JP3468259B2 - Deionized water production method - Google Patents
Deionized water production methodInfo
- Publication number
- JP3468259B2 JP3468259B2 JP06627096A JP6627096A JP3468259B2 JP 3468259 B2 JP3468259 B2 JP 3468259B2 JP 06627096 A JP06627096 A JP 06627096A JP 6627096 A JP6627096 A JP 6627096A JP 3468259 B2 JP3468259 B2 JP 3468259B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- mixed bed
- ion exchanger
- bed type
- exchange resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は脱イオン水製造方法
に係り、特に、混床式イオン交換器を用いて脱イオン水
を製造するに当り、混床式イオン交換器の除菌、殺菌性
能を有効に発揮させて、良好な処理水を得る方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing deionized water, and in particular, in producing deionized water using a mixed bed type ion exchanger, the sterilization and sterilization performance of the mixed bed type ion exchanger is described. To effectively obtain the treated water.
【0002】[0002]
【従来の技術】混床式イオン交換器を利用した脱イオン
水の製造システムの従来例を図1に示す。2. Description of the Related Art A conventional example of a deionized water production system using a mixed bed ion exchanger is shown in FIG.
【0003】図1(a)は、医薬分野で用いられる精製
水製造システムの系統図であり、原水(前処理水)は、
タンク1及びポンプP1を経て逆浸透(RO)膜装置2
及び混床式イオン交換器3で処理された後、タンク4、
ポンプP2、熱交換器5、紫外線(UV)殺菌装置6及
び限外濾過(UF)膜装置7よりなるサブシステムで処
理され、ユースポイントに送給される。FIG. 1 (a) is a system diagram of a purified water production system used in the pharmaceutical field. Raw water (pretreated water) is
Reverse osmosis (RO) membrane device 2 through tank 1 and pump P 1
And after being treated in the mixed bed ion exchanger 3, the tank 4,
It is processed in a subsystem including a pump P 2 , a heat exchanger 5, an ultraviolet (UV) sterilizer 6 and an ultrafiltration (UF) membrane device 7, and delivered to a point of use.
【0004】図1(b)は、半導体分野で用いられる超
純水製造システムの系統図であり、原水となる純水(脱
塩水)は、タンク1及びポンプP1を経てRO膜装置2
で処理された後、タンク4、ポンプP2、熱交換器5、
低圧UV酸化装置8、混床式イオン交換器3、UV殺菌
装置6及びUF膜装置7よりなるサブシステムで処理さ
れ、ユースポイントに送給される。FIG. 1 (b) is a system diagram of an ultrapure water production system used in the semiconductor field. Pure water (demineralized water) as raw water passes through a tank 1 and a pump P 1 and an RO membrane device 2
Tank 4, the pump P 2 , the heat exchanger 5,
It is processed in a subsystem consisting of the low-pressure UV oxidizer 8, the mixed-bed ion exchanger 3, the UV sterilizer 6 and the UF membrane device 7, and is delivered to the point of use.
【0005】なお、これらのシステムにおいては、装置
の運転開始に当り、サブシステムを熱水又は薬品により
殺菌する。例えば、図1(a)に示す精製水製造システ
ムにおいて熱水殺菌を行う場合には、タンク4内の水を
熱交換器5で80〜90℃に加熱した後、UV殺菌装置
6及びUF膜装置7に通水する。このUF膜装置7の濃
縮水及び透過水は系外へ排出する。また、ユースポイン
トからタンク4に到る配管は蒸気による滅菌処理が行わ
れる。In these systems, the subsystem is sterilized with hot water or chemicals when the operation of the apparatus is started. For example, when hot water sterilization is performed in the purified water production system shown in FIG. 1A, the water in the tank 4 is heated to 80 to 90 ° C. by the heat exchanger 5, and then the UV sterilizer 6 and the UF membrane are used. Water is passed through the device 7. The concentrated water and permeated water of the UF membrane device 7 are discharged to the outside of the system. Further, the pipe from the point of use to the tank 4 is sterilized by steam.
