JP2021178297A - Pharmaceutical water production system and its sterilization method - Google Patents

Pharmaceutical water production system and its sterilization method Download PDF

Info

Publication number
JP2021178297A
JP2021178297A JP2020085326A JP2020085326A JP2021178297A JP 2021178297 A JP2021178297 A JP 2021178297A JP 2020085326 A JP2020085326 A JP 2020085326A JP 2020085326 A JP2020085326 A JP 2020085326A JP 2021178297 A JP2021178297 A JP 2021178297A
Authority
JP
Japan
Prior art keywords
water
raw water
heated
production system
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020085326A
Other languages
Japanese (ja)
Other versions
JP7483488B2 (en
Inventor
利介 水澤
Toshisuke Mizusawa
隆幸 藤田
Takayuki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2020085326A priority Critical patent/JP7483488B2/en
Publication of JP2021178297A publication Critical patent/JP2021178297A/en
Priority to JP2024058781A priority patent/JP2024074880A/en
Application granted granted Critical
Publication of JP7483488B2 publication Critical patent/JP7483488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide a pharmaceutical water production system and its sterilization method capable of efficiently obtaining heated water at a desired temperature, with good thermal efficiency, heating of raw water, and reduced heat load on the water treatment equipment during sterilization inside the system.SOLUTION: A pharmaceutical water production system 1 includes a raw water tank 2 which contains raw water, a water treatment device 4 that removes impurities contained in the raw water supplied from the raw water tank 2, a heat exchanger 3 that is placed in the first stage of the water treatment device 4 and can heat the raw water, and a first circulation piping L3 that circulates part of the heated water heated in the heat exchanger 3 from the heat exchanger 3 to the water treatment device 4 to the raw water tank 2 by branching from the supply piping L1.SELECTED DRAWING: Figure 1

Description

本発明は、医薬用水製造システムを熱殺菌するために、原水を効率的に加熱して殺菌用の加熱水を得ることができる加熱手段を備えている医薬用水製造システムおよびその殺菌方法に関する。 The present invention relates to a pharmaceutical water production system and a sterilization method thereof, which comprises a heating means capable of efficiently heating raw water to obtain heated water for sterilization in order to heat sterilize the pharmaceutical water production system.

医薬品等の製造に用いられる医薬用水(例えば、精製水、滅菌精製水、注射用水)は、例えば、水道水等を原水とし、これを逆浸透膜装置、電気式脱イオン装置等の水処理装置に通水させ、原水中の不純物を除去する精製処理により製造されている。製薬用水は、それぞれ、各国の薬局方によって、所定の水質が要求され、また、日常的あるいは定期的な水質管理が要求されている。 For medicinal water (for example, purified water, sterile purified water, water for injection) used for manufacturing pharmaceuticals, for example, tap water or the like is used as raw water, which is used as a water treatment device such as a reverse osmosis membrane device or an electric deionization device. It is manufactured by a purification process that removes impurities from the raw water by passing water through the water. Pharmaceutical water is required to have a predetermined water quality by the pharmacopoeia of each country, and daily or regular water quality management is required.

そして、このような医薬用水の製造にあたっては、その製造前や製造開始後も定期的に、製造装置内部を殺菌処理することが行われ、通常、この殺菌処理としては、例えば60℃以上となるような加熱水を製造装置内部に所定の時間通水して行われる。そして、このように殺菌処理を行った後、医薬用水の製造を行うが、医薬用水の製造における原水の温度は、通常、常温(25℃)程度である。 In the production of such medicinal water, the inside of the production apparatus is sterilized periodically before and after the production, and usually, the sterilization treatment is, for example, 60 ° C. or higher. Such heated water is passed through the inside of the manufacturing apparatus for a predetermined time. Then, after the sterilization treatment is performed in this way, the medicinal water is produced, and the temperature of the raw water in the production of the medicinal water is usually about room temperature (25 ° C.).

このように殺菌処理が可能な医薬用水の製造装置としては、例えば、逆浸透膜装置および電気再生式純水製造装置をこの順に備えており、一旦これら装置により原水を処理して処理原水として貯留し、この処理原水を加熱しつつ系内を循環させて殺菌処理を可能とする装置(例えば、特許文献1参照)、逆浸透膜装置および電気式脱イオン装置を有し、殺菌工程において、逆浸透膜装置の濃縮水、電気式脱イオン装置の濃縮水、脱塩水等を原水タンクに循環可能として、殺菌処理を可能とする装置(例えば、特許文献2〜3参照)、紫外線殺菌装置、逆浸透膜装置、電気脱イオン装置を有し、活性炭塔や光触媒を用いることなく医薬用水を製造可能であり、殺菌時には、加熱した逆浸透膜装置の濃縮水を循環可能とする装置(例えば、特許文献4参照)、逆浸透膜処理とイオン交換処理の組み合わせによって得られる処理対象水をろ過する高分子膜ろ過装置を有する装置(例えば、特許文献5参照)等が知られている。 As a medicinal water production device capable of sterilization treatment in this way, for example, a reverse osmosis membrane device and an electroregenerative pure water production device are provided in this order, and the raw water is once treated by these devices and stored as treated raw water. It has a device (for example, see Patent Document 1) that enables sterilization by circulating the treated raw water in the system while heating it, a reverse osmosis membrane device, and an electric deionization device. A device that enables sterilization by allowing concentrated water from a osmosis membrane device, concentrated water from an electric deionization device, desalted water, etc. to be circulated to a raw water tank (see, for example, Patent Documents 2 to 3), an ultraviolet sterilization device, and reverse osmosis. It has a osmosis membrane device and an electrodeionization device, can produce medicinal water without using an activated coal tower or a photocatalyst, and can circulate the concentrated water of the heated reverse osmosis membrane device at the time of sterilization (for example, patent). (Refer to Document 4), an apparatus having a polymer membrane filtration device for filtering the water to be treated obtained by a combination of reverse osmosis membrane treatment and ion exchange treatment (see, for example, Patent Document 5) and the like are known.

特開2004−74109号公報Japanese Unexamined Patent Publication No. 2004-74109 特開2011−147880号公報Japanese Unexamined Patent Publication No. 2011-147880 特開2019−107617号公報Japanese Unexamined Patent Publication No. 2019-107617 特開2014−198292号公報Japanese Unexamined Patent Publication No. 2014-19822 特開2019−25456号公報Japanese Unexamined Patent Publication No. 2019-25456

医薬品用精製水製造システム全体を殺菌処理するためには、システム全体において内部を通水する水が殺菌処理に必要となる所望の温度以上になるまで昇温を行ってから、さらに殺菌処理に必要な所定の時間だけ所望の温度以上を維持する必要がある。
原水を殺菌水として用いる場合、水処理装置に通水される水と比較して、水処理装置に原水を送出する原水タンクに収容されている水は多量のため熱容量が大きく、昇温しづらい。
In order to sterilize the entire system for producing purified water for pharmaceuticals, the temperature of the water passing through the entire system is raised to a temperature higher than the desired temperature required for sterilization, and then further sterilization is required. It is necessary to maintain the temperature above the desired temperature for a predetermined period of time.
When raw water is used as sterilizing water, the heat capacity is large and it is difficult to raise the temperature because the amount of water contained in the raw water tank that sends the raw water to the water treatment device is large compared to the water that is passed through the water treatment device. ..

さらに、上記特許文献1〜5のように、製造装置内を殺菌する工程において、原水を加熱して水処理装置に通水し、その通水時に得られる透過水や濃縮水を原水タンクに循環させる場合、それら水処理装置に通水されるため、せっかく加熱した原水の温度が低下してしまい、殺菌時に循環させる加熱水を所定の温度にまで加熱するのに時間がかかる。また、この場合、加熱水が原水タンクまで循環する配管経路が比較的長くなるためその点でも温度が低下する可能性がある。 Further, as in Patent Documents 1 to 5, in the step of sterilizing the inside of the manufacturing apparatus, the raw water is heated and passed through the water treatment apparatus, and the permeated water or concentrated water obtained at the time of passing the water is circulated to the raw water tank. In this case, since water is passed through these water treatment devices, the temperature of the heated raw water drops, and it takes time to heat the heated water to be circulated during sterilization to a predetermined temperature. Further, in this case, since the piping path through which the heated water circulates to the raw water tank becomes relatively long, the temperature may decrease in that respect as well.

したがって、所望の温度に達するまでに要する時間は、原水タンクに収容されている水より、水処理装置に通水される水の方が著しく短くなる。
この差の時間だけ、水処理装置は所望の温度からさらに昇温されることになる。また、所定の時間を超えて所望の温度以上の加熱水が通水されることになる。すなわち、水処理装置に余計な熱負荷がかかることになる。
また、余計な熱負荷の分、余計なエネルギーが消費されていることになる。昇温に要する時間そのものが長くなるため、殺菌処理を終えて精製水の製造を再開するまでに要する時間も長くなるという問題もある。
Therefore, the time required to reach the desired temperature is significantly shorter for the water passed through the water treatment device than for the water contained in the raw water tank.
Only for this difference time, the water treatment apparatus will be further heated from the desired temperature. In addition, heated water having a desired temperature or higher will be passed over a predetermined time. That is, an extra heat load is applied to the water treatment device.
In addition, extra energy is consumed due to the extra heat load. Since the time required for raising the temperature itself becomes long, there is also a problem that the time required for completing the sterilization treatment and restarting the production of purified water also becomes long.

したがって、加熱による熱効率が一定以上向上しないため、十分な省エネルギー化を達成できない。 Therefore, since the thermal efficiency by heating does not improve more than a certain level, sufficient energy saving cannot be achieved.

一方で、このような医薬用水の製造装置における殺菌では、その殺菌に用いる加熱水によって、水処理装置の熱負荷が大きくならないよう(急激に昇温された加熱水が水処理装置内に流通しないよう)に気をつける必要もある。そのため、殺菌処理時における、原水の昇温速度は、例えば、1〜10℃/分とすることが好ましい。 On the other hand, in sterilization in such a medicinal water production device, the heated water used for the sterilization does not increase the heat load of the water treatment device (heated water that has been rapidly heated does not flow into the water treatment device). You also need to be careful. Therefore, the rate of temperature rise of the raw water during the sterilization treatment is preferably, for example, 1 to 10 ° C./min.

この点、上記の特許文献1〜5のように水処理装置の後段で循環させる場合、上記のような温度の低下を考慮して、熱交換器における設定値を目標とする原水タンク内温度より高くして余分に加熱する必要がある。そのため、水処理装置への熱負荷が大きくなってしまい、機能の低下が生じる可能性がある。
また、タンク内に加熱器を設けて、加熱しつつ水処理装置に通水する殺菌方法もあるが、この場合だと、タンク内の加熱器の部分が菌の増殖等の問題を起こす可能性があるという問題がある。
In this regard, when the water is circulated in the subsequent stage of the water treatment device as in Patent Documents 1 to 5, the set value in the heat exchanger is higher than the target temperature in the raw water tank in consideration of the temperature decrease as described above. It needs to be raised and heated excessively. Therefore, the heat load on the water treatment device becomes large, and there is a possibility that the function is deteriorated.
There is also a sterilization method in which a heater is installed in the tank and water is passed through the water treatment device while heating, but in this case, the part of the heater in the tank may cause problems such as bacterial growth. There is a problem that there is.

そこで、本発明は、医薬用水の製造システムにおいて、その内部の殺菌時に、熱効率を良好に、原水を加熱するとともに、水処理装置の熱負荷を抑え、所望の温度の加熱水を効率的に得ることができる医薬用水製造システムおよびその殺菌方法の提供を目的とする。 Therefore, according to the present invention, in the pharmaceutical water production system, when sterilizing the inside thereof, the raw water is heated with good thermal efficiency, the heat load of the water treatment device is suppressed, and the heated water at a desired temperature is efficiently obtained. It is an object of the present invention to provide a medicinal water production system capable of sterilizing the system and a method for sterilizing the system.

本発明の医薬用水製造システムは、原水を収容する原水タンクと、前記原水タンクから供給される前記原水に含まれる不純物を除去できる、逆浸透膜装置、電気脱イオン装置、活性炭吸着装置、限外ろ過膜装置、紫外線殺菌装置および混床式イオン交換装置から選ばれる少なくとも1つを有する水処理装置と、前記水処理装置の前段に配置され、前記原水タンクから供給される前記原水を加熱できる熱交換器と、前記熱交換器で加熱された加熱水の一部を、前記熱交換器から前記水処理装置へ接続される供給配管から分岐して前記原水タンクへ循環させる第1の循環配管と、を有することを特徴とする。 The pharmaceutical water production system of the present invention includes a raw water tank for accommodating raw water, a reverse osmosis membrane device, an electrodeionization device, an activated charcoal adsorbing device, and an extraordinary device capable of removing impurities contained in the raw water supplied from the raw water tank. A water treatment device having at least one selected from a filter membrane device, an ultraviolet sterilizer, and a mixed-bed ion exchange device, and heat that is arranged in front of the water treatment device and can heat the raw water supplied from the raw water tank. The exchanger and the first circulation pipe that branches a part of the heated water heated by the heat exchanger from the supply pipe connected from the heat exchanger to the water treatment device and circulates it to the raw water tank. It is characterized by having.

本発明の医薬用水製造システムの殺菌方法は、原水を収容する原水タンクと、前記原水タンクから送出される前記原水に含まれる不純物を除去できる、逆浸透膜装置、電気脱イオン装置、活性炭吸着装置、限外ろ過膜装置、紫外線殺菌装置および混床式イオン交換装置から選ばれる少なくとも1つを有する水処理装置と、前記水処理装置の前段に配置され、前記原水タンクから供給される前記原水を加熱できる熱交換器と、前記熱交換器で加熱された加熱水の一部を、前記熱交換器から前記水処理装置へ接続される供給配管から分岐して前記原水タンクへ循環させる第1の循環配管と、を有する医薬用水製造システムにおいて、前記原水タンクから送出される原水を、熱交換器で加熱して加熱水とし、前記加熱水を前記水処理装置に供給するとともに、前記加熱水の一部を前記第1の循環配管へ分岐させて前記原水タンクに循環させることを特徴とする。 The method for sterilizing the pharmaceutical water production system of the present invention includes a raw water tank for accommodating raw water and a back-penetration membrane device, an electrodeionization device, and an activated charcoal adsorption device capable of removing impurities contained in the raw water sent from the raw water tank. A water treatment device having at least one selected from an ultrafiltration membrane device, an ultraviolet sterilization device, and a mixed bed type ion exchange device, and the raw water arranged in front of the water treatment device and supplied from the raw water tank. A first heat exchanger that can be heated and a part of the heated water heated by the heat exchanger are branched from a supply pipe connected from the heat exchanger to the water treatment device and circulated to the raw water tank. In a medicinal water production system having a circulation pipe, raw water sent from the raw water tank is heated by a heat exchanger to obtain heated water, and the heated water is supplied to the water treatment apparatus and the heated water is supplied. It is characterized in that a part thereof is branched to the first circulation pipe and circulated in the raw water tank.

本発明の医薬用水製造システムおよびその殺菌方法によれば、殺菌処理時に原水を加熱水とする際の熱効率が良好で、殺菌処理の時間を短縮でき、かつ、水処理装置の機能低下等を生じさせることなく、殺菌処理を行うことを可能とする。 According to the pharmaceutical water production system of the present invention and the sterilization method thereof, the thermal efficiency when the raw water is used as heated water during the sterilization treatment is good, the sterilization treatment time can be shortened, and the function of the water treatment device is deteriorated. It is possible to perform sterilization treatment without causing it.

本発明の一実施形態に係る医薬用水製造システムの概略構成を示した図である。It is a figure which showed the schematic structure of the pharmaceutical water production system which concerns on one Embodiment of this invention. 図1の医薬用水製造システムを用いた殺菌方法を説明するための図である。It is a figure for demonstrating the sterilization method using the pharmaceutical water production system of FIG. 本発明の変形例である医薬用水製造システムの概略構成を示した図である。It is a figure which showed the schematic structure of the pharmaceutical water production system which is a modification of this invention. 本発明の実施例に用いた医薬用水製造システムの概略構成を示した図である。It is a figure which showed the schematic structure of the pharmaceutical water production system used in the Example of this invention. 本発明の比較例に用いた医薬用水製造システムの概略構成を示した図である。It is a figure which showed the schematic structure of the pharmaceutical water production system used in the comparative example of this invention. 本発明の実施例における、原水タンク出口と熱交換器出口における加熱水温度の経時変化を示した図である。It is a figure which showed the time-dependent change of the heated water temperature in the raw water tank outlet and the heat exchanger outlet in the Example of this invention. 本発明の比較例における、原水タンク出口と熱交換器出口における加熱水温度の経時変化を示した図である。It is a figure which showed the time-dependent change of the heated water temperature at the outlet of a raw water tank and the outlet of a heat exchanger in the comparative example of this invention.

以下、本発明の一実施形態に係る医薬用水製造システムおよび該システムの殺菌方法について、図1〜2を参照しながら詳細に説明する。 Hereinafter, the pharmaceutical water production system according to the embodiment of the present invention and the sterilization method of the system will be described in detail with reference to FIGS. 1 and 2.

[医薬用水製造システム]
図1に示したように、本実施形態の医薬用水製造システム1は、原水タンク2と、熱交換器3と、水処理装置4と、ポンプ5と、を有して構成される。
[Pharmaceutical water production system]
As shown in FIG. 1, the pharmaceutical water production system 1 of the present embodiment includes a raw water tank 2, a heat exchanger 3, a water treatment device 4, and a pump 5.

原水タンク2は、医薬用水を製造するための原水を収容するタンクである。ここで収容される原水は医薬用水の製造に用いることもできるし、殺菌用の加熱水を得るために用いることもできる。ここで用いられる原水は、従来医薬用水の製造に用いられる原水と同様であり、例えば、市水、井水、工業用水等や、これらの水を活性炭吸着装置、凝集分離装置、脱気装置、多層ろ過器、精密ろ過膜(MF)、逆浸透膜やイオン交換装置等で前処理して得られる前処理水が挙げられる。 The raw water tank 2 is a tank for accommodating raw water for producing medicinal water. The raw water contained here can be used for producing medicinal water or for obtaining heated water for sterilization. The raw water used here is the same as the raw water conventionally used for producing medicinal water, for example, city water, well water, industrial water, etc. Examples thereof include pretreated water obtained by pretreatment with a multi-layer filter, a microfiltration membrane (MF), a reverse osmosis membrane, an ion exchange device, or the like.

熱交換器3は、原水等の温度を調整する装置であり、主として殺菌時に用いられる。医薬用水を製造する際には、原水の温度を通常25℃程度となるようにするが、温度調整が必要ない場合は、熱交換器3による熱交換はしなくてもよい。熱交換器3は、殺菌時には原水または処理水を所望の温度にまで加熱するように用いられる。この熱交換器3としては、公知の熱交換器を特に制限することなく用いることができる。 The heat exchanger 3 is a device for adjusting the temperature of raw water or the like, and is mainly used during sterilization. When producing medicinal water, the temperature of the raw water is usually set to about 25 ° C., but if temperature adjustment is not required, heat exchange by the heat exchanger 3 may not be necessary. The heat exchanger 3 is used to heat the raw water or the treated water to a desired temperature during sterilization. As the heat exchanger 3, a known heat exchanger can be used without particular limitation.

水処理装置4は、医薬用水を製造する際に、原水に含まれる不純物を除去して精製し、所定の水質の処理水を得るための装置である。この水処理装置4としては、例えば、逆浸透膜装置(RO)、電気式脱イオン装置(EDI)、活性炭吸着装置(AC)、限外ろ過膜装置(UF)、紫外線殺菌装置(UV)、混床式イオン交換装置(MB)等の公知の装置が挙げられる。 The water treatment device 4 is a device for removing impurities contained in raw water and purifying the water when producing medicinal water to obtain treated water having a predetermined water quality. Examples of the water treatment device 4 include a reverse osmosis membrane device (RO), an electric deionization device (EDI), an activated carbon adsorption device (AC), an ultrafiltration membrane device (UF), and an ultraviolet sterilizer (UV). Known devices such as a mixed bed ion exchange device (MB) can be mentioned.

水処理装置4としては、上記したような装置を1つ以上有すればよく、2つ以上を組み合わせて用いることが好ましい。処理装置を2つ以上組み合わせる例としては、逆浸透膜装置(RO)と、その後段に電気式脱イオン装置(EDI)を配置した処理装置がより好ましい。 The water treatment device 4 may have one or more devices as described above, and it is preferable to use two or more in combination. As an example of combining two or more processing devices, a processing device in which a reverse osmosis membrane device (RO) and an electric deionization device (EDI) are arranged in the subsequent stage is more preferable.

逆浸透膜装置(RO)は、本分野で公知の逆浸透膜装置を特に限定せずに用いることができ、原水中に含まれる有機不純物や塩類を除去する装置である。逆浸透膜装置は、全有機体炭素量(TOC)を低減でき、例えば、TOCを500ppb以下となるように低減することが好ましい。 The reverse osmosis membrane device (RO) can be used without particular limitation on a reverse osmosis membrane device known in the art, and is a device for removing organic impurities and salts contained in raw water. The reverse osmosis membrane device can reduce the total amount of organic carbon (TOC), and for example, it is preferable to reduce the TOC to 500 ppb or less.

電気式脱イオン装置(EDI)は、原水中のイオン等を除去し、脱塩処理により電気伝導度を低減できる装置である。通常の脱塩塔等のイオン交換樹脂装置も利用可能ではあるが、連続的に高水質な処理水が得られるため、電気式脱イオン装置が好ましく用いられている。 The electric deionizing device (EDI) is a device capable of removing ions and the like in raw water and reducing the electric conductivity by desalting treatment. Although an ion exchange resin device such as a normal desalination tower can be used, an electric deionization device is preferably used because high-quality treated water can be continuously obtained.

この電気式脱イオン装置は、例えば、陽極と陰極の間に交互に配置された陰イオン交換膜と陽イオン交換膜とを有し、陰イオン交換膜と陽イオン交換膜によって仕切られた脱塩室と、除去されたイオン成分を含む濃縮水が流入する濃縮室とを交互に有している。そして、電気式脱イオン装置は、脱塩室内に充填された陰イオン交換樹脂と陽イオン交換樹脂との混合体と、直流電圧を印加するための電極を有している。 This electric deionizer has, for example, anion exchange membranes and cation exchange membranes alternately arranged between an anode and a cathode, and desalting separated by an anion exchange membrane and a cation exchange membrane. The chambers and the enrichment chambers into which the concentrated water containing the removed ionic components flow in are alternately provided. The electric deionization device has a mixture of an anion exchange resin and a cation exchange resin filled in the desalting chamber, and an electrode for applying a DC voltage.

ポンプ5は、原水タンク2から、原水を熱交換器3へ供給するためのポンプであり、ここで供給された原水が、医薬用水製造システム内を流通する。 The pump 5 is a pump for supplying raw water from the raw water tank 2 to the heat exchanger 3, and the raw water supplied here circulates in the medicinal water production system.

ここで、本実施形態の医薬用水製造システム1においては、熱交換器3と水処理装置4とがこの順番で供給配管L1により接続され、さらに、その供給配管L1から分岐し、原水タンク2へと接続される第1の循環配管L3が設けられている。この第1の循環配管L3は、殺菌時に使用される配管である。 Here, in the pharmaceutical water production system 1 of the present embodiment, the heat exchanger 3 and the water treatment device 4 are connected by the supply pipe L1 in this order, and further branched from the supply pipe L1 to the raw water tank 2. A first circulation pipe L3 connected to is provided. The first circulation pipe L3 is a pipe used at the time of sterilization.

本実施形態の医薬用水製造システム1は、水処理装置4から処理水を医薬用水として得て、これを貯留タンクまたはユースポイントへ送水するための供給配管L2を有する。 The medicinal water production system 1 of the present embodiment has a supply pipe L2 for obtaining treated water as medicinal water from the water treatment device 4 and sending the treated water to a storage tank or a use point.

さらに、医薬用水製造システム1には、この供給配管L2から分岐し、原水タンク2へと接続される第2の循環配管L4が設けられている。 Further, the medicinal water production system 1 is provided with a second circulation pipe L4 that branches from the supply pipe L2 and is connected to the raw water tank 2.

また、本実施形態の医薬用水製造システム1には、原水や処理水の流れを規制、調節するためのバルブV0、V1a、V1b、V2a、V2bが設けられている。これらの動作については、以下、殺菌方法の説明で併せて説明する。なお、バルブV1aは本実施形態において必須ではない。 Further, the pharmaceutical water production system 1 of the present embodiment is provided with valves V0, V1a, V1b, V2a, V2b for regulating and adjusting the flow of raw water and treated water. These operations will be described below together with the description of the sterilization method. The valve V1a is not essential in this embodiment.

[医薬用水製造システムの殺菌方法]
次に、上記説明した医薬用水製造システムの殺菌方法について説明する。この医薬用水製造システムの殺菌方法は、医薬用水製造システムの立ち上げ時または一定の期間継続使用した後に、そのシステム内の殺菌処理を行う方法である。
[Sterilization method for pharmaceutical water production system]
Next, the sterilization method of the medicated water production system described above will be described. The sterilization method of this medicinal water production system is a method of performing a sterilization treatment in the medicinal water production system at the time of starting up or after continuous use for a certain period of time.

この医薬用水製造システムの殺菌方法について、図1および図2を参照しながら詳細に説明するが、殺菌方法を説明する前に、医薬用水の製造方法について簡単に説明する。 The sterilization method of this medicinal water production system will be described in detail with reference to FIGS. 1 and 2, but before the sterilization method is described, the method for producing medicinal water will be briefly described.

〈医薬用水の製造方法〉
医薬用水の製造にあたっては、本実施形態の医薬用水製造システム1において、原水タンク2に収容されている原水を、原水タンク2から水処理装置4へ供給する。このとき、原水は熱交換器3を通るが、医薬用水は、通常、常温(25℃)程度の温度で製造するため、その製造時には、必要に応じて熱交換され所望の温度に調整される。すなわち、原水温度が常温の場合は、熱交換器3で熱交換させなくてもよい。
<Manufacturing method of medicinal water>
In the production of medicinal water, in the medicinal water production system 1 of the present embodiment, the raw water contained in the raw water tank 2 is supplied from the raw water tank 2 to the water treatment device 4. At this time, the raw water passes through the heat exchanger 3, but the medicinal water is usually produced at a temperature of about room temperature (25 ° C.). .. That is, when the raw water temperature is normal temperature, it is not necessary to exchange heat with the heat exchanger 3.

原水が供給配管L1を通り水処理装置4へ供給されると、その水処理装置4によって原水に含まれる不純物が除去され、精製された処理水(医薬用水)が得られる。 When the raw water is supplied to the water treatment device 4 through the supply pipe L1, impurities contained in the raw water are removed by the water treatment device 4, and purified treated water (medicinal water) is obtained.

このとき、第2の循環配管L4は、処理水を原水タンク2に循環させて収容されている原水と混合し、再度、上記と同様に処理を行う循環運転を行うために用いることができる。例えば後述のユースポイントで処理水の需要がない間も製薬用水製造システム1を連続的に運転する目的や、より精製された処理水を得る目的のため、使用してもよい。なお、医薬用水の製造時には、第1の循環配管L3は使用しない。 At this time, the second circulation pipe L4 can be used to circulate the treated water in the raw water tank 2, mix it with the stored raw water, and perform the circulation operation in the same manner as described above again. For example, it may be used for the purpose of continuously operating the pharmaceutical water production system 1 even when there is no demand for treated water at the use point described later, or for the purpose of obtaining more purified treated water. The first circulation pipe L3 is not used during the production of medicinal water.

このような医薬用水の製造方法により得られた医薬用水は、供給配管L2に接続される貯留タンクまたは、たとえば、精製水としてユースポイントへ送水される。または、限外ろ過膜(UF)もしくは蒸留器で処理した上、例えば80℃以上に維持の上、タンクとユースポイントとを含む循環系で循環しながら、ユースポイントにWFI(注射用水)として供給する場合もある。このような医薬用水の製造操作を継続して行い、所定の時間製造を継続した後、次に説明する殺菌方法が行われ、医薬用水製造システムのシステム内部を清浄に保つようにする。 The medicinal water obtained by such a method for producing medicinal water is sent to a storage tank connected to the supply pipe L2 or, for example, purified water to a use point. Alternatively, it is treated with an ultrafiltration membrane (UF) or a distiller, maintained at 80 ° C or higher, and circulated in the circulation system including the tank and the use point, and supplied to the use point as WFI (water for injection). In some cases. After continuing such an operation for producing medicinal water and continuing the production for a predetermined time, the sterilization method described below is performed to keep the inside of the medicinal water production system clean.

医薬用水の製造を継続する時間としては、任意に設定可能である。一般的には、1日〜6カ月に1回殺菌するが、細菌等の混入を効果的に防止するため、1日〜2カ月に1回殺菌処理を行うようにすることがより好ましく、1週間に1回がさらに好ましい。殺菌処理の間隔が長すぎると、細菌等の混入を効果的に防止することが難しくなる。また、殺菌処理の間隔が短すぎると、医薬用水の製造に十分な時間をとれなくなり、製造効率が悪くなる。 The time for continuing the production of medicinal water can be arbitrarily set. Generally, it is sterilized once every 1 day to 6 months, but it is more preferable to sterilize it once every 1 day to 2 months in order to effectively prevent contamination with bacteria and the like. Once a week is even more preferred. If the interval between sterilization treatments is too long, it becomes difficult to effectively prevent the contamination of bacteria and the like. Further, if the interval of the sterilization treatment is too short, it is not possible to take a sufficient time for producing the medicinal water, and the production efficiency is deteriorated.

〈殺菌方法〉
次に、医薬用水製造システムの殺菌方法について、図2を参照しながら説明する。この図2に示した医薬用水製造システム1は、図1の医薬用水製造システム1と同一である。
<Sterilization method>
Next, the sterilization method of the medicinal water production system will be described with reference to FIG. The medicinal water production system 1 shown in FIG. 2 is the same as the medicinal water production system 1 of FIG.

原水タンク2に十分な量の原水を貯留し、バルブV0を閉めて、原水の供給を停止する。これは、得られる加熱水の温度の低下を抑制するためである。次いで、原水タンク2から供給される原水を、熱交換器3により加熱して、熱殺菌用の加熱水となるまで昇温させる。この加熱水は、医薬用水製造システム内を循環させながら、徐々に所望の温度にまで加熱するようにして得られる。 A sufficient amount of raw water is stored in the raw water tank 2, the valve V0 is closed, and the supply of raw water is stopped. This is to suppress a decrease in the temperature of the obtained heated water. Next, the raw water supplied from the raw water tank 2 is heated by the heat exchanger 3 to raise the temperature until it becomes heated water for heat sterilization. This heated water is obtained by gradually heating to a desired temperature while circulating in the pharmaceutical water production system.

この昇温工程においては、熱交換器3で加熱された加熱水を、供給配管L1からそのまま水処理装置4に供給する加熱水と、供給配管L1から分岐した第1の循環配管L3を流通させ、原水タンク2に循環させる加熱水と、に分離する。 In this temperature raising step, the heated water heated by the heat exchanger 3 is supplied to the water treatment device 4 as it is from the supply pipe L1 and the first circulation pipe L3 branched from the supply pipe L1 is circulated. , Separated into heated water circulated in the raw water tank 2.

これは、加熱対象となる後段の水処理装置4に対して、急に高温の加熱水を供給すると、熱負荷が大きくなり装置の機能低下等の不具合が生じるおそれがあるため、加熱水の一部を供給配管L1からそのまま水処理装置4に供給し、一方、原水から熱殺菌用の加熱水までの加熱を、短時間で、熱エネルギーを良好に行うために、その他の加熱水を第1の循環配管L3により原水タンク2に循環させる。 This is because if a high-temperature heated water is suddenly supplied to the subsequent water treatment device 4 to be heated, the heat load may increase and problems such as deterioration of the function of the device may occur. The unit is supplied to the water treatment device 4 as it is from the supply pipe L1, while the other heated water is first used to heat the raw water to the heated water for heat sterilization in a short time and to obtain good heat energy. It is circulated to the raw water tank 2 by the circulation pipe L3 of.

このとき、加熱水の昇温速度を1〜10℃/分とすることが好ましい。この昇温温度は、例えば、熱交換器3や原水タンク2等の出口に温度測定器を設け、経時的に温度変化を測定することで確認できる。 At this time, it is preferable that the heating rate of the heated water is 1 to 10 ° C./min. This temperature rise can be confirmed, for example, by providing a temperature measuring device at the outlet of the heat exchanger 3 or the raw water tank 2 and measuring the temperature change over time.

このように加熱水を分離することで、水処理装置4へ流通させる加熱水の温度を徐々に高くなるようにすることができ、かつ、原水タンク2への循環により、従来の水処理装置4への流通による加熱水の温度低下を防いで、所望の温度にまで効率的に加熱することができる。 By separating the heated water in this way, the temperature of the heated water to be distributed to the water treatment device 4 can be gradually increased, and by circulating to the raw water tank 2, the conventional water treatment device 4 can be used. It is possible to efficiently heat the heated water to a desired temperature by preventing the temperature of the heated water from dropping due to the flow to the water.

また、この加熱水は上記の通り分岐させるが、水処理装置4に供給される加熱水の流量をQ1、原水タンク2に循環させる加熱水の流量をQ2としたとき、これら流量の比を、流量Q1:流量Q2が90:10〜20:80とすることが好ましく、50:50〜25:75とすることがより好ましい。このような流量比とすることで、水処理装置4に加熱水を供給しつつ、第1の循環配管L3により、加熱水の昇温を効率よく行うことができる。
流量Q2の割合が小さすぎる場合、原水タンク2の加熱を効率的に行うことが難しくなる。流量Q2の割合が大きすぎる場合、原水タンク2に収容されている水の昇温速度が大きくなりすぎるリスクが生じる。そうなった場合は、原水タンク2から水処理装置4に送出される水の昇温速度も大きくなりすぎてしまうことになる。
Further, this heated water is branched as described above, but when the flow rate of the heated water supplied to the water treatment device 4 is Q1 and the flow rate of the heated water circulated in the raw water tank 2 is Q2, the ratio of these flow rates is set. The flow rate Q1: the flow rate Q2 is preferably 90: 10 to 20:80, and more preferably 50:50 to 25:75. With such a flow rate ratio, it is possible to efficiently raise the temperature of the heated water by the first circulation pipe L3 while supplying the heated water to the water treatment device 4.
If the ratio of the flow rate Q2 is too small, it becomes difficult to efficiently heat the raw water tank 2. If the ratio of the flow rate Q2 is too large, there is a risk that the rate of temperature rise of the water contained in the raw water tank 2 becomes too large. In such a case, the rate of temperature rise of the water sent from the raw water tank 2 to the water treatment device 4 becomes too high.

この分岐する加熱水の流量Q1、Q2は、供給配管L1に設けられたバルブV1a、第1の循環配管L3に設けられたバルブV1bにおいて、それぞれ所望の開度とすることで調節できる。上記した昇温速度は、この流量Q1、Q2を調節することでも所望の範囲に調節できる。 The flow rates Q1 and Q2 of the branched heated water can be adjusted by setting the respective desired openings in the valve V1a provided in the supply pipe L1 and the valve V1b provided in the first circulation pipe L3. The temperature rising rate described above can be adjusted to a desired range by adjusting the flow rates Q1 and Q2.

また、供給配管L1から水処理装置4に供給された加熱水は、水処理装置4の内部を通り、供給配管L2から送出される。さらに、この加熱水は、第2の循環配管L4により原水タンク2へと循環させる。 Further, the heated water supplied from the supply pipe L1 to the water treatment device 4 passes through the inside of the water treatment device 4 and is sent out from the supply pipe L2. Further, this heated water is circulated to the raw water tank 2 by the second circulation pipe L4.

このような循環系とすることで、原水タンク2の水温と水処理装置4の水温をほぼ同じにでき、熱交換器出口温度が規定温度に到達してから昇温工程が終了する(すべてのラインが規定温度に到達する)までの時間を短くすることができ、昇温工程終了後直ちに均温工程に移ることができ、殺菌を短時間で行うことが可能である。
昇温工程を開始してから、水処理装置4に供給される水が所望の温度に達するまでの時間と、原水タンク2出口を通水する水が所望の温度に達するまでの時間の差は、10分以内となるようにすることが好ましい。
また、水処理装置4に供給される水と原水タンク2出口を通水する水の温度差は、10℃以内となるようにすることが好ましい。
By adopting such a circulation system, the water temperature of the raw water tank 2 and the water temperature of the water treatment device 4 can be made substantially the same, and the temperature raising process is completed after the heat exchanger outlet temperature reaches the specified temperature (all). The time until the line reaches the specified temperature) can be shortened, the temperature soaking step can be started immediately after the temperature raising step is completed, and the sterilization can be performed in a short time.
The difference between the time it takes for the water supplied to the water treatment device 4 to reach the desired temperature and the time it takes for the water passing through the outlet of the raw water tank 2 to reach the desired temperature after starting the temperature raising step is It is preferably within 10 minutes.
Further, it is preferable that the temperature difference between the water supplied to the water treatment device 4 and the water passing through the outlet of the raw water tank 2 is within 10 ° C.

このようにして、所望の温度の加熱水となるまで、上記の操作を継続して行い、所望の温度となった後、所定の時間、加熱水による医薬用水製造システム内の殺菌処理(均温工程)を行う。ここで、殺菌用の加熱水の温度としては、60℃以上であり、60〜90℃が好ましい。また、殺菌処理の所定の時間としては、製造システムの構成に応じて十分に殺菌処理される時間を設定すればよく、例えば、60℃の場合30〜120分、80℃の場合、20〜60分加熱水を通水すればよい。 In this way, the above operation is continued until the heated water reaches the desired temperature, and after the desired temperature is reached, the sterilization treatment (equal temperature) in the pharmaceutical water production system with the heated water is performed for a predetermined time. Step). Here, the temperature of the heated water for sterilization is 60 ° C. or higher, preferably 60 to 90 ° C. Further, as the predetermined time of the sterilization treatment, a time sufficient for the sterilization treatment may be set according to the configuration of the manufacturing system. For example, 30 to 120 minutes at 60 ° C. and 20 to 60 minutes at 80 ° C. It suffices to pass the heated water for a minute.

なお、所定の温度となった後、この温度を維持しながら殺菌処理するには、第2の循環配管L4に加熱水を循環させることが好ましい。 After reaching a predetermined temperature, in order to carry out the sterilization treatment while maintaining this temperature, it is preferable to circulate the heated water in the second circulation pipe L4.

また、このとき、バルブV1a、V1bの開度を変えて、流量Q2を減らし、流量Q1を増やすこともできる。このように開度を変える場合、昇温から殺菌(均温)や殺菌(均温)から降温を切り替える所定のタイミングで開度を変更することができる制御手段を設けることも可能である。 Further, at this time, the opening degrees of the valves V1a and V1b can be changed to reduce the flow rate Q2 and increase the flow rate Q1. When the opening degree is changed in this way, it is also possible to provide a control means capable of changing the opening degree at a predetermined timing for switching from sterilization (equal temperature) or sterilization (equal temperature) to lowering temperature.

十分に殺菌処理が終わったら、次いで、加熱水の降温処理を行う。これは、再度、医薬用水を製造するための工程である。この降温工程においては、熱交換器3による加熱を停止、熱交換器3に冷水を供給、または、熱交換器3による加熱量を制御するなどの従来公知の方法により行えばよい。また、バルブV0を開け、原水タンク2への原水の供給を再開してもよい。このとき、原水の加熱工程で説明した昇温速度と同様、急激な温度変化を生じないように、降温速度を所定の範囲で行うようにする点だけ注意する。この降温速度は、上記した昇温速度と同じ1〜10℃/分とすることが好ましい。 After the sterilization treatment is sufficiently completed, the temperature of the heated water is then lowered. This is a process for producing medicinal water again. In this temperature lowering step, heating by the heat exchanger 3 may be stopped, cold water may be supplied to the heat exchanger 3, or the amount of heating by the heat exchanger 3 may be controlled by a conventionally known method. Further, the valve V0 may be opened to restart the supply of raw water to the raw water tank 2. At this time, it should be noted that the temperature lowering rate is set within a predetermined range so as not to cause a sudden temperature change, similar to the temperature raising rate described in the raw water heating step. The temperature lowering rate is preferably 1 to 10 ° C./min, which is the same as the above-mentioned temperature raising rate.

この降温操作においては、降温速度が上記範囲内となるようにすれば、バルブV1a、V1b、V2a、V2bの開度はどのように設定してもよいが、例えば、加熱水を供給配管L2からシステム外に排出しつつ、その一部を第2の循環配管L4で原水タンク2に循環させ、降温速度を調節することができる。 In this temperature lowering operation, the opening degrees of the valves V1a, V1b, V2a, and V2b may be set as long as the temperature lowering speed is within the above range. For example, the heated water is supplied from the supply pipe L2. While discharging to the outside of the system, a part of it can be circulated to the raw water tank 2 by the second circulation pipe L4 to adjust the temperature lowering rate.

(変形例1)
また、この超純水製造システム1は、図3に示したように変形することもできる。すなわち、この図3に示した超純水製造システム1は、図1で説明した超純水製造システム1と同一の構成を有する製造システムであるが、供給配管L1と第1の循環配管L3の配置関係を特定のものにした例を説明するものである。
(Modification 1)
Further, the ultrapure water production system 1 can be deformed as shown in FIG. That is, the ultrapure water production system 1 shown in FIG. 3 is a production system having the same configuration as the ultrapure water production system 1 described with reference to FIG. 1, but the supply pipe L1 and the first circulation pipe L3 This is an explanation of an example in which the arrangement relationship is made specific.

この図3に示した医薬用水製造システム1において、供給配管L1は、原水タンク2の近傍を通るように配設されている点に特徴を有する。すなわち、熱交換器3から排出された原水または加熱水が直ぐに水処理装置4に供給されるように、供給配管L1を配設するのではなく、あえて原水タンク2の近傍を通るように、配管の配設位置を変更したものである。 In the pharmaceutical water production system 1 shown in FIG. 3, the supply pipe L1 is characterized in that it is arranged so as to pass in the vicinity of the raw water tank 2. That is, the supply pipe L1 is not arranged so that the raw water or the heated water discharged from the heat exchanger 3 is immediately supplied to the water treatment device 4, but the pipe is intentionally passed in the vicinity of the raw water tank 2. The arrangement position of is changed.

このとき、供給配管L1には、その途中で分岐する第1の循環配管L3が設けられるが、この変形例においては、第1の循環配管L3の長さを、短くすることが可能で、できるだけ短くなるように設ける。なお、この図3では、供給配管L1のうち、熱交換器3から分岐部分までを供給配管L1a、分岐部分から水処理装置4までを供給配管L1bとして示した。 At this time, the supply pipe L1 is provided with a first circulation pipe L3 that branches in the middle of the supply pipe L1, but in this modification, the length of the first circulation pipe L3 can be shortened as much as possible. Provide it so that it is short. In FIG. 3, of the supply pipe L1, the part from the heat exchanger 3 to the branch portion is shown as the supply pipe L1a, and the part from the branch portion to the water treatment device 4 is shown as the supply pipe L1b.

このように、第1の循環配管L3の長さを短くすることで、医薬用水の製造時には使用しない第1の循環配管L3内で、細菌の増殖等による汚染度合いを低下させることができる。このとき、供給配管L1は、医薬用水の製造時にも、殺菌時にも、いずれの場合でも原水または加熱水が流通しているため、汚染に関して特別な注意をする必要はない。 By shortening the length of the first circulation pipe L3 in this way, it is possible to reduce the degree of contamination due to the growth of bacteria or the like in the first circulation pipe L3 that is not used during the production of medicinal water. At this time, since the raw water or the heated water is circulated in the supply pipe L1 at the time of producing the medicinal water and at the time of sterilization, it is not necessary to pay special attention to the contamination.

また、バルブV1bと原水タンク2の間(第1の循環配管L3の大部分)は、その軸が鉛直方向に延びる配管となるように配設することが好ましい。このように鉛直方向に設けると、この配管に通水しない医薬用水の製造時において、この部分の滞留水は原水タンク2に流出するため、滞留水は存在しない。したがって滞留水における菌の増殖等の問題はほとんど起きない。 Further, it is preferable that the valve V1b and the raw water tank 2 (most of the first circulation pipe L3) are arranged so that the axis thereof extends in the vertical direction. If it is provided in the vertical direction in this way, the stagnant water in this portion flows out to the raw water tank 2 at the time of manufacturing the medicinal water that does not pass through this pipe, so that the stagnant water does not exist. Therefore, problems such as bacterial growth in stagnant water hardly occur.

第1の循環配管L3の長さとしては、供給配管L1aの長さの1/2よりも短いことが好ましく、1/4よりも短いことがより好ましい。この長さは、分岐部分や原水タンク2との接続配管や、バルブV1bのように、最低限設けなければならない構成はあるが、それを含めて短ければ短いほど好ましく、具体的には、2m以下が好ましく、1m以下がより好ましい。また、供給配管L1から第1の循環配管L3に分岐する部分にはT字管を設けて分岐させるのが一般的であるが、このT字管と原水タンク2の間にバルブV1bを直付けする場合もあり、この場合には実質的に第1の循環配管L3の長さは分岐部分のT字管の一部、バルブV1b、原水タンク2から突出した接続部の合計の長さとなり、この構成において、第1の循環配管L3の長さが最短となり、最も好ましい構成となる。 The length of the first circulation pipe L3 is preferably shorter than 1/2 of the length of the supply pipe L1a, and more preferably shorter than 1/4. This length has a minimum configuration that must be provided, such as a branch portion, a connection pipe with the raw water tank 2, and a valve V1b, but the shorter it is, the more preferable it is, specifically, 2 m. The following is preferable, and 1 m or less is more preferable. Further, it is common to provide a T-shaped pipe at the portion branching from the supply pipe L1 to the first circulation pipe L3 to branch, but a valve V1b is directly attached between the T-shaped pipe and the raw water tank 2. In this case, the length of the first circulation pipe L3 is substantially the total length of a part of the T-shaped pipe at the branch portion, the valve V1b, and the connection portion protruding from the raw water tank 2. In this configuration, the length of the first circulation pipe L3 is the shortest, which is the most preferable configuration.

なお、第1の循環配管L3部分は、その軸が鉛直方向に延びることが好ましいと記載したが、その配管内部の水が原水タンク2に流出可能であればよく、軸が鉛直方向と一致している必要はない。上記作用を生じる限り、鉛直方向に対して、配管の軸が角度を持って傾斜を有していてもよい。すなわち、バルブV1bが原水タンク2の接続部より高ければよい。 Although it is described that the shaft of the first circulation pipe L3 portion preferably extends in the vertical direction, it suffices if the water inside the pipe can flow out to the raw water tank 2, and the shaft coincides with the vertical direction. You don't have to. As long as the above action occurs, the axis of the pipe may be inclined at an angle with respect to the vertical direction. That is, it suffices if the valve V1b is higher than the connection portion of the raw water tank 2.

(変形例2)
また、この超純水製造システム1は、第1の循環配管L3と原水タンク2との接続部分において、循環してきた加熱水を原水タンク2内に供給する部分を、スプレーノズルとすることが好ましい。スプレーノズルとしては、公知のスプレーノズルを用いることができ、拡散しながらタンク内に供給できるタイプのものが好ましい。このスプレーノズルとしては、具体的には、トーステ株式会社製スプレーボール(KTシリーズ)等が利用可能である。
(Modification 2)
Further, in the ultrapure water production system 1, it is preferable that the portion of the connection portion between the first circulation pipe L3 and the raw water tank 2 for supplying the circulated heated water into the raw water tank 2 is a spray nozzle. .. As the spray nozzle, a known spray nozzle can be used, and a type that can be supplied into the tank while diffusing is preferable. Specifically, as the spray nozzle, a spray ball (KT series) manufactured by Toste Co., Ltd. can be used.

このようにスプレーノズルを用いることで、第1の循環配管L3により循環してきた加熱水を、原水タンク2内に、例えば、シャワー状に拡散して供給できる。このようにすることで、加熱水の製造時における昇温効率を向上できる。 By using the spray nozzle in this way, the heated water circulated by the first circulation pipe L3 can be diffused and supplied into the raw water tank 2 in a shower shape, for example. By doing so, it is possible to improve the heating efficiency during the production of heated water.

昇温効率が向上する理由は、原水タンク内の温度分布が抑制されるため、昇温速度を安定化させられるためである。 The reason why the temperature rise efficiency is improved is that the temperature distribution in the raw water tank is suppressed, so that the temperature rise rate can be stabilized.

また、上記した変形例1と変形例2は、両方の構成を共に有する医薬用水製造システムとしてもよい。 Further, the above-mentioned Modification 1 and Modification 2 may be a pharmaceutical water production system having both configurations.

なお、上記殺菌方法の説明においては、原水の加熱処理を最初から行う態様で説明しているが、その加熱前に、一旦、原水タンク2に収容されている原水を、常温のまま水処理装置4により処理して、その処理水全量を第2の循環配管L4により循環させ、原水タンク2内を、水処理装置4による処理水に置換してから、上記殺菌方法を行うようにしてもよい。また、水処理装置4が2以上の装置で構成される場合、その一部に通水処理させ、原水タンク2に循環させるようにしてもよい。 In the description of the sterilization method, the method of heat-treating the raw water from the beginning is described, but before the heating, the raw water once stored in the raw water tank 2 is treated with the raw water at room temperature. 4 may be used, the entire amount of the treated water may be circulated by the second circulation pipe L4, the inside of the raw water tank 2 may be replaced with the treated water by the water treatment device 4, and then the above sterilization method may be performed. .. Further, when the water treatment device 4 is composed of two or more devices, a part of the water treatment device 4 may be subjected to water treatment and circulated to the raw water tank 2.

これは、例えば、水処理装置4として逆浸透膜装置(RO)と電気式脱イオン装置(EDI)を用いる場合、その加熱水の通水時における供給圧力は、医薬用水の製造時に比べて低くする必要が生じるため、逆浸透膜装置を通水して得られる水質が、電気式脱イオン装置への通水基準を超えてしまい、そのまま電気式脱イオン装置の殺菌処理に用いることが好ましくない場合に有効である。 This is because, for example, when a reverse osmosis membrane device (RO) and an electric deionization device (EDI) are used as the water treatment device 4, the supply pressure of the heated water at the time of passing water is lower than that at the time of producing medicinal water. Therefore, the water quality obtained by passing water through the reverse osmosis membrane device exceeds the water flow standard for the electric deionization device, and it is not preferable to use it as it is for the sterilization treatment of the electric deionization device. It is effective in some cases.

なお、上記の循環は、原水タンク2に収容されている水量を減らす目的で行ってもよい。すなわち、例えば水処理装置4として逆浸透膜装置(RO)と電気式脱イオン装置(EDI)を用いる場合、上記の循環中は逆浸透膜装置(RO)の濃縮水、電気式脱イオン装置(EDI)の濃縮水及び電極水を系外に排出することで、原水タンク2内の水質向上とともに水量減少も実現できる。
これは、殺菌処理を開始するためにバルブV0を閉めて原水の供給を停止した時点で、原水タンク2に収容されている水量が多すぎ、よって熱容量が大きすぎる場合に有効である。すなわち、原水タンク2の熱容量を昇温前に小さくすることで、昇温工程における原水タンク2内の昇温を所望の速度に高めることができ、熱効率も良好にできる。
The above circulation may be performed for the purpose of reducing the amount of water contained in the raw water tank 2. That is, for example, when a reverse osmosis membrane device (RO) and an electric deionization device (EDI) are used as the water treatment device 4, the concentrated water of the reverse osmosis membrane device (RO) and the electric deionization device (EDI) during the above circulation. By discharging the concentrated water of EDI) and the electrode water to the outside of the system, it is possible to improve the water quality in the raw water tank 2 and reduce the amount of water.
This is effective when the amount of water contained in the raw water tank 2 is too large and therefore the heat capacity is too large when the valve V0 is closed to start the sterilization process and the supply of raw water is stopped. That is, by reducing the heat capacity of the raw water tank 2 before the temperature rise, the temperature rise in the raw water tank 2 in the temperature rise step can be increased to a desired speed, and the thermal efficiency can be improved.

このように水処理装置4による処理水に置換する場合であって、水処理装置4が逆浸透膜装置や電気式脱イオン装置のように、透過水の他に濃縮水が得られる場合、上記殺菌方法の実施においては、その濃縮水を原水タンク2に循環させるようにしてもよい。 In the case of substituting with the treated water by the water treatment device 4 in this way, when the water treatment device 4 can obtain concentrated water in addition to the permeated water like a reverse osmosis membrane device or an electric deionization device, the above-mentioned In carrying out the sterilization method, the concentrated water may be circulated in the raw water tank 2.

以下、本発明について実施例および比較例を参照しながら説明する。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.

(実施例1)
図4に示した、原水タンク2、熱交換器3、水処理装置として逆浸透膜装置(RO)41、電気式脱イオン装置(EDI)42をこの順番で有し、供給配管L1とそこから分岐する第1の循環配管L3、供給配管L2とそこから分岐する第2の循環配管L4、を有してなる医薬用水製造システム11を用意した。
(Example 1)
The raw water tank 2, the heat exchanger 3, the reverse osmosis membrane device (RO) 41, and the electric deionization device (EDI) 42 shown in FIG. 4 are provided in this order, and the supply pipe L1 and the supply pipe L1 are provided. A medicinal water production system 11 including a first circulation pipe L3 that branches, a supply pipe L2, and a second circulation pipe L4 that branches from the supply pipe L2 was prepared.

なお、この医薬用水製造システム11には、図示していないが、供給配管L2において、電気式脱イオン装置42と第2の循環配管L4との分岐部分との間に、紫外線照射装置(UV)を設けている。 Although not shown in the pharmaceutical water production system 11, an ultraviolet irradiation device (UV) is provided between the branch portion of the electric deionization device 42 and the second circulation pipe L4 in the supply pipe L2. Is provided.

上記した各種装置については、具体的には、以下のものを用いた。
熱交換器:単管板多管式熱交換器(STR65−0.5MR、東洋システム株式会社製)
逆浸透膜装置:低圧型PA型8インチモジュール(SU―720TS、東レ株式会社製)9本、水回収率55%、医薬用水の製造時の供給水流量7.4m/h
電気式脱イオン装置:E−Cell(MK−3 PHARMHT、SUEZ社製)2台、水回収率90%、医薬用水の製造時の供給水流量3.7m/h
紫外線照射装置:殺菌型(NPXシリーズ、日本フォトサイエンス社製)、照射量190W
Specifically, the following devices were used for the various devices described above.
Heat exchanger: Single tube plate multi-tube heat exchanger (STR65-0.5MR, manufactured by Toyo System Co., Ltd.)
Reverse osmosis membrane device: 9 low-pressure PA type 8-inch modules (SU-720TS, manufactured by Toray Industries, Inc.), water recovery rate 55%, supply water flow rate during production of medicinal water 7.4 m 3 / h
Electric deionizer: 2 E-Cell (MK-3 PHARMHT, manufactured by SUEZ), water recovery rate 90%, supply water flow rate during production of medicinal water 3.7 m 3 / h
Ultraviolet irradiation device: Sterilization type (NPX series, manufactured by Nippon Photo Science Co., Ltd.), irradiation amount 190W

この医薬用水製造システム11について、まず、原水として市水を、原水タンク2に供給して収容した。原水の供給を停止し、まずは、以下のように殺菌処理を行った。 Regarding the medicinal water production system 11, first, city water was supplied to the raw water tank 2 as raw water and stored. The supply of raw water was stopped, and first, sterilization was performed as follows.

原水タンク2から、ポンプ5により、原水を熱交換器3へと供給し、原水を加熱して加熱水とした。得られた加熱水は、供給配管L1に送出され、バルブV1aとバルブV1bとの開度をそれぞれ調節し、この供給配管L1において分岐させた。分岐された加熱水の流量は、水処理装置側の流量Q1と、第1の循環配管L3を通り原水タンク2へ循環する流量Q2を、流量Q1:流量Q2=35:65とした。 The raw water was supplied from the raw water tank 2 to the heat exchanger 3 by the pump 5, and the raw water was heated to obtain heated water. The obtained heated water was sent to the supply pipe L1, and the opening degrees of the valves V1a and the valve V1b were adjusted, respectively, and branched in the supply pipe L1. As for the flow rate of the branched heated water, the flow rate Q1 on the water treatment device side and the flow rate Q2 circulating to the raw water tank 2 through the first circulation pipe L3 were set to flow rate Q1: flow rate Q2 = 35:65.

また、水処理装置側に流通させた加熱水は、バルブV2aを閉め、バルブV2bを開け、その全量を第2の循環配管L4により原水タンク2に循環させた。 Further, the heated water circulated to the water treatment apparatus side closed the valve V2a, opened the valve V2b, and circulated the entire amount to the raw water tank 2 by the second circulation pipe L4.

この操作を繰り返し行い、原水を所望の殺菌温度(80℃)となるまで継続して行った。所望の温度となったところで、バルブV1bを閉め、加熱水を第2の循環配管L4で循環させながら30分間殺菌処理を行った。 This operation was repeated and continued until the desired sterilization temperature (80 ° C.) was reached. When the desired temperature was reached, the valve V1b was closed, and the sterilization treatment was performed for 30 minutes while circulating the heated water in the second circulation pipe L4.

(比較例1)
図5に示した、原水タンク2、熱交換器3、逆浸透膜装置(RO)41、電気式脱イオン装置(EDI)42をこの順番で有し、供給配管L1、供給配管L2とそこから分岐する第2の循環配管L4、を有してなる医薬用水製造システム51を用意した。
(Comparative Example 1)
The raw water tank 2, the heat exchanger 3, the reverse osmosis membrane device (RO) 41, and the electric deionization device (EDI) 42 shown in FIG. 5 are provided in this order, and the supply pipe L1 and the supply pipe L2 and from there. A medicinal water production system 51 having a second circulation pipe L4 for branching was prepared.

なお、この医薬用水製造システム11には、図示していないが、供給配管L2において、電気式脱イオン装置42と第2の循環配管L4との分岐部分との間に、紫外線照射装置(UV)が設けられている。すなわち、この医薬用水製造システム51は、第1の循環配管L3が設けられていない点のみ、実施例1で用いた医薬用水製造システム11と異なる。 Although not shown in the pharmaceutical water production system 11, an ultraviolet irradiation device (UV) is provided between the branch portion of the electric deionization device 42 and the second circulation pipe L4 in the supply pipe L2. Is provided. That is, the medicinal water production system 51 is different from the medicinal water production system 11 used in the first embodiment only in that the first circulation pipe L3 is not provided.

この医薬用水製造システム51について、まず、原水として市水を、原水タンク2に供給して収容した。原水の供給を停止し、まずは、以下のように殺菌処理を行った。 Regarding the medicinal water production system 51, first, city water was supplied to the raw water tank 2 as raw water and stored. The supply of raw water was stopped, and first, sterilization was performed as follows.

原水タンク2から、ポンプ5により、原水を熱交換器3へと供給し、原水を加熱し加熱水とした。得られた加熱水は、供給配管L1に送出され、水処理装置に流通させた後、バルブV2aを閉め、バルブV2bを開け、その全量を第2の循環配管L4により原水タンク2に循環させた。 The raw water was supplied from the raw water tank 2 to the heat exchanger 3 by the pump 5, and the raw water was heated to obtain heated water. The obtained heated water was sent to the supply pipe L1 and circulated to the water treatment device, then the valve V2a was closed, the valve V2b was opened, and the entire amount was circulated to the raw water tank 2 by the second circulation pipe L4. ..

この操作を繰り返し行い、原水を所望の殺菌温度(80℃)となるまで継続して行った。所望の温度となったところで、加熱水を第2の循環配管L4で循環させながら30分間殺菌処理を行った。 This operation was repeated and continued until the desired sterilization temperature (80 ° C.) was reached. When the desired temperature was reached, the sterilization treatment was performed for 30 minutes while circulating the heated water in the second circulation pipe L4.

上記実施例1および比較例1において、その加熱処理時の、熱交換器3出口と原水タンク2出口のそれぞれに温度センサーを設け、温度変化を経時的に測定し、その結果を表1と図6(実施例1)および表2と図7(比較例1)に示した。
ここで、時間の起点(0分)は、原水を熱交換器3により加熱し始めた、殺菌方法を開始した時間である。
In Example 1 and Comparative Example 1, temperature sensors were provided at each of the heat exchanger 3 outlet and the raw water tank 2 outlet during the heat treatment, and the temperature change was measured over time, and the results are shown in Table 1 and FIG. 6 (Example 1) and Table 2 and FIG. 7 (Comparative Example 1) are shown.
Here, the starting point (0 minutes) of the time is the time when the sterilization method is started, in which the raw water is started to be heated by the heat exchanger 3.

Figure 2021178297
Figure 2021178297

Figure 2021178297
Figure 2021178297

なお、熱交換器3出口の温度を80℃にまで加熱するのに、実施例1では約43分、比較例1では約43分であったが、原水タンク2出口の温度を80℃にまで加熱するのに、実施例1では約48分、比較例1では約64分であった。
すなわち、熱交換器3出口の温度を80℃にまで加熱するのに要した時間と、原水タンク2出口の温度を80℃にまで加熱するのに要した時間の差は、実施例1では約5分、比較例1では約16分であった。すなわち、比較例1に比べ、実施例1では水処理装置4に対する余計な加熱時間を抑えられていることがわかった。
It took about 43 minutes in Example 1 and about 43 minutes in Comparative Example 1 to heat the temperature of the heat exchanger 3 outlet to 80 ° C., but the temperature of the raw water tank 2 outlet was raised to 80 ° C. It took about 48 minutes in Example 1 and about 64 minutes in Comparative Example 1 to heat.
That is, the difference between the time required to heat the temperature of the outlet of the heat exchanger 3 to 80 ° C. and the time required to heat the temperature of the outlet of the raw water tank 2 to 80 ° C. is about about 1 in Example 1. It took 5 minutes, and in Comparative Example 1, it took about 16 minutes. That is, it was found that the extra heating time for the water treatment apparatus 4 was suppressed in Example 1 as compared with Comparative Example 1.

また、原水タンク2出口が80℃になった時点で、熱交換器3出口の温度は実施例では約82℃、比較例1では約92℃であった。すなわち、この点からも、比較例1に比べ、実施例1では水処理装置4に対する余計な昇温を抑えられていることがわかった。 Further, when the temperature of the outlet of the raw water tank 2 reached 80 ° C, the temperature of the outlet of the heat exchanger 3 was about 82 ° C in the example and about 92 ° C in the comparative example 1. That is, from this point as well, it was found that, as compared with Comparative Example 1, in Example 1, an unnecessary increase in temperature of the water treatment apparatus 4 was suppressed.

以上から、比較例1に比べ、実施例1では水処理装置4への余計な熱負荷が抑えられており、それだけエネルギー効率も良好であることがわかった。また、殺菌処理に要する時間も短縮できていることがわかった。 From the above, it was found that the extra heat load on the water treatment apparatus 4 was suppressed in the first embodiment as compared with the first comparative example, and the energy efficiency was improved accordingly. It was also found that the time required for the sterilization process was shortened.

すなわち、本実施形態によれば、加熱水を製造する加熱工程において、その熱交換器により得られる加熱水を処理装置の前段で原水タンクへ循環させつつ、昇温させることで、より短時間で所望の温度にまで加熱することができ、効率的に殺菌処理を行うことができる。 That is, according to the present embodiment, in the heating step of producing heated water, the heated water obtained by the heat exchanger is circulated to the raw water tank in the front stage of the treatment device and the temperature is raised in a shorter time. It can be heated to a desired temperature, and the sterilization treatment can be performed efficiently.

また、本実施形態によれば、熱交換器により得られる加熱水の一部を処理装置へ通水させているため、処理装置内へ通水する加熱水の温度が徐々に高められることで、処理装置への熱負荷を過度に大きくせず、機能低下を防ぐこともできる。 Further, according to the present embodiment, since a part of the heated water obtained by the heat exchanger is passed through the treatment device, the temperature of the heated water passing through the treatment device is gradually increased. It is also possible to prevent functional deterioration without excessively increasing the heat load on the processing device.

1,11,51…医薬用水製造システム、2…原水タンク、3…熱交換器、4…水処理装置、5…ポンプ、L1,L2…供給配管、L3…第1の循環配管、L4…第2の循環配管、V0,V1a,V1b,V2a,V2b…バルブ、41…逆浸透膜装置(RO)、42…電気式脱イオン装置(EDI) 1,11,51 ... Medicinal water production system, 2 ... Raw water tank, 3 ... Heat exchanger, 4 ... Water treatment device, 5 ... Pump, L1, L2 ... Supply pipe, L3 ... First circulation pipe, L4 ... 2 circulation pipes, V0, V1a, V1b, V2a, V2b ... valves, 41 ... reverse osmosis membrane device (RO), 42 ... electric deionization device (EDI)

Claims (12)

原水を収容する原水タンクと、
前記原水タンクから供給される前記原水に含まれる不純物を除去できる、逆浸透膜装置、電気脱イオン装置、活性炭吸着装置、限外ろ過膜装置、紫外線殺菌装置および混床式イオン交換装置から選ばれる少なくとも1つを有する水処理装置と、
前記水処理装置の前段に配置され、前記原水タンクから供給される前記原水を加熱できる熱交換器と、
前記熱交換器で加熱された加熱水の一部を、前記熱交換器から前記水処理装置へ接続される供給配管から分岐して前記原水タンクへ循環させる第1の循環配管と、
を有することを特徴とする医薬用水製造システム。
A raw water tank that houses raw water,
It is selected from a reverse osmosis membrane device, an electrodeionization device, an activated charcoal adsorption device, an ultrafiltration membrane device, an ultraviolet sterilization device, and a mixed bed type ion exchange device that can remove impurities contained in the raw water supplied from the raw water tank. A water treatment device having at least one and
A heat exchanger arranged in front of the water treatment device and capable of heating the raw water supplied from the raw water tank.
A first circulation pipe that branches a part of the heated water heated by the heat exchanger from the supply pipe connected from the heat exchanger to the water treatment device and circulates it to the raw water tank.
A medicated water production system characterized by having.
前記水処理装置を通水して得られた前記加熱水を、前記原水タンクへ循環させる第2の循環配管を有する請求項1に記載の医薬用水製造システム。 The medicinal water production system according to claim 1, further comprising a second circulation pipe for circulating the heated water obtained by passing the water treatment device to the raw water tank. 前記加熱水の、前記水処理装置への流量Q1と前記原水タンクへの流量Q2との流量比(流量Q1:流量Q2)を、90:10〜20:80とする流量調節が可能なバルブを有する請求項1または2に記載の医薬用水製造システム。 A valve capable of adjusting the flow rate so that the flow rate ratio (flow rate Q1: flow rate Q2) of the heated water to the flow rate Q1 to the water treatment device and the flow rate Q2 to the raw water tank is 90: 10 to 20:80. The pharmaceutical water production system according to claim 1 or 2. 前記供給配管が前記原水タンクの近傍を通るように配設され、
前記第1の循環配管の長さが、前記供給配管のうち前記熱交換器から前記第1の循環配管との分岐部分までの長さの1/2よりも短い請求項1〜3のいずれか1項に記載の医薬用水製造システム。
The supply pipe is arranged so as to pass in the vicinity of the raw water tank.
One of claims 1 to 3 in which the length of the first circulation pipe is shorter than 1/2 of the length of the supply pipe from the heat exchanger to the branch portion of the first circulation pipe. The pharmaceutical water production system according to item 1.
前記第1の循環配管の長さが2m以下である請求項1〜4のいずれか1項に記載の医薬用水製造システム。 The pharmaceutical water production system according to any one of claims 1 to 4, wherein the length of the first circulation pipe is 2 m or less. 前記第1の循環配管の軸が鉛直方向に延びて配設されている請求項1〜5のいずれか1項に記載の医薬用水製造システム。 The medicinal water production system according to any one of claims 1 to 5, wherein the axis of the first circulation pipe is arranged so as to extend in the vertical direction. さらに、前記第1の循環配管と前記原水タンクとの接続部分において、循環してきた前記加熱水を前記原水タンク内に分散して供給するスプレーノズルを有する請求項1〜6のいずれか1項に記載の医薬用水製造システム。 Further, according to any one of claims 1 to 6, a spray nozzle having a spray nozzle for distributing and supplying the circulating heated water in the raw water tank at the connection portion between the first circulation pipe and the raw water tank. The pharmaceutical water production system described. 原水を収容する原水タンクと、前記原水タンクから送出される前記原水に含まれる不純物を除去できる、逆浸透膜装置、電気脱イオン装置、活性炭吸着装置、限外ろ過膜装置、紫外線殺菌装置および混床式イオン交換装置から選ばれる少なくとも1つを有する水処理装置と、前記水処理装置の前段に配置され、前記原水タンクから供給される前記原水を加熱できる熱交換器と、前記熱交換器で加熱された加熱水の一部を、前記熱交換器から前記水処理装置へ接続される供給配管から分岐して前記原水タンクへ循環させる第1の循環配管と、を有する医薬用水製造システムにおいて、
前記原水タンクから送出される原水を、熱交換器で加熱して加熱水とし、
前記加熱水を前記水処理装置に供給するとともに、前記加熱水の一部を前記第1の循環配管へ分岐させて前記原水タンクに循環させることを特徴とする医薬用水製造システムの殺菌方法。
A reverse osmosis membrane device, an electrodeionization device, an activated charcoal adsorption device, an ultrafiltration membrane device, an ultraviolet sterilizer, and a mixture capable of removing impurities contained in the raw water tank containing the raw water and the raw water sent from the raw water tank. A water treatment device having at least one selected from a floor-type ion exchange device, a heat exchanger arranged in front of the water treatment device and capable of heating the raw water supplied from the raw water tank, and the heat exchanger. In a medicinal water production system having a first circulation pipe for branching a part of heated heated water from a supply pipe connected from the heat exchanger to the water treatment device and circulating it to the raw water tank.
The raw water sent from the raw water tank is heated by a heat exchanger to obtain heated water.
A method for sterilizing a pharmaceutical water production system, which comprises supplying the heated water to the water treatment apparatus and branching a part of the heated water to the first circulation pipe to circulate the heated water in the raw water tank.
前記水処理装置を通水した前記加熱水を、第2の循環配管により前記原水タンクに循環させる請求項8に記載の医薬用水製造システムの殺菌方法。 The sterilization method for a pharmaceutical water production system according to claim 8, wherein the heated water that has passed through the water treatment device is circulated to the raw water tank by a second circulation pipe. 前記加熱水の、前記供給配管への流量Q1と前記第1の循環配管への流量Q2との流量比(流量Q1:流量Q2)を、90:10〜20:80と調節する請求項8または9に記載の医薬用水製造システムの殺菌方法。 8. 9. The method for sterilizing a pharmaceutical water production system according to 9. 前記第1の循環配管の長さが、前記加熱水を前記水処理装置へ供給する配管のうち前記熱交換器から前記第1の循環配管との分岐部分までの長さの1/2よりも短い請求項8〜10のいずれか1項に記載の医薬用水製造システムの殺菌方法。 The length of the first circulation pipe is larger than 1/2 of the length of the pipe that supplies the heated water to the water treatment device from the heat exchanger to the branch portion with the first circulation pipe. The method for sterilizing a pharmaceutical water production system according to any one of the short claims 8 to 10. さらに、前記循環された前記加熱水を、スプレーノズルにより前記原水タンク内に分散して供給する請求項8〜11のいずれか1項に記載の医薬用水製造システムの殺菌方法。 The method for sterilizing a pharmaceutical water production system according to any one of claims 8 to 11, wherein the circulated heated water is dispersed and supplied into the raw water tank by a spray nozzle.
JP2020085326A 2020-05-14 2020-05-14 Medicinal water production system and sterilization method thereof Active JP7483488B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020085326A JP7483488B2 (en) 2020-05-14 2020-05-14 Medicinal water production system and sterilization method thereof
JP2024058781A JP2024074880A (en) 2020-05-14 2024-04-01 Method for sterilizing a medical water production system and method for producing medical water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085326A JP7483488B2 (en) 2020-05-14 2020-05-14 Medicinal water production system and sterilization method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024058781A Division JP2024074880A (en) 2020-05-14 2024-04-01 Method for sterilizing a medical water production system and method for producing medical water

Publications (2)

Publication Number Publication Date
JP2021178297A true JP2021178297A (en) 2021-11-18
JP7483488B2 JP7483488B2 (en) 2024-05-15

Family

ID=78510242

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020085326A Active JP7483488B2 (en) 2020-05-14 2020-05-14 Medicinal water production system and sterilization method thereof
JP2024058781A Pending JP2024074880A (en) 2020-05-14 2024-04-01 Method for sterilizing a medical water production system and method for producing medical water

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024058781A Pending JP2024074880A (en) 2020-05-14 2024-04-01 Method for sterilizing a medical water production system and method for producing medical water

Country Status (1)

Country Link
JP (2) JP7483488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620866A (en) * 2022-03-25 2022-06-14 安徽萍聚德医疗科技股份有限公司 Integrated device for sterile water preparation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030034305A1 (en) 2001-01-05 2003-02-20 Gambro, Inc. Purified water supply system for high demand devices and applications
JP5184401B2 (en) 2009-02-25 2013-04-17 野村マイクロ・サイエンス株式会社 Pure water production method and pure water production apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620866A (en) * 2022-03-25 2022-06-14 安徽萍聚德医疗科技股份有限公司 Integrated device for sterile water preparation

Also Published As

Publication number Publication date
JP7483488B2 (en) 2024-05-15
JP2024074880A (en) 2024-05-31

Similar Documents

Publication Publication Date Title
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
US5585003A (en) Treatment of dialysis feedwater using ozone
JP6111799B2 (en) Purified water production method for pharmaceutical water production
JP5616771B2 (en) Dilution water production equipment for dialysate preparation
JP2024074880A (en) Method for sterilizing a medical water production system and method for producing medical water
JP6036265B2 (en) Apparatus and method for producing purified water for pharmaceutical production
JP5093679B2 (en) Disinfection method for purified water production equipment
JP2004074109A (en) Method and apparatus for manufacturing purified water for medicines
JP2007252396A (en) Manufacturing device and manufacturing method of medical purpose dialysis fluid
JP2010000433A5 (en)
CN101108762A (en) Process technique for pharmacy wastewater
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2000189963A (en) Fresh water making and production of fresh water
JP3468259B2 (en) Deionized water production method
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP6953070B2 (en) Medical purified water production equipment
JP3228053B2 (en) Pure water production equipment
JP3299093B2 (en) Pure water production method and pure water production equipment
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP6637320B2 (en) Pharmaceutical purified water production apparatus and method for sterilizing pharmaceutical purified water production apparatus
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system
JP2005254201A (en) Bacterium growth inhibition method in electric desalted water production device
JP6809775B2 (en) Pharmaceutical purified water production equipment and pharmaceutical purified water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240501

R150 Certificate of patent or registration of utility model

Ref document number: 7483488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150