JP6056476B2 - Pure water production system - Google Patents

Pure water production system Download PDF

Info

Publication number
JP6056476B2
JP6056476B2 JP2012288433A JP2012288433A JP6056476B2 JP 6056476 B2 JP6056476 B2 JP 6056476B2 JP 2012288433 A JP2012288433 A JP 2012288433A JP 2012288433 A JP2012288433 A JP 2012288433A JP 6056476 B2 JP6056476 B2 JP 6056476B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
stage reverse
membrane device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012288433A
Other languages
Japanese (ja)
Other versions
JP2014128767A (en
Inventor
宏之 池田
宏之 池田
岳夫 出口
岳夫 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012288433A priority Critical patent/JP6056476B2/en
Publication of JP2014128767A publication Critical patent/JP2014128767A/en
Application granted granted Critical
Publication of JP6056476B2 publication Critical patent/JP6056476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、純水製造システムに関し、特に、医薬製造用の純水を製造する純水製造システムに関する。   The present invention relates to a pure water production system, and more particularly to a pure water production system for producing pure water for pharmaceutical production.

医薬用純水装置系内の一般細菌数は水道水基準の一般の細菌数である100ヶ/mL以下で管理されることが多く、これを維持するために定期的に系内の殺菌を行っている。殺菌の方法としては、過酸化水素や次亜塩素酸ナトリウムを用いた薬品による洗浄があげられる。しかし、薬品による洗浄では、装置を構成する主要な樹脂、逆浸透膜装置、電気脱イオン装置などを構成する水処理構成部材が薬品による劣化を受けるため、その部分をバイパスするなどして洗浄を行ってきた。このため一般細菌の管理の効果は十分なものではなかった。   In many cases, the number of general bacteria in a pure water device for medical use is controlled at 100 bacteria / mL or less, which is the general number of bacteria according to tap water standards, and the system is regularly sterilized to maintain this. ing. As a sterilization method, cleaning with chemicals using hydrogen peroxide or sodium hypochlorite can be mentioned. However, in cleaning with chemicals, water treatment components that make up the main resin, reverse osmosis membrane devices, and electrodeionization devices that make up the device are subject to deterioration by chemicals. I went. For this reason, the effect of the management of general bacteria was not sufficient.

一方近年、これら主要な水処理構成部材に耐熱性を持たせることにより、熱水、もしくは温水で系内全てを殺菌する方法が主流になりつつある。   On the other hand, in recent years, a method of sterilizing the entire system with hot water or warm water by imparting heat resistance to these main water treatment components is becoming mainstream.

この場合、水処理構成部材である逆浸透膜は高温時には膜の破損防止のために膜差圧や入口圧力上限が定められている。通常この値は差圧で0.1〜0.2MPa、入口圧力で0.1〜0.3MPaと低く、これまで一段目の逆浸透膜装置の処理水を更に後段の逆浸透膜装置を透過させる形の二段逆浸透膜装置の形態がとれなかった。   In this case, the reverse osmosis membrane, which is a water treatment component, has a membrane differential pressure and an inlet pressure upper limit set at high temperatures to prevent membrane damage. Normally, this value is as low as 0.1-0.2 MPa in differential pressure and 0.1-0.3 MPa in inlet pressure, so far, the treated water of the first stage reverse osmosis membrane apparatus has passed through the subsequent reverse osmosis membrane apparatus. The form of the two-stage reverse osmosis membrane device to be made was not able to be taken.

この問題を解決するために、第1段の逆浸透膜装置と第2段の逆浸透膜装置との間にポンプを介して殺菌時の低圧運転を実現させる方法も考えられるが、ポンプの費用がかさむことに加え、医薬製造用の用水を製造する場合、なるべく滞留部を設けたくない事情がある。熱殺菌時以外の純水製造時にただ水を通過させるだけのポンプ滞留部はなるべく避けて液溜まりのない装置構成としたい事情があった。   In order to solve this problem, a method of realizing low-pressure operation at the time of sterilization through a pump between the first-stage reverse osmosis membrane device and the second-stage reverse osmosis membrane device can be considered. In addition to being bulky, there are circumstances where it is desirable not to provide a retention portion as much as possible when manufacturing water for pharmaceutical production. There was a circumstance where it would be desirable to avoid a pump retention section that only allows water to pass during pure water production other than during heat sterilization, so that the apparatus has no liquid pool.

また、原水硬度が高い原水を処理する場合には後段の電気脱イオン装置へ通水する際の硬度供給基準を保つために、一段逆浸透膜装置単独では硬度供給基準が届かない場合が生じる。   In addition, when raw water having a high raw water hardness is processed, in order to maintain the hardness supply standard when water is passed to the subsequent electrodeionization apparatus, the single-stage reverse osmosis membrane apparatus alone may not reach the hardness supply standard.

このような場合は逆浸透膜装置の前に軟水器を設置しあらかじめ硬度成分をナトリウムに置換することで硬度供給基準を達成していた。しかし、軟水器の設置は定期的な食塩の補充を要し、運転管理に労力が必要であり、なるべく採用したくない事情があった。   In such a case, a water softener was installed in front of the reverse osmosis membrane device, and the hardness component was achieved by replacing the hardness component with sodium in advance. However, the installation of the water softener required regular salt replenishment, and labor was required for operation management, and there was a circumstance that it was not desirable to adopt as much as possible.

本発明は上述した事情に鑑み、少なくとも二段構成の逆浸透膜装置に対し直列に通水可能で、原水硬度が高い原水を処理する場合でも軟水器を設置することなく所定の硬度供給基準を満たすことができるとともに、熱水を通水することによりシステム全体の殺菌が可能な医薬製造用純水製造システムを提供することを目的とする。   In view of the above-mentioned circumstances, the present invention can pass water in series with respect to a reverse osmosis membrane device having at least two stages, and even when processing raw water having high raw water hardness, a predetermined hardness supply standard can be set without installing a water softener. An object of the present invention is to provide a pure water production system for pharmaceutical production that can be filled and sterilized by passing hot water through the entire system.

上記目的を達成するために、第一に本発明は、原水タンクの原水を第1段逆浸透膜装置と、第2段逆浸透膜装置とを通して純水を製造する純水製造ラインを備えたシステムであって、前記第1段逆浸透膜装置をバイパスして前記第2段逆浸透膜装置に前記原水を供給可能なバイパスラインと、該バイパスライン上において前記バイパスラインを介した前記第2段逆浸透膜装置への原水の流入を制御するバイパス制御弁と、前記純水製造ライン上、前記第1段逆浸透膜装置より下流側で、かつ前記バイパスラインから前記純水製造ラインに前記原水を供給する位置より上流側の位置において前記純水製造ラインに接続された第1段処理水分流路とを備えた純水製造システムを提供する(発明1)。なお、本明細書においては、バイパスラインと純水製造ラインの分岐部も「バイパスライン上」に含まれる。   In order to achieve the above object, first, the present invention comprises a pure water production line for producing pure water through raw water in a raw water tank through a first-stage reverse osmosis membrane device and a second-stage reverse osmosis membrane device. A bypass line capable of bypassing the first-stage reverse osmosis membrane device and supplying the raw water to the second-stage reverse osmosis membrane device, and the second on the bypass line via the bypass line A bypass control valve for controlling the inflow of raw water to the stage reverse osmosis membrane device, and on the pure water production line, downstream from the first stage reverse osmosis membrane device and from the bypass line to the pure water production line Provided is a pure water production system comprising a first-stage treated moisture channel connected to the pure water production line at a position upstream from a position where raw water is supplied (Invention 1). In addition, in this specification, the branch part of a bypass line and a pure water manufacturing line is also contained in "on a bypass line."