【0006】[0006]
【発明が解決しようとする課題】上記従来の精製水製造
システムでは、混床式イオン交換器の処理水に生菌が存
在するため、サブシステムが短時間で生菌により汚染さ
れる。この生菌は、UV殺菌装置で完全に除去すること
はできず、時間の経過と共に、系内に生菌が増殖するこ
ととなる。In the above-mentioned conventional purified water production system, viable bacteria are present in the treated water of the mixed bed type ion exchanger, so that the subsystem is contaminated with viable bacteria in a short time. This viable bacterium cannot be completely removed by the UV sterilizer, and the viable bacterium grows in the system over time.
【0007】即ち、混床式イオン交換器の混床式イオン
交換樹脂には殺菌能力があり、精製水製造システムにお
いても混床式イオン交換器による殺菌効果が期待される
が、実際には、混床式イオン交換器の流出水中には生菌
が存在し、この生菌数は、経時的に増加する傾向にあ
る。That is, the mixed-bed ion-exchange resin of the mixed-bed ion-exchanger has a sterilizing ability, and it is expected that the mixed-bed ion-exchanger will have a sterilizing effect in the purified water production system. Viable bacteria are present in the outflow water of the mixed bed ion exchanger, and the viable cell count tends to increase with time.
【0008】この混床式イオン交換器の生菌は、樹脂の
充填に当り、予め混床式イオン交換器のタンク(ベッセ
ル)及び樹脂自体の殺菌を行っても発生し、通常の場
合、混床式イオン交換器流出水中には103〜104個
/100cc程度の生菌が存在する。そして、この生菌
数は運転時間の経過と共に増大する。この混床式イオン
交換器における生菌の増殖の原因の詳細は明らかではな
いが、タンク(ベッセル)に樹脂を充填する際に生じる
外部汚染によるものと推測される。The viable bacteria of the mixed bed type ion exchanger are generated even when the tank (vessel) of the mixed bed type ion exchanger and the resin itself are sterilized before filling the resin. There are about 10 3 to 10 4 viable bacteria / 100 cc in the outflow water of the floor ion exchanger. Then, the viable cell count increases with the lapse of operating time. The details of the cause of the growth of viable bacteria in this mixed bed type ion exchanger are not clear, but it is presumed that it is due to external contamination that occurs when the tank (vessel) is filled with the resin.
【0009】このような混床式イオン交換器における生
菌汚染は、図1(b)に示す超純水製造システムの混床
式イオン交換器においても問題となっており、これらの
システムにおいて、混床式イオン交換器における生菌の
発生を防止する方法の開発が望まれている。Contamination of live bacteria in such a mixed bed type ion exchanger is also a problem in the mixed bed type ion exchanger of the ultrapure water production system shown in FIG. 1 (b). It is desired to develop a method for preventing the production of viable bacteria in a mixed bed type ion exchanger.
【0010】本発明は上記従来の問題点を解決し、混床
式イオン交換器を用いて脱イオン水を製造するに当り、
混床式イオン交換器での生菌の発生を防止すると共に、
混床式イオン交換樹脂本来の除菌、殺菌性能を有効に発
揮させて、良好な処理水を得る方法を提供することを目
的とする。The present invention solves the above-mentioned conventional problems and produces deionized water using a mixed bed ion exchanger.
While preventing the generation of live bacteria in the mixed bed type ion exchanger,
It is an object of the present invention to provide a method for effectively obtaining the original sterilization and sterilization performance of a mixed bed type ion exchange resin to obtain good treated water.
【0011】[0011]
【課題を解決するための手段】本発明の脱イオン水製造
方法は、原水を逆浸透膜装置、陽イオン交換樹脂及び陰
イオン交換樹脂を内蔵した混床式イオン交換器に通水し
た後、熱交換器、紫外線殺菌装置及び限外濾過膜装置を
備えるサブシステムに通水して脱イオン水を製造する方
法において、該陽イオン交換樹脂及び陰イオン交換樹脂
を内蔵した混床式イオン交換器に流通速度(SV)2〜
100hr−1で熱水を通して殺菌処理した後、原水を
該混床式イオン交換器に通水して脱イオン水を製造する
方法であって、該逆浸透膜装置、該混床式イオン交換器
及び該サブシステムよりなる脱イオン水製造装置の運転
開始に際し、該サブシステムに熱水を通水して該サブシ
ステム内を殺菌すると共に、該限外濾過膜装置の透過水
を前記混床式イオン交換器の入口側に循環することによ
り、該混床式イオン交換器に熱水を通水して殺菌処理す
ることを特徴とする。In the method for producing deionized water according to the present invention, raw water is passed through a mixed bed ion exchanger containing a reverse osmosis membrane device, a cation exchange resin and an anion exchange resin.
