JPS60261585A - Manufacture of extremely pure water - Google Patents

Manufacture of extremely pure water

Info

Publication number
JPS60261585A
JPS60261585A JP11795484A JP11795484A JPS60261585A JP S60261585 A JPS60261585 A JP S60261585A JP 11795484 A JP11795484 A JP 11795484A JP 11795484 A JP11795484 A JP 11795484A JP S60261585 A JPS60261585 A JP S60261585A
Authority
JP
Japan
Prior art keywords
water
temperature
pure water
viable bacteria
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11795484A
Other languages
Japanese (ja)
Inventor
Yoshihisa Narukami
善久 鳴上
Taketoshi Madokoro
間處 威俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11795484A priority Critical patent/JPS60261585A/en
Publication of JPS60261585A publication Critical patent/JPS60261585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To remove bacteria almost completely by heating water to be treated in whole or in part in a treating system when demineralized water is produced by a combination of various operations. CONSTITUTION:When demineralized water is produced by a combination of unit operations such as reverse osmosis, ion exchange, ultrafiltration, precision filtration, and ultraviolet sterilization, the temp. of water to be treated is kept at 70-110 deg.C in part or in whole in a treating system. Bacteria can be removed almost completely in this way.

Description

【発明の詳細な説明】 本発明は超純水の製造方法に関し、より詳細には、純水
製造工程における一部lbシ<は全体の処理水の温度を
高めて殺菌し、生菌の混入を阻止することによって超純
水を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ultrapure water, and more specifically, the present invention relates to a method for producing ultrapure water. The present invention relates to a method for producing ultrapure water by inhibiting.

純水の製造法としては逆浸透法、イオン交換法、限外濾
過法、精密濾過法等が知られており、これらの方法を単
独で或は2種以上の方法を組合わせて実施することによ
り、使用目的に応じた純度レベルの純水を得ている。又
とつした純水の製造工程で紫外線殺菌処理を施し、上記
の様な物理的処理では除去し難い生菌を殺菌除去する方
法も実施され”Cいる。例えば第1図は純水の代表的々
型造法を例示するフロー図であり、1次純水系統と2次
純水系統を直列に接続して構成される。即ち1次純水系
統では、原水に凝集剤及び助剤を加えて前処理し浮遊物
を除去し、次いで処理水に酸を加えた後脱炭酸し、一旦
貯槽に溜めた後熱交換装置及びフィルタを通して逆浸透
装置へ送られる。尚逆浸透処理の為の最適温度は15〜
30℃程度であることから、上記の如く逆浸透処理前の
処理水を熱交換装置に通して加温又は冷却を行ない、処
理水の温度を上記最適温度に調整して逆浸透装置へ送り
込む様にしている。逆浸透を終えた透過水は貯槽を経て
イオン交換装置へ送られ、イオンが除去された後フィル
タを通して貯槽へ送られ、1次純水系統の処理を終える
。貯槽では空気の混入をさける為窒素ガスによるシール
が打力われる。
Reverse osmosis, ion exchange, ultrafiltration, precision filtration, etc. are known methods for producing pure water, and these methods can be used alone or in combination of two or more methods. This allows us to obtain pure water with a purity level that suits the purpose of use. There is also a method in which ultraviolet sterilization treatment is applied during the production process of purified pure water to sterilize and remove viable bacteria that are difficult to remove with the physical treatment described above.For example, Figure 1 shows a representative example of pure water. This is a flow diagram illustrating the targeted production method, and is configured by connecting a primary pure water system and a secondary pure water system in series.In other words, in the primary pure water system, a flocculant and an auxiliary agent are added to raw water. In addition, the treated water is pretreated to remove suspended matter, and then an acid is added to the treated water, followed by decarboxylation. After being stored in a storage tank, it is sent to a reverse osmosis device through a heat exchanger and a filter. The optimum temperature is 15~
Since the temperature is about 30℃, the treated water before reverse osmosis treatment is heated or cooled by passing it through a heat exchange device as described above, and the temperature of the treated water is adjusted to the above optimum temperature before being sent to the reverse osmosis device. I have to. The permeated water that has undergone reverse osmosis is sent to an ion exchange device via a storage tank, and after ions are removed, it is sent to the storage tank through a filter to complete the treatment of the primary pure water system. The storage tank is sealed with nitrogen gas to prevent air from entering.

1次純水化処理を終えた処理水は次いで2次純水系統へ
送られ、紫外線殺菌装置で殺菌処理された後、カートリ
ッジポリラシャを経て限外濾過装置へ送り、一部は紫外
線殺菌装置の前の貯槽へ返還され、一部はフィルタを通
してユースポイントへ送られる。こうした一連の処理に
より原水中の不純物は殆んどが除去され、超純水として
の用途に利用することができる。
The treated water that has completed the primary water purification treatment is then sent to the secondary water purification system, where it is sterilized by an ultraviolet sterilizer, and then sent to an ultrafiltration device via a cartridge polysha, and some of it is sent to the ultraviolet sterilizer. The waste is returned to the storage tank in front of it, and a portion is sent to the point of use through a filter. Through this series of treatments, most of the impurities in the raw water are removed and the water can be used as ultrapure water.

ところで超純水の水質評価は、比抵抗、微粒子量、生菌
数及び有機物量等によって行々われる。
By the way, the quality of ultrapure water is evaluated based on resistivity, amount of fine particles, number of viable bacteria, amount of organic matter, etc.

このうち生菌数は微粒子の1種として測定されるが、生
菌は自己増殖作用を有しており生育条件がそろうと異常
に増加する可能性があるので、超純水の水質評価におけ
る重要力位置を占めている。
Among these, the number of viable bacteria is measured as a type of fine particle, but it is important in evaluating the quality of ultrapure water because viable bacteria has the ability to self-propagate and can increase abnormally if growth conditions are met. occupying a position of power.

しかし上記の様な超純水の製造法では、固形浮遊物やイ
オン等の除去はほぼ完全に行なうことができるものの、
生菌の除去については必ずしも十分に行ない得る訳では
々い。即ちイオン交換はもとl より限外濾過等によっ
ても水中の微細な生菌を完全に除去することは不可能で
あり、また第1図で説明した様な紫外線殺菌処理にして
も、生菌の増殖を抑える程度の効果しか得ることができ
ず完全殺菌効果を期待することはできない。その結果超
純水中に僅かに残った生菌がデッドスペースにおいて増
殖して品質低下を招く恐れがあり、又超純水の製造工程
でもユースポイントからの逆汚染によって水質が低下す
ることもしばしば経験されている。
However, although the method for producing ultrapure water as described above can almost completely remove solid suspended matter and ions,
It is not always possible to remove viable bacteria sufficiently. In other words, it is impossible to completely remove microscopic viable bacteria in water by ion exchange or ultrafiltration, and even with ultraviolet sterilization treatment as explained in Figure 1, viable bacteria cannot be completely removed. can only be effective to the extent of suppressing the proliferation of bacteria, and a complete bactericidal effect cannot be expected. As a result, there is a risk that a small amount of viable bacteria remaining in the ultrapure water will proliferate in the dead space, leading to a decline in quality.Also, in the ultrapure water manufacturing process, water quality often deteriorates due to back contamination from the point of use. has been experienced.

本発明者等はこうした事情に着目し、殊に生菌の完全除
去に主眼を置いて種々研究を進めてきた。
The present inventors have focused on these circumstances and have conducted various studies with a particular focus on complete removal of viable bacteria.

その結果、超純水の製造工程で処理水を70〜110℃
に加温してやれは生菌を撲滅させるととができることを
知り、対に本発明の完成をみた。
As a result, in the ultrapure water manufacturing process, the treated water is heated to a temperature of 70 to 110℃.
It was discovered that heating to a certain temperature could eradicate viable bacteria, and this led to the completion of the present invention.

即ち本発明に係る超純水の製造法の構成とは、逆浸透、
イオン交換、限外濾過、精密濾過及び紫外線殺菌の各単
位操作を単独もしくは組合わせて純水を製造する方法に
おいて、処理系の一部もしくは全体における処理水の温
度を70〜ilo℃に保持するところに要旨を有するも
のである。
That is, the configuration of the ultrapure water production method according to the present invention includes reverse osmosis,
In a method for producing pure water using unit operations such as ion exchange, ultrafiltration, microfiltration, and ultraviolet sterilization, either singly or in combination, the temperature of the treated water in part or the entire treatment system is maintained at 70 to 10°C. However, there is a gist.

本発明では、超純水の製造ラインもしくは貯槽にヒータ
又は熱交換器を配設して水温を70〜110℃に保持す
るもので、この加温によって水中の生菌はほぼ完全に死
滅し、生菌の混入乃至増殖による超純水の品質低下をほ
ぼ完全に防止することができる。例えば第2図は第1図
に示した公知の純水製造プロセスにおける2次純水系統
の紫外線殺菌装置に代えてヒータを設け、水温を70〜
110℃に高め得る様にした本発明の実施例フローであ
り、この構成であれば、該ヒータの下流側に配置される
カートリッジポリラシャ、限外濾過装置及びフィルタの
各位置における処理水の温度を任意の温度に高めること
ができる。従って該ヒータによって水温を70〜110
℃に高めてやれば、微生物繁殖の温床となりやすいカー
トリツジボリツシャを滅菌できる上に処理水中の生菌を
ほぼ完全に撲滅させることができる。しかも死滅した菌
体は限外濾過工程でほぼ完全に除去されると共に、限外
濾過装置からフィルタを通過する処理水の温度も高温に
保たれているのでユースポイントからの生菌による逆汚
染も全く起こらず、超高純度の純水を得ることができる
。ところで処理水の加熱温度は、生菌の撲滅を可能にす
るうえで70℃以上、好ましくは80℃以上にしなけれ
ばならないが、温度が高すぎるとカートリッジポリラシ
ャのイオン交換樹脂から有機物が溶出するおたれがあシ
、1:だ処理水が沸騰する為操業性及びメンテナンス性
が低下する。尚本発明における処理系統は濾過部を除い
て常圧のもとで操作されるので、加熱温度は100℃以
下に抑えるのが最も一般的であるが、限外濾過等の加圧
≦1(件のもとて同時に加熱する方法を採用すれば10
0℃を超える高温に加熱することもでき、それにより生
菌撲滅効果は一層確実となる。しかしながらイオン交換
樹脂や限外濾過膜及び配管等の耐熱性を考バして実用性
のある加熱温度を考えれば、110℃程度が上限と考え
られる。尚との様な高温処理系外を採用する場合を考慮
すれば、配管やパルプ、タンク類等は溶出物質がほとん
ど無く耐熱性の優れたポリ塩化ビニリデン樹脂等で形成
し或は内張シしたもので形成しておくのがよく、又限外
濾過膜も耐熱性合成樹脂モジュールとしでおくのがよい
In the present invention, a heater or heat exchanger is installed in the ultrapure water production line or storage tank to maintain the water temperature at 70 to 110°C, and this heating almost completely kills living bacteria in the water. Deterioration in the quality of ultrapure water due to contamination or proliferation of viable bacteria can be almost completely prevented. For example, in Figure 2, a heater is installed in place of the ultraviolet sterilizer in the secondary pure water system in the known pure water production process shown in Figure 1, and the water temperature is kept at 70 -
This is an example flow of the present invention in which the temperature can be increased to 110°C. With this configuration, the temperature of the treated water at each position of the cartridge polisher, ultrafiltration device, and filter arranged downstream of the heater. can be raised to any temperature. Therefore, the water temperature can be adjusted to 70 to 110 by using this heater.
If the temperature is raised to ℃, it is possible not only to sterilize the cartridge cartridge, which tends to be a breeding ground for microorganisms, but also to almost completely eradicate viable bacteria in the treated water. Furthermore, dead bacteria are almost completely removed in the ultrafiltration process, and the temperature of the treated water that passes through the filter from the ultrafiltration device is also maintained at a high temperature, preventing back contamination by live bacteria from the point of use. This does not occur at all, and ultra-high purity water can be obtained. By the way, the heating temperature of the treated water must be 70°C or higher, preferably 80°C or higher to enable the eradication of viable bacteria, but if the temperature is too high, organic matter will be eluted from the ion exchange resin of the cartridge Polylasha. 1: The treated water boils, reducing operability and maintenance. Since the treatment system in the present invention is operated under normal pressure except for the filtration section, the heating temperature is most commonly kept below 100°C; If you adopt a method of heating at the same time, 10
It is also possible to heat to a high temperature exceeding 0°C, thereby making the effect of eradicating viable bacteria even more certain. However, if a practical heating temperature is considered, taking into account the heat resistance of the ion exchange resin, ultrafiltration membrane, piping, etc., about 110° C. is considered to be the upper limit. Considering the case where outside the high-temperature treatment system is used, pipes, pulp, tanks, etc. should be made or lined with polyvinylidene chloride resin, which has almost no eluted substances and has excellent heat resistance. The ultrafiltration membrane is also preferably made of a heat-resistant synthetic resin module.

尚図例では浮遊物、イオン、生菌及び有機物等のあらゆ
る種類の不純物を含む原水を処理の対象とし、前処理、
逆浸透、イオン交換、限外濾過の各装置を組合わせた構
成のものを示したが、これら各装置の配列順等は必要に
応じて任意に変更することができ、また原水の種類(不
純物の種類等)によっては上記装置の一部を省略するこ
とも可能である。また殺菌の為の加熱部も第2図の例に
限られる訳では々く、各処理装置固有の浄化能力を阻害
しない範囲で他の配管ラインや貯槽で加熱殺菌処理を行
なうことも可能である。しかしユースポイントからの生
菌の逆汚染を防止すると共に、生菌をより完全に除去す
る為には、第2図に示した様に浄化処理の最終ラインを
高温の殺菌雰囲気に保持す・るのがよい。尚加熱殺菌手
段と共に紫外線殺菌装置を併設して生菌撲滅のより完全
を期すことも有効である。
In the illustrated example, raw water containing all kinds of impurities such as suspended solids, ions, viable bacteria, and organic matter is treated, and pretreatment,
Although the configuration shown is a combination of reverse osmosis, ion exchange, and ultrafiltration equipment, the arrangement order of each of these equipment can be changed as necessary, and the type of raw water (impurity It is also possible to omit some of the above devices depending on the type of device, etc.). Furthermore, the heating section for sterilization is not limited to the example shown in Figure 2, and it is also possible to perform heat sterilization treatment in other piping lines or storage tanks as long as it does not impede the purification ability unique to each treatment device. . However, in order to prevent back contamination of viable bacteria from the point of use and to remove viable bacteria more completely, the final line of purification treatment must be maintained in a high temperature sterilizing atmosphere as shown in Figure 2. It is better. It is also effective to provide an ultraviolet sterilizer in addition to the heat sterilizer to more completely eradicate viable bacteria.

: 本発明は以上の様に構成されており、処理系統の任
意の場所で処理水を70〜110℃に加熱することによ
り、生菌をほぼ完全に除去することができる。ちなみに
下記第1表及び第2表は、第1図に示した従来法及び第
2図に示17た本発明法(ヒータによる加熱温度=80
℃)で得た各処理水(超純水)の水質試験結果を示した
ものであル、殊に本発明法を採用することによって生菌
の混入量は皆無となっている。
The present invention is configured as described above, and viable bacteria can be almost completely removed by heating the treated water to 70 to 110°C at any location in the treatment system. Incidentally, Tables 1 and 2 below show the conventional method shown in Fig. 1 and the present invention method shown in Fig. 2 (heating temperature by heater = 80
This figure shows the water quality test results of each treated water (ultra-pure water) obtained at 30°C (°C).In particular, by employing the method of the present invention, there is no contamination of viable bacteria.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超純水製造法を示すフロー図、第2図は
本発明の実施例を示すフロー図である。 出願人 久保田鉄工株式会社
FIG. 1 is a flowchart showing a conventional ultrapure water production method, and FIG. 2 is a flowchart showing an embodiment of the present invention. Applicant Kubota Iron Works Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)逆浸透、イオン交換、限外濾過、精密濾過及び紫
外線殺菌の各単位操作を単独もしくは組合わせて純水を
製造する方法において、 処理系の一部もしくは全体における処理水の温度を70
〜110℃に保持することを特徴とする超純水の製造方
法。
(1) In a method for producing pure water using unit operations such as reverse osmosis, ion exchange, ultrafiltration, microfiltration, and ultraviolet sterilization, either singly or in combination, the temperature of the treated water in part or the entire treatment system is set to 70°C.
A method for producing ultrapure water characterized by maintaining the temperature at ~110°C.
JP11795484A 1984-06-07 1984-06-07 Manufacture of extremely pure water Pending JPS60261585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11795484A JPS60261585A (en) 1984-06-07 1984-06-07 Manufacture of extremely pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11795484A JPS60261585A (en) 1984-06-07 1984-06-07 Manufacture of extremely pure water

Publications (1)

Publication Number Publication Date
JPS60261585A true JPS60261585A (en) 1985-12-24

Family

ID=14724350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11795484A Pending JPS60261585A (en) 1984-06-07 1984-06-07 Manufacture of extremely pure water

Country Status (1)

Country Link
JP (1) JPS60261585A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234507A (en) * 1986-04-02 1987-10-14 Japan Organo Co Ltd Sterilizing method for ultrafilter membrane device
JPS62266193A (en) * 1986-05-13 1987-11-18 Japan Organo Co Ltd Treatment of terminal filter membrane apparatus
JPS63248407A (en) * 1987-03-31 1988-10-14 Nitto Electric Ind Co Ltd Preservation of membrane module
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPH01245817A (en) * 1988-03-29 1989-10-02 Toray Ind Inc Hot superpure water generating apparatus
JPH01284385A (en) * 1988-05-10 1989-11-15 Iwasaki Electric Co Ltd Process and apparatus for producing pure water and superpure water
BE1001854A4 (en) * 1988-06-29 1990-03-20 Innovate Plus B V Method for purification of a fluid and device for application of this method
US5272091A (en) * 1992-07-27 1993-12-21 Millipore Corporation Water purification method and apparatus
WO1998009916A1 (en) * 1996-09-05 1998-03-12 Millipore Corporation Water purification system and ultrapure water product
JP2007160231A (en) * 2005-12-14 2007-06-28 Japan Organo Co Ltd Ultrapure water system
JP2021506562A (en) * 2017-12-20 2021-02-22 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Hot water cart adjustment system and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234507A (en) * 1986-04-02 1987-10-14 Japan Organo Co Ltd Sterilizing method for ultrafilter membrane device
JPS62266193A (en) * 1986-05-13 1987-11-18 Japan Organo Co Ltd Treatment of terminal filter membrane apparatus
JPH0824826B2 (en) * 1987-03-31 1996-03-13 日東電工株式会社 Membrane module preservation method
JPS63248407A (en) * 1987-03-31 1988-10-14 Nitto Electric Ind Co Ltd Preservation of membrane module
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPH01245817A (en) * 1988-03-29 1989-10-02 Toray Ind Inc Hot superpure water generating apparatus
JPH01284385A (en) * 1988-05-10 1989-11-15 Iwasaki Electric Co Ltd Process and apparatus for producing pure water and superpure water
BE1001854A4 (en) * 1988-06-29 1990-03-20 Innovate Plus B V Method for purification of a fluid and device for application of this method
US5272091A (en) * 1992-07-27 1993-12-21 Millipore Corporation Water purification method and apparatus
WO1998009916A1 (en) * 1996-09-05 1998-03-12 Millipore Corporation Water purification system and ultrapure water product
US5935441A (en) * 1996-09-05 1999-08-10 Millipore Corporation Water purification process
JP2007160231A (en) * 2005-12-14 2007-06-28 Japan Organo Co Ltd Ultrapure water system
JP2021506562A (en) * 2017-12-20 2021-02-22 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Hot water cart adjustment system and method
US11975294B2 (en) 2017-12-20 2024-05-07 Evoqua Water Technologies Llc Vanox hot water cart conditioning method

Similar Documents

Publication Publication Date Title
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5093679B2 (en) Disinfection method for purified water production equipment
JPS60261585A (en) Manufacture of extremely pure water
JP2010000433A5 (en)
JP2606910B2 (en) Ultrapure water production and supply equipment
JPS6125688A (en) Sterilizing method in germfree water manufacturing apparatus
JP3228053B2 (en) Pure water production equipment
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JPS60172390A (en) Manufacture of highly demineralized water
JPH0212636B2 (en)
JP2021178297A (en) Pharmaceutical water production system and its sterilization method
CN220684903U (en) Pre-treatment disinfection device of pure water preparation system
JP2018051450A (en) Device for producing purified water for medical use
JP2703034B2 (en) Ultrapure water equipment using a heating deaerator
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system
JP5017767B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JPH0671269A (en) Sterlizing method
JPH0824826B2 (en) Membrane module preservation method
JPH0815596B2 (en) Ultrapure water production method
CN210103652U (en) River water purification system
JP4016873B2 (en) Deionized water production method
CN211004932U (en) Pipeline sterilization device of purified water preparation equipment