かかる発明(発明1)によれば、バイパス制御弁の開閉により、第1段逆浸透膜装置と第2段逆浸透膜装置とに並列に原水を供給する構成と、第1段逆浸透膜装置と第2段逆浸透膜装置とが直列に接続される構成とを切り替えることができる結果、熱水殺菌時には、これらの逆浸透膜装置を並列構成とすることにより、第1段逆浸透膜装置と第2段逆浸透膜装置とに同時に熱水を供給することができるとともに、第1段逆浸透膜装置の処理水の全部または一部が、第1段処理水分流路に逃げることから、膜差圧を上げることなく2段の逆浸透膜装置に熱水を供給することが可能になり、純水製造時には、直列構成とすることにより、逆浸透膜装置を一段しか設けない場合に比べて硬度をより低減し、原水に含まれる全有機性炭素[TOC]成分の除去率の向上も図ることができる。   According to this invention (invention 1), the structure which supplies raw | natural water in parallel to a 1st stage reverse osmosis membrane apparatus and a 2nd stage reverse osmosis membrane apparatus by opening and closing of a bypass control valve, and a 1st stage reverse osmosis membrane apparatus And the second stage reverse osmosis membrane device can be switched between the configurations connected in series. As a result, at the time of hot water sterilization, by setting these reverse osmosis membrane devices in parallel configuration, the first stage reverse osmosis membrane device And the second stage reverse osmosis membrane device can supply hot water at the same time, and all or part of the treated water of the first stage reverse osmosis membrane device escapes to the first stage treated moisture flow path, It becomes possible to supply hot water to the two-stage reverse osmosis membrane device without increasing the membrane differential pressure. Compared to the case where only one reverse osmosis membrane device is provided by the serial configuration when producing pure water. The hardness is further reduced and total organic carbon [TOC] contained in raw water is formed. Improvement of the removal rate of can also be reduced.

上記発明(発明1)においては、さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、前記第1段処理水分流路が、前記原水タンクに接続される第1循環ラインを含むものであることが好ましい(発明2)。   In the said invention (invention 1), it is further provided with the raw | natural water tank which stores the said raw | natural water upstream from the said 1st stage reverse osmosis membrane apparatus, and the said 1st stage | paragraph process water flow path is connected to the said raw | natural water tank. It is preferable that one circulation line is included (Invention 2).

かかる発明(発明2)によれば、第1循環ラインを通じて第1段逆浸透膜装置の処理水を原水タンクに返送することができる構成となる。これにより、熱水殺菌時に、熱水を再利用することが可能となる。さらに、第1段逆浸透膜装置を経て得られた、よりTOC成分の除去率が高く、かつより硬度が低い水を第1循環ラインを経由して原水タンクに返送し純水を製造する純水製造ラインの循環熱水殺菌に使用することが可能になる。これにより加熱による硬度成分の析出を防止することができる。   According to this invention (invention 2), it becomes the structure which can return the treated water of a 1st stage reverse osmosis membrane apparatus to a raw | natural water tank through a 1st circulation line. Thereby, hot water can be reused at the time of hot water sterilization. Furthermore, the pure water produced through the first-stage reverse osmosis membrane device is returned to the raw water tank via the first circulation line to produce pure water by returning the water having a higher TOC component removal rate and lower hardness through the first circulation line. It can be used for circulating hot water sterilization in water production lines. Thereby, precipitation of the hardness component by heating can be prevented.

上記発明(1、2)においては、前記純水製造ライン上、前記第1段処理水分流路が接続している位置と、前記バイパスラインから前記純水製造ラインに前記原水を供給する位置との間に、直列接続流路弁を備えたものであることが好ましい(発明3)。   In the said invention (1,2), on the said pure water production line, the position where the said 1st stage process water flow path is connected, and the position which supplies the said raw water to the said pure water production line from the said bypass line, It is preferable that a series-connected flow path valve is provided between them (Invention 3).

かかる発明(発明3)によれば、純水製造時に、バイパス制御弁を閉じることによってバイパスラインへの原水供給を遮断し、直列接続流路弁を開いて純水製造ラインを解放することにより第1段逆浸透膜装置の処理水を第2段逆浸透膜装置に送ることができる一方、熱水殺菌時には、バイパス制御弁を開くことによってバイパスラインに熱水を供給するとともに、第1段逆浸透膜装置を経て第2段逆浸透膜装置へと供給される水の流通を直列接続流路弁によって制御することにより、第2段逆浸透膜装置の膜差圧や入口圧力をより精密に制御することが可能になる。   According to this invention (Invention 3), during the production of pure water, the supply of raw water to the bypass line is shut off by closing the bypass control valve, and the pure water production line is released by opening the series connection flow path valve. While the treated water of the first-stage reverse osmosis membrane device can be sent to the second-stage reverse osmosis membrane device, hot water is supplied to the bypass line by opening the bypass control valve at the time of hot water sterilization, By controlling the flow of water supplied to the second-stage reverse osmosis membrane device through the osmosis membrane device with a series-connected flow path valve, the membrane differential pressure and the inlet pressure of the second-stage reverse osmosis membrane device can be more precisely set. It becomes possible to control.

上記発明(発明1〜3)においては、さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、前記第1段逆浸透膜装置の濃縮水を前記原水タンクに返送可能な第2循環ラインを備えたものであることが好ましい(発明4)。   In the said invention (invention 1-3), it further has the raw | natural water tank which stores the said raw water upstream from the said 1st stage reverse osmosis membrane apparatus, The concentrated water of the said 1st stage reverse osmosis membrane apparatus is added to the said raw | natural water tank. It is preferable to have a second circulation line that can be returned (invention 4).

かかる発明(発明4)によれば、熱水殺菌時に、第2循環ラインを通じて第1段逆浸透膜装置の濃縮水を原水タンクへ返送することにより、水の使用量を減らすことができる。   According to this invention (invention 4), the amount of water used can be reduced by returning the concentrated water of the first-stage reverse osmosis membrane device to the raw water tank through the second circulation line during the hot water sterilization.

上記発明(発明1〜4)においては、前記第2段逆浸透膜装置の処理水を供給する電気脱イオン装置を備えたものであることが好ましい(発明5)。   In the said invention (invention 1-4), it is preferable to provide the electrodeionization apparatus which supplies the treated water of the said 2nd stage reverse osmosis membrane apparatus (invention 5).

かかる発明(発明5)によれば、電気脱イオン装置を経た極めて硬度が低い純水を製造することができる。   According to this invention (invention 5), it is possible to produce pure water having extremely low hardness that has passed through an electrodeionization apparatus.

上記発明(発明5)においては、さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、前記電気脱イオン装置の処理水を前記原水タンクに返送する第3循環ラインを備えたものであることが好ましい(発明6)。   In the said invention (invention 5), the 3rd circulation which is further provided with the raw | natural water tank which stores the said raw | natural water upstream in the said 1st stage reverse osmosis membrane apparatus, and returns the treated water of the said electrodeionization apparatus to the said raw | natural water tank It is preferable to have a line (Invention 6).