Then heat exchanger, UV sterilizer and ultrafiltration membrane device.
In a method for producing deionized water by passing water through a provided subsystem , a flow rate (SV) 2 to a mixed bed type ion exchanger containing the cation exchange resin and anion exchange resin is provided.
After sterilizing by passing hot water at 100 hr −1 , raw water is passed through the mixed bed type ion exchanger to produce deionized water.
A method comprising the reverse osmosis membrane device, the mixed bed ion exchanger
And the operation of the deionized water production apparatus comprising the subsystem
At the start, hot water is passed through the subsystem to
Sterilize the inside of the stem and permeate water of the ultrafiltration membrane device.
Is circulated to the inlet side of the mixed bed ion exchanger.
Hot water is passed through the mixed bed type ion exchanger for sterilization.
Characterized in that that.
【0012】このように装置運転開始に当り、陽イオン
交換樹脂及び陰イオン交換樹脂を内蔵した混床式イオン
交換器を熱水で殺菌処理することにより、混床式イオン
交換器は破過(イオンブレーク)に到るまで生菌を発生
させることがない。そして、混床式イオン交換樹脂本来
の除菌、殺菌性能により、流入する生菌も殺菌され、混
床式イオン交換器以降の系内を無菌状態に維持すること
ができるようになる。In this way, when the operation of the apparatus is started, the mixed bed type ion exchanger containing the cation exchange resin and the anion exchange resin is sterilized with hot water, so that the mixed bed type ion exchanger breaks through ( It does not generate viable bacteria until it reaches the ion break). Then, due to the original sterilization and sterilization performance of the mixed bed type ion exchange resin, the inflowing viable bacteria are also sterilized, and the inside of the system after the mixed bed type ion exchanger can be maintained in a sterile state.
【0013】[0013]
【発明の実施の形態】以下に本発明の実施の形態を説明
する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
【0014】本発明においては、原水を、RO膜装置、
混床式イオン交換器に通水した後、熱交換器、UV殺菌
装置及びUF膜装置を備えるサブシステムに通水して脱
イオン水を製造するに当り、混床式イオン交換器に陽イ
オン交換樹脂及び陰イオン交換樹脂を充填した後、サブ
システムに熱水を通水してサブシステム内を殺菌すると
共に、UF膜装置の透過水を混床式イオン交換器の入口
側に循環することにより、混床式イオン交換器に熱水を
通し、陽イオン交換樹脂及び陰イオン交換樹脂を内蔵し
た混床式イオン交換器を殺菌処理する。In the present invention, raw water is supplied to the RO membrane device,
After passing water through a mixed bed type ion exchanger , heat exchanger, UV sterilization
And passed through to the sub-system comprising a device and a UF membrane device strikes the producing deionized water, after filling the cation exchange resin and anion exchange resin in the mixed bed ion exchanger, sub
If hot water is passed through the system to sterilize the subsystem,
In both cases, the permeated water of the UF membrane device is used as the inlet of the mixed bed type ion exchanger.
By circulating to the side, hot water is passed through the mixed bed ion exchanger to sterilize the mixed bed ion exchanger containing the cation exchange resin and the anion exchange resin.
【0015】本発明において、この殺菌処理に用いる熱
水は、純水を加熱したものであることが好ましく、用い
る熱水の温度は、殺菌効果の面から、60℃以上、好ま
しくは70℃以上、より好ましくは85℃以上であるこ
とが望ましい。In the present invention, the hot water used for this sterilization treatment is preferably pure water heated, and the temperature of the hot water used is 60 ° C. or higher, preferably 70 ° C. or higher from the viewpoint of the sterilization effect. , And more preferably 85 ° C. or higher.
【0016】また、熱水の流通速度はSV=2〜100
hr−1とする。熱水による殺菌処理時間は15分以
上、特に30分以上とするのが好ましい。The flow rate of hot water is SV = 2-100
hr −1 . The sterilization time with hot water is preferably 15 minutes or longer, and particularly preferably 30 minutes or longer.
【0017】なお、本発明では、このように混床式イオ
ン交換器に熱水を通水するために、系内の熱水と接触す
る部分、例えば、混床式イオン交換器のタンクや配管
は、ステンレス等の耐熱性材料で構成する必要がある。In the present invention, in order to pass hot water through the mixed-bed ion exchanger in this manner, a portion in contact with the hot water in the system, for example, a tank or piping of the mixed-bed ion exchanger. Must be made of a heat resistant material such as stainless steel.
【0018】本発明の脱イオン水製造方法は、図1
(a),(b)に示すような医薬向け精製水製造システ
ム、半導体向け超純水製造システム、その他、RO膜装
置、混床式イオン交換器及びサブシステムを用いて脱イ
オン水を製造する各種のシステムに適用することができ
る。The method for producing deionized water according to the present invention is shown in FIG.
(A), (b) purified water production system for pharmaceuticals, ultrapure water production system for semiconductors, other, RO membrane equipment
It can be applied to various systems for producing deionized water using a stationary , mixed bed ion exchanger and subsystem .
【0019】例えば、本発明を図1(a)に示す医薬向
け精製水製造システムに適用する場合、次のようにして
混床式イオン交換器の熱水殺菌を行うことができる。即
ち、前述の如く、このシステムでは、装置の立ち上げに
際し、80〜90℃の熱水でサブシステム内の殺菌を行
う。そして、この殺菌処理において、UF膜装置7の濃
縮水及び透過水は系外へ排出する。本発明の適用に当っ
ては、このサブシステムの殺菌処理において、UF膜装
置7の透過水(80〜90℃の熱水)を系外に排出する
ことなく、混床式イオン交換器3の入口側に循環して混
床式イオン交換器3を熱水で殺菌する。このようにする
ことにより、サブシステムの殺菌と共に混床式イオン交
換器の殺菌も行うことができる。この混床式イオン交換
器3の流出水は系外へ排出しても良く、また、後段のタ
ンク4に送給しても良い。 For example, when the present invention is applied to the purified water production system for medicine shown in FIG. 1 (a), hot water sterilization of a mixed bed type ion exchanger can be carried out as follows. That is, as described above, in this system, sterilization of the subsystem is performed with hot water of 80 to 90 ° C. when the apparatus is started up. Then, in this sterilization treatment, the concentrated water and permeated water of the UF membrane device 7 are discharged to the outside of the system. In the application of the present invention, in the sterilization treatment of this subsystem, the permeated water of the UF membrane device 7 (hot water at 80 to 90 ° C.) is not discharged to the outside of the system, and the mixed bed type ion exchanger 3 is discharged. The mixed bed type ion exchanger 3 is circulated to the inlet side and sterilized with hot water. By doing so, it is possible to sterilize the mixed bed ion exchanger as well as the subsystem. The outflow water of the mixed bed ion exchanger 3 may be discharged to the outside of the system, or may be sent to the tank 4 in the subsequent stage .
【0020】なお、本発明においては、タンクに陽イオ
ン交換樹脂及び陰イオン交換樹脂を充填した後に当該混
床式イオン交換器に熱水を通水するものであるが、混床
式イオン交換器のタンク、並びに、このタンクに充填す
る陽イオン交換樹脂及び陰イオン交換樹脂もそれぞれ充
填に先立ち殺菌処理して用いるのが好ましい。具体的に
は、タンクは、121℃以上の蒸気を10〜30分間程
度通して殺菌する。また、陽イオン交換樹脂及び陰イオ
ン交換樹脂は、各々、60℃以上の熱水に15〜60分
間程度浸漬処理して殺菌する。 [0020] The contact, in the present invention, but is intended to passed through the hot water to the mixed bed ion exchanger after filling the cation exchange resin and anion exchange resin in a tank, mixed bed ion exchange It is preferable that the tank of the container and the cation exchange resin and the anion exchange resin with which the tank is filled are also sterilized before use. Specifically, the tank is sterilized by passing steam at 121 ° C. or higher for about 10 to 30 minutes. The cation exchange resin and the anion exchange resin are each sterilized by immersion in hot water at 60 ° C. or higher for about 15 to 60 minutes .
【0021】以下に実験例を挙げて、本発明をより具体
的に説明する。実験例1
図2に示す試験装置を用いて、原水(厚木市水)の処理
を行った(処理水量0.5m3/hr)。[0021] by way of experimental examples below, the present invention will be described more specifically. Experimental Example 1 Raw water (water in Atsugi City) was treated using the test apparatus shown in FIG. 2 (treated water amount 0.5 m 3 / hr).
【0022】図2の試験装置は、原水を活性炭塔11で
処理した後、タンク12を経てポンプ13でRO膜装置
14に送って、RO膜分離処理し、膜透過水を熱交換器
15を経て混床式イオン交換器16A,16Bに2等分
して通水し、各々処理水を得るものである。In the test apparatus shown in FIG. 2, raw water is treated in the activated carbon tower 11 and then sent to the RO membrane device 14 by the pump 13 via the tank 12 to perform the RO membrane separation treatment, and the membrane permeated water is fed to the heat exchanger 15. Then, the mixed water is passed through the mixed-bed ion exchangers 16A and 16B in two equal parts to obtain treated water.
【0023】活性炭塔11の活性炭としては(株)クラ
レ製「クラレコールKW」を用い、RO膜装置14のR
O膜としてはデサリ社製「SG4040CZH」(4i
nch)を4本用いた。また、混床式イオン交換器16
A,16Bとしては、栗田工業(株)製「KWI EX
−MG」(25L)を用い、SV=10hr−1に設定
した。As the activated carbon of the activated carbon tower 11, "Kuraray Coal KW" manufactured by Kuraray Co., Ltd. is used, and R of the RO membrane device 14 is used.
As an O film, "SG4040CZH" manufactured by Desari (4i
nch) was used. In addition, a mixed bed type ion exchanger 16
As A and 16B, "KWI EX" manufactured by Kurita Water Industries Ltd.
-MG "(25 L) was used and SV was set to 10 hr- 1 .
【0024】混床式イオン交換器16A,16Bのイオ
ン交換樹脂としては、各々、80℃の熱水に1時間浸漬
した後、陽イオン交換樹脂:陰イオン交換樹脂=1:1
で混合したものを用いた。As the ion exchange resins for the mixed bed type ion exchangers 16A and 16B, each was immersed in hot water at 80 ° C. for 1 hour, and then cation exchange resin: anion exchange resin = 1: 1.
The mixture was used.
【0025】まず、混床式イオン交換器16A,16B
のタンクに上記イオン交換樹脂を充填する前に、配管1
7より130℃の蒸気を3kgf/cm2で2時間注入
し、混床式イオン交換器16A,16Bのタンクを殺菌
処理し、その後、イオン交換樹脂を充填した。First, mixed bed type ion exchangers 16A and 16B
Before filling the above tank with the ion exchange resin, pipe 1
The steam of 130 ° C. from 7 was injected at 3 kgf / cm 2 for 2 hours to sterilize the tanks of the mixed bed type ion exchangers 16A and 16B, and then filled with the ion exchange resin.
【0026】次に、運転を開始したが、この運転開始後
1時間の間は、RO膜装置14の透過水を熱交換器15
で80℃に加熱し、この加熱水を混床式イオン交換器1
6Aのみに通水した。Next, the operation was started. For one hour after the operation was started, the permeated water of the RO membrane device 14 was changed to the heat exchanger 15.
The mixture is heated to 80 ° C at 80 ° C, and this heated water is mixed bed type ion exchanger 1
Water was passed through 6A only.
【0027】その後、RO膜装置14の透過水を熱交換
器15で25℃に調整し、混床式イオン交換器16A,
16Bに等通水量で20日間連続通水した。このような
処理に当り、RO膜装置の透過水(RO処理水)の生菌
数と、混床式イオン交換器16A及び混床式イオン交換
器16Bの各処理水の生菌数及び比抵抗値の経時変化を
調べ、結果を表1に示した。Thereafter, the permeated water of the RO membrane device 14 is adjusted to 25 ° C. by the heat exchanger 15, and the mixed bed type ion exchanger 16A,
Water was continuously passed through 16B at an equal flow rate for 20 days. Per Such treatment, the viable count of each treated water of life and cell count, mixed bed ion exchanger 16 A 及 beauty mixed bed ion exchanger 16 B permeate (RO treated water) of the RO membrane apparatus The change in specific resistance with time was examined, and the results are shown in Table 1.
【0028】表1より、混床式イオン交換器に樹脂を充
填した後、熱水を通水することにより、樹脂の破過に到
るまで生菌の流出を防止できることがわかる。It can be seen from Table 1 that by filling the mixed-bed ion exchanger with resin and then passing hot water through it, the outflow of viable bacteria can be prevented until the resin breaks through.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【発明の効果】以上詳述した通り、本発明の脱イオン水
製造方法によれば、混床式イオン交換器を用いた脱イオ
ン水の製造に当り、混床式イオン交換器における生菌の
発生を防止すると共に、混床式イオン交換器による殺菌
作用で、混床式イオン交換器から無菌水を取り出すこと
が可能となる。As described above in detail, according to the method for producing deionized water of the present invention, when producing deionized water using the mixed bed type ion exchanger, viable bacteria in the mixed bed type ion exchanger are It is possible to prevent the generation and to sterilize the aseptic water from the mixed bed type ion exchanger by the sterilizing action of the mixed bed type ion exchanger.
【0031】このため、混床式イオン交換器の後段のU
V殺菌装置を省略したり、或いは、サブシステムの殺菌
処理の頻度を低減したりすることが可能となり、高水質
の脱イオン水を低コストで効率的に製造することができ
るようになる。Therefore, the U in the latter stage of the mixed bed type ion exchanger is
The V sterilizer can be omitted, or the frequency of sterilization of the subsystem can be reduced, and high-quality deionized water can be efficiently produced at low cost.
【図面の簡単な説明】[Brief description of drawings]
【図1】図1(a)は医薬分野で用いられる精製水製造
システムの系統図、図1(b)は半導体分野で用いられ
る超純水製造システムの系統図である。FIG. 1 (a) is a system diagram of a purified water production system used in the pharmaceutical field, and FIG. 1 (b) is a system diagram of an ultrapure water production system used in the semiconductor field.
【図2】実験例で用いた試験装置の系統図である。FIG. 2 is a system diagram of a test device used in an experimental example .
1,4 タンク 2 RO膜装置 3 混床式イオン交換器 5 熱交換器 6 UV殺菌装置 7 UF膜装置 8 低圧UV酸化装置 1,4 tank 2 RO membrane device 3 Mixed bed type ion exchanger 5 heat exchanger 6 UV sterilizer 7 UF membrane device 8 Low pressure UV oxidizer
Claims (2)
及び陰イオン交換樹脂を内蔵した混床式イオン交換器に
通水した後、熱交換器、紫外線殺菌装置及び限外濾過膜
装置を備えるサブシステムに通水して脱イオン水を製造
する方法において、 該陽イオン交換樹脂及び陰イオン交換樹脂を内蔵した混
床式イオン交換器に流通速度(SV)2〜100hr
−1で熱水を通して殺菌処理した後、原水を該混床式イ
オン交換器に通水して脱イオン水を製造する方法であっ
て、 該逆浸透膜装置、該混床式イオン交換器及び該サブシス
テムよりなる脱イオン水製造装置の運転開始に際し、該
サブシステムに熱水を通水して該サブシステム内を殺菌
すると共に、該限外濾過膜装置の透過水を前記混床式イ
オン交換器の入口側に循環することにより、該混床式イ
オン交換器に熱水を通水して殺菌処理する ことを特徴と
する脱イオン水製造方法。The method according to claim 1 raw water reverse osmosis unit, a mixed bed ion exchanger with a built-in cation exchange resin and anion exchange resin
After passing water, heat exchanger, UV sterilizer and ultrafiltration membrane
In a method for producing deionized water by passing water through a subsystem equipped with an apparatus, a mixed bed type ion exchanger containing the cation exchange resin and anion exchange resin has a flow rate (SV) of 2 to 100 hr.
-1 is a method of producing deionized water by passing raw water through the mixed bed type ion exchanger after sterilization treatment by passing hot water.
The reverse osmosis membrane device, the mixed bed type ion exchanger and the sub system
When starting the operation of the deionized water production equipment consisting of
Pass hot water through the subsystem to sterilize the inside of the subsystem
In addition, the permeated water of the ultrafiltration membrane device is mixed with the mixed bed
By circulating to the inlet side of the on-exchanger, the mixed bed type
A method for producing deionized water, characterized in that hot water is passed through an on-exchanger for sterilization treatment .
℃以上であることを特徴とする脱イオン水製造方法。2. The temperature of the hot water according to claim 1,
A method for producing deionized water, characterized in that the temperature is not less than ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06627096A JP3468259B2 (en) | 1996-03-22 | 1996-03-22 | Deionized water production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06627096A JP3468259B2 (en) | 1996-03-22 | 1996-03-22 | Deionized water production method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003105479A Division JP4016873B2 (en) | 2003-04-09 | 2003-04-09 | Deionized water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09253643A JPH09253643A (en) | 1997-09-30 |
JP3468259B2 true JP3468259B2 (en) | 2003-11-17 |
Family
ID=13310995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06627096A Expired - Fee Related JP3468259B2 (en) | 1996-03-22 | 1996-03-22 | Deionized water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3468259B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020144954A1 (en) * | 2000-09-28 | 2002-10-10 | Arba John W. | Electrodeionization device and methods of use |
US7083733B2 (en) | 2003-11-13 | 2006-08-01 | Usfilter Corporation | Water treatment system and method |
US8377279B2 (en) | 2003-11-13 | 2013-02-19 | Siemens Industry, Inc. | Water treatment system and method |
US10213744B2 (en) | 2006-06-13 | 2019-02-26 | Evoqua Water Technologies Llc | Method and system for water treatment |
US10252923B2 (en) | 2006-06-13 | 2019-04-09 | Evoqua Water Technologies Llc | Method and system for water treatment |
US8277627B2 (en) | 2006-06-13 | 2012-10-02 | Siemens Industry, Inc. | Method and system for irrigation |
US20080067069A1 (en) | 2006-06-22 | 2008-03-20 | Siemens Water Technologies Corp. | Low scale potential water treatment |
CN101878187B (en) | 2007-11-30 | 2014-12-10 | 伊沃夸水处理技术有限责任公司 | Systems and methods for water treatment |
IL272679B2 (en) | 2017-08-21 | 2023-09-01 | Evoqua Water Tech Llc | Treatment of saline water for agricultural and potable use |
JP7365479B1 (en) * | 2022-10-07 | 2023-10-19 | 野村マイクロ・サイエンス株式会社 | Sterilization method for pharmaceutical water production system and pharmaceutical water production system |
-
1996
- 1996-03-22 JP JP06627096A patent/JP3468259B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09253643A (en) | 1997-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3570304B2 (en) | Sterilization method of deionized water production apparatus and method of producing deionized water | |
US5585003A (en) | Treatment of dialysis feedwater using ozone | |
JP3468259B2 (en) | Deionized water production method | |
JPH0647105B2 (en) | Purification method and device for pure water or ultrapure water | |
JP4949658B2 (en) | Dialysis water production apparatus and sterilization method thereof | |
JP2024074880A (en) | Sterilization method of medical water production system, and production method of medical water | |
JP5336926B2 (en) | Purified water production method and purified water production apparatus | |
JPH05293469A (en) | Production of sterilized and purified water and equipment thereof | |
JPS60261585A (en) | Manufacture of extremely pure water | |
JPS63100996A (en) | Method for desalting brine | |
JP3228053B2 (en) | Pure water production equipment | |
JP4016873B2 (en) | Deionized water production method | |
JP3299093B2 (en) | Pure water production method and pure water production equipment | |
JP4617696B2 (en) | Sterilization method for pure water production apparatus and pure water production apparatus | |
JP3237222B2 (en) | Sterilization method | |
JPH09294977A (en) | Water purifying apparatus | |
JP4552483B2 (en) | Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus | |
JPS6142395A (en) | Sterilization apparatus of ion exchange tower | |
JP3480458B2 (en) | Sterilization method | |
JPH0815596B2 (en) | Ultrapure water production method | |
JP2926805B2 (en) | Sterilization method for ultrapure water production equipment | |
JP5017767B2 (en) | Sterilization method for pure water production apparatus and pure water production apparatus | |
JP2003260463A (en) | Manufacturing method of pure water | |
JPH0929245A (en) | Ultrapure water preparation apparatus | |
JPS6322199B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080905 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140905 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |