JPH09253643A - Deionized water making method - Google Patents

Deionized water making method

Info

Publication number
JPH09253643A
JPH09253643A JP6627096A JP6627096A JPH09253643A JP H09253643 A JPH09253643 A JP H09253643A JP 6627096 A JP6627096 A JP 6627096A JP 6627096 A JP6627096 A JP 6627096A JP H09253643 A JPH09253643 A JP H09253643A
Authority
JP
Japan
Prior art keywords
ion exchanger
mixed bed
water
type ion
bed type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6627096A
Other languages
Japanese (ja)
Other versions
JP3468259B2 (en
Inventor
Kiminobu Osawa
公伸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP06627096A priority Critical patent/JP3468259B2/en
Publication of JPH09253643A publication Critical patent/JPH09253643A/en
Application granted granted Critical
Publication of JP3468259B2 publication Critical patent/JP3468259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of live bacteria within a mixed bed type ion exchanger by passing hot water through the mixed bed type ion exchanger having a cation exchange resin and an anion exchange resin built therein and subsequently passing raw water through the mixed bed type ion exchanger to produce deionized water. SOLUTION: In producing deionized water by passing raw water through a mixed bed type ion exchanger 3, hot water is passed through the mixed bed type ion exchanger 3 packed with a cation exchange resin and an anion exchange resin to subject the ion exchanger 3 to sterilization treatment. In this hot water sterilization treatment, at a time of the rising of an apparatus, for example, a sub-system is sterilized by hot water of 80-90 deg.C. At this time, the permeated water (hot water of 80-90 deg.C) of a UF membrane apparatus 7 is circulated to the inlet of the mixed bed type ion exchanger 3 without being discharged out of the system to sterilize the mixed bed type ion exchanger 3. By this constitution, the mixed bed type ion exchanger 3 can be sterilized along with the sterilization of the sub-system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は脱イオン水製造方法
に係り、特に、混床式イオン交換器を用いて脱イオン水
を製造するに当り、混床式イオン交換器の除菌、殺菌性
能を有効に発揮させて、良好な処理水を得る方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing deionized water, and in particular, in producing deionized water using a mixed bed type ion exchanger, the sterilization and sterilization performance of the mixed bed type ion exchanger is described. To effectively obtain the treated water.

【0002】[0002]

【従来の技術】混床式イオン交換器を利用した脱イオン
水の製造システムの従来例を図1に示す。
2. Description of the Related Art A conventional example of a deionized water production system using a mixed bed ion exchanger is shown in FIG.

【0003】図1(a)は、医薬分野で用いられる精製
水製造システムの系統図であり、原水(前処理水)は、
タンク1及びポンプP1 を経て逆浸透(RO)膜装置2
及び混床式イオン交換器3で処理された後、タンク4、
ポンプP2 、熱交換器5、紫外線(UV)殺菌装置6及
び限外濾過(UF)膜装置7よりなるサブシステムで処
理され、ユースポイントに送給される。
FIG. 1 (a) is a system diagram of a purified water production system used in the pharmaceutical field. Raw water (pretreated water) is
Reverse osmosis (RO) membrane device 2 via tank 1 and pump P 1
And after being treated in the mixed bed ion exchanger 3, the tank 4,
It is processed by a subsystem including a pump P 2 , a heat exchanger 5, an ultraviolet (UV) sterilizer 6 and an ultrafiltration (UF) membrane device 7, and delivered to a use point.

【0004】図1(b)は、半導体分野で用いられる超
純水製造システムの系統図であり、原水となる純水(脱
塩水)は、タンク1及びポンプP1 を経てRO膜装置2
で処理された後、タンク4、ポンプP2 、熱交換器5、
低圧UV酸化装置8、混床式イオン交換器3、UV殺菌
装置6及びUF膜装置7よりなるサブシステムで処理さ
れ、ユースポイントに送給される。
FIG. 1 (b) is a system diagram of an ultrapure water production system used in the semiconductor field. Pure water (demineralized water) as raw water passes through a tank 1 and a pump P 1 and an RO membrane device 2
Tank 4, pump P 2 , heat exchanger 5,
It is processed in a subsystem consisting of the low-pressure UV oxidizer 8, the mixed-bed ion exchanger 3, the UV sterilizer 6 and the UF membrane device 7, and is delivered to the point of use.