かかる発明(発明6)によれば、電気脱イオン装置の処理水を第3循環ラインから原水タンクに返送し、水質を著しく改善した水を熱水殺菌時等に利用することができ、熱水殺菌時の加熱による硬度成分の析出を防止することができる。   According to this invention (invention 6), the treated water of the electrodeionization apparatus can be returned from the third circulation line to the raw water tank, and the water whose water quality has been remarkably improved can be used for hot water sterilization. Precipitation of hardness components due to heating during sterilization can be prevented.

上記発明(発明4)においては、前記第1段逆浸透膜装置の濃縮水を排出する排出流路が前記第2循環ラインに接続されていることが好ましい(発明7)。   In the said invention (invention 4), it is preferable that the discharge flow path which discharges the concentrated water of the said 1st stage reverse osmosis membrane apparatus is connected to the said 2nd circulation line (invention 7).

かかる発明(発明7)によれば、第2循環ラインにより原水タンクに返送される水の硬度等の水質を改善する必要がある場合には第1段逆浸透膜装置の濃縮水を適宜排出することができるため、水質改善した水によってシステム全体の熱水殺菌(循環熱水殺菌を含む)や純水製造を行うことが可能となる。   According to this invention (Invention 7), when it is necessary to improve the water quality such as the hardness of the water returned to the raw water tank by the second circulation line, the concentrated water of the first-stage reverse osmosis membrane device is appropriately discharged. Therefore, it is possible to perform hot water sterilization (including circulating hot water sterilization) and pure water production of the entire system with water having improved water quality.

本発明によれば、バイパス制御弁の開閉により、第1段逆浸透膜装置と第2段逆浸透膜装置とに並列に原水を供給する構成と、第1段逆浸透膜装置と第2段逆浸透膜装置とが直列に接続される構成とを切り替えることができる結果、熱水殺菌時には、これらの逆浸透膜装置を並列構成とすることにより、第1段逆浸透膜装置と第2段逆浸透膜装置とに同時に熱水を供給することができるとともに、第1段逆浸透膜装置の処理水の全部または一部が、第1段処理水分流路に逃げることから、膜差圧を上げることなく2段の逆浸透膜装置に熱水を供給することが可能になり、純水製造時には、直列構成とすることにより、逆浸透膜装置を一段しか設けない場合に比べて硬度をより低減し、原水に含まれる全有機性炭素[TOC]成分の除去率の向上も図ることができる。   According to the present invention, a configuration in which raw water is supplied in parallel to the first stage reverse osmosis membrane device and the second stage reverse osmosis membrane device by opening and closing the bypass control valve, and the first stage reverse osmosis membrane device and the second stage As a result of switching the configuration in which the reverse osmosis membrane device is connected in series, at the time of hot water sterilization, the reverse osmosis membrane device and the second stage are configured by arranging these reverse osmosis membrane devices in parallel. Hot water can be supplied to the reverse osmosis membrane device at the same time, and all or part of the treated water in the first-stage reverse osmosis membrane device escapes to the first-stage treated moisture flow path. It is possible to supply hot water to the two-stage reverse osmosis membrane device without increasing the hardness, and in the production of pure water, by using a series configuration, the hardness is higher than when only one reverse osmosis membrane device is provided. Reduce the rate of removal of total organic carbon [TOC] components contained in raw water It can be also achieved.

本発明の第1の実施形態に係る純水製造システムを説明するための模式的ブロック図である。It is a typical block diagram for demonstrating the pure water manufacturing system which concerns on the 1st Embodiment of this invention. 第1の実施形態における通常の採水時の水の流れを示す模式的ブロック図である。It is a typical block diagram which shows the flow of the water at the time of the normal water sampling in 1st Embodiment. 第1の実施形態における熱水殺菌時の水の流れを示す模式的ブロック図である。It is a typical block diagram which shows the flow of the water at the time of the hot water sterilization in 1st Embodiment. 本発明の第2の実施形態に係る純水製造システムを説明するための模式的ブロック図である。It is a typical block diagram for demonstrating the pure water manufacturing system which concerns on the 2nd Embodiment of this invention. 個別殺菌と二段通水との切替機構を採用した二段逆浸透膜+電気脱イオン装置によるフローを示す模式図である。It is a schematic diagram which shows the flow by the two-stage reverse osmosis membrane + electrodeionization apparatus which employ | adopted the switching mechanism of individual sterilization and two-stage water flow. 従来の逆浸透膜+電気脱イオン装置による医薬製造向け純水製造システムのフローを示す模式図である。It is a schematic diagram which shows the flow of the pure water manufacturing system for pharmaceutical manufacture by the conventional reverse osmosis membrane + electrodeionization apparatus.

(第1の実施形態)
以下、図1〜図3を参照して本実施形態の純水製造システムについて説明する。図1は本発明の第1の実施形態に係る純水製造システムを示す模式図である。
(First embodiment)
Hereinafter, the pure water production system of the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a pure water production system according to the first embodiment of the present invention.

本実施形態の純水製造システム1は、原水タンク9から供給された原水を、加熱器10、逆浸透膜給水ポンプ8、2本並列にROベッセルを組み合わせることによって構成した第1段逆浸透膜装置3、1本のROベッセルで構成した第2段逆浸透膜装置5、電気脱イオン装置7を順次経ることで純水を製造可能な純水製造ライン11を備えている。純水製造ライン11は、第1段逆浸透膜装置3の上流側において、第1段逆浸透膜装置3をバイパスして純水製造ライン11に合流し、第2段逆浸透膜装置5に原水を供給可能なバイパスライン15を備えている。該バイパスライン15と純水製造ライン11との分岐部には、流路を閉塞可能なバイパス制御弁13が設けられている。これにより、純水製造ライン11に供給された水は、バイパス制御弁13が開くと第1段逆浸透膜装置3と第2段逆浸透膜装置5とに並列に供給され、バイパス制御弁13が閉じると、第1段逆浸透膜装置3を経て第2段逆浸透膜装置5に供給される。   The pure water production system 1 of the present embodiment is a first-stage reverse osmosis membrane configured by combining raw water supplied from a raw water tank 9 by combining a heater 10, a reverse osmosis membrane water supply pump 8, and two RO vessels in parallel. The apparatus 3 includes a pure water production line 11 capable of producing pure water by sequentially passing through a second-stage reverse osmosis membrane device 5 constituted by one RO vessel and an electrodeionization device 7. The pure water production line 11 bypasses the first-stage reverse osmosis membrane device 3 and joins the pure-water production line 11 on the upstream side of the first-stage reverse osmosis membrane device 3. A bypass line 15 capable of supplying raw water is provided. A bypass control valve 13 capable of closing the flow path is provided at a branch portion between the bypass line 15 and the pure water production line 11. Thereby, the water supplied to the pure water production line 11 is supplied in parallel to the first-stage reverse osmosis membrane device 3 and the second-stage reverse osmosis membrane device 5 when the bypass control valve 13 is opened, and the bypass control valve 13. Is closed, the first-stage reverse osmosis membrane device 3 is supplied to the second-stage reverse osmosis membrane device 5.

純水製造システム1はまた、純水製造ライン11上、第1段逆浸透膜装置3より下流側で、かつバイパスライン15から純水製造ライン11に原水を供給する位置より上流側の位置において第1段逆浸透膜装置3の処理水を原水タンク9に返送可能な第1循環ライン17を備えている。また、第1段逆浸透膜装置3の濃縮水を原水タンク9に返送可能な第2循環ライン18を備えている。これらの循環ライン17、18により、第1段逆浸透膜装置3の濃縮水および/または処理水を原水タンクに返送することができる構成となる。   The pure water production system 1 is also located on the pure water production line 11 on the downstream side of the first-stage reverse osmosis membrane device 3 and on the upstream side of the position where raw water is supplied from the bypass line 15 to the pure water production line 11. A first circulation line 17 capable of returning the treated water of the first stage reverse osmosis membrane device 3 to the raw water tank 9 is provided. Moreover, the 2nd circulation line 18 which can return the concentrated water of the 1st stage reverse osmosis membrane apparatus 3 to the raw | natural water tank 9 is provided. With these circulation lines 17 and 18, the concentrated water and / or treated water of the first-stage reverse osmosis membrane device 3 can be returned to the raw water tank.

純水製造システム1において、第2循環ライン18には、その流路の途中で排出流路20が接続されている。斯かる構成により、第1段逆浸透膜装置3の濃縮水を排出することができる構成となる。   In the pure water production system 1, a discharge flow path 20 is connected to the second circulation line 18 in the middle of the flow path. With such a configuration, the concentrated water of the first-stage reverse osmosis membrane device 3 can be discharged.

純水製造ライン11、第1循環ライン17、第2循環ライン18および第1段逆浸透膜装置3の濃縮水の排出流路20には、それぞれ、流路の開閉が可能な弁が設けられている。まず、純水製造ライン11は、その流路上、第1循環ライン17が接続している位置と、バイパスライン15を介して純水製造ライン11に原水が供給される位置との間に、直列接続流路弁14を備えている。また、第1循環ライン17および第2循環ライン18には、それぞれの流路上、原水タンク9への水の返送を制御する返送制御弁19a,19bを備えている。さらに、濃縮水の排出流路20には、排出制御弁16を備えている。   The pure water production line 11, the first circulation line 17, the second circulation line 18, and the concentrated water discharge passage 20 of the first-stage reverse osmosis membrane device 3 are each provided with a valve capable of opening and closing the passage. ing. First, the pure water production line 11 is connected in series between the position where the first circulation line 17 is connected on the flow path and the position where raw water is supplied to the pure water production line 11 via the bypass line 15. A connection flow path valve 14 is provided. The first circulation line 17 and the second circulation line 18 are provided with return control valves 19a and 19b for controlling the return of water to the raw water tank 9 on the respective flow paths. Further, the concentrated water discharge passage 20 is provided with a discharge control valve 16.

図1に示すように、バイパスライン15上、バイパス制御弁13から純水製造ライン11に原水を供給する位置までの距離a1、純水製造ライン11上、第1循環ライン17が分岐している位置から直列接続流路弁14までの距離a2、純水製造ライン11上、直列接続流路弁14からバイパスライン15が純水製造ライン11に原水を供給する位置までの距離a3、および、第2循環ライン18に排出流路20が接続する位置から該排出流路20を閉塞可能な排出制御弁16までの距離a4を可能な限り短くすることが好ましく、例えば、すべて配管直径の6倍以内とすることが好ましい。これにより、熱水殺菌時に熱水が流通しない流路にも熱水が届きやすくなり、純水製造システムを構成する流路をくまなく十分に殺菌することができる。   As shown in FIG. 1, on the bypass line 15, the distance a1 from the bypass control valve 13 to the position where raw water is supplied to the pure water production line 11, the pure water production line 11, and the first circulation line 17 are branched. The distance a2 from the position to the series connection flow path valve 14, the distance a3 from the series connection flow path valve 14 to the position where the bypass line 15 supplies the raw water to the pure water production line 11 on the pure water production line 11, and the first 2 It is preferable to make the distance a4 from the position where the discharge flow path 20 is connected to the circulation line 18 to the discharge control valve 16 capable of closing the discharge flow path 20 as short as possible, for example, all within 6 times the pipe diameter It is preferable that This makes it easy for hot water to reach the flow path through which hot water does not flow during hot water sterilization, so that the flow path constituting the pure water production system can be sufficiently sterilized.

なお、本実施形態では、2本並列にROベッセルを組み合わせることによって第1段逆浸透膜装置3を構成し、1本のROベッセルで第2段逆浸透膜装置5を構成したが、これらの逆浸透膜装置3,5が共に1本のROベッセルで構成されていてもよいし、2本以上並列のベッセルで構成されていてもよい。   In this embodiment, the first-stage reverse osmosis membrane device 3 is configured by combining two RO vessels in parallel, and the second-stage reverse osmosis membrane device 5 is configured by one RO vessel. Both reverse osmosis membrane devices 3 and 5 may be composed of one RO vessel, or may be composed of two or more parallel vessels.

(作用効果)
図2は、図1に示された純水製造システム1を用いた通常の採水時(純水製造時)の水の流れを示す。本実施形態において弁の開閉状態は、バイパス制御弁13を閉、直列接続流路弁14を開、返送制御弁19a,19bを閉、濃縮水排出弁16を開としている。これにより、原水タンク9から純水製造ライン11に供給された被処理水は、逆浸透膜給水ポンプ8から第1段逆浸透膜装置3を透過して第2段逆浸透膜装置5に達する。すなわち、被処理水は二段構成の逆浸透膜装置を経て電気脱イオン装置7へ通水されることとなる。
(Function and effect)
FIG. 2 shows the flow of water during normal water sampling (during pure water production) using the pure water production system 1 shown in FIG. In this embodiment, the open / close state of the valve is such that the bypass control valve 13 is closed, the series connection flow path valve 14 is opened, the return control valves 19a and 19b are closed, and the concentrated water discharge valve 16 is opened. As a result, the water to be treated supplied from the raw water tank 9 to the pure water production line 11 passes through the first-stage reverse osmosis membrane device 3 from the reverse osmosis membrane water supply pump 8 and reaches the second-stage reverse osmosis membrane device 5. . That is, the water to be treated is passed through the two-stage reverse osmosis membrane device to the electrodeionization device 7.

第1段逆浸透膜装置3の濃縮水は、採水時、排出流路20を通って一部濃縮水排出弁16を介して排出される。   Concentrated water from the first-stage reverse osmosis membrane device 3 is partially discharged through the concentrated water discharge valve 16 through the discharge channel 20 during sampling.

一方、第2段逆浸透膜装置5の濃縮水は、採水時、第1段逆浸透膜装置3の処理水を通水するのでイオン濃度は低い。かかる濃縮水を、第4循環ライン(図示せず)を介して原水タンク9に返送する構成となっている場合は、第1段逆浸透膜装置3に供給する水の硬度等を一層低減する効果があるが、排水として排出してもよい。しかし、熱殺菌時には、水の節約のため全量を原水タンク9へと返送することが好ましい。   On the other hand, the concentrated water of the second-stage reverse osmosis membrane device 5 passes through the treated water of the first-stage reverse osmosis membrane device 3 during sampling, so that the ion concentration is low. When the concentrated water is returned to the raw water tank 9 via a fourth circulation line (not shown), the hardness of the water supplied to the first-stage reverse osmosis membrane device 3 is further reduced. Although effective, it may be discharged as waste water. However, at the time of heat sterilization, it is preferable to return the entire amount to the raw water tank 9 in order to save water.

図3は、熱水殺菌時の水の流れを示す。本実施形態において弁の開閉状態は、バイパス制御弁13を開、直列接続流路弁14を閉、返送制御弁19a,19bを開、濃縮水排出弁16を閉としている。これにより、加熱器10によって加熱された熱水(例えば、65℃〜85℃)は、逆浸透膜給水ポンプ8によって第1段逆浸透膜装置3の上流の分岐部において、純水製造ライン11とバイパスラインとの2方向に分流供給され、熱水を同時供給することができる。このことは、第1段逆浸透膜装置3の透過水を熱水として第2段逆浸透膜装置に通水する必要がなくなることを意味し、熱水殺菌時に、第1段逆浸透膜装置3の入口圧力を上げることなく逆浸透膜装置3,5に通水することが可能となる。   FIG. 3 shows the flow of water during hot water sterilization. In this embodiment, the open / closed state of the valve is that the bypass control valve 13 is opened, the series connection flow path valve 14 is closed, the return control valves 19a and 19b are opened, and the concentrated water discharge valve 16 is closed. Thereby, the hot water heated by the heater 10 (for example, 65 ° C. to 85 ° C.) is supplied to the pure water production line 11 by the reverse osmosis membrane water supply pump 8 at the upstream branch portion of the first stage reverse osmosis membrane device 3. And the bypass line are divided and supplied in two directions, and hot water can be supplied simultaneously. This means that it is not necessary to pass the permeated water of the first-stage reverse osmosis membrane device 3 as hot water to the second-stage reverse osmosis membrane device, and during the hot water sterilization, the first-stage reverse osmosis membrane device It is possible to pass water through the reverse osmosis membrane devices 3 and 5 without increasing the inlet pressure of 3.

第1段逆浸透膜装置3の濃縮水は、熱水殺菌時、原水タンク9へ返送し再び熱水として利用する構成となっている。これにより、水の使用量を低減し、かつ水の加熱に要するエネルギー消費が抑えられる。なお、第1段逆浸透膜装置3の濃縮水は、原水タンク9へと返送することなく、返送制御弁19bから排水してもよい。その場合は熱水殺菌時の水の使用量が増えるが、濃縮水を原水タンク9に返送するか否かは、熱水殺菌に使用する水の硬度、TOC等の水質に応じて適宜決めればよい。   The concentrated water of the first-stage reverse osmosis membrane device 3 is configured to be returned to the raw water tank 9 and used again as hot water during hot water sterilization. This reduces the amount of water used and suppresses energy consumption required for heating the water. The concentrated water of the first-stage reverse osmosis membrane device 3 may be drained from the return control valve 19b without being returned to the raw water tank 9. In that case, the amount of water used during hot water sterilization increases, but whether or not to return the concentrated water to the raw water tank 9 can be determined appropriately according to the hardness of the water used for hot water sterilization, water quality such as TOC, etc. Good.

また、第2段逆浸透膜装置5の濃縮水は、上述した採水時と同様に熱水殺菌時にも、第1段逆浸透膜装置3の処理水を通水するのでイオン濃度は低く、通常は、原水タンク9に返送される。この返送する側の背圧を調整することにより、熱水殺菌時、電気脱イオン装置7への供給水量、供給水圧力を調整することができる。   In addition, the concentrated water of the second-stage reverse osmosis membrane device 5 passes the treated water of the first-stage reverse osmosis membrane device 3 even during hot water sterilization as in the above-described sampling, so the ion concentration is low, Usually, it is returned to the raw water tank 9. By adjusting the back pressure on the returning side, the amount of water supplied to the electrodeionization device 7 and the supply water pressure can be adjusted during the hot water sterilization.

(第2の実施形態−変形例)
第1の実施形態では、軟水器を排除したことにより、熱水殺菌開始前の逆浸透膜装置3,5より前の配管内には被処理水である原水が満たされているため、イオン濃度、特に硬度成分が比較的高い。このまま熱水殺菌を開始すると、原水の硬度によっては、硬度成分のカルシウム成分が降温により析出しやすくなる場合がある。そこで、図4に示す第2の実施形態では、電気脱イオン装置7の下流側で純水製造ライン11に接続された第3循環ライン21を備えている。これにより、熱水殺菌開始前に、電気脱イオン装置7の処理水を原水タンク9へ返送し循環することにより系内のイオン濃度が徐々に低減し、その後、熱水殺菌を開始することで、原水の硬度が高い場合であっても加熱による硬度成分の析出防止可能となる。
(Second Embodiment-Modification)
In the first embodiment, since the water softener is excluded, the raw water which is the water to be treated is filled in the pipes before the reverse osmosis membrane devices 3 and 5 before the start of the hot water sterilization. Especially, the hardness component is relatively high. If hot water sterilization is started as it is, depending on the hardness of the raw water, the calcium component of the hardness component may easily precipitate due to a temperature drop. Therefore, the second embodiment shown in FIG. 4 includes a third circulation line 21 connected to the pure water production line 11 on the downstream side of the electrodeionization apparatus 7. Thereby, before starting the hot water sterilization, the treated water of the electrodeionization apparatus 7 is returned to the raw water tank 9 and circulated to gradually reduce the ion concentration in the system, and then the hot water sterilization is started. Even if the hardness of the raw water is high, precipitation of hardness components due to heating can be prevented.

第1の実施形態では、第1段処理水分流路の一態様として第1循環ライン17を設ける構成としたが、第2の実施形態においては、第1段処理水分流路の一態様として第1循環ライン17の替わりに、第1段逆浸透膜装置の処理水の全部または一部をそのまま排出することが可能な第1段処理水排出路170が設けられている。斯かる構成とすることで、熱水殺菌時、バイパス制御弁を開いたとき、第1段逆浸透膜装置の処理水のうち、第2段逆浸透膜装置に通水される水がなくなるか、または、通水されるとしてもわずかな量となるので、膜差圧や入口圧力を上げることなく二段の逆浸透膜装置の各々に熱水を供給することが可能となる。   In the first embodiment, the first circulation line 17 is provided as one aspect of the first-stage treated moisture flow path. However, in the second embodiment, the first stage treated moisture flow path is defined as one aspect of the first-stage treated moisture flow path. Instead of the first circulation line 17, a first-stage treated water discharge path 170 is provided that can discharge all or part of the treated water of the first-stage reverse osmosis membrane device as it is. With such a configuration, when the bypass control valve is opened at the time of hot water sterilization, there is no water passed through the second-stage reverse osmosis membrane device out of the treated water of the first-stage reverse osmosis membrane device. Alternatively, even if water is passed, the amount is small, so that hot water can be supplied to each of the two-stage reverse osmosis membrane devices without increasing the membrane differential pressure or the inlet pressure.

また、第1の実施形態では、バイパスライン15と純水製造ライン11とは、第2段逆浸透膜装置5の上流側で合流するものとしたが、必ずしも合流している必要は無く、第2の実施形態においては、図4に示すように別々に第2段逆浸透膜装置5に接続されている。   In the first embodiment, the bypass line 15 and the pure water production line 11 are merged on the upstream side of the second-stage reverse osmosis membrane device 5, but are not necessarily merged. In the second embodiment, the second-stage reverse osmosis membrane device 5 is separately connected as shown in FIG.

