JP2012040474A - Method and device for producing pure water - Google Patents

Method and device for producing pure water Download PDF

Info

Publication number
JP2012040474A
JP2012040474A JP2010181734A JP2010181734A JP2012040474A JP 2012040474 A JP2012040474 A JP 2012040474A JP 2010181734 A JP2010181734 A JP 2010181734A JP 2010181734 A JP2010181734 A JP 2010181734A JP 2012040474 A JP2012040474 A JP 2012040474A
Authority
JP
Japan
Prior art keywords
water
chamber
treated
pure water
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010181734A
Other languages
Japanese (ja)
Other versions
JP5480063B2 (en
Inventor
Toshikazu Abe
俊和 阿部
Michihiro Takada
倫宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2010181734A priority Critical patent/JP5480063B2/en
Publication of JP2012040474A publication Critical patent/JP2012040474A/en
Application granted granted Critical
Publication of JP5480063B2 publication Critical patent/JP5480063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for producing pure water capable of preventing the generation of the occlusion of the electric demineralizing device and the deterioration of water quality of the treating water and capable of preventing the reduction of the treating efficiency of the electric demineralizing device and capable of preventing the shortening of the life of the device.SOLUTION: In the method for producing pure water alternately repeating a pure water producing treatment demineralizing by the electric demineralizing device 14, and a hot water sterilization treatment sterilizing by feeding hot water to the electric demineralizing device 14, the flowing direction of the water to be treated in the condensing chamber 142 of the electric demineralizing device 14 is set to be a countercurrent direction to the flowing direction of the water to be treated in the demineralizing chamber 141 during the pure water producing treatment, and the flowing direction of the water to be treated in the condensing chamber 142 of the electric deionizing device 14 is set to be a concurrent flow direction to the flowing direction of the water to be treated in the demineralizing chamber 141 during the hot water sterilizing treatment.

Description

本発明は、純水製造処理と熱水殺菌処理とを交互に行う純水製造方法及び純水製造装置に係り、特に、電気式脱イオン装置の処理効率の低下を防止でき、かつ処理水質に優れた純水を得ることができる純水製造方法及び純水製造装置に関する。   The present invention relates to a pure water production method and a pure water production apparatus that alternately perform pure water production treatment and hot water sterilization treatment, and in particular, can prevent a reduction in treatment efficiency of an electrical deionization apparatus and improve the quality of the treated water. The present invention relates to a pure water production method and a pure water production apparatus capable of obtaining excellent pure water.

電気脱イオン処理は、脱イオン処理を行った後の再生において、従来のイオン交換樹脂等のように再生に薬品を使用する必要がなく、薬品を廃棄処理する手間や装置等が不要であるため、現在では医薬品や食品、半導体製造等に用いる水処理において広く用いられるようになってきた。   Electrodeionization does not require the use of chemicals for regeneration in the regeneration after deionization treatment, unlike conventional ion exchange resins, and does not require labor and equipment for disposal of chemicals. Currently, it has come to be widely used in water treatment used for pharmaceuticals, foods, semiconductor manufacturing and the like.

特に、医薬用や食用に用いられる純水の製造においては、より純度の高い純水を供給すべく厳格な生菌管理が要求されるため、電気式脱イオン装置を使用して純水の製造を行う際には、熱水殺菌処理を行いながら運転を行っている。   In particular, in the production of pure water used for pharmaceuticals and food, strict viable bacteria management is required to supply pure water with higher purity. When performing, the operation is performed while performing the hot water sterilization treatment.

例えば、電気式脱イオン装置を備えた医薬用純水の純水製造装置では、常温の被処理水を供給して脱イオン処理を行い、処理水の水質が維持できなくなる前に、電気式脱イオン装置に60℃以上の熱水を供給して殺菌し、再度、常温の被処理水を供給して脱イオン処理を行うという、純水の製造処理と熱水殺菌処理を交互に行うことにより、常時、所定の水質を維持した処理水を供給できるようにしていた(例えば、特許文献1参照。)。   For example, in an apparatus for producing pure water for pharmaceutical use equipped with an electrical deionizer, deionization is performed by supplying treated water at room temperature, and before the quality of the treated water can be maintained, the electrical deionization is performed. By supplying hot water of 60 ° C. or higher to the ion device and sterilizing, and again supplying normal water to be treated and performing deionization treatment, by alternately performing the pure water production process and the hot water sterilization process The treated water maintaining a predetermined water quality can always be supplied (see, for example, Patent Document 1).

特開2004−74109号公報JP 2004-74109 A

しかしながら、このような純水製造方法及び純水製造装置では、熱水殺菌処理後に常温の被処理水を供給すると、電気式脱イオン装置において、濃縮室の閉塞が生じる場合がある。
濃縮室の閉塞が生じると、濃縮水流量が低下して処理コストが見合わなくなったり、電気式脱イオン装置の短命化が生じたりするという問題がある。また、イオン交換膜のイオン除去性能が低下して、電気式脱イオン装置からの処理水導電率が医薬用純水基準に適合しなくなるという問題が発生することもある。
However, in such a pure water production method and pure water production apparatus, when normal temperature treated water is supplied after the hot water sterilization treatment, the concentration chamber may be blocked in the electric deionization apparatus.
When the concentrating chamber is clogged, there is a problem that the flow rate of the concentrated water decreases and the processing cost cannot be met, or the life of the electric deionization apparatus is shortened. In addition, the ion removal performance of the ion exchange membrane is lowered, and there may be a problem that the treated water conductivity from the electric deionization device does not conform to the pharmaceutical pure water standard.

また、電気式脱イオン装置としては、電極室(陰極、陽極)の間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して濃縮室と脱塩室とを交互に形成し、濃縮室、脱塩室、電極室に通水しながらイオン処理を行うものが知られている。
電気式脱イオン装置に供給された被処理水は、脱塩室内を通過しながら脱塩処理され、処理水は後段の装置に供給される。一方、電気式脱イオン装置において、被処理水から分離されたイオン等は、イオン交換膜を介して濃縮室に移動して、脱イオン装置の系外に排出される。
In addition, as an electric deionization device, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between electrode chambers (cathodes and anodes) to form concentration chambers and demineralization chambers alternately. What performs ion treatment while passing water through a chamber, a desalting chamber, and an electrode chamber is known.
The treated water supplied to the electric deionizer is desalted while passing through the desalting chamber, and the treated water is supplied to the subsequent apparatus. On the other hand, in the electric deionization apparatus, ions or the like separated from the water to be treated move to the concentration chamber through the ion exchange membrane and are discharged out of the system of the deionization apparatus.

しかしながら、上記電気式脱イオン装置では、脱塩室入口近傍では被処理水のイオン濃度が高いため、この領域の被処理水が濃縮室側に移動すると、高濃度のイオン水が濃縮室内に蓄積することがある。この場合、濃縮室内で目詰まりが生じたり、濃縮室から排出される処理水の水質が悪化するという問題がある。
このような問題を解決するために、濃縮室における通水を、脱塩室の通水方向とは反対方向で通水して、脱イオン処理を行う脱イオン方法が提案されている。
However, in the above electric deionization apparatus, the ion concentration of the water to be treated is high near the entrance of the desalination chamber. Therefore, if the water to be treated in this region moves to the concentration chamber side, high-concentration ion water accumulates in the concentration chamber. There are things to do. In this case, there is a problem that clogging occurs in the concentration chamber or the quality of the treated water discharged from the concentration chamber deteriorates.
In order to solve such a problem, a deionization method has been proposed in which deionization is performed by passing water in the concentrating chamber in a direction opposite to the direction of water flow in the desalting chamber.

上記の通水方式を採用した場合には、脱塩室入口側から濃縮室に流入した高濃度の被処理水は、濃縮室出口から即座に排出される。したがって、濃縮室出口近傍領域における、イオン等の蓄積が防止され、濃縮室における目詰まりの発生や、処理水の水質悪化を抑制することができる。
しかしながら、このような通水方式を採用した場合、脱塩室入口と濃縮室出口間の圧力差が過大となり、脱塩室と濃縮室間のイオン交換膜の変形が生じやすくなる。この場合、濃縮室の閉塞が発生し、上述したような、濃縮水流量の低下や、処理水導電率の上昇等の発生が顕著となるという問題がある。
When the above water flow method is adopted, the high-concentration treated water flowing into the concentration chamber from the desalination chamber inlet side is immediately discharged from the concentration chamber outlet. Accordingly, accumulation of ions and the like in the vicinity of the concentration chamber outlet is prevented, and clogging in the concentration chamber and deterioration of the quality of the treated water can be suppressed.
However, when such a water flow system is adopted, the pressure difference between the desalting chamber inlet and the concentration chamber outlet becomes excessive, and the ion exchange membrane between the desalting chamber and the concentration chamber is likely to be deformed. In this case, the concentrating chamber is blocked, and there is a problem that the above-described decrease in the concentration water flow rate, increase in the treated water conductivity, and the like become significant.

そこで、本発明はこのような従来の問題に鑑みなされたもので、熱水殺菌処理工程を有する純水製造装置及び純水製造方法において、電気式脱イオン装置の目詰まりの発生や処理水の水質悪化を防止するとともに、電気式脱イオン装置の処理効率の低下や、装置の短命化を防止できる純水製造方法及び製造装置を提供することを目的とする。   Therefore, the present invention has been made in view of such a conventional problem, and in a pure water production apparatus and a pure water production method having a hot water sterilization treatment step, clogging of an electric deionization apparatus or treated water is generated. An object of the present invention is to provide a pure water production method and a production apparatus capable of preventing deterioration of water quality and preventing reduction in processing efficiency of an electric deionization apparatus and shortening of life of the apparatus.

本発明者らは、本発明の純水製造方法及び純水製造装置により、上記問題を解決することができることを見出し、本発明を完成したものである。   The present inventors have found that the above problems can be solved by the pure water production method and the pure water production apparatus of the present invention, and have completed the present invention.

すなわち、本発明の純水製造方法は、電気式脱イオン装置により脱イオンを行う純水製造処理と、前記電気式脱イオン装置に熱水を供給して殺菌する熱水殺菌処理と、を交互に繰り返して行う純水製造方法であって、前記純水製造処理時における、前記電気式脱イオン装置の前記濃縮室内の被処理水の流れ方向を、前記脱塩室の被処理水の流れ方向に対して向流方向とし、前記熱水殺菌処理時における、前記電気式脱イオン装置の前記濃縮室内の被処理水の流れ方向を、前記脱塩室内の被処理水の流れ方向に対して並流方向とする、ことを特徴とするものである。   That is, the pure water production method of the present invention alternately performs a pure water production process in which deionization is performed by an electric deionization apparatus and a hot water sterilization process in which hot water is supplied to the electric deionization apparatus to sterilize. In the pure water production process, the flow direction of the water to be treated in the concentration chamber of the electric deionization apparatus during the pure water production process is the flow direction of the water to be treated in the demineralization chamber The flow direction of the water to be treated in the concentrating chamber of the electric deionizer during the hot water sterilization treatment is parallel to the flow direction of the water to be treated in the demineralization chamber. It is characterized by the flow direction.

また、本発明の純水製造装置は、陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを配列して脱塩室と濃縮室とを形成してなる電気式脱イオン装置を有し、純水製造処理と熱水殺菌処理とを交互に行う純水製造装置であって、前記電気式脱イオン装置が、前記純水製造処理時には、前記脱塩室の脱塩水出口に近い側から前記濃縮室内に被処理水を導入するとともに、前記濃縮室のうち前記脱塩室の被処理水入口に近い側から濃縮水を流出させ、前記熱水殺菌処理時には、前記脱塩室の被処理水入口に近い側から前記濃縮室内に被処理水を導入するとともに、前記濃縮室のうち脱塩室の脱塩水出口に近い側から濃縮水を流出させる、制御手段を有することを特徴とするものである。   Further, the pure water production apparatus of the present invention is an electric deionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are arranged between a cathode and an anode to form a demineralization chamber and a concentration chamber. A pure water production apparatus that alternately performs pure water production treatment and hot water sterilization treatment, wherein the electric deionization device is disposed at the demineralized water outlet of the demineralization chamber during the pure water production treatment. The treated water is introduced into the concentrating chamber from the near side, and the concentrated water is allowed to flow out from the side of the concentrating chamber close to the treated water inlet of the desalting chamber. Control means for introducing treated water into the concentrating chamber from the side close to the treated water inlet of the water and allowing the concentrated water to flow out from the side of the concentrating chamber close to the desalted water outlet. It is what.

本発明によれば、電気式脱イオン装置において、イオン濃度の高い被処理水が、脱塩室から濃縮室に供給されても、即座に排出されるため、濃縮室の目詰まりの発生や処理水の水質悪化が抑制される。
また、本発明によれば、熱水殺菌処理時と純水製造処理時とで、濃縮室の通水方向を切り替えるため、濃縮室の閉塞に伴う処理効率の低下や、電気式脱イオン装置の短命化を招くこともない。
According to the present invention, in the electric deionization apparatus, water to be treated having a high ion concentration is immediately discharged even if it is supplied from the demineralization chamber to the concentration chamber. Deterioration of water quality is suppressed.
In addition, according to the present invention, the flow direction of the concentrating chamber is switched between the hot water sterilization process and the pure water production process. There is no short-lived life.

このように、本発明によれば、熱水殺菌処理工程を有する純水製造方法及び純水製造装置において、濃縮室の目詰まりに起因する電気式脱イオン装置の劣化や、濃縮水の水質悪化を防止し、且つ、濃縮室の閉塞に伴う処理効率の低下や、電気式脱イオン装置の短命化を防止することができる。   As described above, according to the present invention, in the pure water production method and the pure water production apparatus having the hot water sterilization treatment step, the electrical deionization apparatus is deteriorated due to the clogging of the concentration chamber, or the quality of the concentrated water is deteriorated. In addition, it is possible to prevent the processing efficiency from decreasing due to the blockage of the concentration chamber and the shortening of the life of the electric deionization apparatus.

本発明の一実施形態における純水製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the pure water manufacturing apparatus in one Embodiment of this invention. 本発明の一実施形態における純水製造装置の電気式脱イオン装置14周辺の構成を拡大して示す図である。It is a figure which expands and shows the structure of the electrical deionization apparatus 14 periphery of the pure water manufacturing apparatus in one Embodiment of this invention. 本発明の純水製造方法における電気式脱イオン装置周辺のフローを説明する図である。It is a figure explaining the flow around the electric deionization apparatus in the pure water manufacturing method of this invention. 純水製造処理時における電気式脱イオン装置の脱塩室及び濃縮室の被処理水及び処理水の圧力状態を示す図である。It is a figure which shows the pressure state of the to-be-processed water and treated water of the demineralization chamber of an electric deionization apparatus at the time of a pure water manufacturing process, and a concentration chamber. 熱殺菌処理時における電気式脱イオン装置の脱塩室及び濃縮室の被処理水及び処理水の圧力状態を示す図である。It is a figure which shows the pressure state of the to-be-processed water and treated water of the demineralization chamber of the electric deionization apparatus at the time of a heat sterilization process, and a concentration chamber. 本発明の純水製造方法の純水製造処理工程のフローを示す図である。It is a figure which shows the flow of the pure water manufacturing process process of the pure water manufacturing method of this invention. 本発明の純水製造方法の昇温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature rising process of the pure water manufacturing method of this invention. 本発明の純水製造方法の均温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature equalization process of the pure water manufacturing method of this invention. 本発明の純水製造方法の降温工程におけるフローを示す図である。It is a figure which shows the flow in the temperature fall process of the pure water manufacturing method of this invention. 他の実施形態における、純水製造方法の処理フローを説明する図である。It is a figure explaining the processing flow of the pure water manufacturing method in other embodiments.

以下、本発明の詳細、ならびにその他の特徴及び利点について、図面を参照しながら説明する。   The details of the present invention as well as other features and advantages are described below with reference to the drawings.

図1は、本発明の一実施形態における純水製造装置の概略構成を示す図である。
図1に示すように、本実施形態における純水製造装置1は、前処理水10を処理する活性炭吸着装置11と、この活性炭吸着装置11の後段に、原水タンク12が設置されており、活性炭吸着装置11、原水タンク12間は、開閉バルブB1を備えた供給配管L1によって接続されている。
原水タンク12の後段には、逆浸透膜装置13と、電気式脱イオン装置14と、が順次設置されており、更に電気式脱イオン装置14の後段には、処理水タンク15が設置されている。原水タンク12及び逆浸透膜装置13間、並びに逆浸透膜装置13及び電気式脱イオン装置14間は、それぞれ配管L1−1、配管L1−2により接続されている。さらに、電気式脱イオン装置14と処理水タンク15は、開閉バルブB2を備えた供給配管L2により接続されている。なお、開閉バルブB2は、第1の圧力調整バルブとしても機能する。
また、原水タンク12と逆浸透膜装置13との間には、蒸気ヒータ16が設けられている。図1では蒸気ヒータ16は原水タンク12と逆浸透膜装置13との間に設置されているが、特に限定されるものではなく、また、加熱は蒸気ヒータに限定されるものではなく電熱ヒータ等も使用可能である。
また、本実施形態では図示を省略するが、活性炭吸着装置11の前段、又は逆浸透膜装置13の前段に濁質除去処理をするための膜処理装置が設置されていてもよく、さらに逆浸透膜装置13と電気式脱イオン装置14との間には、逆浸透膜装置3で除去しきれなかった硬度成分を除去するための硬度除去装置が設置されていてもよい。
FIG. 1 is a diagram showing a schematic configuration of a pure water production apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the pure water production apparatus 1 according to the present embodiment includes an activated carbon adsorption device 11 that treats pretreated water 10, and a raw water tank 12 that is disposed downstream of the activated carbon adsorption device 11. The adsorber 11 and the raw water tank 12 are connected by a supply pipe L1 provided with an opening / closing valve B1.
A reverse osmosis membrane device 13 and an electrical deionization device 14 are sequentially installed in the subsequent stage of the raw water tank 12, and a treated water tank 15 is installed in the subsequent stage of the electrical deionization device 14. Yes. The raw water tank 12 and the reverse osmosis membrane device 13 and the reverse osmosis membrane device 13 and the electrical deionization device 14 are connected by a pipe L1-1 and a pipe L1-2, respectively. Furthermore, the electrical deionizer 14 and the treated water tank 15 are connected by a supply pipe L2 having an opening / closing valve B2. The on-off valve B2 also functions as a first pressure adjustment valve.
A steam heater 16 is provided between the raw water tank 12 and the reverse osmosis membrane device 13. In FIG. 1, the steam heater 16 is installed between the raw water tank 12 and the reverse osmosis membrane device 13, but is not particularly limited, and heating is not limited to the steam heater but an electric heater or the like Can also be used.
Although not shown in the present embodiment, a membrane treatment device for removing turbidity may be installed in the previous stage of the activated carbon adsorption device 11 or in the previous stage of the reverse osmosis membrane device 13, and the reverse osmosis is further performed. Between the membrane device 13 and the electric deionization device 14, a hardness removing device for removing a hardness component that could not be removed by the reverse osmosis membrane device 3 may be installed.

逆浸透膜装置13の濃縮水出口配管は、濃縮水排出バルブB3を介して濃縮水排出配管L3に接続されている。濃縮水排出配管L3の濃縮水排出バルブB3の上流部と原水タンク12間には、後述する均熱工程において、濃縮水排出バルブB3を閉じるとともに、管路に設けた切換えバルブB4の開放により、逆浸透膜装置13の濃縮水を原水タンク12に還流させる還流配管L4が設けられている。   The concentrated water outlet pipe of the reverse osmosis membrane device 13 is connected to the concentrated water discharge pipe L3 via the concentrated water discharge valve B3. Between the upstream portion of the concentrated water discharge valve B3 of the concentrated water discharge pipe L3 and the raw water tank 12, in the soaking process described later, the concentrated water discharge valve B3 is closed and the switching valve B4 provided in the pipeline is opened, A reflux pipe L4 for returning the concentrated water of the reverse osmosis membrane device 13 to the raw water tank 12 is provided.

電気式脱イオン装置14は、脱塩室141と濃縮室142と電極室143とから構成されており、脱塩水の供給配管L2の開閉バルブB2の上流部と原水タンク12間には、殺菌工程において、切換えバルブB5の開放により、高温の脱塩水を原水タンク12に還流させる還流配管L5が設けられている。なお、切換えバルブB5は、第2の圧力調整バルブとしても機能する。
また、濃縮室142の原水タンク12側出入口には配管L6が設けられており、濃縮室142の処理水タンク15側出入口には配管L7が設けられている。本実施形態では、後に詳述する構成により、配管L6から濃縮室142への被処理水の供給も、配管L7から濃縮室142への被処理水の供給も可能とされている。
The electric deionization apparatus 14 includes a demineralization chamber 141, a concentration chamber 142, and an electrode chamber 143. A sterilization step is provided between the upstream portion of the open / close valve B2 of the demineralized water supply pipe L2 and the raw water tank 12. , A recirculation pipe L5 for recirculating high-temperature demineralized water to the raw water tank 12 by opening the switching valve B5 is provided. The switching valve B5 also functions as a second pressure adjustment valve.
Further, a pipe L6 is provided at the raw water tank 12 side entrance of the concentrating chamber 142, and a pipe L7 is provided at the treated water tank 15 side entrance of the concentrating chamber 142. In the present embodiment, by the configuration described in detail later, the water to be treated can be supplied from the pipe L6 to the concentrating chamber 142 and the water to be treated can be supplied from the pipe L7 to the concentrating chamber 142.

なお、原水タンク12と蒸気ヒータ16との間の配管には、第1のポンプP1が設けられ、蒸気ヒータ16と逆浸透膜装置13との間の配管には、第2のポンプP2が設けられている。
原水タンク12内の水は、これらのポンプにより上記各装置に順次通水され、後述するように加熱殺菌時には、還流配管を介して、熱水を系内に循環させるようになっている。なお、図1では原水タンク12と蒸気ヒータ16との間には、第1のポンプP1が介挿入され、蒸気ヒータ16と逆浸透膜装置13との間には、第2のポンプP2が介挿入されているが、いずれか一方でもよく、設置する場所も特に限定されない。
また、原水タンク12内、蒸気ヒータ16と逆浸透膜装置13との間の配管、電気式脱イオン装置14と処理水タンク15との間の配管には、それぞれ温度計T1、T2、T3が設けられており、加熱殺菌時には、各部の水温を検出して、図示を省略した制御手段により、昇温、均温、降温の各工程における各バルブの操作を行うとともに、蒸気ヒータ16を制御して各部の水温を所定の殺菌温度に維持するようになっている。
A first pump P1 is provided in the pipe between the raw water tank 12 and the steam heater 16, and a second pump P2 is provided in the pipe between the steam heater 16 and the reverse osmosis membrane device 13. It has been.
Water in the raw water tank 12 is sequentially passed through the above devices by these pumps, and hot water is circulated in the system through a reflux pipe during heat sterilization as will be described later. In FIG. 1, a first pump P1 is inserted between the raw water tank 12 and the steam heater 16, and a second pump P2 is interposed between the steam heater 16 and the reverse osmosis membrane device 13. Although it is inserted, any one may be sufficient and the place to install is not specifically limited.
Thermometers T1, T2, and T3 are provided in the raw water tank 12, the pipe between the steam heater 16 and the reverse osmosis membrane device 13, and the pipe between the electrical deionizer 14 and the treated water tank 15, respectively. At the time of heat sterilization, the temperature of each part is detected, and the control means (not shown) is used to operate each valve in each step of temperature increase, temperature equalization, and temperature decrease, and to control the steam heater 16. Thus, the water temperature of each part is maintained at a predetermined sterilization temperature.

このように、温度計T1〜T3は、加熱殺菌時に系内の水温が所定の殺菌温度であることを監視するとともに、所定の殺菌温度を維持するように図示を省略した制御手段により蒸気ヒータ16をフィードバック制御する温度センサーとして用いられる。   As described above, the thermometers T1 to T3 monitor that the water temperature in the system is the predetermined sterilization temperature during the heat sterilization, and the steam heater 16 is controlled by a control unit (not shown) so as to maintain the predetermined sterilization temperature. It is used as a temperature sensor for feedback control.

本発明に使用される逆浸透膜装置13は、水温60℃以上の熱水を通水したときの、透過水の導電率が45μS/cm以下となるものが好ましく、脱塩率は85%以上のものが好ましい。
このような逆浸透膜装置13に装着される逆浸透膜131(図示省略)としては、例えば、Duratherm RO 2540 HF(70℃用)、Duratherm RO 4040 HF(70℃用)、Duratherm RO 8040 HF(70℃用)(いずれも米国GE社製、商品名)等が挙げられる。
The reverse osmosis membrane device 13 used in the present invention preferably has a permeated water conductivity of 45 μS / cm or less when hot water having a water temperature of 60 ° C. or more is passed, and the desalination rate is 85% or more. Are preferred.
Examples of the reverse osmosis membrane 131 (not shown) attached to the reverse osmosis membrane device 13 include, for example, Duratherm RO 2540 HF (for 70 ° C), Duratherm RO 4040 HF (for 70 ° C), Duratherm RO 8040 HF ( 70 ° C.) (both manufactured by US GE, trade name) and the like.

図2は、本発明の一実施形態における純水製造装置の電気式脱イオン装置14周辺の構成を拡大して示す図である。
図2に示すように、電気式脱イオン装置14は、脱塩室141と濃縮室142と電極室143とから構成されており、配管L7は、開閉バルブB6を備えた配管L8と、Q1において接続しており、また、電極室143の電極水出口配管も、開閉バルブB7を備えた配管L9と接続している。
この配管L8及びL9は、それぞれ共通の還流配管L10に接続されており、還流配管L10は分岐して、一方の分岐管L10−1は原水タンク12に接続され、他方の分岐管L10−2は濃縮水排出口に開口している。分岐管L10−1、10−2には、それぞれ流路を原水タンク12側と濃縮水排出口側に切換えるバルブB8、B9が設けられている。
FIG. 2 is an enlarged view showing a configuration around the electrical deionization device 14 of the pure water production apparatus according to the embodiment of the present invention.
As shown in FIG. 2, the electric deionization apparatus 14 is composed of a demineralization chamber 141, a concentration chamber 142, and an electrode chamber 143. A pipe L7 is connected to a pipe L8 provided with an opening / closing valve B6, and Q1. In addition, the electrode water outlet pipe of the electrode chamber 143 is also connected to a pipe L9 provided with an opening / closing valve B7.
The pipes L8 and L9 are respectively connected to a common reflux pipe L10, the reflux pipe L10 is branched, one branch pipe L10-1 is connected to the raw water tank 12, and the other branch pipe L10-2 is Open to the concentrated water outlet. The branch pipes L10-1 and 10-2 are provided with valves B8 and B9 for switching the flow path to the raw water tank 12 side and the concentrated water discharge port side, respectively.

逆浸透膜装置13及び脱塩室141間(Q3)、並びに濃縮室142の後方には、開閉バルブB10を備えた分岐配管L11が設けられており、分岐配管L11の処理水タンク15側端部は、Q1において配管L7、L8と接続している。この還流配管L11、配管L7及び配管L6により、濃縮142への第1の供給−排出ラインを形成している。
また、分岐配管L11のバルブB10上流側の位置(Q4)からは、切換えバルブB11を備えた分岐配管L12が設けられており、分岐配管L12は、Q2において、開閉バルブB12を備えた排出配管L13と接続されている。そして、上記分岐配管L11、分岐配管L12、配管L6及び配管L7によって、濃縮室142への第2の供給−排出ラインを形成している。
なお、切換えバルブB11は、第3の圧力調整バルブとしても機能する。
A branch pipe L11 having an opening / closing valve B10 is provided between the reverse osmosis membrane device 13 and the desalting chamber 141 (Q3) and behind the concentration chamber 142, and the end of the branch pipe L11 on the treated water tank 15 side. Is connected to the pipes L7 and L8 in Q1. The reflux pipe L11, the pipe L7, and the pipe L6 form a first supply / discharge line to the concentration 142.
Further, a branch pipe L12 provided with a switching valve B11 is provided from a position (Q4) upstream of the valve B10 of the branch pipe L11. The branch pipe L12 is a discharge pipe L13 provided with an opening / closing valve B12 at Q2. Connected with. The branch pipe L11, the branch pipe L12, the pipe L6, and the pipe L7 form a second supply / discharge line to the concentration chamber 142.
The switching valve B11 also functions as a third pressure adjustment valve.

なお、図1及び図2において、開閉バルブ(B1、B2、B6、B7、B10、B12)、濃縮水排出バルブ(B3)及び切換えバルブ(B4、B5、B8、B9、B11)は、加熱処理及び純水製造処理の各段階において、図示を省略した制御手段により開閉が行われる。
そして、開閉バルブB2と切換えバルブB5、開閉バルブB10と切換えバルブB11、濃縮水排出バルブB3と切換えバルブB4、切換えバルブB8とB9については、それぞれ同時に開閉制御が行われて、熱水の流路の切換えが行われる。
また、図1及び図2は本発明の一実施形態であり、本発明の効果を阻害しない範囲で、純水装置として用いられる構成に適宜変更して用いることができる。
1 and 2, the on-off valves (B1, B2, B6, B7, B10, B12), the concentrated water discharge valve (B3), and the switching valves (B4, B5, B8, B9, B11) are heat-treated. In each stage of the pure water production process, the opening and closing is performed by a control means (not shown).
The on-off valve B2 and the switching valve B5, the on-off valve B10 and the switching valve B11, the concentrated water discharge valve B3 and the switching valve B4, and the switching valves B8 and B9 are respectively controlled to open and close at the same time. Is switched.
Moreover, FIG.1 and FIG.2 is one Embodiment of this invention, In the range which does not inhibit the effect of this invention, it can change suitably to the structure used as a pure water apparatus.

次に、図3(a)及び(b)に基づいて、本発明の製造装置1による純水製造方法の、電気式脱イオン装置周辺におけるフローを説明する。
図3(a)は、本発明の純水製造方法の純水製造時における電気式脱イオン装置周辺のフローを説明する図である。
図3(a)において、開閉バルブB6、切換えバルブB11は閉とし、開閉バルブB7、B10、B12を開として、不図示のポンプP1を駆動させる。
これによって、原水は、前段装置側(図1における前処理水10、原水タンク12、逆浸透膜装置13)から電気式脱イオン装置14側に供給され、このうち、Q3を経由し、配管L1−2から脱塩室141に供給された被処理水は、脱塩処理がなされた後、供給配管L2から後段装置側に供給される。
一方、ポイントQ3から還流配管L11側に流入した被処理水は、バルブB10を介して配管L7に流入し、濃縮室142の処理水タンク15側出入口から濃縮室142内に流入する。このため、濃縮室142内の被処理水は、脱塩室141内の被処理水の移動方向とは反対方向に移動する。
濃縮室142内を通過した処理水は、濃縮室142の原水タンク12側出入口から排出され、配管L6、排出配管L13より、開閉バルブB12を介して排水側に排出される。
また、電極室143からの電極水も、配管L9により、開閉バルブB7を介して排水側に排出される。
Next, based on FIG. 3 (a) and (b), the flow in the periphery of an electrical deionization apparatus of the pure water manufacturing method by the manufacturing apparatus 1 of this invention is demonstrated.
Fig.3 (a) is a figure explaining the flow around an electric deionization apparatus at the time of the pure water manufacture of the pure water manufacturing method of this invention.
In FIG. 3A, the on-off valve B6 and the switching valve B11 are closed and the on-off valves B7, B10, B12 are opened to drive the pump P1 (not shown).
As a result, the raw water is supplied from the pre-stage apparatus side (pretreated water 10, raw water tank 12, and reverse osmosis membrane apparatus 13 in FIG. 1) to the electric deionization apparatus 14 side, and among these, the pipe L1 passes through Q3. The treated water supplied from -2 to the desalting chamber 141 is desalted and then supplied from the supply pipe L2 to the subsequent apparatus side.
On the other hand, the water to be treated that flows from the point Q3 to the reflux pipe L11 side flows into the pipe L7 through the valve B10, and flows into the concentration chamber 142 from the inlet / outlet of the concentration chamber 142 on the treated water tank side. For this reason, the water to be treated in the concentration chamber 142 moves in the direction opposite to the moving direction of the water to be treated in the desalting chamber 141.
The treated water that has passed through the concentrating chamber 142 is discharged from the inlet / outlet of the concentrating chamber 142 on the raw water tank 12 side, and is discharged from the piping L6 and the discharging piping L13 to the drain side through the open / close valve B12.
In addition, the electrode water from the electrode chamber 143 is also discharged to the drain side through the open / close valve B7 by the pipe L9.

このように、純水製造処理時には、濃縮室142内の被処理水を、脱塩室141内の被処理水の移動方向と反対方向に移動させることにより、脱塩室141における入口(供給口)が、濃縮室142における出口(排出口)と隣接する構成となる。すなわち、脱塩室141の入口近傍に存在する高イオン濃度の被処理水は、濃縮室142側に移動すると、濃縮室142出口から速やかに排出される。したがって、濃縮室142内にイオン等の不純物が蓄積することがなく、濃縮室142内における目詰まり等の発生を防止することができる。
また、上記のように、濃縮室142内の被処理水を、脱塩室141内の被処理水の移動方向と反対方向に移動させることにより、脱塩室141と濃縮室142の原水タンク12側出入口間の圧力差を、大きくすることができる。
図4は、純水製造処理時における、電気式脱イオン装置の脱塩室及び濃縮室の被処理水及び処理水の圧力状態を示す図である。
このように、脱塩室141と濃縮室142の原水タンク12側出入口間の圧力差が高められることにより、圧力調整バルブによる圧力を極度に大きくしなくても、純水製造時の収率を向上させることができる。
Thus, at the time of pure water production processing, the water to be treated in the concentrating chamber 142 is moved in the direction opposite to the moving direction of the water to be treated in the desalting chamber 141, thereby providing an inlet (supply port) in the desalting chamber 141. ) Is adjacent to the outlet (exhaust port) in the concentrating chamber 142. That is, the high-ion-concentrated water present near the inlet of the desalting chamber 141 is quickly discharged from the outlet of the concentrating chamber 142 when it moves to the concentrating chamber 142 side. Accordingly, impurities such as ions do not accumulate in the concentration chamber 142, and clogging or the like in the concentration chamber 142 can be prevented.
Further, as described above, the raw water tank 12 of the desalting chamber 141 and the concentrating chamber 142 is moved by moving the water to be processed in the concentrating chamber 142 in the direction opposite to the moving direction of the water to be processed in the desalting chamber 141. The pressure difference between the side inlets and outlets can be increased.
FIG. 4 is a diagram showing pressure states of water to be treated and treated water in a demineralization chamber and a concentrating chamber of an electric deionization apparatus during a pure water production process.
In this way, the pressure difference between the inlet and outlet of the raw water tank 12 in the desalting chamber 141 and the concentrating chamber 142 is increased, so that the yield at the time of producing pure water can be increased without extremely increasing the pressure by the pressure regulating valve. Can be improved.

図3(b)は、本発明の純水製造方法の熱水殺菌時における電気式脱イオン装置周辺のフローを説明する図である。
図3(b)において、開閉バルブB10、B12を閉、切換えバルブB11、開閉バルブB6を開とし、開閉バルブB7は開としたままで、不図示のポンプP1を駆動させる。
これによって、原水は、前段装置側から脱イオン装置14側に供給される。このうち、Q3を経由し、配管L1−2から脱塩室141に供給された被処理水は、脱塩処理がなされた後、供給配管L2から後段装置側に供給される。
一方、Q3を経由し、配管L1−2から還流配管L11側に流入した被処理水は、バルブB11を介して、配管L12から配管L6に流入し、濃縮室142の原水タンク12側出入口から濃縮室142内に流入する。このため、濃縮室142内の被処理水は、脱塩室141内の被処理水の移動方向と並行して移動する。
濃縮室142内を通過した処理水は、濃縮室142の処理水タンク15側出入口から排出され、配管L7、L8より、バルブB6を介して排水側に排出される。
また、電極室143からの電極水は、純水製造処理時と同様に、配管L9により、開閉バルブB7を介して排水側に排出される。
FIG.3 (b) is a figure explaining the flow around an electric deionization apparatus at the time of the hot water sterilization of the pure water manufacturing method of this invention.
In FIG. 3B, the on-off valves B10 and B12 are closed, the switching valve B11 and the on-off valve B6 are opened, and the on-off valve B7 is left open, and the pump P1 (not shown) is driven.
Thereby, raw | natural water is supplied to the deionization apparatus 14 side from the front | former stage apparatus side. Among these, the water to be treated supplied from the pipe L1-2 to the desalting chamber 141 via Q3 is supplied to the downstream apparatus side from the supply pipe L2 after being desalted.
On the other hand, the water to be treated which has flowed from the pipe L1-2 to the reflux pipe L11 side through Q3 flows into the pipe L6 from the pipe L12 via the valve B11, and is concentrated from the raw water tank 12 side inlet / outlet of the concentrating chamber 142. It flows into the chamber 142. For this reason, the water to be treated in the concentration chamber 142 moves in parallel with the movement direction of the water to be treated in the desalting chamber 141.
The treated water that has passed through the concentrating chamber 142 is discharged from the inlet / outlet of the concentrating chamber 142 on the treated water tank 15 side, and is discharged from the pipes L7 and L8 to the drain side through the valve B6.
Moreover, the electrode water from the electrode chamber 143 is discharged | emitted by the piping L9 to the waste_water | drain side via the on-off valve B7 similarly to the time of a pure water manufacturing process.

このように、熱水殺菌処理時には、バルブの切換え動作によって、濃縮室142内の被処理水の移動方向を、脱塩室141内の被処理水の移動方向と並行する方向に切り替えることにより、濃縮室142と脱塩室141間の圧力差を大幅に低減することができる。図5は、熱殺菌処理時における、電気式脱イオン装置の脱塩室及び濃縮室の被処理水及び処理水の圧力状態を示す図である。
このため、特に熱水殺菌処理時に発生し易い、イオン交換膜の変形等が防止され、このイオン交換膜の濃縮室142側への張り出し、及びこれに伴う濃縮室142の閉塞が防止される。
Thus, at the time of the hot water sterilization treatment, by switching the direction of movement of the water to be treated in the concentration chamber 142 to a direction parallel to the direction of movement of the water to be treated in the desalination chamber 141 by the switching operation of the valve, The pressure difference between the concentration chamber 142 and the desalting chamber 141 can be greatly reduced. FIG. 5 is a diagram showing pressure states of water to be treated and treated water in the demineralization chamber and the concentration chamber of the electric deionization apparatus during the heat sterilization treatment.
For this reason, the deformation | transformation etc. of an ion exchange membrane which are easy to generate | occur | produce especially at the time of a hot-water sterilization process are prevented, and the protrusion to the concentration chamber 142 side of this ion exchange membrane and the obstruction | occlusion of the concentration chamber 142 accompanying this are prevented.

[純水製造方法]
次に、図6〜9に基づいて、本発明の製造装置1による純水製造方法について、その全体のフローを説明する。
本実施形態では、通常の純水製造処理を行った後に、製造装置1内の各装置に熱水を通水し、殺菌処理を行う方法を例に挙げて説明する。この熱水殺菌工程は、昇温工程、均温工程、降温工程から構成される。以下に、製造装置1による純水の製造方法について説明する。
[Pure water production method]
Next, based on FIGS. 6-9, the whole flow is demonstrated about the pure water manufacturing method by the manufacturing apparatus 1 of this invention.
In the present embodiment, a method of performing a sterilization process by passing hot water through each apparatus in the manufacturing apparatus 1 after performing a normal pure water manufacturing process will be described as an example. This hot water sterilization process includes a temperature raising process, a temperature equalizing process, and a temperature lowering process. Below, the manufacturing method of the pure water by the manufacturing apparatus 1 is demonstrated.

図6に基づいて、純水製造工程のフローを説明する。
初めに、不図示の前処理装置で処理された前処理水10を、開閉バルブB1を開として、原水タンク12内に供給する。次いで、開閉バルブB6、切換えバルブB4、B5、B8、B11を閉とし、開閉バルブB2、B3、B7、B10、B12、切換えバルブB9を開として、原水タンク12内の原水を、20〜30℃に温度設定した蒸気ヒータ16に、ポンプP1を駆動させて供給し、次いでこの原水を、ポンプP2を駆動して逆浸透膜装置13に供給し、逆浸透膜131によって脱塩処理する。
この際、逆浸透膜装置13で得られた濃縮水は、濃縮水排出バルブB3を介して系外に排出させる。
Based on FIG. 6, the flow of a pure water manufacturing process is demonstrated.
First, pretreated water 10 treated by a pretreatment device (not shown) is supplied into the raw water tank 12 with the opening / closing valve B1 opened. Next, the on-off valve B6, the switching valves B4, B5, B8, B11 are closed, the on-off valves B2, B3, B7, B10, B12, and the switching valve B9 are opened, and the raw water in the raw water tank 12 is 20-30 ° C. Then, the pump P1 is driven and supplied to the steam heater 16 whose temperature is set to, and then this raw water is supplied to the reverse osmosis membrane device 13 by driving the pump P2 and desalted by the reverse osmosis membrane 131.
At this time, the concentrated water obtained by the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve B3.

逆浸透膜装置13の処理水は、配管L1−2から電気式脱イオン装置14に供給される。配管L1−2から脱塩室141に流入した被処理水は、脱塩室141内を処理水タンク15側に移動する。
脱塩室141で脱イオン処理がなされた処理水は、第1の圧力調整バルブである開閉バルブB2を介して、供給配管L2により処理水タンク15に供給される。第1の圧力調整バルブB2は、その開度によって、脱塩室141出口(排出口)における圧力を調整可能とされており、この圧力調整バルブB2によって、純水製造処理時における、脱塩室141出口(排出口)と濃縮室142入口(供給口)との圧力差を適宜調整することができる。
The treated water of the reverse osmosis membrane device 13 is supplied to the electric deionization device 14 from the pipe L1-2. The treated water that has flowed into the desalting chamber 141 from the pipe L1-2 moves in the desalting chamber 141 to the treated water tank 15 side.
The treated water that has been deionized in the desalting chamber 141 is supplied to the treated water tank 15 through the supply pipe L2 via the opening / closing valve B2 that is the first pressure regulating valve. The first pressure regulating valve B2 can adjust the pressure at the outlet (exhaust port) of the desalting chamber 141 depending on the degree of opening thereof, and the desalting chamber at the time of pure water production processing can be adjusted by the pressure regulating valve B2. The pressure difference between the 141 outlet (discharge port) and the concentrating chamber 142 inlet (supply port) can be adjusted as appropriate.

一方、図3(a)において詳述したように、配管L1−2から分岐配管L11側に流入した被処理水は、バルブB10を介して、Q1から配管L7に流入し、濃縮室142の処理水タンク15側出入り口から濃縮室142内に流入する。
本実施形態において、開閉バルブB10の開度は、脱塩室141及び濃縮室142の処理水タンク15側出入口、すなわち脱塩室141の出口(排出口)と濃縮室142の入口(供給口)との間の圧力差を50kPa以上とするように、濃縮室142への供給水圧力を調整し、その開度を常時固定している。純水製造処理時には、濃縮室142への供給水は、圧力調整バルブB11を経由しないため、配管L7からの被処理水は、定常状態のまま濃縮室142に供給される。濃縮室142内の被処理水は、濃縮室142内を、原水タンク12側に移動する。
濃縮室142でイオン濃度の高まった濃縮水は、濃縮室142の原水タンク側出入口及び電極室143排出口から排出される。
濃縮室142から排出された濃縮水は、配管L6、排出配管L13により、開閉バルブB12を介して還流配管L10側に排出される。また、電極室143からの電極水も、配管L9により、開閉バルブB7を介して還流配管L10に排出される。還流配管L10に流入した濃縮水、電極水は、分岐管L10−2により、切換えバルブB9を介して系外に排出される。
On the other hand, as described in detail in FIG. 3A, the water to be treated that flows from the pipe L1-2 to the branch pipe L11 side flows from Q1 to the pipe L7 via the valve B10, and is processed in the concentration chamber 142. It flows into the concentrating chamber 142 from the water tank 15 side entrance.
In the present embodiment, the opening degree of the on-off valve B10 is determined by the treatment water tank 15 side inlet / outlet of the desalting chamber 141 and the concentrating chamber 142, that is, the outlet (exhaust port) of the desalting chamber 141 and the inlet (supply port) of the concentrating chamber 142. The supply water pressure to the concentrating chamber 142 is adjusted so that the pressure difference between the two is 50 kPa or more, and the opening degree is always fixed. During the pure water production process, the water to be supplied to the concentrating chamber 142 does not pass through the pressure adjustment valve B11, so that the water to be treated from the pipe L7 is supplied to the concentrating chamber 142 in a steady state. The treated water in the concentration chamber 142 moves to the raw water tank 12 side in the concentration chamber 142.
The concentrated water whose ion concentration has increased in the concentration chamber 142 is discharged from the raw water tank side inlet / outlet and the electrode chamber 143 outlet of the concentration chamber 142.
The concentrated water discharged from the concentration chamber 142 is discharged to the reflux pipe L10 side through the opening / closing valve B12 through the pipe L6 and the discharge pipe L13. Further, the electrode water from the electrode chamber 143 is also discharged by the pipe L9 to the reflux pipe L10 via the opening / closing valve B7. Concentrated water and electrode water flowing into the reflux pipe L10 are discharged out of the system via the switching valve B9 through the branch pipe L10-2.

上記のように、本実施形態では、開度が固定された開閉バルブB10により、濃縮室142への供給水圧力が設定され、第1の圧力調整バルブ(開閉バルブ)B2によって脱塩室141からの処理水圧力が調整される。これにより、脱塩室141排出口と濃縮室142供給口との圧力差が、50kPa以上とされている。したがって、脱塩室141において、導電率が低く、水質の良好な処理水を得ることができる。
脱塩室141において、低導電率で、より水質の良好な処理水を得るためには、脱塩室141排出口と濃縮室142供給口との圧力差を、100kPa以上とすることが好ましい。
As described above, in this embodiment, the supply water pressure to the concentrating chamber 142 is set by the opening / closing valve B10 having a fixed opening, and the first pressure regulating valve (opening / closing valve) B2 is used to The treated water pressure is adjusted. Thereby, the pressure difference between the desalting chamber 141 outlet and the concentration chamber 142 supply port is 50 kPa or more. Therefore, in the desalting chamber 141, treated water with low electrical conductivity and good water quality can be obtained.
In the desalting chamber 141, in order to obtain treated water with low conductivity and better water quality, the pressure difference between the desalting chamber 141 outlet and the concentration chamber 142 supply port is preferably 100 kPa or more.

次に、図7に基づいて、熱水殺菌工程における昇温工程のフローを説明する。
開閉バルブB1、B2、B10、B12及び切換えバルブB9を閉とし、開閉バルブB6、および切換えバルブB5、B8、B11を開とし、他のバルブの開閉状態は上記純水製造工程の状態のままにして、ポンプP1を駆動させる。これによって、原水タンク12内の原水を、60〜90℃の加熱温度に設定した蒸気ヒータ16に供給し、原水を加熱する。次いで、加熱された原水を、ポンプP2を駆動させて蒸気ヒータ16から逆浸透膜装置13に供給する。
本実施形態では、逆浸透膜装置13に備える逆浸透膜131として、被処理水の水温が60℃以上の状態で、脱塩率90%以上の脱塩処理を行う逆浸透膜を用いており、この逆浸透膜131によって脱塩処理が行われる。
逆浸透膜装置13から排出された濃縮水は、濃縮水排出バルブB3を介して系外に排出させる。
Next, based on FIG. 7, the flow of the temperature raising process in the hot water sterilization process will be described.
The on-off valves B1, B2, B10, B12 and the switching valve B9 are closed, the on-off valve B6 and the switching valves B5, B8, B11 are opened, and the open / closed states of the other valves remain the same as in the pure water production process. Then, the pump P1 is driven. Thereby, the raw water in the raw water tank 12 is supplied to the steam heater 16 set to a heating temperature of 60 to 90 ° C., and the raw water is heated. Next, the heated raw water is supplied from the steam heater 16 to the reverse osmosis membrane device 13 by driving the pump P2.
In this embodiment, the reverse osmosis membrane 131 provided in the reverse osmosis membrane device 13 is a reverse osmosis membrane that performs a desalination treatment with a desalination rate of 90% or more when the water temperature of the water to be treated is 60 ° C. or higher. The desalting process is performed by the reverse osmosis membrane 131.
The concentrated water discharged from the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve B3.

蒸気ヒータ16による熱水状態で逆浸透膜装置13を通過した透過水は、上記のように、脱塩処理をなされているため、直接電気式脱イオン装置14に供給される。
図3(b)において詳述したように、配管L1−2から脱塩室141に供給された被処理水は、脱塩室141内を処理水タンク15側に移動する。
脱塩室141から排出される処理水は、還流配管L5より、第2の圧力調整バルブである切換えバルブB5を介して原水タンク12に還流される。第2の圧力調整バルブB5は、その開度によって、脱塩室141からの排出水の圧力を調整可能とされており、昇温工程時(熱水殺菌処理時)における、脱塩室141出口(排出口)と濃縮室142出口(排出口)との圧力差を調整することができる。
The permeated water that has passed through the reverse osmosis membrane device 13 in the hot water state by the steam heater 16 has been desalted as described above, and thus is directly supplied to the electric deionization device 14.
As described in detail in FIG. 3B, the water to be treated supplied from the pipe L1-2 to the desalting chamber 141 moves to the treated water tank 15 side in the desalting chamber 141.
The treated water discharged from the desalting chamber 141 is returned to the raw water tank 12 through the return pipe L5 via the switching valve B5 that is the second pressure adjusting valve. The second pressure regulating valve B5 can adjust the pressure of the discharged water from the desalting chamber 141 according to the opening thereof, and the outlet of the desalting chamber 141 during the temperature raising process (during hot water sterilization). The pressure difference between the (discharge port) and the concentration chamber 142 outlet (discharge port) can be adjusted.

一方、配管L1−2から分岐配管L11、L12に流入した被処理水は、第3の圧力調整バルブである切換えバルブB11を介して配管L6に流入し、濃縮室142の原水タンク12側から濃縮室142内に供給される。
第3の圧力調整バルブB11は、その開度によって、濃縮室142への供給水の圧力を調整可能とされている。これにより、上述した第2の圧力調整バルブB5と併せて、この圧力調整バルブB11によっても、昇温工程時(熱水殺菌処理時)における、脱塩室141出口(排出口)と濃縮室142出口(排出口)との圧力差を調整することができる。
濃縮室142内の被処理水は、濃縮室142内を処理水タンク15側に移動する。
濃縮室142の処理水タンク15側から排出される濃縮水、及び電極室143から排出される処理水は、それぞれ配管L8、L9により、開閉バルブB6、B7を介して還流配管L10側に排出され、その後分岐管L10−1により、切換えバルブB8を介して原水タンク12に還流される。
On the other hand, the water to be treated which has flowed into the branch pipes L11 and L12 from the pipe L1-2 flows into the pipe L6 via the switching valve B11 which is the third pressure regulating valve, and is concentrated from the raw water tank 12 side of the concentrating chamber 142. It is supplied into the chamber 142.
The third pressure adjusting valve B11 can adjust the pressure of the water supplied to the concentrating chamber 142 according to its opening. Thus, in addition to the second pressure adjustment valve B5 described above, the pressure adjustment valve B11 also allows the desalination chamber 141 outlet (discharge port) and the concentration chamber 142 during the temperature raising process (during hot water sterilization). The pressure difference from the outlet (discharge port) can be adjusted.
The treated water in the concentration chamber 142 moves in the concentration chamber 142 to the treated water tank 15 side.
The concentrated water discharged from the treatment water tank 15 side of the concentration chamber 142 and the treated water discharged from the electrode chamber 143 are discharged to the reflux pipe L10 side via the open / close valves B6 and B7 by the pipes L8 and L9, respectively. Thereafter, the water is returned to the raw water tank 12 through the switching valve B8 by the branch pipe L10-1.

上記のように、本実施形態では、第2の圧力調整バルブB5によって脱塩室141からの処理水圧力が調整され、第3の圧力調整バルブB11により、濃縮室142への供給水圧力が調整される。これにより、脱塩室141出口(排出口)と濃縮室142出口(排出口)との圧力差が、20kPa以下とされている。
このように、熱水殺菌処理時において、濃縮室142と脱塩室141間の圧力差を低くすることにより、イオン交換膜の変形等が防止され、このイオン交換膜の濃縮室142側への張り出し、及びこれに伴う濃縮室142の閉塞が防止される。
この状態で、系内の温度が60〜90℃に昇温するまで原水タンク12内の原水を循環させる。すなわち、原水タンク12内への新たな水の供給を行わず、原水タンク12内の水を循環して昇温させるため、系内の昇温に伴って、循環水の精製が進行する。
As described above, in the present embodiment, the treated water pressure from the desalting chamber 141 is adjusted by the second pressure adjusting valve B5, and the supply water pressure to the concentrating chamber 142 is adjusted by the third pressure adjusting valve B11. Is done. Thereby, the pressure difference between the desalting chamber 141 outlet (discharge port) and the concentration chamber 142 outlet (discharge port) is set to 20 kPa or less.
Thus, during the hot water sterilization process, by reducing the pressure difference between the concentrating chamber 142 and the desalting chamber 141, deformation of the ion exchange membrane is prevented, and the ion exchange membrane toward the concentrating chamber 142 side is prevented. The overhang and the blockage of the concentrating chamber 142 accompanying this are prevented.
In this state, the raw water in the raw water tank 12 is circulated until the temperature in the system rises to 60 to 90 ° C. That is, since the water in the raw water tank 12 is circulated to raise the temperature without supplying new water to the raw water tank 12, the purification of the circulating water proceeds with the temperature rise in the system.

次に、図8に基づいて、熱水殺菌工程における均温工程のフローを説明する。
開閉バルブB3を閉とし、切換えバルブB4を開として、他のバルブの開閉状態は上記昇温工程の状態のままにして、上記昇温工程と同様に、原水タンク12内の原水を、60〜90℃に設定した蒸気ヒータ16に供給し、原水の水温を60〜90℃に保持した状態でこの原水を蒸気ヒータ16から逆浸透膜装置13に供給する。
逆浸透膜装置13では、熱水状態で通水された原水が逆浸透膜131により脱塩処理されて濃縮水を得られるが、均温工程における系内の循環水は、既に昇温工程で脱塩処理されているため、この濃縮水は、系外に排出せず、切換えバルブB4を介して還流配管L4より原水タンク12に還流する。
なお、必要に応じて逆浸透膜装置13の濃縮水の一部を系外に排出するようにしてもよい。
Next, based on FIG. 8, the flow of the soaking | uniform-heating process in a hot-water sterilization process is demonstrated.
The open / close valve B3 is closed, the switching valve B4 is opened, and the open / close state of the other valves is left in the state of the temperature raising step, and the raw water in the raw water tank 12 is changed to 60 to The raw water is supplied from the steam heater 16 to the reverse osmosis membrane device 13 while being supplied to the steam heater 16 set to 90 ° C. and the water temperature of the raw water is maintained at 60 to 90 ° C.
In the reverse osmosis membrane device 13, the raw water passed in the hot water state is desalted by the reverse osmosis membrane 131 to obtain concentrated water, but the circulating water in the system in the soaking step is already in the temperature raising step. Since it has been desalted, this concentrated water is not discharged out of the system, but is returned to the raw water tank 12 through the return pipe L4 via the switching valve B4.
In addition, you may make it discharge | emit a part of concentrated water of the reverse osmosis membrane apparatus 13 out of the system as needed.

逆浸透膜装置13を熱水状態で通過した透過水は、上記昇温工程のときと同様にして、電気式脱イオン装置14に直接供給される。
すなわち、脱塩室141の被処理水は、配管L1−2によって、原水タンク12側から供給され、脱塩室141内を処理水タンク15側に移動する。脱塩室141から排出される処理水は、第2の圧力調整バルブである切換えバルブB5を介して原水タンク12に還流される。
The permeated water that has passed through the reverse osmosis membrane device 13 in the hot water state is directly supplied to the electric deionization device 14 in the same manner as in the temperature raising step.
That is, the water to be treated in the desalting chamber 141 is supplied from the raw water tank 12 side through the pipe L1-2, and moves in the desalting chamber 141 to the treated water tank 15 side. The treated water discharged from the desalting chamber 141 is returned to the raw water tank 12 through a switching valve B5 that is a second pressure regulating valve.

一方、濃縮室142の被処理水は、第3の圧力調整バルブである切換えバルブB11を介して、配管L6により原水タンク12側から供給され、濃縮室142内を処理水タンク15側に移動する。
濃縮室142、電極室143の処理水タンク15側から排出される処理水は、それぞれ配管L8、L9により、開閉バルブB6、B7を介して還流配管L10側に排出され、その後分岐管L10−1により、切換えバルブB8を介して原水タンク12に還流される。
なお、均温工程における、第2の圧力調整バルブB5及び第3の圧力調整バルブB11の開度は、昇温工程のときと同じ開度として行われ、脱塩室141出口(排出口)と濃縮室142出口(排出口)との圧力差は、20kPa以下とされている。
これにより、イオン交換膜の変形による、濃縮室142の変形を生じさせることなく、電気式脱イオン装置14内を熱水殺菌処理することができる。
なお、逆浸透膜装置13で得られる濃縮水も含め、製造装置1内の水をすべて循環させることにより、系内の熱をロスすることなく、熱水殺菌を効率的に行うことができる。この状態で、系内の各装置が十分に殺菌処理されるまで、原水タンク12内の原水を循環させる。循環回数としては、特に制限されるものではないが、通常は数回から数十回である。
On the other hand, the water to be treated in the concentrating chamber 142 is supplied from the raw water tank 12 side by the pipe L6 via the switching valve B11 which is a third pressure regulating valve, and moves in the concentrating chamber 142 to the treated water tank 15 side. .
The treated water discharged from the treated water tank 15 side of the concentrating chamber 142 and the electrode chamber 143 is discharged to the reflux pipe L10 side through the open / close valves B6 and B7 through the pipes L8 and L9, respectively, and then the branch pipe L10-1 Thus, the water is returned to the raw water tank 12 via the switching valve B8.
In addition, the opening degree of the second pressure adjustment valve B5 and the third pressure adjustment valve B11 in the temperature equalization process is the same as that in the temperature increase process, and the outlet of the desalting chamber 141 (discharge port) The pressure difference with the outlet (exhaust port) of the concentration chamber 142 is 20 kPa or less.
Thereby, the inside of the electric deionization apparatus 14 can be subjected to hot water sterilization without causing deformation of the concentration chamber 142 due to deformation of the ion exchange membrane.
In addition, by circulating all the water in the production apparatus 1 including the concentrated water obtained by the reverse osmosis membrane apparatus 13, hot water sterilization can be performed efficiently without losing heat in the system. In this state, the raw water in the raw water tank 12 is circulated until each device in the system is sufficiently sterilized. The number of circulations is not particularly limited, but is usually several to several tens of times.

次に、図9に基づいて、熱水殺菌工程における降温工程のフローを説明する。
まず、切換えバルブB4、B8を閉とし、バルブB1、B3、B9を開として、他のバルブの開閉状態は上記均温工程の状態のままにして、活性炭吸着装置11によって吸着処理がなされた常温の原水を、原水タンク12内に供給する。
併せて、原水タンク12内の原水を、加熱動作を停止した蒸気ヒータ16に供給する。次いでこの原水を、上記均温工程のときと同様、逆浸透膜装置13に供給する。逆浸透膜装置13に供給された原水は、逆浸透膜131で脱塩処理され、逆浸透膜装置13で得られた濃縮水は、濃縮水排出バルブB3を介して系外に排出させる。
Next, based on FIG. 9, the flow of the temperature lowering process in the hot water sterilization process will be described.
First, the switching valves B4, B8 are closed, the valves B1, B3, B9 are opened, and the open / close state of the other valves is left in the above-described soaking process, and the normal temperature that has been subjected to the adsorption treatment by the activated carbon adsorption device 11 The raw water is supplied into the raw water tank 12.
In addition, the raw water in the raw water tank 12 is supplied to the steam heater 16 whose heating operation has been stopped. Next, this raw water is supplied to the reverse osmosis membrane device 13 in the same manner as in the temperature-uniforming step. The raw water supplied to the reverse osmosis membrane device 13 is desalted by the reverse osmosis membrane 131, and the concentrated water obtained by the reverse osmosis membrane device 13 is discharged out of the system through the concentrated water discharge valve B3.

逆浸透膜装置13を通過した透過水は、上記昇温工程、均温工程のときと同様にして、電気式脱イオン装置14に直接供給される。
すなわち、脱塩室141の被処理水は、配管L1−2によって、原水タンク12側から供給され、脱塩室141内を処理水タンク15側に移動する。
一方、濃縮室142の被処理水は、配管L6によって、原水タンク12側から供給され、濃縮室142内を処理水タンク15側に移動する。
The permeated water that has passed through the reverse osmosis membrane device 13 is directly supplied to the electric deionization device 14 in the same manner as in the temperature raising step and the soaking step.
That is, the water to be treated in the desalting chamber 141 is supplied from the raw water tank 12 side through the pipe L1-2, and moves in the desalting chamber 141 to the treated water tank 15 side.
On the other hand, the water to be treated in the concentrating chamber 142 is supplied from the raw water tank 12 side through the pipe L6, and moves in the concentrating chamber 142 to the treated water tank 15 side.

脱塩室141から排出される処理水は、第3の圧力調整バルブである切換えバルブB5を介して原水タンク12に還流されるが、逆浸透膜装置13の濃縮水及び電気式脱イオン装置14の濃縮水、電極水は、それぞれ還流配管L3並びに還流配管L10及び分岐管L10−2から系外に排出される。
この状態で、系内の温度が20〜30℃に降温するまで原水タンク12内の原水を循環させる。
なお、降温工程における第2の圧力調整バルブB5及び第3の圧力調整バルブB11の開度は、上記均温工程のときと同じ開度として行われ、脱塩室141出口(排出口)と濃縮室142出口(排出口)との圧力差が、20kPa以下とされている。
The treated water discharged from the desalting chamber 141 is returned to the raw water tank 12 through the switching valve B5, which is a third pressure regulating valve, but the concentrated water of the reverse osmosis membrane device 13 and the electric deionization device 14 are used. The concentrated water and electrode water are discharged out of the system from the reflux pipe L3, the reflux pipe L10, and the branch pipe L10-2, respectively.
In this state, the raw water in the raw water tank 12 is circulated until the temperature in the system drops to 20-30 ° C.
In addition, the opening degree of the second pressure regulating valve B5 and the third pressure regulating valve B11 in the temperature lowering process is performed as the same opening degree as in the temperature equalizing process, and the outlet of the desalting chamber 141 (discharge port) and the concentration are performed. The pressure difference with the chamber 142 outlet (discharge port) is 20 kPa or less.

このように、本発明の純水製造方法は、純水製造工程においては、濃縮室142の被処理水を、脱塩室141の通水方向と反対方向に通水するため、濃縮室142内におけるイオン濃度の上昇を防止し、濃縮室142の目詰まりの発生や、電気式脱イオン装置14の短命化を防止することができる。また、熱水殺菌処理時には、濃縮室142の通水方向を切り替えて、脱塩室141の通水方向と同一方向に通水することにより、脱塩室141と濃縮室142との圧力差を低減し、熱水殺菌処理時におけるイオン交換膜の変形や、これに伴う濃縮室の閉塞を防止できるため、濃縮水の流量低下、すなわち処理効率の低下や、脱イオン装置の短命化を防止することができる。   As described above, in the pure water production method of the present invention, in the pure water production process, the water to be treated in the concentration chamber 142 is passed in the direction opposite to the water flow direction of the desalting chamber 141. The increase in the ion concentration in the gas can be prevented, the clogging of the concentration chamber 142 can be prevented, and the shortening of the life of the electric deionizer 14 can be prevented. Further, during the hot water sterilization treatment, the pressure difference between the desalting chamber 141 and the concentrating chamber 142 is changed by switching the water passing direction of the concentrating chamber 142 and passing the water in the same direction as the water passing direction of the desalting chamber 141. Reduces the flow rate of concentrated water, that is, reduces the processing efficiency and shortens the life of the deionizer because it can reduce the deformation of the ion exchange membrane during hot water sterilization and prevent the concentrating chamber from being blocked. be able to.

なお、本実施形態では、上述した逆浸透膜131を備えた逆浸透膜装置13を用いることにより、予め常温の原水を逆浸透膜131に通水して純水を製造し、次いでこの純水で原水タンク12内の原水を置換し、これを電気式脱イオン装置14に供給する工程を経ないで熱水殺菌工程を行うことができる。すなわち、熱水殺菌工程において、熱水状態で逆浸透膜131を通水させた透過水を、直接電気式脱イオン装置14に供給して熱水殺菌できるため、殺菌工程に要する時間を大幅に短縮し、殺菌処理に要する処理水やエネルギーを大幅に節減できる。   In this embodiment, by using the reverse osmosis membrane device 13 including the reverse osmosis membrane 131 described above, pure water is produced by passing raw water at normal temperature through the reverse osmosis membrane 131 in advance, and then this pure water. Thus, the hot water sterilization step can be performed without replacing the raw water in the raw water tank 12 and supplying the raw water to the electric deionizer 14. That is, in the hot water sterilization process, the permeated water that has been passed through the reverse osmosis membrane 131 in the hot water state can be directly supplied to the electric deionization device 14 to be sterilized with hot water, greatly reducing the time required for the sterilization process. This shortens the processing water and energy required for sterilization.

以上、本発明の純水製造方法について説明したが、本発明の効果を損なわない範囲で、その実施順序等を適宜変更して行うことができる。   As mentioned above, although the pure water manufacturing method of this invention was demonstrated, the implementation order etc. can be changed suitably in the range which does not impair the effect of this invention.

以下、実施例及び比較例により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

図1に示した純水製造装置1を用いて原水(厚木市水)の処理を行った。
なお、装置構成について、純水製造装置1の前段の装置構成は、ノムラックス EP−10(野村マイクロ・サイエンス株式会社製、商品名)の前段部(逆浸透膜装置3)を用いた。
Raw water (Atsugi City water) was treated using the pure water production apparatus 1 shown in FIG.
In addition, about the apparatus structure, the front stage part (reverse osmosis membrane apparatus 3) of Nomurax EP-10 (Nomura Micro Science Co., Ltd. make, brand name) was used for the front stage apparatus structure of the pure water manufacturing apparatus 1. FIG.

図1における活性炭吸着装置11としては、ACボンベNCC−200AC(野村マイクロ・サイエンス株式会社製、商品名)を用い、これに装着する活性炭として、クラレコールKW(クラレケミカル株式会社製、商品名)を用いた。
また、逆浸透膜装置13としては、逆浸透膜131として、Duratherm RO 4040 HF(GE社製)を用いた逆浸透膜装置を用い、電気式脱イオン装置14としては、MK−3MiniHT(GE社製、商品名)を用いた。
As the activated carbon adsorption device 11 in FIG. 1, AC cylinder NCC-200AC (trade name, manufactured by Nomura Micro Science Co., Ltd.) is used, and Kuraray Coal KW (trade name, manufactured by Kuraray Chemical Co., Ltd.) is used as the activated carbon to be attached thereto. Was used.
The reverse osmosis membrane device 13 is a reverse osmosis membrane 131 using a reverse osmosis membrane device using Duratherm RO 4040 HF (manufactured by GE), and the electric deionization device 14 is MK-3 MiniHT (GE Corporation). Product name).

(実施例1)
[純水製造工程]
まず、純水製造装置1の各バルブB1〜B12の開閉状態を図6で説明した状態とし、原水タンク12内に貯留された原水を、膜処理装置、逆浸透膜装置13、硬度除去装置の順に通水した。硬度除去装置の処理水の導電率は、20μS/cm以下であった。次いでこの処理水を、電気式脱イオン装置14の供給水として供給した。この際、脱塩室141への供給水量は1.7L/min./cellとし、濃縮室142への供給水量は0.6L/min./cellとして通水し、電気式脱イオン装置14には、4.5Aの電流を印加した。また、濃縮室142への通水方向は、表1の純水製造工程1で示す方向とし、脱塩室141出入口A、B(図3(a)参照。)圧力、及び濃縮室142出入口C、D(図3(a)参照。)における圧力は、それぞれ表1の純水製造工程1で示す値とした。
この状態で、原水タンク12内の原水を900分間通水して、純水製造処理を行った。
Example 1
[Pure water production process]
First, the open / closed state of each valve B1 to B12 of the pure water production apparatus 1 is set to the state described in FIG. 6, and the raw water stored in the raw water tank 12 is converted into a membrane treatment device, a reverse osmosis membrane device 13, and a hardness removal device. Water was passed in order. The conductivity of the treated water of the hardness removing device was 20 μS / cm or less. Next, this treated water was supplied as supply water for the electric deionizer 14. At this time, the amount of water supplied to the desalting chamber 141 is 1.7 L / min. / Cell, and the amount of water supplied to the concentration chamber 142 is 0.6 L / min. Water was passed as / cell, and a current of 4.5 A was applied to the electric deionizer 14. Further, the water flow direction to the concentrating chamber 142 is the direction shown in the pure water production step 1 in Table 1, and the pressure of the desalting chamber 141 inlets and outlets A and B (see FIG. 3A) and the concentrating chamber 142 inlet and outlet C , D (see FIG. 3A), the pressure shown in the pure water production step 1 in Table 1 was used.
In this state, the raw water in the raw water tank 12 was passed for 900 minutes to perform pure water production processing.

[熱水殺菌工程]
次に、一旦純水の製造を停止し、各バルブB1〜B12の開閉状態を図7で説明した状態として、原水タンク12内の原水を、膜処理装置に通水し、次いで、原水を85℃に加熱するように設定した蒸気ヒータ16に供給して加熱しながら通水した。次いで、加熱された原水(水温20〜85℃)を、逆浸透膜装置13、硬度成分除去装置の順に通水した。硬度除去装置の処理水の導電率は、45μS/cm以下であった。次いでこの処理水を、電気式脱イオン装置14に通水した。この状態で、系内の温度が85℃になるまで原水タンク12内の原水を60分循環させた。
その後、蒸気ヒータ16の温度を85℃に設定したまま、各バルブB1〜B12の開閉状態を図8に示す状態として、水温85℃の熱水を、純水製造装置1内に30分循環させて、熱水殺菌処理を行った。この際、電気式脱イオン装置14への供給水の水温は85℃であり、電気式脱イオン装置14から排出された排出水の水温は、84℃であった。
次いで、蒸気ヒータ16の加熱動作を停止したうえで、各バルブB1〜B12の開閉状態を図9に示す状態とし、前処理水10を原水タンク12に供給し、原水タンク12内の熱水と混合した。同時に、この混合水を、上記と同様に膜処理装置、蒸気ヒータ16、逆浸透膜装置13、硬度成分除去装置、電気式脱イオン装置14の順に通水し、原水が25〜30℃となるまで、純水製造装置1内に90分循環させた。
この際、濃縮室142への被処理水の通水方向、並びに脱塩室141出入口A、B(図3(b)参照。)圧力、及び濃縮室142出入口C、D(図3(b)参照。)圧力は、それぞれ表1の各熱水殺菌工程(昇温工程、均温工程、降温工程)に示す方向及び圧力値とした。
また、熱水殺菌工程(昇温工程、均温工程、降温工程)における電気式脱イオン装置14の脱塩室141の流量は、1.0L/min./cellであった。
[Hot water sterilization process]
Next, the production of pure water is temporarily stopped, and the open / closed state of each of the valves B1 to B12 is set to the state described in FIG. 7, and the raw water in the raw water tank 12 is passed through the membrane treatment device. It supplied to the steam heater 16 set so that it might heat at degreeC, and water-flowed, heating. Next, the heated raw water (water temperature 20 to 85 ° C.) was passed through the reverse osmosis membrane device 13 and the hardness component removing device in this order. The conductivity of the treated water of the hardness removing device was 45 μS / cm or less. Next, this treated water was passed through the electric deionizer 14. In this state, the raw water in the raw water tank 12 was circulated for 60 minutes until the temperature in the system reached 85 ° C.
Thereafter, with the temperature of the steam heater 16 set to 85 ° C., the open / closed state of the valves B 1 to B 12 is set to the state shown in FIG. 8, and hot water with a water temperature of 85 ° C. is circulated in the pure water production apparatus 1 for 30 minutes. Then, hot water sterilization treatment was performed. At this time, the temperature of the supply water to the electric deionization device 14 was 85 ° C., and the temperature of the discharged water discharged from the electric deionization device 14 was 84 ° C.
Next, after stopping the heating operation of the steam heater 16, the open / close state of the valves B <b> 1 to B <b> 12 is changed to the state shown in FIG. 9, the pretreated water 10 is supplied to the raw water tank 12, and the hot water in the raw water tank 12 is Mixed. At the same time, this mixed water is passed in the order of the membrane treatment device, the steam heater 16, the reverse osmosis membrane device 13, the hardness component removal device, and the electric deionization device 14 in the same manner as described above, and the raw water becomes 25-30 ° C. Up to 90 minutes in the pure water production apparatus 1
At this time, the flow direction of the water to be treated to the concentrating chamber 142, the desalting chamber 141 inlets and outlets A and B (see FIG. 3B), and the concentrating chamber 142 inlets and outlets C and D (FIG. 3B). Reference :) The pressure was set to the direction and pressure value shown in each hot water sterilization step (temperature raising step, temperature equalizing step, temperature lowering step) in Table 1, respectively.
Moreover, the flow rate of the demineralization chamber 141 of the electric deionization apparatus 14 in the hot water sterilization process (heating process, soaking process, cooling process) is 1.0 L / min. / Cell.

Figure 2012040474
Figure 2012040474

純水製造装置1において、上述した条件の下、純水製造処理工程1、確認工程1、熱水殺菌工程、及び確認工程2を、この順に5回繰り返して行った。
このうち確認工程1、2では、濃縮室142への通水方向を表1の「確認工程1」、「確認工程2」に示す方向とし、脱塩室141出入口A、B(図3(a)参照。)圧力及び濃縮室142出入口C、D(図3(a)参照。)圧力を、表1の「確認工程1」、「確認工程2」に示す圧力として、脱塩室141から排出される脱塩水流量及び濃縮室142から排出される濃縮水流量の測定を行った。確認工程1及び確認工程2は、それぞれ約30分間行った。
また、確認工程2の後、濃縮室142の通水方向を表1の「純水製造工程1」に示す方向とし、脱塩室141出入口A、B(図3(a)参照。)圧力及び濃縮室142出入口C、D(図3(a)参照。)圧力を表1の「純水製造工程1」に示す圧力として、純水製造工程1に移行したときの、脱塩室141出口水の導電率(μS/cm)を測定した。
各回(1回、3回、5回)における、脱塩水及び濃縮水の流量変化率(%)並びに脱塩室141出口水の導電率(μS/cm)を表3に示す。
なお、流量変化率(%)は、熱水殺菌処理前(熱水殺菌回数0回)の電気式脱イオン装置14を用いて純水製造処理を行ったときの脱塩室141、濃縮室142から排出される脱塩水、濃縮水の流量を基準として、確認工程2(熱水殺菌処理後)の脱塩水、濃縮水の流量の割合を百分率(%)で表したものである。
In the pure water production apparatus 1, the pure water production treatment step 1, the confirmation step 1, the hot water sterilization step, and the confirmation step 2 were repeated five times in this order under the above-described conditions.
Of these, in the confirmation steps 1 and 2, the water flow direction to the concentration chamber 142 is the direction shown in “confirmation step 1” and “confirmation step 2” in Table 1, and the desalination chambers 141 entrances A and B (FIG. 3 (a ) Reference) Pressure and concentration chamber 142 inlet / outlet C, D (see FIG. 3A) The pressure is discharged from the desalting chamber 141 as the pressure shown in “Confirmation Step 1” and “Confirmation Step 2” in Table 1. The demineralized water flow rate and the concentrated water flow rate discharged from the concentration chamber 142 were measured. Confirmation step 1 and confirmation step 2 were each performed for about 30 minutes.
Moreover, after the confirmation process 2, the water flow direction of the concentration chamber 142 is set to the direction shown in “Pure water production process 1” in Table 1, and the pressure and the desalination chamber 141 entrances A and B (see FIG. 3A) and Concentration chamber 142 inlet / outlet C, D (see FIG. 3 (a)) The pressure shown in “Pure water production step 1” in Table 1 is the dewatering chamber 141 outlet water when the process moves to pure water production step 1. The electrical conductivity (μS / cm) of was measured.
Table 3 shows the flow rate change rate (%) of the desalted water and concentrated water and the electrical conductivity (μS / cm) of the desalting chamber 141 outlet water at each time (1 time, 3 times, and 5 times).
Note that the rate of change in flow rate (%) indicates the demineralization chamber 141 and the concentration chamber 142 when the pure water production process is performed using the electric deionization apparatus 14 before the hot water sterilization process (the number of times of hot water sterilization is 0). The ratio of the flow rate of the demineralized water and the concentrated water in the confirmation step 2 (after the hot water sterilization treatment) is expressed as a percentage (%) based on the flow rate of the demineralized water and the concentrated water discharged from the water.

(比較例1)
図10に示す構成の電気式脱イオン装置14を備えた純水製造装置2を用い、濃縮室142への通水方向を、表2の純水製造工程1に示す方向とし、脱塩室141出入口A、B圧力及び濃縮室142出入口C、D圧力を、表2の純水製造工程1に示す値としたこと以外は、実施例1の純水製造工程と同様の条件で、純水製造処理を行った。
その後、この純水製造装置2において、濃縮室142への通水方向を、表2の各熱水殺菌工程(昇温工程、均温工程、降温工程)に示す方向とし、脱塩室141出入口A、B圧力、及び濃縮室142出入口C、D圧力を表2の各熱水殺菌工程(昇温工程、均温工程、降温工程)に示す圧力値としたこと以外は、実施例1と同様の条件で、熱水殺菌処理を行った。
(Comparative Example 1)
Using the pure water production apparatus 2 provided with the electric deionization apparatus 14 having the configuration shown in FIG. 10, the direction of water flow to the concentration chamber 142 is the direction shown in the pure water production process 1 in Table 2, and the demineralization chamber 141. Pure water production under the same conditions as in the pure water production process of Example 1, except that the inlet / outlet A, B pressure and the concentration chamber 142 inlet / outlet C, D pressure were set to the values shown in the pure water production process 1 of Table 2. Processed.
Thereafter, in this pure water production apparatus 2, the direction of water flow to the concentration chamber 142 is set to the direction shown in each hot water sterilization step (temperature raising step, temperature equalizing step, temperature lowering step) in Table 2, and the entrance and exit of the desalting chamber 141 Except that the A and B pressures and the concentration chamber 142 inlet and outlet C and D pressures were set to the pressure values shown in the respective hot water sterilization steps (temperature raising step, temperature equalizing step, temperature lowering step) in Table 2, the same as in Example 1. The hot water sterilization process was performed on condition of this.

Figure 2012040474
Figure 2012040474

純水製造装置2において、上述した条件の下、純水製造処理工程1、確認工程1、熱水殺菌工程、及び確認工程2を、この順に2回繰り返して行った。
このうち、確認工程1、2では、濃縮室142への通水方向を表1の「確認工程1」、「確認工程2」に示す方向とし、脱塩室141出入口A、B(図3(a)参照。)圧力及び濃縮室142出入口C、D(図3(a)参照。)圧力を、表1の「確認工程1」、「確認工程2」に示す圧力として、脱塩室141から排出される脱塩水流量及び濃縮室142から排出される濃縮水流量の測定を行った。確認工程1及び確認工程2は、それぞれ約30分間行った。
次いで、確認工程2の後、濃縮室142の通水方向を表1の「純水製造工程1」に
示す方向とし、脱塩室141出入口A、B(図3(a)参照。)圧力及び濃縮室142出入口C、D(図3(a)参照。)圧力を表1の「純水製造工程1」に示す圧力として、純水製造工程1に移行したときの、脱塩室141出口水の導電率(μS/cm)を測定した。
各回(1回、2回)における、脱塩水及び濃縮水の流量変化率(%)並びに脱塩室141出口水の導電率(μS/cm)を表3に示す。
In the pure water production apparatus 2, the pure water production treatment step 1, the confirmation step 1, the hot water sterilization step, and the confirmation step 2 were repeated twice in this order under the above-described conditions.
Among these, in the confirmation steps 1 and 2, the water flow direction to the concentration chamber 142 is the direction shown in “confirmation step 1” and “confirmation step 2” in Table 1, and the desalination chambers 141 entrances A and B (FIG. 3 ( Refer to a).) Pressure and concentration chamber 142 inlet / outlet C, D (see FIG. 3A) The pressures shown in “Confirmation step 1” and “Confirmation step 2” in Table 1 The flow of the demineralized water discharged and the flow of the concentrated water discharged from the concentration chamber 142 were measured. Confirmation step 1 and confirmation step 2 were each performed for about 30 minutes.
Next, after the confirmation step 2, the water flow direction of the concentration chamber 142 is set to the direction shown in “Pure water production step 1” in Table 1, and the pressure and the desalination chamber 141 entrances A and B (see FIG. 3A) and Concentration chamber 142 inlet / outlet C, D (see FIG. 3 (a)) The pressure shown in “Pure water production step 1” in Table 1 is the dewatering chamber 141 outlet water when the process moves to pure water production step 1. The electrical conductivity (μS / cm) of was measured.
Table 3 shows the flow rate change rate (%) of the desalted water and the concentrated water and the electrical conductivity (μS / cm) of the desalted chamber 141 outlet water at each time (once and twice).

Figure 2012040474
Figure 2012040474

上記の結果から、純水製造処理時と熱水殺菌処理時との濃縮室の通水方向を、表1で示すように切り替えることにより、熱水殺菌処理後の純水製造処理時においても、脱塩室及び濃縮室の流量比率の変化が少なく、電気式脱イオン装置141の処理能力を低下させることなく使用できることがわかった。また、純水製造処理により得られる処理水質の低下も見られないことがわかった。   From the above results, by switching the flow direction of the concentration chamber between the pure water production process and the hot water sterilization process as shown in Table 1, even during the pure water production process after the hot water sterilization process, It has been found that the flow rate ratio between the desalting chamber and the concentrating chamber is small and can be used without reducing the processing capacity of the electric deionization apparatus 141. Moreover, it turned out that the fall of the treated water quality obtained by a pure water manufacturing process is not seen.

1 純水製造装置
12 原水タンク
13 逆浸透膜装置
14 電気式脱イオン装置
141 脱塩室
142 濃縮室
143 電極室
15 処理水タンク
16 蒸気ヒータ
B1、B2、B6、B7、B10、B12 開閉バルブ
B3 濃縮水排出バルブ
B4、B5、B8、B9、B11 切換えバルブ
L1〜L2 供給配管
L3 濃縮水排出配管
L4〜L5 還流配管
L6〜L9 配管
L10 還流配管
L10−1〜L10−2 分岐管
L11〜L12 分岐配管
L13 排出配管
DESCRIPTION OF SYMBOLS 1 Pure water production apparatus 12 Raw water tank 13 Reverse osmosis membrane apparatus 14 Electric deionization apparatus 141 Desalination chamber 142 Concentration chamber 143 Electrode chamber 15 Treated water tank 16 Steam heaters B1, B2, B6, B7, B10, B12 On-off valve B3 Concentrated water discharge valve
B4, B5, B8, B9, B11 Switching valve L1 to L2 Supply pipe L3 Concentrated water discharge pipe L4 to L5 Reflux pipe L6 to L9 Pipe L10 Reflux pipe L10-1 to L10-2 Branch pipe L11 to L12 Branch pipe L13 Discharge pipe

Claims (8)

電気式脱イオン装置により脱イオンを行う純水製造処理と、前記電気式脱イオン装置に熱水を供給して殺菌する熱水殺菌処理と、を交互に繰り返して行う純水製造方法であって、
前記純水製造処理時における、前記電気式脱イオン装置の前記濃縮室内の被処理水の流れ方向を、前記脱塩室の被処理水の流れ方向に対して向流方向とし、前記熱水殺菌処理時における、前記電気式脱イオン装置の前記濃縮室内の被処理水の流れ方向を、前記脱塩室内の被処理水の流れ方向に対して並流方向とする、
ことを特徴とする純水製造方法。
A pure water production method in which a deionized water production process in which deionization is performed by an electric deionization apparatus and a hot water sterilization process in which hot water is supplied to the electric deionization apparatus and sterilized are alternately repeated. ,
The flow of water to be treated in the concentrating chamber of the electric deionizer during the pure water production process is a countercurrent direction with respect to the flow of water to be treated in the demineralization chamber, and the hot water sterilization At the time of treatment, the flow direction of the water to be treated in the concentration chamber of the electric deionization apparatus is set as a parallel flow direction to the flow direction of the water to be treated in the demineralization chamber.
The pure water manufacturing method characterized by the above-mentioned.
前記純水製造処理時における前記電気式脱イオン装置の前記脱塩室出口と前記濃縮室入口間の圧力差を50kPa以上とし、前記熱水殺菌処理時における前記脱塩室出口と前記濃縮室出口間の圧力差を20kPa以下とする
ことを特徴とする請求項1に記載の純水製造方法。
The pressure difference between the demineralization chamber outlet and the concentration chamber inlet of the electric deionizer during the pure water production process is 50 kPa or more, and the demineralization chamber outlet and the concentration chamber outlet during the hot water sterilization process. The method for producing pure water according to claim 1, wherein the pressure difference between them is 20 kPa or less.
前記熱水殺菌処理時に用いる熱水が、水温60℃以上の熱水である
ことを特徴とする請求項1又は2に記載の純水製造方法。
The method for producing pure water according to claim 1 or 2, wherein the hot water used in the hot water sterilization treatment is hot water having a water temperature of 60 ° C or higher.
前記逆浸透膜装置の被処理水の水温60℃以上における、前記逆浸透膜装置の透過水の導電率が45μS/cm以下の逆浸透膜装置を使用する
ことを特徴とする請求項1ないし3のいずれか1項に記載の純水製造方法。
4. The reverse osmosis membrane device having a conductivity of permeated water of the reverse osmosis membrane device of 45 μS / cm or less at a water temperature of 60 ° C. or higher of the water to be treated of the reverse osmosis membrane device. The pure water manufacturing method of any one of these.
純水の製造を開始するにあたり系内を熱水により殺菌するための昇温、均温及び降温の各工程において、
(a)昇温工程では、前記加熱手段により前記原水タンクから前記逆浸透膜装置に供給される被処理水を60℃以上の温度に加熱するとともに、前記原水タンクへの原水の供給を止め、前記逆浸透膜装置の濃縮水を排出し、前記電気式脱イオン装置の脱塩水、濃縮水、電極水は前記原水タンクへ還流させる、
(b)均温工程では、前記加熱を継続しつつ、前記原水タンクへの原水の流入を止め、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水、脱塩水を原水タンクへ還流させる、
(c)降温工程では、前記加熱を停止するとともに、前記原水タンクへ原水を供給し、前記逆浸透膜装置の濃縮水および前記電気式脱イオン装置の濃縮水、電極水を放出し、前記電気式脱イオン装置の脱塩水は処理タンクへ還流させる、
ことを特徴とする請求項1ないし4のいずれか1項に記載の純水製造方法。
In each process of temperature increase, temperature equalization and temperature decrease to sterilize the system with hot water at the start of production of pure water,
(A) In the temperature raising step, the water to be treated supplied from the raw water tank to the reverse osmosis membrane device is heated to a temperature of 60 ° C. or higher by the heating means, and the supply of the raw water to the raw water tank is stopped. The concentrated water of the reverse osmosis membrane device is discharged, and the demineralized water, concentrated water, and electrode water of the electric deionizer are recirculated to the raw water tank.
(B) In the soaking step, while continuing the heating, the inflow of the raw water into the raw water tank is stopped, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionizer, electrode water, and demineralized water To the raw water tank,
(C) In the temperature lowering step, the heating is stopped, the raw water is supplied to the raw water tank, the concentrated water of the reverse osmosis membrane device, the concentrated water of the electric deionization device, and the electrode water are discharged, Demineralized water from the deionizer is returned to the treatment tank.
The pure water manufacturing method of any one of Claims 1 thru | or 4 characterized by the above-mentioned.
陰極と陽極との間に、複数のアニオン交換膜とカチオン交換膜とを配列して脱塩室と濃縮室とを形成してなる電気式脱イオン装置を有し、純水製造処理と熱水殺菌処理とを交互に行う純水製造装置であって、
前記電気式脱イオン装置が、前記純水製造処理時には、前記脱塩室の脱塩水出口に近い側から前記濃縮室内に被処理水を導入するとともに、前記濃縮室のうち前記脱塩室の被処理水入口に近い側から濃縮水を流出させ、前記熱水殺菌処理時には、前記脱塩室の被処理水入口に近い側から前記濃縮室内に被処理水を導入するとともに、前記濃縮室のうち脱塩室の脱塩水出口に近い側から濃縮水を流出させる、制御手段を有する
ことを特徴とする純水製造装置。
An electric deionization apparatus comprising a plurality of anion exchange membranes and cation exchange membranes arranged between a cathode and an anode to form a demineralization chamber and a concentration chamber. An apparatus for producing pure water that alternately performs sterilization treatment,
During the pure water production process, the electric deionization apparatus introduces water to be treated into the concentration chamber from the side near the demineralized water outlet of the demineralization chamber, and the demineralization chamber in the concentration chamber. Concentrated water is allowed to flow out from the side close to the treated water inlet, and during the hot water sterilization treatment, treated water is introduced into the concentration chamber from the side near the treated water inlet of the desalting chamber, An apparatus for producing pure water, comprising control means for allowing concentrated water to flow out from a side of a desalting chamber close to a desalted water outlet.
前記電気式脱イオン装置が、前記脱塩室と前記濃縮室との間の圧力差を調整する圧力調整手段を有する、ことを特徴とする請求項6に記載の純水製造装置。   The pure water production apparatus according to claim 6, wherein the electric deionizer includes a pressure adjusting unit that adjusts a pressure difference between the demineralization chamber and the concentration chamber. 前記圧力調整手段が、前記熱水殺菌処理時における、前記濃縮室への被処理水供給流路に設けた圧力調整バルブと、前記脱塩室の処理水流路に設けた圧力調整バルブである、
ことを特徴とする請求項6又は7に記載の純水製造装置。
The pressure adjusting means is a pressure adjusting valve provided in a treated water supply channel to the concentrating chamber and a pressure regulating valve provided in a treated water channel of the desalting chamber during the hot water sterilization treatment.
The pure water manufacturing apparatus according to claim 6 or 7, wherein
JP2010181734A 2010-08-16 2010-08-16 Pure water production method and pure water production apparatus Active JP5480063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181734A JP5480063B2 (en) 2010-08-16 2010-08-16 Pure water production method and pure water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181734A JP5480063B2 (en) 2010-08-16 2010-08-16 Pure water production method and pure water production apparatus

Publications (2)

Publication Number Publication Date
JP2012040474A true JP2012040474A (en) 2012-03-01
JP5480063B2 JP5480063B2 (en) 2014-04-23

Family

ID=45897378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181734A Active JP5480063B2 (en) 2010-08-16 2010-08-16 Pure water production method and pure water production apparatus

Country Status (1)

Country Link
JP (1) JP5480063B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124481A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124483A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
WO2023153023A1 (en) * 2022-02-09 2023-08-17 三菱重工業株式会社 Electrodialysis device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2001269668A (en) * 2000-03-24 2001-10-02 Aquas Corp Manufacturing method of pure water and device for manufacturing pure water
JP2002205069A (en) * 2001-01-05 2002-07-23 Kurita Water Ind Ltd Electrodeionization apparatus and operating method thereof
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047054A (en) * 1999-08-11 2001-02-20 Kurita Water Ind Ltd Sterilizing method of deionized water making apparatus and deionized water making method
JP2001269668A (en) * 2000-03-24 2001-10-02 Aquas Corp Manufacturing method of pure water and device for manufacturing pure water
JP2002205069A (en) * 2001-01-05 2002-07-23 Kurita Water Ind Ltd Electrodeionization apparatus and operating method thereof
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2004283710A (en) * 2003-03-20 2004-10-14 Kurita Water Ind Ltd Pure water producer
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124481A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124483A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
WO2023153023A1 (en) * 2022-02-09 2023-08-17 三菱重工業株式会社 Electrodialysis device

Also Published As

Publication number Publication date
JP5480063B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5307049B2 (en) Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals
JP5616771B2 (en) Dilution water production equipment for dialysate preparation
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP5093679B2 (en) Disinfection method for purified water production equipment
JP5480063B2 (en) Pure water production method and pure water production apparatus
KR102107924B1 (en) Ultrapure water production equipment
JPH0957271A (en) Treatment of water by electrolytic deionization method and device used therefor
JP2010000433A5 (en)
JP7011457B2 (en) Sterilization method for pure water production equipment
JP6056476B2 (en) Pure water production system
JP2024074880A (en) Sterilization method of medical water production system, and production method of medical water
JP4978590B2 (en) Pure water production equipment
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
WO2020148961A1 (en) Pure water production apparatus, and method for operating same
JP5184401B2 (en) Pure water production method and pure water production apparatus
KR20120049870A (en) Closed circuit desalination retrofit for improved performance of common reverse osmosis systems
JP5459704B2 (en) Purified water production method and purified water production apparatus
JP3299093B2 (en) Pure water production method and pure water production equipment
JP4397089B2 (en) Operation method of electric deionized water production equipment
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP6807250B2 (en) Water treatment equipment
TW202228838A (en) Ultrapure water production system and ultrapure water production method
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JP2018051450A (en) Device for producing purified water for medical use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5480063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250