【0005】なお、これらのシステムにおいては、装置
の運転開始に当り、サブシステムを熱水又は薬品により
殺菌する。例えば、図1(a)に示す精製水製造システ
ムにおいて熱水殺菌を行う場合には、タンク4内の水を
熱交換器5で80〜90℃に加熱した後、UV殺菌装置
6及びUF膜装置7に通水する。このUF膜装置7の濃
縮水及び透過水は系外へ排出する。また、ユースポイン
トからタンク4に到る配管は蒸気による滅菌処理が行わ
れる。
In these systems, the subsystem is sterilized with hot water or chemicals when the operation of the apparatus is started. For example, when hot water sterilization is performed in the purified water production system shown in FIG. 1A, the water in the tank 4 is heated to 80 to 90 ° C. by the heat exchanger 5, and then the UV sterilizer 6 and the UF membrane are used. Water is passed through the device 7. The concentrated water and permeated water of the UF membrane device 7 are discharged to the outside of the system. Further, the pipe from the point of use to the tank 4 is sterilized by steam.

【0006】[0006]

【発明が解決しようとする課題】上記従来の精製水製造
システムでは、混床式イオン交換器の処理水に生菌が存
在するため、サブシステムが短時間で生菌により汚染さ
れる。この生菌は、UV殺菌装置で完全に除去すること
はできず、時間の経過と共に、系内に生菌が増殖するこ
ととなる。
In the above-mentioned conventional purified water production system, viable bacteria are present in the treated water of the mixed bed type ion exchanger, so that the subsystem is contaminated with viable bacteria in a short time. This viable bacterium cannot be completely removed by the UV sterilizer, and the viable bacterium grows in the system over time.

【0007】即ち、混床式イオン交換器の混床式イオン
交換樹脂には殺菌能力があり、精製水製造システムにお
いても混床式イオン交換器による殺菌効果が期待される
が、実際には、混床式イオン交換器の流出水中には生菌
が存在し、この生菌数は、経時的に増加する傾向にあ
る。
That is, the mixed-bed ion-exchange resin of the mixed-bed ion-exchanger has a sterilizing ability, and it is expected that the mixed-bed ion-exchanger will have a sterilizing effect in the purified water production system. Viable bacteria are present in the outflow water of the mixed bed ion exchanger, and the viable cell count tends to increase with time.

【0008】この混床式イオン交換器の生菌は、樹脂の
充填に当り、予め混床式イオン交換器のタンク(ベッセ
ル)及び樹脂自体の殺菌を行っても発生し、通常の場
合、混床式イオン交換器流出水中には103 〜104
/100cc程度の生菌が存在する。そして、この生菌
数は運転時間の経過と共に増大する。この混床式イオン
交換器における生菌の増殖の原因の詳細は明らかではな
いが、タンク(ベッセル)に樹脂を充填する際に生じる
外部汚染によるものと推測される。
The viable bacteria of the mixed bed type ion exchanger are generated even when the tank (vessel) of the mixed bed type ion exchanger and the resin itself are sterilized before filling the resin. About 10 3 to 10 4 viable bacteria / 100 cc are present in the outflow water of the floor type ion exchanger. Then, the viable cell count increases with the lapse of operating time. The details of the cause of the growth of viable bacteria in this mixed bed type ion exchanger are not clear, but it is presumed that it is due to external contamination that occurs when the tank (vessel) is filled with the resin.

【0009】このような混床式イオン交換器における生
菌汚染は、図1(b)に示す超純水製造システムの混床
式イオン交換器においても問題となっており、これらの
システムにおいて、混床式イオン交換器における生菌の
発生を防止する方法の開発が望まれている。
Contamination of live bacteria in such a mixed bed type ion exchanger is also a problem in the mixed bed type ion exchanger of the ultrapure water production system shown in FIG. 1 (b). It is desired to develop a method for preventing the production of viable bacteria in a mixed bed type ion exchanger.

【0010】本発明は上記従来の問題点を解決し、混床
式イオン交換器を用いて脱イオン水を製造するに当り、
混床式イオン交換器での生菌の発生を防止すると共に、
混床式イオン交換樹脂本来の除菌、殺菌性能を有効に発
揮させて、良好な処理水を得る方法を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems and produces deionized water using a mixed bed ion exchanger.
While preventing the generation of live bacteria in the mixed bed type ion exchanger,
It is an object of the present invention to provide a method for effectively obtaining the original sterilization and sterilization performance of a mixed bed type ion exchange resin to obtain good treated water.

【0011】[0011]

【課題を解決するための手段】本発明の脱イオン水製造
方法は、陽イオン交換樹脂及び陰イオン交換樹脂を内蔵
した混床式イオン交換器に通水して脱イオン水を製造す
る方法において、該陽イオン交換樹脂及び陰イオン交換
樹脂を内蔵した混床式イオン交換器に熱水を通した後、
原水を該混床式イオン交換器に通水して脱イオン水を製
造することを特徴とする。
The method for producing deionized water according to the present invention is a method for producing deionized water by passing water through a mixed bed type ion exchanger containing a cation exchange resin and an anion exchange resin. After passing hot water through a mixed bed type ion exchanger containing the cation exchange resin and the anion exchange resin,
It is characterized in that raw water is passed through the mixed bed type ion exchanger to produce deionized water.

【0012】このように装置運転開始に当り、陽イオン
交換樹脂及び陰イオン交換樹脂を内蔵した混床式イオン
交換器を熱水で殺菌処理することにより、混床式イオン
交換器は破過(イオンブレーク)に到るまで生菌を発生
させることがない。そして、混床式イオン交換樹脂本来
の除菌、殺菌性能により、流入する生菌も殺菌され、混
床式イオン交換器以降の系内を無菌状態に維持すること
ができるようになる。
In this way, when the operation of the apparatus is started, the mixed bed type ion exchanger containing the cation exchange resin and the anion exchange resin is sterilized with hot water, so that the mixed bed type ion exchanger breaks through ( It does not generate viable bacteria until it reaches the ion break). Then, due to the original sterilization and sterilization performance of the mixed bed type ion exchange resin, the inflowing viable bacteria are also sterilized, and the inside of the system after the mixed bed type ion exchanger can be maintained in a sterile state.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0014】本発明においては、混床式イオン交換器
に、原水を通水して脱イオン水を製造するに当り、混床
式イオン交換器に陽イオン交換樹脂及び陰イオン交換樹
脂を充填した後、熱水を通し、陽イオン交換樹脂及び陰
イオン交換樹脂を内蔵した混床式イオン交換器を殺菌処
理する。
In the present invention, when raw water is passed through the mixed bed type ion exchanger to produce deionized water, the mixed bed type ion exchanger is filled with a cation exchange resin and an anion exchange resin. Then, hot water is passed through to sterilize the mixed bed type ion exchanger containing the cation exchange resin and the anion exchange resin.

【0015】本発明において、この殺菌処理に用いる熱
水は、純水を加熱したものであることが好ましく、用い
る熱水の温度は、殺菌効果の面から、60℃以上、好ま
しくは70℃以上、より好ましくは85℃以上であるこ
とが望ましい。
In the present invention, the hot water used for this sterilization treatment is preferably pure water heated, and the temperature of the hot water used is 60 ° C. or higher, preferably 70 ° C. or higher from the viewpoint of the sterilization effect. , And more preferably 85 ° C. or higher.

【0016】また、熱水の流通速度はSV=2〜100
hr-1程度とするのが好ましく、熱水による殺菌処理時
間は15分以上、特に30分以上とするのが好ましい。
The flow rate of hot water is SV = 2-100
It is preferably about hr −1, and the sterilization time with hot water is preferably 15 minutes or longer, more preferably 30 minutes or longer.

【0017】なお、本発明では、このように混床式イオ
ン交換器に熱水を通水するために、系内の熱水と接触す
る部分、例えば、混床式イオン交換器のタンクや配管
は、ステンレス等の耐熱性材料で構成する必要がある。
In the present invention, in order to pass hot water through the mixed-bed ion exchanger in this manner, a portion in contact with the hot water in the system, for example, a tank or piping of the mixed-bed ion exchanger. Must be made of a heat resistant material such as stainless steel.

【0018】本発明の脱イオン水製造方法は、図1
(a),(b)に示すような医薬向け精製水製造システ
ム、半導体向け超純水製造システム、その他、混床式イ
オン交換器を用いて脱イオン水を製造する各種のシステ
ムに適用することができる。
The method for producing deionized water according to the present invention is shown in FIG.
(A), (b) Purified water production system for pharmaceuticals, ultrapure water production system for semiconductors, and other various systems for producing deionized water using a mixed bed ion exchanger You can

【0019】例えば、本発明を図1(a)に示す医薬向
け精製水製造システムに適用する場合、次のようにして
混床式イオン交換器の熱水殺菌を行うことができる。即
ち、前述の如く、このシステムでは、装置の立ち上げに
際し、80〜90℃の熱水でサブシステム内の殺菌を行
う。そして、この殺菌処理において、UF膜装置7の濃
縮水及び透過水は系外へ排出する。本発明の適用に当っ
ては、このサブシステムの殺菌処理において、UF膜装
置7の透過水(80〜90℃の熱水)を系外に排出する
ことなく、混床式イオン交換器3の入口側に循環して混
床式イオン交換器3を熱水で殺菌する。このようにする
ことにより、サブシステムの殺菌と共に混床式イオン交
換器の殺菌も行うことができる。この混床式イオン交換
器3の流出水は系外へ排出しても良く、また、後段のタ
ンク4に送給しても良い。
For example, when the present invention is applied to the purified water production system for medicine shown in FIG. 1 (a), hot water sterilization of a mixed bed type ion exchanger can be carried out as follows. That is, as described above, in this system, sterilization of the subsystem is performed with hot water of 80 to 90 ° C. when the apparatus is started up. Then, in this sterilization treatment, the concentrated water and permeated water of the UF membrane device 7 are discharged to the outside of the system. In the application of the present invention, in the sterilization treatment of this subsystem, the permeated water of the UF membrane device 7 (hot water at 80 to 90 ° C.) is not discharged to the outside of the system, and the mixed bed type ion exchanger 3 is discharged. The mixed bed type ion exchanger 3 is circulated to the inlet side and sterilized with hot water. By doing so, it is possible to sterilize the mixed bed ion exchanger as well as the subsystem. The outflow water of the mixed bed ion exchanger 3 may be discharged to the outside of the system, or may be sent to the tank 4 in the subsequent stage.

【0020】上記方法は本発明の実施の一例であって、
混床式イオン交換器には、別途用意した純水を加熱して
得られた熱水を通水するようにしても良い。
The above method is an example of the implementation of the present invention.
Hot water obtained by heating separately prepared pure water may be passed through the mixed bed ion exchanger.

【0021】なお、本発明においては、タンクに陽イオ
ン交換樹脂及び陰イオン交換樹脂を充填した後に当該混
床式イオン交換器に熱水を通水するものであるが、混床
式イオン交換器のタンク、並びに、このタンクに充填す
る陽イオン交換樹脂及び陰イオン交換樹脂もそれぞれ充
填に先立ち殺菌処理して用いるのが好ましい。具体的に
は、タンクは、121℃以上の蒸気を10〜30分間程
度通して殺菌する。また、陽イオン交換樹脂及び陰イオ
ン交換樹脂は、各々、60℃以上の熱水に15〜60分
間程度浸漬処理して殺菌する。
In the present invention, the tank is filled with the cation exchange resin and the anion exchange resin, and then hot water is passed through the mixed bed type ion exchanger, but the mixed bed type ion exchanger is used. It is preferable to sterilize the tank and the cation exchange resin and the anion exchange resin to be filled in the tank before the filling. Specifically, the tank is sterilized by passing steam at 121 ° C. or higher for about 10 to 30 minutes. The cation exchange resin and the anion exchange resin are each sterilized by immersion in hot water at 60 ° C. or higher for about 15 to 60 minutes.

【0022】[0022]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明する。
The present invention will be described more specifically with reference to the following examples and comparative examples.

【0023】実施例1,比較例1 図2に示す試験装置を用いて、原水(厚木市水)の処理
を行った(処理水量0.5m3 /hr)。
Example 1, Comparative Example 1 Using the test apparatus shown in FIG. 2, raw water (water in Atsugi City) was treated (treated water amount 0.5 m 3 / hr).

【0024】図2の試験装置は、原水を活性炭塔11で
処理した後、タンク12を経てポンプ13でRO膜装置
14に送って、RO膜分離処理し、膜透過水を熱交換器
15を経て混床式イオン交換器16A,16Bに2等分
して通水し、各々処理水を得るものである。
In the test apparatus shown in FIG. 2, raw water is treated in the activated carbon tower 11 and then sent to the RO membrane device 14 by the pump 13 via the tank 12 to perform the RO membrane separation treatment, and the membrane permeated water is fed to the heat exchanger 15. Then, the mixed water is passed through the mixed-bed ion exchangers 16A and 16B in two equal parts to obtain treated water.

【0025】活性炭塔11の活性炭としては(株)クラ
レ製「クラレコールKW」を用い、RO膜装置14のR
O膜としてはデサリ社製「SG4040CZH」(4i
nch)を4本用いた。また、混床式イオン交換器16
A,16Bとしては、栗田工業(株)製「KWI EX
−MG」(25L)を用い、SV=10hr-1に設定し
た。
As the activated carbon of the activated carbon tower 11, "Kuraray Coal KW" manufactured by Kuraray Co., Ltd. is used, and R of the RO membrane device 14 is used.
As an O film, "SG4040CZH" manufactured by Desari (4i
nch) was used. In addition, a mixed bed type ion exchanger 16
As A and 16B, "KWI EX" manufactured by Kurita Water Industries Ltd.
-MG "(25 L) was used and SV was set to 10 hr- 1 .

【0026】混床式イオン交換器16A,16Bのイオ
ン交換樹脂としては、各々、80℃の熱水に1時間浸漬
した後、陽イオン交換樹脂:陰イオン交換樹脂=1:1
で混合したものを用いた。
As the ion exchange resins for the mixed bed type ion exchangers 16A and 16B, each was immersed in hot water at 80 ° C. for 1 hour, and then cation exchange resin: anion exchange resin = 1: 1.
Was used.

【0027】まず、混床式イオン交換器16A,16B
のタンクに上記イオン交換樹脂を充填する前に、配管1
7より130℃の蒸気を3kgf/cm2 で2時間注入
し、混床式イオン交換器16A,16Bのタンクを殺菌
処理し、その後、イオン交換樹脂を充填した。
First, mixed bed type ion exchangers 16A and 16B
Before filling the above tank with the ion exchange resin, pipe 1
The steam of 130 ° C. from 7 was injected at 3 kgf / cm 2 for 2 hours to sterilize the tanks of the mixed bed type ion exchangers 16A and 16B, and then the ion exchange resin was filled.

【0028】次に、運転を開始したが、この運転開始後
1時間の間は、RO膜装置14の透過水を熱交換器15
で80℃に加熱し、この加熱水を混床式イオン交換器1
6Aのみに通水した。
Next, the operation was started. For one hour after the operation was started, the permeated water of the RO membrane device 14 was exchanged with the heat exchanger 15.
The mixture is heated to 80 ° C at 80 ° C, and this heated water is mixed bed type ion exchanger 1
Water was passed through 6A only.

【0029】その後、RO膜装置14の透過水を熱交換
器15で25℃に調整し、混床式イオン交換器16A,
16Bに等通水量で20日間連続通水した。このような
処理に当り、RO膜装置の透過水(RO処理水)の生菌
数と、混床式イオン交換器16A(実施例1)及び混床
式イオン交換器16B(比較例1)の各処理水の生菌数
及び比抵抗値の経時変化を調べ、結果を表1に示した。
Thereafter, the permeated water of the RO membrane device 14 was adjusted to 25 ° C. by the heat exchanger 15, and the mixed bed type ion exchanger 16A,
Water was continuously passed through 16B at an equal flow rate for 20 days. In such treatment, the viable cell count of the permeated water (RO treated water) of the RO membrane device and the mixed bed type ion exchanger 16A (Example 1) and the mixed bed type ion exchanger 16B (Comparative Example 1) were used. The changes with time in the viable cell count and specific resistance of each treated water were examined, and the results are shown in Table 1.

【0030】表1より、混床式イオン交換器に樹脂を充
填した後、熱水を通水することにより、樹脂の破過に到
るまで生菌の流出を防止できることがわかる。
It can be seen from Table 1 that by filling the mixed bed type ion exchanger with resin and then passing hot water through it, the outflow of viable bacteria can be prevented until the resin breaks through.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上詳述した通り、本発明の脱イオン水
製造方法によれば、混床式イオン交換器を用いた脱イオ
ン水の製造に当り、混床式イオン交換器における生菌の
発生を防止すると共に、混床式イオン交換器による殺菌
作用で、混床式イオン交換器から無菌水を取り出すこと
が可能となる。
As described above in detail, according to the method for producing deionized water of the present invention, when producing deionized water using the mixed bed type ion exchanger, viable bacteria in the mixed bed type ion exchanger are It is possible to prevent the generation and to sterilize the aseptic water from the mixed bed type ion exchanger by the sterilizing action of the mixed bed type ion exchanger.

【0033】このため、混床式イオン交換器の後段のU
V殺菌装置を省略したり、或いは、サブシステムの殺菌
処理の頻度を低減したりすることが可能となり、高水質
の脱イオン水を低コストで効率的に製造することができ
るようになる。
Therefore, the U in the latter stage of the mixed bed type ion exchanger is used.
The V sterilizer can be omitted, or the frequency of sterilization of the subsystem can be reduced, and high-quality deionized water can be efficiently produced at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は医薬分野で用いられる精製水製造
システムの系統図、図1(b)は半導体分野で用いられ
る超純水製造システムの系統図である。
FIG. 1 (a) is a system diagram of a purified water production system used in the pharmaceutical field, and FIG. 1 (b) is a system diagram of an ultrapure water production system used in the semiconductor field.

【図2】実施例1及び比較例1で用いた試験装置の系統
図である。
FIG. 2 is a system diagram of a test apparatus used in Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1,4 タンク 2 RO膜装置 3 混床式イオン交換器 5 熱交換器 6 UV殺菌装置 7 UF膜装置 8 低圧UV酸化装置 1,4 Tank 2 RO membrane device 3 Mixed bed type ion exchanger 5 Heat exchanger 6 UV sterilizer 7 UF membrane device 8 Low pressure UV oxidation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換樹脂及び陰イオン交換樹脂
を内蔵した混床式イオン交換器に通水して脱イオン水を
製造する方法において、 該陽イオン交換樹脂及び陰イオン交換樹脂を内蔵した混
床式イオン交換器に熱水を通した後、原水を該混床式イ
オン交換器に通水して脱イオン水を製造することを特徴
とする脱イオン水製造方法。
1. A method for producing deionized water by passing water through a mixed bed type ion exchanger containing a cation exchange resin and an anion exchange resin, wherein the cation exchange resin and the anion exchange resin are incorporated. A method for producing deionized water, which comprises passing hot water through a mixed bed ion exchanger and then passing raw water through the mixed bed ion exchanger to produce deionized water.
JP06627096A 1996-03-22 1996-03-22 Deionized water production method Expired - Fee Related JP3468259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06627096A JP3468259B2 (en) 1996-03-22 1996-03-22 Deionized water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06627096A JP3468259B2 (en) 1996-03-22 1996-03-22 Deionized water production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003105479A Division JP4016873B2 (en) 2003-04-09 2003-04-09 Deionized water production method

Publications (2)

Publication Number Publication Date
JPH09253643A true JPH09253643A (en) 1997-09-30
JP3468259B2 JP3468259B2 (en) 2003-11-17

Family

ID=13310995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06627096A Expired - Fee Related JP3468259B2 (en) 1996-03-22 1996-03-22 Deionized water production method

Country Status (1)

Country Link
JP (1) JP3468259B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026629A2 (en) * 2000-09-28 2002-04-04 United States Filter Corporation Electrodeionization device and methods of use
US8864971B2 (en) 2003-11-13 2014-10-21 Evoqua Water Technologies Llc Water treatment system and method
US8894834B2 (en) 2003-11-13 2014-11-25 Evoqua Water Technologies Llc Water treatment system and method
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment
US9592472B2 (en) 2006-06-13 2017-03-14 Evoqua Water Technologies Llc Method and system for irrigation
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US10625211B2 (en) 2006-06-13 2020-04-21 Evoqua Water Technologies Llc Method and system for water treatment
US11820689B2 (en) 2017-08-21 2023-11-21 Evoqua Water Technologies Llc Treatment of saline water for agricultural and potable use
JP2024055482A (en) * 2022-10-07 2024-04-18 野村マイクロ・サイエンス株式会社 Sterilization method for pharmaceutical water production system and pharmaceutical water production system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026629A2 (en) * 2000-09-28 2002-04-04 United States Filter Corporation Electrodeionization device and methods of use
WO2002026629A3 (en) * 2000-09-28 2002-12-19 United States Filter Corp Electrodeionization device and methods of use
US8864971B2 (en) 2003-11-13 2014-10-21 Evoqua Water Technologies Llc Water treatment system and method
US8894834B2 (en) 2003-11-13 2014-11-25 Evoqua Water Technologies Llc Water treatment system and method
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US9592472B2 (en) 2006-06-13 2017-03-14 Evoqua Water Technologies Llc Method and system for irrigation
US10625211B2 (en) 2006-06-13 2020-04-21 Evoqua Water Technologies Llc Method and system for water treatment
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment
US9586842B2 (en) 2006-06-22 2017-03-07 Evoqua Water Technologies Llc Low scale potential water treatment
US9637400B2 (en) 2007-11-30 2017-05-02 Evoqua Water Technologies Llc Systems and methods for water treatment
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
US11820689B2 (en) 2017-08-21 2023-11-21 Evoqua Water Technologies Llc Treatment of saline water for agricultural and potable use
JP2024055482A (en) * 2022-10-07 2024-04-18 野村マイクロ・サイエンス株式会社 Sterilization method for pharmaceutical water production system and pharmaceutical water production system

Also Published As

Publication number Publication date
JP3468259B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JP3468259B2 (en) Deionized water production method
JP2024074880A (en) Sterilization method of medical water production system, and production method of medical water
JP2010269235A (en) Method of producing refined water and apparatus for producing the refined water
JPH05293469A (en) Production of sterilized and purified water and equipment thereof
JPH0252088A (en) Apparatus for making desalted water
JPS60261585A (en) Manufacture of extremely pure water
JP3228053B2 (en) Pure water production equipment
JP4016873B2 (en) Deionized water production method
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP3299093B2 (en) Pure water production method and pure water production equipment
JPS60190298A (en) Preparation of ultra-pure water
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JP3237222B2 (en) Sterilization method
JPH09294977A (en) Water purifying apparatus
JP3480458B2 (en) Sterilization method
JPS6142395A (en) Sterilization apparatus of ion exchange tower
JPH0815596B2 (en) Ultrapure water production method
JPH0649141B2 (en) Method of regenerating ultrafiltration membrane
JPS62170257A (en) Production of dyalysate
JP5017767B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JPH04293586A (en) Ion exchange apparatus for making pure water
JPH0929245A (en) Ultrapure water preparation apparatus
JP2003260463A (en) Manufacturing method of pure water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees