜、イオン交換樹脂は常温よりも循環水の圧力により変形、変質などの劣化を起こしやすい環境にあると考えられる。   In the present embodiment, a reverse osmosis membrane device and an electrodeionization device using heat-resistant members are used. In the hot water sterilization process, high-temperature hot water comes into contact with these members for a predetermined time. . Therefore, it is considered that the reverse osmosis membrane, the ion exchange membrane, and the ion exchange resin in the hot water sterilization process are more likely to be deformed or deteriorated due to the pressure of circulating water than normal temperature.

さらに、逆浸透膜装置の膜モジュールは複雑で精密に構成されており、高温での温度変動や圧力変動により機械的なダメージを受けるおそれがある。   Furthermore, the membrane module of the reverse osmosis membrane device is complicated and precise, and may be mechanically damaged by temperature fluctuations and pressure fluctuations at high temperatures.

通常、逆浸透膜装置では、透過水流量の変化に伴い、得られる透過水水質も変化するが、上記したような逆浸透膜装置へのスケールの形成やダメージによる劣化は透過水流量の低下を招き、ひいては透過水質の悪化につながるおそれがある。
さらに、逆浸透膜装置の経年劣化による透過水流量の低下は、純水製造装置への各部への十分な温度かつ十分な流量での熱水の供給の妨げとなるため、日常的に各所での循環水の流量を点検し、バルブやポンプの出力値を適宜調節する等の操作が必要であった。
Normally, in the reverse osmosis membrane device, the quality of the permeated water obtained changes with the change in the permeate flow rate, but the deterioration due to the scale formation or damage to the reverse osmosis membrane device as described above reduces the permeate flow rate. This may lead to deterioration of the permeate quality.
Furthermore, a decrease in the permeate flow rate due to aging deterioration of the reverse osmosis membrane device hinders the supply of hot water at a sufficient temperature and flow rate to each part of the pure water production device. It was necessary to check the flow rate of the circulating water and adjust the output values of the valves and pumps appropriately.

そこで、本実施形態では、昇温工程、熱水殺菌処理及び後述する降温工程を通じて、圧力センサー14によって、逆浸透膜装置12の透過水配管(電気脱イオン装置13の入口水配管)内の圧力を測定し、制御装置15によって、この圧力が一定になるようにポンプP1の回転数を制御することが好ましい。   Therefore, in the present embodiment, the pressure in the permeate water pipe (inlet water pipe of the electrodeionization device 13) of the reverse osmosis membrane device 12 is measured by the pressure sensor 14 through the temperature raising process, the hot water sterilization process, and the temperature lowering process described later. It is preferable to control the number of rotations of the pump P1 by the control device 15 so that the pressure becomes constant.

これにより、系内の流量や温度変化を定常化するとともに逆浸透膜装置の透過水量の減少やその水質の悪化を抑制することができ、日常的な保守点検管理を簡易化することができる。また、逆浸透膜装置の透過水質の悪化を抑制することで、電気脱イオン装置の通水基準水質を超えて電気脱イオン装置が劣化することを抑制することができる。   As a result, the flow rate and temperature change in the system can be made steady, the decrease in the amount of permeated water in the reverse osmosis membrane device and the deterioration of the water quality can be suppressed, and daily maintenance and inspection management can be simplified. Moreover, it can suppress that an electrodeionization apparatus deteriorates exceeding the water flow reference | standard water quality of an electrodeionization apparatus by suppressing the deterioration of the permeation | transmission water quality of a reverse osmosis membrane apparatus.

さらに、逆浸透膜装置の透過水流量を一定とすることで、循環水の流量の低下を抑制し、純水製造装置系内に十分な温度かつ十分な流量の熱水を行き渡らせることができるため、熱水殺菌処理を繰り返した場合にも、生菌数を極力低減することができ、熱水殺菌効率を向上させることができる。   Furthermore, by making the permeate flow rate of the reverse osmosis membrane device constant, a decrease in the flow rate of circulating water can be suppressed, and hot water with a sufficient temperature and a sufficient flow rate can be distributed in the pure water production system. Therefore, even when the hot water sterilization treatment is repeated, the number of viable bacteria can be reduced as much as possible, and the hot water sterilization efficiency can be improved.

圧力センサーの設定圧力は、電気脱イオン装置に備えられるイオン交換膜の破断強度に応じて決定することができ、例えば0.03〜0.30MPaの範囲とする。また、制御装置の圧力制御はあらかじめ設定した設定圧に対して±0.01〜0.05MPaの範囲で厳密に一定になるように、インバータ制御により行うことが好ましい。   The set pressure of the pressure sensor can be determined according to the breaking strength of the ion exchange membrane provided in the electrodeionization apparatus, and is set in the range of 0.03 to 0.30 MPa, for example. The pressure control of the control device is preferably performed by inverter control so as to be strictly constant within a range of ± 0.01 to 0.05 MPa with respect to a preset set pressure.

このようにすることで、昇温工程及び熱水殺菌工程における系内の状態を定常化して、より高温での殺菌を可能とするとともに、イオン交換樹脂やイオン交換膜への熱や圧力によるダメージを軽減することができる。   By doing so, the state in the system in the temperature raising step and the hot water sterilization step is made steady, enabling sterilization at a higher temperature, and damage to the ion exchange resin and ion exchange membrane due to heat and pressure. Can be reduced.

また、逆浸透膜装置の逆浸透膜面では、透過水流量が大きくなると、膜面で阻止される不純物量が増大し、供給水側の膜面での不純物濃度が上昇するいわゆる濃度分極がおこり、スケールを生成する一因となる。前述したように、熱水循環時には熱水の粘度低下や各水処理装置の構成部材の局所的変形が生じる可能性があり、これにより透過水流量も一時的又は部分的に変動する可能性がある。そのため、濃度分極が部分的に起こり、逆浸透膜面上のスケールの形成が促進されるおそれがあると考えられる。   Further, on the reverse osmosis membrane surface of the reverse osmosis membrane device, when the permeate flow rate increases, the amount of impurities blocked on the membrane surface increases, and so-called concentration polarization occurs in which the impurity concentration on the membrane surface on the supply water side increases. , Contributing to the generation of scale. As described above, during hot water circulation, there is a possibility that the viscosity of the hot water will decrease and local deformation of the components of each water treatment device may occur, which may cause the permeate flow rate to change temporarily or partially. is there. Therefore, it is considered that concentration polarization partially occurs, and scale formation on the reverse osmosis membrane surface may be promoted.

さらに、本実施形態では、スケールの原因となる硬度成分を含んだ市水等を原水として用い、これを逆浸透膜装置等に一括通水して殺菌処理を行うため、軟水や純水を使用する場合に比べて循環水中の硬度成分量が多くなっている。   Furthermore, in this embodiment, the city water etc. containing the hardness component that causes the scale is used as raw water, and this is passed through the reverse osmosis membrane device etc. to perform sterilization treatment, so soft water or pure water is used. The amount of hardness components in the circulating water is greater than when doing this.

そのため、本実施形態では、逆浸透膜面での流速を均一化するとともに、硬度成分が供給されることによる電気脱イオン装置への負荷を軽減するという観点から、昇温工程及び熱水殺菌工程を通じて、逆浸透膜装置における濃縮水流量/透過水流量の比(以下、C/Pと略称する。)を一定以上とすることが好ましい。これにより、逆浸透膜面での流速を上昇させて、膜面付近の不純物濃度を低下させ、その結果、電気脱イオン装置に悪影響を及ぼすことない程度まで逆浸透膜装置の透過水質を向上させることができる。さらに、熱水の温度変化等に伴う逆浸透膜装置への供給水圧の変動による逆浸透膜面へのスケールの生成を抑制することができる。   Therefore, in the present embodiment, from the viewpoint of equalizing the flow velocity on the reverse osmosis membrane surface and reducing the load on the electrodeionization apparatus due to the supply of hardness components, the temperature raising step and the hot water sterilization step In the reverse osmosis membrane device, the ratio of the concentrated water flow rate / permeated water flow rate (hereinafter abbreviated as C / P) is preferably set to a certain level or more. This increases the flow velocity at the reverse osmosis membrane surface and lowers the impurity concentration in the vicinity of the membrane surface, thereby improving the permeate quality of the reverse osmosis membrane device to the extent that it does not adversely affect the electrodeionization device. be able to. Furthermore, it is possible to suppress the generation of scale on the reverse osmosis membrane surface due to the fluctuation of the supply water pressure to the reverse osmosis membrane device accompanying the temperature change of the hot water.

C/Pは、逆浸透膜装置における透過率が2.5%未満となる値とすることが好ましい。そのため、本実施形態では、例えば、逆浸透膜装置の供給水及び透過水の水質を測定することで透過率を測定して、測定された透過率に基いてC/Pを決定することができる。本実施形態において、C/Pは4.5以上とすることが好ましく、5.0〜10.0とすることがより好ましい。これにより、逆浸透膜面へのスケールの生成を抑制することができる。C/Pが5.0未満であると膜面にスケールが生成し易くなり、10.0を超えるとポンプの大型化が必要となる等、実用的ではない。
なお、本明細書で透過率とは、逆浸透膜装置の供給水中の不純物濃度(as CaCo)をC、透過水中のそれをCとしたときに(C/C)×100(%)で示される値である。
C / P is preferably set to a value at which the transmittance in the reverse osmosis membrane device is less than 2.5%. Therefore, in this embodiment, for example, the transmittance can be measured by measuring the quality of the feed water and the permeated water of the reverse osmosis membrane device, and C / P can be determined based on the measured transmittance. . In the present embodiment, C / P is preferably 4.5 or more, and more preferably 5.0 to 10.0. Thereby, the production | generation of the scale to a reverse osmosis membrane surface can be suppressed. If C / P is less than 5.0, scale is likely to be generated on the film surface, and if it exceeds 10.0, the pump needs to be enlarged.
In the present specification, the transmittance refers to (C p / C f ) × 100 when the impurity concentration (as CaCo 3 ) in the feed water of the reverse osmosis membrane device is C f and that in the permeated water is C p. It is a value indicated by (%).

昇温工程及び熱水殺菌工程でのC/Pは、バルブV4の開度で調節することが好ましい。バルブV4を開度可変の電磁弁として、圧力センサー14の出力に基いて、制御装置15によりバルブ14の開度を調節することができる。また、逆浸透膜装置の濃縮水配管に図示しない流量測定センサー、圧力センサー等を介在させ、この流量測定センサー、圧力センサー等の出力に基いてバルブV4の開度を制御することもできる。
また、バルブV4をバイパスするバイパスラインを設け、このバイパスラインに開度可変バルブを介設して、該開度可変バルブをあらかじめある開度で固定しておき、オンにしたときにこの開度となるよう、オン・オフ制御してC/Pを調節することもできる。
C / P in the temperature raising step and the hot water sterilization step is preferably adjusted by the opening degree of the valve V4. The valve 15 can be adjusted by the control device 15 based on the output of the pressure sensor 14 using the valve V4 as an electromagnetic valve having a variable opening. Further, a flow rate measurement sensor, a pressure sensor, and the like (not shown) may be interposed in the concentrated water pipe of the reverse osmosis membrane device, and the opening degree of the valve V4 can be controlled based on the outputs of the flow rate measurement sensor, the pressure sensor, and the like.
Also, a bypass line for bypassing the valve V4 is provided, and an opening variable valve is provided in the bypass line. The opening variable valve is fixed at a certain opening in advance, and this opening when the valve is turned on. It is also possible to adjust C / P by on / off control so that

特に、熱水殺菌工程時、すなわち、循環水の温度がおおよそ最高とされるときの逆浸透膜装置の透過水及び濃縮水の水質に基いて、透過率が2.5%未満となるようにC/Pを決定し、このC/Pを一定に維持するように、バルブV4の開度を決定することが好ましい。この場合、熱水殺菌処理のための付帯設備(バルブ、ポンプ、配管等。)の構成やその操作をより簡素化することができる。   In particular, the permeability is less than 2.5% based on the quality of the permeated water and concentrated water of the reverse osmosis membrane device during the hot water sterilization process, that is, when the temperature of the circulating water is approximately the highest. It is preferable to determine the opening degree of the valve V4 so as to determine C / P and maintain the C / P constant. In this case, it is possible to further simplify the configuration and operation of incidental facilities (valves, pumps, pipes, etc.) for the hot water sterilization treatment.

また、電気脱イオン装置は、循環水の水質の悪化を抑制するために、循環水温が40℃以下では電圧を印加することが好ましく、電気脱イオン装置への負荷を軽減するために、循環水温が40℃を超えたときには電圧を印加させないことが好ましい。   The electrodeionization device preferably applies a voltage when the circulating water temperature is 40 ° C. or lower in order to suppress deterioration of the quality of the circulating water, and the circulating water temperature is reduced in order to reduce the load on the electrodeionization device. When the temperature exceeds 40 ° C., it is preferable not to apply a voltage.

熱水殺菌工程時間は、熱水の温度によっても異なるが、十分な殺菌を行うために、昇温後20〜60分程度行うことが好ましい。例えば60℃の熱水を循環させる場合には、45分程度、80℃の熱水を循環させる場合には30分程度、90℃の熱水を循環させる場合には20分程度であることが好ましい。   Although the hot water sterilization process time varies depending on the temperature of the hot water, it is preferably performed for about 20 to 60 minutes after the temperature rise in order to perform sufficient sterilization. For example, it may be about 45 minutes when circulating hot water at 60 ° C., about 30 minutes when circulating hot water at 80 ° C., and about 20 minutes when circulating hot water at 90 ° C. preferable.

[降温工程]
純水製造装置1による純水の製造は、熱水の循環後に、系内が純水製造に適した温度に冷却されてから行う。そのため、本実施形態では、熱水殺菌工程の後に、循環水の温度を低下させて純水製造装置1の系内を冷却する降温工程を行うことが好ましい。
[Cooling process]
The production of pure water by the pure water production apparatus 1 is performed after the system is cooled to a temperature suitable for pure water production after hot water circulation. Therefore, in this embodiment, it is preferable to perform the temperature-falling process which cools the system of the pure water manufacturing apparatus 1 by reducing the temperature of circulating water after a hot-water sterilization process.

降温工程は、従来、熱交換器11に冷水を供給する方法により行っていた。   The temperature lowering process is conventionally performed by a method of supplying cold water to the heat exchanger 11.

本実施形態では、降温工程において、非加熱の原水を原水タンクに供給しつつ処理ライン及び循環ラインに循環させ、逆浸透膜装置の濃縮水の少なくとも一部を系外に排出して系内を冷却する。   In the present embodiment, in the temperature lowering step, the unheated raw water is circulated to the treatment line and the circulation line while supplying the raw water tank, and at least a part of the concentrated water of the reverse osmosis membrane device is discharged out of the system. Cooling.

このとき、原水の供給流量と、逆浸透膜装置の濃縮水の排出流量を同量とする、すなわち、原水タンク10の貯水量を一定に維持することが好ましい。   At this time, it is preferable that the raw water supply flow rate and the concentrated water discharge flow rate of the reverse osmosis membrane device be the same amount, that is, the water storage amount of the raw water tank 10 is kept constant.

具体的には、バルブV2を開放し、新たに非加熱の原水を原水タンク10に供給する。この新たに供給された非加熱の原水を循環させている熱水とともにポンプP1を介して循環ラインに循環させる。バルブV3を開放し、バルブV4の開度を調節して原水タンクに供給される原水の供給流量と同じ流量で逆浸透膜装置12の濃縮水を系外に排出する。
この場合、系内の保水量を一定とすることができるため、例えば急激な降温による電気脱イオン装置へのダメージを防止することができ、さらに、降温時間を短縮することができる。
Specifically, the valve V <b> 2 is opened and new unheated raw water is supplied to the raw water tank 10. The newly supplied unheated raw water is circulated to the circulation line through the pump P1 together with the hot water circulating. The valve V3 is opened, the opening of the valve V4 is adjusted, and the concentrated water of the reverse osmosis membrane device 12 is discharged out of the system at the same flow rate as the raw water supply flow rate supplied to the raw water tank.
In this case, since the amount of water retained in the system can be made constant, damage to the electrodeionization device due to, for example, rapid temperature drop can be prevented, and the temperature drop time can be shortened.

バルブV4の開度調節は、圧力センサー14の出力で制御装置15により行うことができる。また、逆浸透膜装置の濃縮水配管に図示しない流量測定センサーを介在させ、この流量測定センサーの出力で制御装置15によりバルブV4の開度を制御することもできる。   The opening degree of the valve V4 can be adjusted by the control device 15 using the output of the pressure sensor 14. In addition, a flow rate measurement sensor (not shown) may be interposed in the concentrated water pipe of the reverse osmosis membrane device, and the opening degree of the valve V4 can be controlled by the control device 15 by the output of the flow rate measurement sensor.

また、原水タンク10に貯水量を検知する貯水レベルセンサーを設置して、貯水レベルセンサーの出力で制御装置15によりバルブV4の開度を調節してもよい。   Further, a water storage level sensor for detecting the amount of water stored in the raw water tank 10 may be installed, and the opening degree of the valve V4 may be adjusted by the control device 15 based on the output of the water storage level sensor.

降温工程では、昇温工程及び熱水殺菌工程と同様に、C/Pを一定としながら原水を供給することが好ましい。これにより、逆浸透膜装置の逆浸透膜面での流速を一定以上とし、逆浸透膜でのスケールの形成を抑制することができる。また、濃縮水の流量を一定とすることができるため、系内のより高温の循環水を一定流量で系外に排出し、降温時間を短縮することができる。   In the temperature lowering step, it is preferable to supply raw water while keeping C / P constant as in the temperature rising step and the hot water sterilization step. Thereby, the flow rate on the reverse osmosis membrane surface of the reverse osmosis membrane device can be set to a certain level or more, and scale formation on the reverse osmosis membrane can be suppressed. Further, since the flow rate of the concentrated water can be made constant, higher temperature circulating water in the system can be discharged out of the system at a constant flow rate, and the temperature lowering time can be shortened.

また、循環水の温度の低下とともに、逆浸透膜装置12の透過水の圧力を一定とするようにポンプP2で循環水の圧力を上げることが好ましい。   Moreover, it is preferable to raise the pressure of circulating water with the pump P2 so that the pressure of the permeated water of the reverse osmosis membrane apparatus 12 may become constant with the fall of the temperature of circulating water.

なお、系内の冷却時には、同時に循環水は熱交換器11に冷水を供給して冷却してもよく、系内が過度に冷却された場合には熱交換器11に蒸気などを供給して加熱してもよい。この場合、降温速度を安定に維持することができる。   When cooling the system, the circulating water may be cooled by supplying cold water to the heat exchanger 11 at the same time. When the system is cooled excessively, steam or the like is supplied to the heat exchanger 11. You may heat. In this case, the temperature drop rate can be maintained stably.

このように、本実施形態の殺菌方法では、原水を用いて逆浸透膜装置と電気脱イオン装置を一括通水して殺菌処理をすることができるとともに、殺菌処理時の系内の状態を定常化し、殺菌処理効率を向上させることができる。また、降温のための冷却水や熱交換器に冷却水を導入するための装置、配管等を省略することができるとともに、降温時間を短縮することができる。そのため、大幅なコスト削減が可能であり、経済的にも有利である。   Thus, in the sterilization method of the present embodiment, raw water can be used to collectively sterilize the reverse osmosis membrane device and the electrodeionization device, and the state in the system during the sterilization treatment can be steady. And sterilization efficiency can be improved. Further, it is possible to omit the cooling water for cooling the temperature, the apparatus for introducing the cooling water into the heat exchanger, the piping, and the like, and the temperature cooling time can be shortened. Therefore, a significant cost reduction is possible, which is economically advantageous.

次に本発明を実施例及び比較例を用いて詳細に説明する。
実施例及び比較例において用いた装置及び条件は次のようである。
Next, the present invention will be described in detail using examples and comparative examples.
The apparatus and conditions used in the examples and comparative examples are as follows.

原水:厚木市市水を活性炭装置及びプレフィルターで処理したもの。
原水タンク10:容量1,000L、
逆浸透膜装置12:商品名 Duratherm RO 8040 HF、米国GE社製 膜モジュール2本、
電気脱イオン装置13:商品名MK−3 mini HT 米国GE社製、
Raw water: Atsugi city water treated with activated carbon device and prefilter.
Raw water tank 10: Capacity 1,000L,
Reverse osmosis membrane device 12: Trade name Duratherm RO 8040 HF, two membrane modules manufactured by GE, USA
Electrodeionization device 13: trade name MK-3 mini HT manufactured by GE USA,

[実施例1]
図1に示される純水製造装置1の殺菌処理を行った。
水抜き工程では、原水を温度測定手段16による測定温度が40℃となるまで加熱し、同時に原水タンクの水量が、通常運転時の25%となるまで逆浸透膜装置12の濃縮水の一部を排出した。
[Example 1]
The pure water production apparatus 1 shown in FIG. 1 was sterilized.
In the water draining process, the raw water is heated until the temperature measured by the temperature measuring means 16 reaches 40 ° C., and at the same time, part of the concentrated water in the reverse osmosis membrane device 12 until the amount of water in the raw water tank becomes 25% of that during normal operation. Was discharged.

殺菌処理は、昇温工程で制御装置15での昇温速度の設定を1℃/分として温度測定手段16による測定温度が90℃となるまで加熱し、熱水殺菌工程はこの熱水を循環させて行った。このとき、圧力センサー14の出力を制御装置15に入力して逆浸透膜装置の透過水の圧力が0.15±0.01MPaの一定の値となるようにポンプP1の回転数を調節した。   The sterilization process is performed until the temperature measured by the temperature measuring means 16 reaches 90 ° C. at a temperature rising rate of 1 ° C./minute in the temperature raising step, and the hot water sterilization step circulates this hot water. I went. At this time, the output of the pressure sensor 14 was input to the control device 15, and the rotation speed of the pump P1 was adjusted so that the pressure of the permeated water of the reverse osmosis membrane device became a constant value of 0.15 ± 0.01 MPa.

次いで、降温速度の設定を1℃/分として、原水タンク10に原水を供給し、原水の導入量と排出する逆浸透膜装置の濃縮水量が同量となるように、バルブV4の開度を制御しつつ、系内を温度測定手段16による測定温度が27℃となるまで冷却した。   Next, the temperature drop rate is set to 1 ° C./min, the raw water is supplied to the raw water tank 10, and the opening of the valve V4 is set so that the amount of raw water introduced and the amount of concentrated water in the reverse osmosis membrane device to be discharged are the same. While controlling, the system was cooled until the temperature measured by the temperature measuring means 16 reached 27 ° C.

なお、殺菌処理時の系内の保水量は、330Lであり、循環ラインと原水タンクの接続部にスプレーボールを設置して、原水タンク上部壁面にも熱水が接触するようにした。また、電気脱イオン装置は、供給水温が40℃以下のときに電圧を印加し、40℃を超えたときには電圧の印加を停止するようにした。   The amount of water retained in the system at the time of the sterilization treatment was 330 L, and a spray ball was installed at the connection part between the circulation line and the raw water tank so that the hot water was in contact with the upper wall surface of the raw water tank. Further, the electrodeionization apparatus applied a voltage when the supply water temperature was 40 ° C. or lower, and stopped applying the voltage when the supply water temperature exceeded 40 ° C.

次いで、原水タンクに原水を導入した後、医薬品用の純水を製造する工程と、熱水殺菌処理とをそれぞれ交互に150回繰り返し行った。   Next, after introducing the raw water into the raw water tank, the process of producing pure water for pharmaceuticals and the hot water sterilization treatment were alternately repeated 150 times.

このとき、原水タンク出口に温度計を配置して電気脱イオン装置の供給水温を測定した。図2に、熱水殺菌1回目の原水タンク出口水温と、逆浸透膜装置の透過水水質を示す。図2において、0〜35分が水抜き工程、35〜100分が昇温工程、100〜130分が熱水殺菌工程、130〜220分が降温工程である。   At this time, a thermometer was placed at the outlet of the raw water tank to measure the supply water temperature of the electrodeionization apparatus. FIG. 2 shows the raw water tank outlet water temperature of the first hot water sterilization and the permeated water quality of the reverse osmosis membrane device. In FIG. 2, 0 to 35 minutes is a water draining step, 35 to 100 minutes is a temperature raising step, 100 to 130 minutes is a hot water sterilization step, and 130 to 220 minutes is a temperature lowering step.

実施例1では、150回の熱水殺菌処理を繰り返す間、熱水殺菌処理時の循環水の水質や流量変動は1回目とほぼ同じであり、1回目とほぼ同じ昇温〜降温時間で熱水殺菌処理を行うことができた。特に、電気脱イオン装置の処理水導電率は150回熱水殺菌後も1.0μS/cm以下の水質を維持することができた。なお、熱水殺菌150回目後のバルブV1の直後での採水中の生菌数は0個/mLであり、十分な熱水殺菌を行うことができた。   In Example 1, while the hot water sterilization treatment was repeated 150 times, the quality of the circulating water and the flow rate fluctuation during the hot water sterilization treatment were almost the same as the first time, and the heat was increased with the same temperature increase / decrease time as the first time. Water sterilization treatment could be performed. In particular, the conductivity of the treated water of the electrodeionization apparatus was able to maintain a water quality of 1.0 μS / cm or less even after 150 hot water sterilizations. The number of viable bacteria in the collected water immediately after the valve V1 after the 150th hot water sterilization was 0 / mL, and sufficient hot water sterilization was possible.

また、熱水殺菌処理を通じての各水処理装置への供給水の導電率及び原水タンク貯水量より、電気脱イオン装置に供給された硬度の積算量を算出すると、3.5mg(as CaCO)であった。 Moreover, when the integrated amount of the hardness supplied to the electrodeionization apparatus is calculated from the conductivity of the water supplied to each water treatment apparatus through the hot water sterilization treatment and the raw water tank storage amount, 3.5 mg (as CaCO 3 ) Met.

[比較例1]
実施例1において、バルブV4の開度の制御を行わないこと以外は実施例1と同じ条件で純水製造装置1の殺菌処理を行った。
[Comparative Example 1]
In Example 1, the pure water production apparatus 1 was sterilized under the same conditions as Example 1 except that the opening degree of the valve V4 was not controlled.

比較例1における、熱水殺菌1回目の熱水殺菌1回目の原水タンク出口水温と、逆浸透膜装置の透過水水質を図3に示す。図3において、0〜85分が水抜き工程、85〜140分が昇温工程、140〜170分が熱水殺菌工程、170〜290分が降温工程である。   FIG. 3 shows the temperature of the raw water tank outlet water at the first hot water sterilization and the quality of the permeated water of the reverse osmosis membrane device in Comparative Example 1. In FIG. 3, 0 to 85 minutes is a water draining process, 85 to 140 minutes is a temperature raising process, 140 to 170 minutes is a hot water sterilization process, and 170 to 290 minutes is a temperature lowering process.

比較例1では、50回の熱水殺菌処理を繰り返す間、熱水殺菌処理時の循環水の水質や流量変動は1回目とほぼ同じであり、1回目とほぼ同じ昇温〜降温時間で熱水殺菌処理を行うことができたが、電気脱イオン装置の電気脱イオン装置の処理水導電率が熱水殺菌50回目後に1.0μS/cmを超えたため、試験を中止した。
また、熱水殺菌処理を通じた、各水処理装置への供給水の導電率及び原水タンク貯水量より、電気脱イオン装置に供給された硬度の積算量を算出すると、4.8mg(as CaCO)であった。
In Comparative Example 1, while the hot water sterilization treatment was repeated 50 times, the quality of the circulating water and the flow rate fluctuation during the hot water sterilization treatment were almost the same as the first time. Although the water sterilization treatment could be performed, the test was stopped because the treated water conductivity of the electrodeionization device of the electrodeionization device exceeded 1.0 μS / cm after the 50th hot water sterilization.
Further, when the integrated amount of hardness supplied to the electrodeionization device is calculated from the conductivity of the water supplied to each water treatment device and the raw water tank storage amount through the hot water sterilization treatment, 4.8 mg (as CaCO 3 )Met.

なお、各図において、逆浸透膜装置をROと略称している。   In each figure, the reverse osmosis membrane device is abbreviated as RO.

実施例1では、本発明の殺菌方法及び純水製造装置を用いているため、降温工程時間(70分)は比較例1(100分)と比べて短縮されている。また、これにより電気脱イオン装置への電圧の印加を停止する時間が短縮されるため、電気脱イオン装置へ供給される硬度成分の総量を低減して電気脱イオン装置の寿命を延長することができる。   In Example 1, since the sterilization method and pure water production apparatus of the present invention are used, the temperature lowering process time (70 minutes) is shortened compared to Comparative Example 1 (100 minutes). This also shortens the time for stopping the application of voltage to the electrodeionization device, thereby reducing the total amount of hardness components supplied to the electrodeionization device and extending the life of the electrodeionization device. it can.

さらに、実施例1では、昇温工程から降温工程を通じて電気脱イオン装置への供給水質(すなわちRO透過水水質)は導電率で20μS/cm以下を維持しており、電気脱イオン装置の通水基準を超えることがない。そのため、電気脱イオン装置の劣化を抑制することができる。   Further, in Example 1, the quality of water supplied to the electrodeionization apparatus (that is, RO permeate quality) from the temperature raising process to the temperature lowering process is maintained at 20 μS / cm or less in terms of conductivity. The standard is not exceeded. Therefore, deterioration of the electrodeionization apparatus can be suppressed.

また、実施例1では純水製造装置内の生菌数を所定の値未満に低減しつつ、純水製造装置の寿命が延長されていることが分かる。   Moreover, in Example 1, it turns out that the lifetime of a pure water manufacturing apparatus is extended, reducing the viable count in a pure water manufacturing apparatus to less than predetermined value.

また、実施例1において用いた純水製造装置では、降温工程で、熱交換器に冷水を供給することで行う場合には、さらに、配管、自動弁、温度調節計、温度検出器等の部材が必要であるが、実施例1では、これらの部材を省略することができる。また、実施例1において、降温工程で冷水を用いる場合には、必要な冷水の量は総量で1000Lとなるが、実施例1ではこの冷水を使用する必要がない。
そのため、これらの部材を用いた場合と比べて、純水製造装置1基当たり50%程度のコストの削減が可能であり、経済的にも非常に有利である。
Moreover, in the pure water manufacturing apparatus used in Example 1, when performing cold temperature supply to a heat exchanger at a temperature-falling process, members, such as piping, an automatic valve, a temperature controller, a temperature detector, are further included. However, in Example 1, these members can be omitted. In Example 1, when cold water is used in the temperature lowering step, the total amount of cold water required is 1000 L, but in Example 1, it is not necessary to use this cold water.
Therefore, compared with the case where these members are used, the cost can be reduced by about 50% per pure water production apparatus, which is very advantageous economically.

このように、実施形態の熱水殺菌方法及び純水製造装置によれば、原水を用いて殺菌処理を行うことができ、そのため、降温のための装置や配管、冷却水の使用を省略することができる。さらに、降温時間を短縮して殺菌処理効率を向上させ、これにより、各水処理装置へのダメージを軽減することができる。
さらに、系内が十分に殺菌される温度や流量を安定に維持するとともに、電気脱イオン装置へのダメージを軽減して、純水製造装置の寿命を延長することができる。
Thus, according to the hot water sterilization method and the pure water production apparatus of the embodiment, sterilization treatment can be performed using raw water, and therefore, the use of cooling equipment, piping, and cooling water is omitted. Can do. Furthermore, the temperature drop time can be shortened to improve the sterilization efficiency, thereby reducing damage to each water treatment device.
In addition, the temperature and flow rate at which the system is sufficiently sterilized can be stably maintained, damage to the electrodeionization apparatus can be reduced, and the life of the pure water production apparatus can be extended.

1…純水製造装置、10…原水タンク、11…熱交換器、12…逆浸透膜装置、13…電気脱イオン装置、14…圧力センサー、15…制御装置、16…温度測定手段。   DESCRIPTION OF SYMBOLS 1 ... Pure water manufacturing apparatus, 10 ... Raw water tank, 11 ... Heat exchanger, 12 ... Reverse osmosis membrane apparatus, 13 ... Electrodeionization apparatus, 14 ... Pressure sensor, 15 ... Control apparatus, 16 ... Temperature measuring means.

Claims (7)

原水タンクと純水タンク又はユースポイントとを結ぶ処理ラインに沿って、ポンプ、熱交換器、逆浸透膜装置及び電気脱イオン装置とを順に備えるとともに、前記逆浸透膜装置及び前記電気脱イオン装置の各出口側配管と前記原水タンクとを開閉バルブを介して接続する循環ラインを備えた純水製造装置の殺菌方法であって、
熱水を前記処理ライン及び前記循環ラインに循環させた後に、
非加熱の原水を前記原水タンクに供給しつつ前記逆浸透膜装置の濃縮水を系外に排出して前記非加熱の原水を前記処理ライン及び前記循環ラインに循環させることを特徴とする純水製造装置の殺菌方法。
A pump, a heat exchanger, a reverse osmosis membrane device, and an electrodeionization device are sequentially provided along a processing line connecting the raw water tank and the pure water tank or the use point, and the reverse osmosis membrane device and the electrodeionization device. A sterilization method for a pure water production apparatus comprising a circulation line for connecting each outlet side pipe and the raw water tank via an open / close valve,
After circulating hot water through the treatment line and the circulation line,
Pure water characterized in that while supplying unheated raw water to the raw water tank, the concentrated water of the reverse osmosis membrane device is discharged out of the system and the unheated raw water is circulated through the treatment line and the circulation line. A method for sterilizing manufacturing equipment.
前記非加熱の原水の供給流量と前記逆浸透膜装置の濃縮水の排出流量を同量とすることを特徴とする請求項1記載の純水製造装置の殺菌方法。   The method for sterilizing a pure water production apparatus according to claim 1, wherein the supply flow rate of the unheated raw water and the discharge flow rate of the concentrated water from the reverse osmosis membrane device are the same. 前記逆浸透膜装置の濃縮水排出配管に開度可変バルブを介装し、前記非加熱の原水を供給するとともに前記開度可変バルブの開度を調節することで前記逆浸透膜装置の濃縮水排出流量を調節することを特徴とする請求項1又は2記載の純水製造装置の殺菌方法。   Concentrated water of the reverse osmosis membrane device is provided by interposing an opening variable valve in the concentrated water discharge pipe of the reverse osmosis membrane device, supplying the unheated raw water and adjusting the opening of the variable opening valve. 3. The method for sterilizing a pure water producing apparatus according to claim 1, wherein the discharge flow rate is adjusted. さらに、前記処理ラインの前記逆浸透膜装置の透過水配管内に圧力センサーを配置するとともに前記ポンプを回転数可変ポンプとして、熱水を前記処理ライン及び前記循環ラインに循環させつつ、前記圧力センサーの出力が一定となるよう前記回転数可変ポンプの回転数を制御することを特徴とする請求項1乃至3のいずれか1項記載純水製造装置の殺菌方法。   Further, a pressure sensor is disposed in the permeate pipe of the reverse osmosis membrane device of the treatment line, and the pressure sensor is configured to circulate hot water to the treatment line and the circulation line using the pump as a variable speed pump. 4. The method for sterilizing a pure water producing apparatus according to claim 1, wherein the rotational speed of the variable speed pump is controlled so that the output of the water is constant. 5. 前記原水タンクへの原水の供給を停止して、前記原水タンクに貯留されている原水を前記循環ラインに循環させ前記原水の少なくとも一部を系外に排出しつつ前記原水を前記熱交換器により加熱して前記熱水を生成することを特徴とする請求項1乃至4のいずれか1項記載の純水製造装置の殺菌方法。   The supply of the raw water to the raw water tank is stopped, the raw water stored in the raw water tank is circulated through the circulation line, and at least a part of the raw water is discharged out of the system while the raw water is discharged by the heat exchanger. The method for sterilizing a pure water producing apparatus according to any one of claims 1 to 4, wherein the hot water is generated by heating. 前記熱水の温度が60℃以上であることを特徴とする請求項1乃至5のいずれか1項記載の純水製造装置の殺菌方法。   6. The method for sterilizing a pure water producing apparatus according to any one of claims 1 to 5, wherein the temperature of the hot water is 60 ° C or higher. 原水タンクと純水タンク又はユースポイントとを結ぶ処理ラインに沿って、ポンプ、逆浸透膜装置及び電気脱イオン装置を順に備え、前記逆浸透膜装置の濃縮水配管、前記電気脱イオン装置の濃縮水配管並びに電極水配管及び前記電気脱イオン装置の処理水配管を前記原水タンクと開閉バルブを介してそれぞれ接続する循環ラインを備えた純水製造装置であって、
前記逆浸透膜装置の濃縮水配管から開度可変バルブを介装して分枝して設けられた濃縮水排出配管と、
前記処理ラインの前記逆浸透膜装置の透過水配管内に設置された圧力センサーと、
前記原水タンクに非加熱の原水を供給して前記純水製造装置系内を冷却するに際し、前記非加熱の原水の供給流量と前記逆浸透膜装置の濃縮水の排出流量が同量となるように、前記圧力センサーの出力により前記濃縮水排出配管に介装された開度可変バルブの開度を制御する制御装置とを備えたことを特徴とする純水製造装置。
A pump, a reverse osmosis membrane device, and an electrodeionization device are provided in this order along a processing line connecting the raw water tank and the pure water tank or the use point, and the concentrated water pipe of the reverse osmosis membrane device and the concentration of the electrodeionization device. A pure water production apparatus comprising a circulation line for connecting a water pipe, an electrode water pipe, and a treated water pipe of the electrodeionization device through the open / close valve and the raw water tank,
A concentrated water discharge pipe provided by branching from the concentrated water pipe of the reverse osmosis membrane device via an opening degree variable valve;
A pressure sensor installed in a permeate pipe of the reverse osmosis membrane device of the treatment line;
When the unheated raw water is supplied to the raw water tank to cool the inside of the pure water production system, the supply flow rate of the unheated raw water and the discharge flow rate of the concentrated water of the reverse osmosis membrane device are the same. And a control device for controlling the opening degree of the opening degree variable valve interposed in the concentrated water discharge pipe by the output of the pressure sensor.
JP2012285318A 2012-12-27 2012-12-27 Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals Pending JP2014124482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285318A JP2014124482A (en) 2012-12-27 2012-12-27 Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285318A JP2014124482A (en) 2012-12-27 2012-12-27 Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals

Publications (1)

Publication Number Publication Date
JP2014124482A true JP2014124482A (en) 2014-07-07

Family

ID=51404479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285318A Pending JP2014124482A (en) 2012-12-27 2012-12-27 Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals

Country Status (1)

Country Link
JP (1) JP2014124482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103978A (en) * 2017-12-13 2019-06-27 オルガノ株式会社 Pure water production apparatus and method of operating the same
CN112892223A (en) * 2021-01-19 2021-06-04 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step
WO2022014221A1 (en) * 2020-07-13 2022-01-20 オルガノ株式会社 Apparatus for producing ultrapure water
JP7459615B2 (en) 2020-03-30 2024-04-02 三浦工業株式会社 water treatment equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water
JP2001293471A (en) * 2000-04-14 2001-10-23 Mikuni Kikai Kk Purified water making device
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP3570304B2 (en) * 1999-08-11 2004-09-29 栗田工業株式会社 Sterilization method of deionized water production apparatus and method of producing deionized water
JP2010131579A (en) * 2008-10-27 2010-06-17 Miura Co Ltd System for improving water quality
JP2011147880A (en) * 2010-01-21 2011-08-04 Nomura Micro Sci Co Ltd Method and apparatus for production of purified water for medicine
JP2011224465A (en) * 2010-04-20 2011-11-10 Miura Co Ltd Pure water producing system
JP2012040474A (en) * 2010-08-16 2012-03-01 Nomura Micro Sci Co Ltd Method and device for producing pure water
JP2012125449A (en) * 2010-12-16 2012-07-05 Japan Organo Co Ltd Apparatus for producing dilution water for making dialysate
JP2012196619A (en) * 2011-03-22 2012-10-18 Miura Co Ltd Water treatment equipment
JP2012206073A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Deionized water production system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154297A (en) * 1984-08-22 1986-03-18 Hitachi Ltd Manufacturing apparatus of demineralized water
JP3570304B2 (en) * 1999-08-11 2004-09-29 栗田工業株式会社 Sterilization method of deionized water production apparatus and method of producing deionized water
JP2001293471A (en) * 2000-04-14 2001-10-23 Mikuni Kikai Kk Purified water making device
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2010131579A (en) * 2008-10-27 2010-06-17 Miura Co Ltd System for improving water quality
JP2011147880A (en) * 2010-01-21 2011-08-04 Nomura Micro Sci Co Ltd Method and apparatus for production of purified water for medicine
JP2011224465A (en) * 2010-04-20 2011-11-10 Miura Co Ltd Pure water producing system
JP2012040474A (en) * 2010-08-16 2012-03-01 Nomura Micro Sci Co Ltd Method and device for producing pure water
JP2012125449A (en) * 2010-12-16 2012-07-05 Japan Organo Co Ltd Apparatus for producing dilution water for making dialysate
JP2012196619A (en) * 2011-03-22 2012-10-18 Miura Co Ltd Water treatment equipment
JP2012206073A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Deionized water production system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103978A (en) * 2017-12-13 2019-06-27 オルガノ株式会社 Pure water production apparatus and method of operating the same
JP6994376B2 (en) 2017-12-13 2022-01-14 オルガノ株式会社 Pure water production equipment and its operation method
JP7459615B2 (en) 2020-03-30 2024-04-02 三浦工業株式会社 water treatment equipment
WO2022014221A1 (en) * 2020-07-13 2022-01-20 オルガノ株式会社 Apparatus for producing ultrapure water
JP2022017035A (en) * 2020-07-13 2022-01-25 オルガノ株式会社 Ultrapure water production apparatus
JP7109505B2 (en) 2020-07-13 2022-07-29 オルガノ株式会社 Ultrapure water production equipment
CN112892223A (en) * 2021-01-19 2021-06-04 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step
CN112892223B (en) * 2021-01-19 2021-11-30 同济大学 Reverse osmosis membrane damage detects disinfection system that disinfects in step

Similar Documents

Publication Publication Date Title
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP6074261B2 (en) Sterilization method for pharmaceutical pure water production apparatus and pharmaceutical pure water production apparatus
JP6111799B2 (en) Purified water production method for pharmaceutical water production
JP2014124482A (en) Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP5307049B2 (en) Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals
CN112079312B (en) Cleaning and sterilizing method and device for product filling device
JP5093679B2 (en) Disinfection method for purified water production equipment
JP2010000433A5 (en)
JP6082247B2 (en) Sterilization method for pharmaceutical pure water production apparatus and pharmaceutical pure water production apparatus
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP6994376B2 (en) Pure water production equipment and its operation method
JP2007175603A (en) Method for operating membrane filtration system
JP2011147911A (en) Purified water producing method and purified water producing apparatus
KR20230081716A (en) Pure water production system and pure water production method
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP6889628B2 (en) Pure water production equipment and pure water production method
JP7019860B1 (en) Purified water supply system
JP2003145135A (en) Membrane-type deaeration apparatus and potable drinking water producing apparatus
JP6953070B2 (en) Medical purified water production equipment
JP2021178297A (en) Pharmaceutical water production system and its sterilization method
JP2010000503A (en) Pure water production apparatus and method of controlling pure water production apparatus
JPH11188080A (en) Disinfected feed system for purified water
JP2012196678A (en) Operation method for membrane filtration system, and membrane filtration system
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method
JP2023031981A (en) Water treatment system and sterilization method of water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404