第2の実施形態では、図4に示すように、純水製造ライン11とバイパスライン15との分岐点にバイパス制御弁13としての三方弁が設けられている。   In the second embodiment, as shown in FIG. 4, a three-way valve as a bypass control valve 13 is provided at a branch point between the pure water production line 11 and the bypass line 15.

第2の実施形態において、直列接続流路弁14は、純水製造ライン11上、第1段処理水分流路(第1段処理水排出路170)が分岐している位置と、バイパスライン15から原水を供給する位置との間ではなく、図4に示すように、純水製造ライン11と第1段処理水排出路170とが接続する位置において、第1の実施形態における返送制御弁19aの機能を併せ持つ三方弁として設けられている。   In the second embodiment, the serially connected flow path valve 14 includes a position where the first-stage treated water flow path (first-stage treated water discharge path 170) branches on the pure water production line 11, and the bypass line 15. Return control valve 19a in the first embodiment is not at a position where raw water is supplied from but at a position where pure water production line 11 and first stage treated water discharge path 170 are connected as shown in FIG. It is provided as a three-way valve that has both functions.

また、第1の実施形態では、濃縮水排出弁16と、返送制御弁19bとは、排出流路および第1循環ライン17というそれぞれ異なる流路上に設けたが、第2の実施形態においては、図4に示すように、排出流路20を設けることなく、濃縮水排出弁16を三方弁、返送制御弁19bを開閉弁として共に第1循環ライン17の流路上に設けている。なお、図4では、濃縮水排出弁16を返送制御弁19bに比べて第1循環ラインの上流側、すなわち、純水製造ライン11に近い側に配置しているが、返送制御弁19bを第1循環ラインの上流側に配してもよい。   In the first embodiment, the concentrated water discharge valve 16 and the return control valve 19b are provided on different flow paths, that is, the discharge flow path and the first circulation line 17, but in the second embodiment, As shown in FIG. 4, without providing the discharge flow path 20, both the concentrated water discharge valve 16 and the return control valve 19b are provided on the flow path of the first circulation line 17 as an on-off valve. In FIG. 4, the concentrated water discharge valve 16 is arranged on the upstream side of the first circulation line, that is, on the side closer to the pure water production line 11 as compared with the return control valve 19b. It may be arranged upstream of one circulation line.

以上、説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

例えば、バイパス制御弁13、直列接続流路弁14、濃縮水排出弁16、返送制御弁19a,19bは、自動弁であっても手動弁であっても構わないが、自動弁の方が運転管理がしやすい。これらの弁の少なくともいくつかは流路の開閉や各弁を通過する水量が相互に関連づけられていてもよいし、相互に関連づけられていなくてもよい。さらに弁は上述した5つ以外に、例えば、第3循環ライン21上に設けてもよいし、第4循環ラインを有する場合は、第4循環ライン上に設けてもよい。   For example, the bypass control valve 13, the serial connection flow path valve 14, the concentrated water discharge valve 16, and the return control valves 19a and 19b may be automatic valves or manual valves, but the automatic valve operates more. Easy to manage. At least some of these valves may or may not be associated with the opening / closing of the flow path and the amount of water passing through each valve. Further, in addition to the above five valves, for example, the valve may be provided on the third circulation line 21, or when the fourth circulation line is provided, the valve may be provided on the fourth circulation line.

また、逆浸透膜供給ポンプ8は、ポンプ出口で弁を絞ることで調整しても構わないが、インバーターなどの回転制御を加え、圧力計などと連動させて逆浸透膜供給圧力を制御することも可能である。   The reverse osmosis membrane supply pump 8 may be adjusted by restricting the valve at the pump outlet. However, the reverse osmosis membrane supply pressure is controlled in conjunction with a pressure gauge or the like by adding rotation control of an inverter or the like. Is also possible.

以下の具体的実施例により本発明をさらに詳細に説明する。図5は、実施例として用いた個別殺菌と二段通水との切替機構を採用した二段逆浸透膜+電気脱イオン装置のブロック図である。図6は、比較例として用いた従来の逆浸透膜+電気脱イオン装置による医薬製造向け純水製造システム100のブロック図である。図5および図6ともに、原水タンク9,109から送水ポンプ2,102、加熱器10,110、活性炭ろ過器4,104(クリコールA−W、栗田工業(株)製)を順に通して、逆浸透膜高圧供給ポンプ8,108に供給するまでは同じ構成としているが、その後は、実施例の純水製造システム1は、ROモジュール(HSRO−390、Dowケミカルジャパン社製)を2本並列に構成した第1段逆浸透膜装置3、同じく上記ROモジュールを2本並列に構成した第2段逆浸透膜装置5を備えた二段逆浸透膜装置を経由し、電気脱イオン装置7(KCDI−LX型、栗田工業社製)を通水する構成とし、比較例の純水製造装置100では、上記モジュールを2本並列に構成した逆浸透膜装置106の1段のみを経由し、電気脱イオン装置107を通水する構成とした。実施例および比較例は、それぞれ図5および図6の装置を用いて以下の表1に示す条件で実験した。   The following specific examples further illustrate the present invention. FIG. 5 is a block diagram of a two-stage reverse osmosis membrane + electrodeionization apparatus that employs a switching mechanism between individual sterilization and two-stage water flow used as an example. FIG. 6 is a block diagram of a pure water production system 100 for pharmaceutical production using a conventional reverse osmosis membrane + electrode deionization apparatus used as a comparative example. 5 and 6, the raw water tanks 9 and 109 are sequentially passed through the water pumps 2 and 102, the heaters 10 and 110, and the activated carbon filters 4 and 104 (Crycol AW, manufactured by Kurita Kogyo Co., Ltd.) in order. Although it is the same structure until it supplies to the osmosis membrane high-pressure supply pumps 8 and 108, after that, the pure water manufacturing system 1 of an Example has two RO modules (HSRO-390, the product made by Dow Chemical Japan) in parallel. Via the first-stage reverse osmosis membrane device 3 configured and the second-stage reverse osmosis membrane device 5 having the second-stage reverse osmosis membrane device 5 configured in parallel with two RO modules, the electrodeionization device 7 (KCDI) -LX type (manufactured by Kurita Kogyo Co., Ltd.), and in the pure water production apparatus 100 of the comparative example, only one stage of the reverse osmosis membrane apparatus 106 in which the above two modules are arranged in parallel is used, Ion equipment 07 was configured to be passed through. In Examples and Comparative Examples, experiments were performed using the apparatuses shown in FIGS. 5 and 6 under the conditions shown in Table 1 below.

Figure 0006056476
Figure 0006056476

逆浸透膜装置の入口と出口の水質とカルシウム硬度、TOC、電気脱イオン装置出口の水質、市水、活性炭入口、活性炭出口、逆浸透膜装置出口、電気脱イオン装置出口の各ポイントでの一般細菌の個数をR2A寒天培地を用いた培養法で一般細菌の個数を殺菌前と10日に1回の間隔で測定した。   Water quality and calcium hardness at the inlet and outlet of the reverse osmosis membrane device, TOC, water quality at the electrodeionization device outlet, city water, activated carbon inlet, activated charcoal outlet, reverse osmosis membrane device outlet, and general points at the electrodeionization device outlet The number of bacteria was measured by a culture method using an R2A agar medium, and the number of general bacteria was measured before sterilization and once every 10 days.

比較例、実施例共に試験開始前の熱水殺菌をかける前の一般細菌数を測定し、原水タンクから電気脱イオン装置までの系を加熱器で徐々に昇温し系全体が82℃になったところから30分保持する循環方式による熱水殺菌を行った。実施例は発明の実施の形態に記載した通水方法で熱水殺菌した。運転期間は1ヶ月間とした。比較例と実施例で各ROと電気脱イオンとにおける水質を表2に示す。   In both the comparative example and the example, the number of general bacteria before hot water sterilization before starting the test was measured, and the temperature from the raw water tank to the electrodeionization device was gradually raised with a heater, and the whole system reached 82 ° C. The hot water was sterilized by a circulation system that was held for 30 minutes. The examples were sterilized with hot water by the water flow method described in the embodiment of the invention. The operation period was one month. Table 2 shows the water quality of each RO and electrodeionization in the comparative example and the example.

Figure 0006056476
Figure 0006056476

今回の試験では被処理水である市水の原水全硬度が32mg/L as CaCOと低かったため軟水器を設けない構成とした。その結果、比較例ではRO処理水のカルシウム硬度は電気脱イオン装置の供給限界である0.5mg/Lに近い0.4mg/Lとなったが、実施例では0.1mg/Lと十分余裕を持った供給が可能であった。また実施例ではRO出口でのTOCも二段RO化していることにより、RO供給水のほぼ9割を除去することができていることがわかった。 In this test, since the total hardness of raw water of city water, which is the treated water, was as low as 32 mg / L as CaCO 3 , the water softener was not provided. As a result, in the comparative example, the calcium hardness of the RO-treated water was 0.4 mg / L, which is close to 0.5 mg / L, which is the supply limit of the electrodeionization apparatus, but in the example, 0.1 mg / L was sufficient. The supply with was possible. Moreover, in the Example, it turned out that 90% of RO supply water can be removed by making TOC in RO exit into two-stage RO.

(殺菌効果確認試験結果)
比較例での一般細菌数挙動を表3に、実施例での一般細菌数挙動を表4に示す。
(Bactericidal effect confirmation test results)
The general bacterial count behavior in the comparative example is shown in Table 3, and the general bacterial count behavior in the example is shown in Table 4.

Figure 0006056476
Figure 0006056476

Figure 0006056476
Figure 0006056476

表3と表4に、比較例と実施例で市水、活性炭入口、活性炭出口、逆浸透膜装置出口、電気脱イオン装置出口の各ポイントでの一般細菌の個数結果を示す。一般細菌数は試験期間である1ヶ月間の運転では熱水殺菌直後に全てのポイントで殺菌効果が得られていた。その後の運転では活性炭の出口での生菌数の増加に伴い各ポイントでの一般細菌数の増加が見られた。しかし熱水殺菌を行うことにより一般細菌数はどちらの系においても減少させられていることがわかった。また、二段ROとした実施例は、一段のROのみを経由する比較例に比べRO出口での一般細菌数が少ないことがわかった。このことは逆浸透膜装置を二段通水することによって、膜で阻止された結果と推定できる。このことから実施例の装置構成をとっても熱水殺菌は十分に行われていると判断した。   Tables 3 and 4 show the results of the number of general bacteria at each point of city water, activated carbon inlet, activated carbon outlet, reverse osmosis membrane device outlet, and electrodeionization device outlet in Comparative Examples and Examples. As for the number of general bacteria, the sterilization effect was obtained at all points immediately after the hot water sterilization in the operation for one month which is the test period. Subsequent operation showed an increase in the number of general bacteria at each point as the number of viable bacteria increased at the outlet of the activated carbon. However, it was found that the number of general bacteria was reduced in both systems by sterilization with hot water. Moreover, it turned out that the Example which set it as 2 step | paragraph RO has few general bacteria numbers in RO exit compared with the comparative example which passes only through 1 step | paragraph RO. This can be presumed to be the result of the membrane being blocked by passing water through the reverse osmosis membrane device in two stages. From this, it was determined that the hot water sterilization was sufficiently performed even with the apparatus configuration of the example.

本発明の純水製造システムは、医薬製造用の精製水の製造に有用である。   The pure water production system of the present invention is useful for producing purified water for pharmaceutical production.

1…純水製造システム
2、102…送水ポンプ
3…第1段逆浸透膜装置
4,104…活性炭濾過膜
5…第2段逆浸透膜装置
7,107…電気脱イオン装置
8,108…逆浸透膜給水ポンプ
9,109…原水タンク
10,110…加熱器
11…純水製造ライン
13…バイパス制御弁
14…直列接続流路弁
15…バイパスライン
16…濃縮水排出弁
17…第1段処理水分流路(第1循環ライン)
18…第2循環ライン
19a,19b…返送制御弁
20…濃縮水排出流路
21…第3循環ライン
100…純水製造装置
106…逆浸透膜
DESCRIPTION OF SYMBOLS 1 ... Pure water production system 2, 102 ... Water pump 3 ... 1st stage reverse osmosis membrane apparatus 4,104 ... Activated carbon filtration membrane 5 ... 2nd stage reverse osmosis membrane apparatus 7,107 ... Electrodeionization apparatus 8,108 ... Reverse Osmotic membrane water supply pumps 9, 109 ... Raw water tanks 10, 110 ... Heater 11 ... Pure water production line 13 ... Bypass control valve 14 ... Series connection flow path valve 15 ... Bypass line 16 ... Concentrated water discharge valve 17 ... First stage treatment Moisture channel (first circulation line)
18 ... 2nd circulation line 19a, 19b ... Return control valve 20 ... Concentrated water discharge flow path 21 ... 3rd circulation line 100 ... Pure water manufacturing apparatus 106 ... Reverse osmosis membrane

Claims (6)

原水を第1段逆浸透膜装置と、第2段逆浸透膜装置とを順に通して純水を製造する純水製造ラインを備えたシステムであって、
前記第1段逆浸透膜装置をバイパスして前記第2段逆浸透膜装置に前記原水を供給可能なバイパスラインと、
該バイパスライン上において前記バイパスラインを介した前記第2段逆浸透膜装置への前記原水の流入を制御するバイパス制御弁と、
前記純水製造ライン上、前記第1段逆浸透膜装置より下流側で、かつ前記バイパスラインから前記純水製造ラインに前記原水を供給する位置より上流側の位置において前記純水製造ラインに接続された第1段処理水分流路と
前記純水製造ライン上、前記第1段処理水分流路が接続している位置と、前記バイパスラインから前記純水製造ラインに前記原水を供給する位置との間に設けられる直列接続流路弁と
前記純水製造ライン上、前記第1段逆浸透膜装置の上流側に設けられる加熱器とを備え
熱水殺菌時には、前記バイパス制御弁及び前記直列接続流路弁を開くことにより、前記第1段逆浸透膜装置と前記第2段逆浸透膜装置とに並列に前記原水を供給する構成とし、
純水製造時には、前記バイパス制御弁を閉じるとともに前記直列接続流路弁を開くことにより、前記第1段逆浸透膜装置と前記第2段逆浸透膜装置とに直列に前記原水を供給する構成とし、
前記熱水殺菌時の構成と前記純水製造時の構成とが切替可能な
純水製造システム。
A system comprising a pure water production line for producing pure water by sequentially passing raw water through a first-stage reverse osmosis membrane device and a second-stage reverse osmosis membrane device,
A bypass line capable of bypassing the first-stage reverse osmosis membrane device and supplying the raw water to the second-stage reverse osmosis membrane device;
A bypass control valve that controls the water inlet of the second stage reverse osmosis membrane apparatus through the bypass line on the bypass line,
Connected to the pure water production line on the pure water production line at a position downstream from the first-stage reverse osmosis membrane device and upstream from a position where the raw water is supplied from the bypass line to the pure water production line A first-stage treated water flow path ,
Series connection flow path valve provided between the position where the first stage treated water flow path is connected on the pure water production line and the position where the raw water is supplied from the bypass line to the pure water production line And
A heater provided on the upstream side of the first-stage reverse osmosis membrane device on the pure water production line ,
At the time of hot water sterilization, the raw water is supplied in parallel to the first-stage reverse osmosis membrane device and the second-stage reverse osmosis membrane device by opening the bypass control valve and the series connection flow path valve,
When pure water is produced, the raw water is supplied in series to the first-stage reverse osmosis membrane device and the second-stage reverse osmosis membrane device by closing the bypass control valve and opening the series connection flow path valve. age,
A pure water production system capable of switching between a configuration during the hot water sterilization and a configuration during the production of the pure water.
さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、
前記第1段処理水分流路が、前記原水タンクに接続される第1循環ラインを含む請求項1に記載の純水製造システム。
Furthermore, a raw water tank for storing the raw water upstream of the first-stage reverse osmosis membrane device is provided,
The pure water manufacturing system according to claim 1, wherein the first-stage treated water flow path includes a first circulation line connected to the raw water tank.
さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、
前記第1段逆浸透膜装置の濃縮水を前記原水タンクに返送可能な第2循環ラインを備えた請求項1または請求項2に記載の純水製造システム。
Furthermore, a raw water tank for storing the raw water upstream of the first-stage reverse osmosis membrane device is provided,
The pure water production system according to claim 1 , further comprising a second circulation line capable of returning the concentrated water of the first-stage reverse osmosis membrane device to the raw water tank.
前記第2段逆浸透膜装置の処理水を供給する電気脱イオン装置を備えた請求項1〜のいずれか一項に記載の純水製造システム。 The pure water manufacturing system as described in any one of Claims 1-3 provided with the electrodeionization apparatus which supplies the treated water of the said 2nd stage reverse osmosis membrane apparatus. さらに、前記第1段逆浸透膜装置の上流に前記原水を貯留する原水タンクを備え、
前記電気脱イオン装置の処理水を前記原水タンクに返送する第3循環ラインを備えた請求項に記載の純水製造システム。
Furthermore, a raw water tank for storing the raw water upstream of the first-stage reverse osmosis membrane device is provided,
The pure water manufacturing system of Claim 4 provided with the 3rd circulation line which returns the treated water of the said electrodeionization apparatus to the said raw | natural water tank.
前記第1段逆浸透膜装置の濃縮水を排出する排出流路が前記第2循環ラインに接続されている請求項に記載の純水製造システム。 The pure water manufacturing system according to claim 3 , wherein a discharge flow path for discharging concentrated water of the first-stage reverse osmosis membrane device is connected to the second circulation line.
JP2012288433A 2012-12-28 2012-12-28 Pure water production system Expired - Fee Related JP6056476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012288433A JP6056476B2 (en) 2012-12-28 2012-12-28 Pure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012288433A JP6056476B2 (en) 2012-12-28 2012-12-28 Pure water production system

Publications (2)

Publication Number Publication Date
JP2014128767A JP2014128767A (en) 2014-07-10
JP6056476B2 true JP6056476B2 (en) 2017-01-11

Family

ID=51407677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012288433A Expired - Fee Related JP6056476B2 (en) 2012-12-28 2012-12-28 Pure water production system

Country Status (1)

Country Link
JP (1) JP6056476B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016030945A1 (en) * 2014-08-25 2016-03-03 三菱重工業株式会社 Water treatment device and operating method for same
CN106608689A (en) * 2016-12-14 2017-05-03 江门市腾飞科技有限公司 Household water quality classification water purification system
CN108285220B (en) * 2018-03-06 2024-01-26 上海康雷分析仪器有限公司 Water purification system and disinfection device and process for water pipeline
CN108715475A (en) * 2018-07-02 2018-10-30 广州悦活环保科技有限公司 A kind of water cleaning systems with pure water rinsing
CN109592810A (en) * 2019-01-30 2019-04-09 四川悠服科技有限公司 The water quality protection method and water purification machine of water purification machine
JP6860648B1 (en) * 2019-12-25 2021-04-21 オルガノ株式会社 Water treatment system and water treatment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570304B2 (en) * 1999-08-11 2004-09-29 栗田工業株式会社 Sterilization method of deionized water production apparatus and method of producing deionized water
JP3830098B2 (en) * 2002-08-22 2006-10-04 オルガノ株式会社 Method and apparatus for producing purified water for pharmaceuticals
JP4228732B2 (en) * 2003-03-14 2009-02-25 栗田工業株式会社 Ultrapure water production system
JP4500525B2 (en) * 2003-10-17 2010-07-14 日本碍子株式会社 Water purifier
JP3957080B1 (en) * 2006-12-19 2007-08-08 株式会社神鋼環境ソリューション Water treatment system for drinking water production and operation method thereof
JP4990710B2 (en) * 2007-07-25 2012-08-01 三菱レイヨン株式会社 Medical purified water production apparatus and hot water disinfection method for nanofiltration membrane
JP5093679B2 (en) * 2008-06-19 2012-12-12 日本ウォーターシステム株式会社 Disinfection method for purified water production equipment
JP5616771B2 (en) * 2010-12-16 2014-10-29 オルガノ株式会社 Dilution water production equipment for dialysate preparation
JP2012210593A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Ultrapure water producing system and ultrapure water producing method

Also Published As

Publication number Publication date
JP2014128767A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP6056476B2 (en) Pure water production system
US20090134080A1 (en) Purified Water Production and Distribution System
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2009028602A (en) Medical purified water manufacturing device and hot water disinfection method for nanofiltratioin membrane
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2000189965A (en) Fresh water maker and production of fresh water
KR101492879B1 (en) Water treatment apparatus and water treatment method
KR20130104089A (en) Water treatment apparatus and water treatment method
JP5572563B2 (en) Hot water disinfection method of nanofiltration membrane
KR101446127B1 (en) Water treatment apparatus
CN101935124B (en) Direct drinking fountain capable of sterilizing a reverse osmosis membrane
KR101967799B1 (en) Water treatment apparatus and water treatment method
KR101459001B1 (en) Water treatment apparatus and water treatment method
KR101982804B1 (en) Water treatment apparatus and water treatment method
AU2006303866B2 (en) Purified water production and distribution system
JP6953070B2 (en) Medical purified water production equipment
KR102079173B1 (en) Water treatment apparatus and water treatment method
JP2021178297A (en) Pharmaceutical water production system and its sterilization method
CN216273567U (en) Complete machine can be heated water preparation equipment for hemodialysis of disinfection
JPH08252600A (en) Pure water producing device
KR101447963B1 (en) Water treatment method
KR101476323B1 (en) Water treatment apparatus and water treatment method
KR101649741B1 (en) an apparatus for concentrating sap
CN218025737U (en) Pharmaceutical water purification device without dead water
KR101088424B1 (en) Ultra High Purity Water Purifier Adopting Three-way Valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R150 Certificate of patent or registration of utility model

Ref document number: 6056476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees