JP2010269235A - Method of producing refined water and apparatus for producing the refined water - Google Patents

Method of producing refined water and apparatus for producing the refined water Download PDF

Info

Publication number
JP2010269235A
JP2010269235A JP2009122273A JP2009122273A JP2010269235A JP 2010269235 A JP2010269235 A JP 2010269235A JP 2009122273 A JP2009122273 A JP 2009122273A JP 2009122273 A JP2009122273 A JP 2009122273A JP 2010269235 A JP2010269235 A JP 2010269235A
Authority
JP
Japan
Prior art keywords
water
ion exchange
membrane
purified water
exchange device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122273A
Other languages
Japanese (ja)
Other versions
JP5336926B2 (en
Inventor
Atsushi Nunome
温 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2009122273A priority Critical patent/JP5336926B2/en
Publication of JP2010269235A publication Critical patent/JP2010269235A/en
Application granted granted Critical
Publication of JP5336926B2 publication Critical patent/JP5336926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing refined water and an apparatus for producing refined water for improving the sterilization effect of micro-organism and moreover efficiently producing refined water. <P>SOLUTION: The refined water producing apparatus 10 includes: an MF (microfiltration) membrane 18 and an RO (reverse osmosis) membrane 22 in which raw water is permeated in order; and an EDI device (electric regeneration type ion exchange device) 23 which makes the permeated water which has permeated the MF membrane and RO membrane to pass therethrough. Further, the refined water producing apparatus 10 is further provided with a heat-exchanger 16 which is arranged on the preceding stage of the MF membrane 18 and heats the raw water such that water to be treated from the passage of the MF membrane 18 until the completion of passage through the EDI device 23 keeps a temperature of 50°C to 90°C. Accordingly, sterilization using hot water and the processing of producing refined water can be performed at the same time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、精製水(Purified Water)を得るための精製水の製造方法及び精製水の製造装置に関する。   The present invention relates to a method for producing purified water and purified water production apparatus for obtaining purified water.

精製水は、医薬品、化粧品の製造分野や、また病院などにおいて広く用いられる用水であり、日本薬局方において、その製造方法、貯留方法、水質基準などの各種要件が定められている。この日本薬局方において、精製水は、注射用水とともに、製薬用水と呼ばれ、製薬用水に共通の要件として微生物の排除が求められている。   Purified water is water that is widely used in the field of manufacturing pharmaceuticals and cosmetics, hospitals, and the like, and the Japanese Pharmacopoeia has various requirements such as manufacturing method, storage method, and water quality standards. In this Japanese pharmacopoeia, purified water is called pharmaceutical water together with water for injection, and the elimination of microorganisms is required as a common requirement for pharmaceutical water.

すなわち、注射用水は、人体内に直接注入される注射剤の原料水であるから無菌の状態が要求される。一方、精製水は、無菌状態までは要求されないものの、微生物による著しい汚濁を生じさせないための微生物汚染の防止が求められる。   That is, since the water for injection is a raw material water for an injection that is directly injected into the human body, a sterile condition is required. On the other hand, although purified water is not required to be aseptic, it is required to prevent microbial contamination so as not to cause significant contamination by microorganisms.

そこで、例えば処理水の通水路に複数の紫外線殺菌器を配置して、細菌などの微生物の繁殖を抑制するようにした水処理装置が提案されている(例えば特許文献1参照)。しかしながら、この水処理装置の場合、紫外線殺菌器を通水する過程では、微生物の繁殖を抑制できるものの、紫外線殺菌器の後段では、微生物が繁殖し始めるため、効果的な殺菌を行うことが難しくなっている。   Therefore, for example, a water treatment apparatus has been proposed in which a plurality of ultraviolet sterilizers are disposed in the water passage of treated water to suppress the growth of microorganisms such as bacteria (see, for example, Patent Document 1). However, in the case of this water treatment device, although the propagation of the microorganism can be suppressed in the process of passing the ultraviolet sterilizer, the microorganism starts to propagate in the latter stage of the ultraviolet sterilizer, so that it is difficult to perform effective sterilization. It has become.

また、精製水は、イオン交換樹脂塔、逆浸透膜、電気再生式イオン交換装置などを備える純水製造装置と同様の構成の装置にて製造できることが知られている。精製水の製造にこのような装置を適用する場合、微生物汚染の防止のための殺菌処理には、薬剤による殺菌方法や熱水による殺菌方法がある。   Further, it is known that purified water can be produced by an apparatus having the same configuration as that of a pure water production apparatus including an ion exchange resin tower, a reverse osmosis membrane, an electric regeneration type ion exchange apparatus, and the like. When such an apparatus is applied to the production of purified water, sterilization treatment for preventing microbial contamination includes a sterilization method using chemicals and a sterilization method using hot water.

薬剤による方法は、ホルマリン溶液や次亜塩素酸ナトリウム溶液を用いて殺菌を行い、一方、熱水による方法は、100℃以下の熱水を用いて殺菌を行う。ここで、上記の薬剤による殺菌方法と熱水による殺菌方法とのいずれの場合においても、殺菌処理を実際に行うときには、精製水の製造を一旦停止した後で殺菌処理を開始し、殺菌処理の終了後、精製水の製造を再開させるといった断続的な処理が行われていた。   The method using chemicals is sterilized using a formalin solution or sodium hypochlorite solution, while the method using hot water is sterilized using hot water at 100 ° C. or lower. Here, in both cases of the sterilization method using the above-described chemical and the sterilization method using hot water, when actually performing the sterilization treatment, the production of purified water is temporarily stopped and then the sterilization treatment is started. After completion, intermittent treatment such as resuming the production of purified water was performed.

特開平9−94562号公報JP-A-9-94562

しかしながら、このような殺菌処理では、精製水の製造装置内を、微生物が棲息しにくい殺菌状態にて継続維持することはきわめて困難である。すなわち、上述したように、純水製造装置と同様の装置構成を持つ精製水の製造装置は、装置本体内の機器構成が複雑であるため、通水を停止して殺菌処理を行ったとしても、時間経過とともに系内に棲息している微生物が増殖し始め、これにより、適切な殺菌状態を確保することが難しくなっている。   However, in such a sterilization treatment, it is extremely difficult to continuously maintain the inside of the purified water production apparatus in a sterilized state in which microorganisms are less likely to live. That is, as described above, the purified water production apparatus having the same apparatus configuration as the pure water production apparatus has a complicated equipment configuration in the apparatus main body. With the passage of time, microorganisms living in the system begin to grow, which makes it difficult to ensure an appropriate sterilized state.

また、薬剤による殺菌、熱水による殺菌のいずれを適用する場合でも、殺菌処理を終了させる度に、薬液を除去する処理や、また熱水を冷却する処理が必要となる。さらに、この場合、薬液や熱水を一次的に貯留しつつ系内を循環させるための専用のタンクなども必要になる。特に、熱水を冷却する処理の場合、急激な温度変化による装置本体内の各構成機器の破損を防止するために、冷却過程の温度勾配を極力緩やかにする必要などもある。このため、上記した専用のタンクをはじめ、このタンクを含む除熱専用の循環通水路を設ける必要性もある。   In addition, when applying either sterilization with chemicals or sterilization with hot water, every time the sterilization process is completed, a process for removing the chemical solution and a process for cooling the hot water are required. Furthermore, in this case, a dedicated tank or the like for circulating the system while temporarily storing the chemical solution or hot water is also required. In particular, in the case of a process for cooling hot water, it is necessary to make the temperature gradient of the cooling process as gentle as possible in order to prevent damage to each component in the apparatus body due to a rapid temperature change. For this reason, there is a need to provide a dedicated circulation water passage including the above-described dedicated tank and the heat removal dedicated to the heat removal.

本発明は、このような事情を考慮してなされたものであり、微生物の殺菌効果を高めつつ、しかも効率良く精製水を製造することができる精製水の製造方法及び精製水の製造装置の提供を目的とする。   The present invention has been made in view of such circumstances, and provides a method for producing purified water and an apparatus for producing purified water that can efficiently produce purified water while enhancing the sterilizing effect of microorganisms. With the goal.

上記目的を達成するために、本発明の精製水の製造方法は、原水を精密ろ過膜と逆浸透膜に順に透過させ、この透過水をイオン交換装置に通過させることからなる精製水の製造方法において、前記精密ろ過膜の前段に熱交換器を配置して、前記精密ろ過膜から前記イオン交換装置通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱することを特徴とする。   In order to achieve the above object, a method for producing purified water according to the present invention is a method for producing purified water comprising sequentially passing raw water through a microfiltration membrane and a reverse osmosis membrane and passing the permeated water through an ion exchange device. A heat exchanger is disposed in front of the microfiltration membrane, and the raw water is heated so that the water to be treated from the microfiltration membrane to after passing through the ion exchange device has a temperature of 50 ° C. or higher. And

本発明では、50℃以上の温度に加熱された原水を精密ろ過膜、逆浸透膜の順に透過させ、この透過水を、50℃以上の温度を保持した状態でイオン交換装置に通過させることで、効果的に殺菌された被処理水(精製水)をイオン交換装置の後段で連続的に得ることができる。すなわち、50℃以上の温度に加熱された熱水が流れる経路上では微生物の繁殖が抑制され、これにより、常時、安定した微生物汚染防止の温度条件を維持しつつ精製水を製造することができる。ここで、微生物の殺菌処理をより確実に行う必要がある場合には、精密ろ過膜からイオン交換装置通過後までの被処理水の温度を60℃以上にすることが望ましい。   In the present invention, raw water heated to a temperature of 50 ° C. or higher is permeated in the order of a microfiltration membrane and a reverse osmosis membrane, and this permeated water is passed through an ion exchange device while maintaining a temperature of 50 ° C. or higher. The treated water (purified water) that has been effectively sterilized can be continuously obtained in the subsequent stage of the ion exchange device. That is, the propagation of microorganisms is suppressed on the path through which hot water heated to a temperature of 50 ° C. or higher flows, whereby purified water can be produced while always maintaining stable temperature conditions for preventing microbial contamination. . Here, when it is necessary to perform sterilization of microorganisms more reliably, it is desirable that the temperature of the water to be treated from the microfiltration membrane to after passing through the ion exchange device is 60 ° C. or higher.

また、本発明では、熱水による殺菌処理と精製水を製造する処理とを同時(連続的)に行えるので、殺菌処理と精製水の製造処理とを個別(断続的)に行う場合の、例えば薬液を除去する処理や、熱水を冷却する処理などが不要となる。また例えば、前記熱水の冷却処理に必要であった、急激な温度変化による装置本体内の各構成機器の破損を防止するために、冷却過程の温度勾配を極力緩やかにする必要性などを排除することができる。これにより、除熱専用のタンクなどを含む循環用の通水路や、さらに例えば紫外線殺菌灯などを設ける必要などもなく、精製水の製造装置本体内の機器構成を簡素化できる。   In the present invention, since the sterilization treatment with hot water and the treatment for producing purified water can be performed simultaneously (continuously), the sterilization treatment and the production treatment for purified water are performed individually (intermittently), for example, A process for removing the chemical solution or a process for cooling the hot water becomes unnecessary. In addition, for example, the necessity of making the temperature gradient of the cooling process as gentle as possible to prevent damage to each component in the device body due to a sudden temperature change, which was necessary for the cooling process of the hot water, is eliminated. can do. Accordingly, there is no need to provide a circulating water passage including a tank dedicated to heat removal, and further, for example, an ultraviolet germicidal lamp, and the equipment configuration in the purified water manufacturing apparatus main body can be simplified.

ここで、上述したイオン交換装置としては、混床式のイオン交換樹脂塔や電気再生式イオン交換装置などを例示することができる。また、本発明の精製水の製造方法は、前記イオン交換装置の後段に第2の熱交換器を配置するとともに前記精密ろ過膜の前段の熱交換器へ供給される原水の供給経路を当該第2の熱交換器を経由させるように配置することによって、前記被処理水を除熱する一方で当該除熱された熱で前記原水を加熱するようにしてもよい。この場合、熱交換効率が向上して加熱源を節約できるとともに、イオン交換装置の後段でユーザに使用されることになる被処理水(精製水)を実質的に冷却することができる。   Here, examples of the ion exchange device described above include a mixed bed type ion exchange resin tower and an electric regeneration type ion exchange device. In the purified water production method of the present invention, a second heat exchanger is disposed downstream of the ion exchange device, and a supply path of raw water supplied to the heat exchanger upstream of the microfiltration membrane is provided in the first step. By arrange | positioning so that it may pass through 2 heat exchangers, while removing the said to-be-processed water, you may make it heat the said raw | natural water with the said heat removed. In this case, the heat exchange efficiency can be improved and the heating source can be saved, and the water to be treated (purified water) to be used by the user after the ion exchange device can be substantially cooled.

また、本発明では、このようなイオン交換装置に代えて第2の逆浸透膜を配置し、かつ精密ろ過膜から当該第2の逆浸透膜通過後までの被処理水が50℃以上の温度となるよう原水を加熱してもよい。さらに、前記逆浸透膜及び前記イオン交換装置に代えて、カチオン樹脂塔及びアニオン樹脂塔を配置し、かつ前記精密ろ過膜から当該カチオン樹脂塔及び当該アニオン樹脂塔通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱してもよい。これらの構成を適用する場合でも、前記同様、微生物の殺菌効果を好適に得ることができる。   Moreover, in this invention, it replaces with such an ion exchange apparatus, the 2nd reverse osmosis membrane is arrange | positioned, and the temperature of the to-be-processed water after passing through the said 2nd reverse osmosis membrane from the microfiltration membrane is 50 degreeC or more. The raw water may be heated so that Further, in place of the reverse osmosis membrane and the ion exchange device, a cation resin tower and an anion resin tower are arranged, and water to be treated from the microfiltration membrane to after passing through the cation resin tower and the anion resin tower is 50. You may heat the said raw | natural water so that it may become a temperature more than degreeC. Even when these structures are applied, the sterilizing effect of microorganisms can be suitably obtained as described above.

さらに、本発明の精製水の製造方法は、前記精密ろ過膜から前記イオン交換装置通過後まで、前記精密ろ過膜から前記第2の逆浸透膜通過後まで、若しくは前記精密ろ過膜から前記カチオン樹脂塔及び前記アニオン樹脂塔通過後まで、の被処理水が50℃以上、90℃以下の温度となるよう前記原水を加熱するものであってもよい。この場合、90℃以上の耐熱性を確保した精密ろ過膜やイオン交換装置などを含む機器類を適用することで、この発明の製法を実現できる。   Furthermore, the method for producing purified water according to the present invention includes from the microfiltration membrane to after passing through the ion exchange device, from the microfiltration membrane to after passing through the second reverse osmosis membrane, or from the microfiltration membrane to the cationic resin. The raw water may be heated so that the water to be treated reaches a temperature of 50 ° C. or higher and 90 ° C. or lower until after passing through the tower and the anion resin tower. In this case, the manufacturing method of the present invention can be realized by applying equipment including a microfiltration membrane and an ion exchange device that ensure heat resistance of 90 ° C. or higher.

また、本発明の精製水の製造装置は、原水を順に透過させる精密ろ過膜及び逆浸透膜とこれらの膜を透過した透過水を通過させるイオン交換装置とを少なくとも備えた精製水の製造装置において、前記精密ろ過膜の前段に配置され、かつ前記精密ろ過膜から前記イオン交換装置通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱する熱交換器をさらに備えたことを特徴とする。   Moreover, the purified water production apparatus of the present invention is a purified water production apparatus comprising at least a microfiltration membrane and a reverse osmosis membrane that sequentially permeate raw water, and an ion exchange device that allows permeated water that has passed through these membranes to pass therethrough. And a heat exchanger that is disposed upstream of the microfiltration membrane and that heats the raw water so that the water to be treated from the microfiltration membrane to after passing through the ion exchange device has a temperature of 50 ° C. or higher. It is characterized by.

本発明によれば、微生物の殺菌効果を高めつつ、しかも効率良く精製水を製造することが可能な精製水の製造方法及び精製水の製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of purified water and the manufacturing apparatus of purified water which can manufacture purified water efficiently can be provided, improving the bactericidal effect of microorganisms.

本発明の第1の実施形態に係る精製水製造装置の構成を機能的に示す図。The figure which shows the structure of the purified water manufacturing apparatus which concerns on the 1st Embodiment of this invention functionally. 本発明の第2の実施形態に係る精製水製造装置の構成を機能的に示す図。The figure which shows the structure of the purified water manufacturing apparatus which concerns on the 2nd Embodiment of this invention functionally.

以下、本発明を実施するための形態を図面に基づき説明する。
[第1の実施の形態]
この実施形態に係る精製水製造装置10は、日本薬局方の要求水準である生菌数を100CFU/mL以下に抑えた精製水を得るための装置であって、原水タンク12と、原水ポンプ14と、熱交換器16と、MF(Micro Filtration:精密ろ過)膜18と、高圧ポンプ19と、脱イオン装置21と、精製水タンク25と、製造装置本体内の機器間をつなぐ通水路となる水処理流路27と、蒸気供給部15と、温度センサ17、24と、を備えている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[First Embodiment]
A purified water production apparatus 10 according to this embodiment is an apparatus for obtaining purified water in which the number of viable bacteria, which is a required level of the Japanese Pharmacopoeia, is suppressed to 100 CFU / mL or less, and includes a raw water tank 12 and a raw water pump 14. The heat exchanger 16, the MF (Micro Filtration) membrane 18, the high-pressure pump 19, the deionizer 21, the purified water tank 25, and the water passage connecting the devices in the manufacturing apparatus main body. A water treatment channel 27, a steam supply unit 15, and temperature sensors 17 and 24 are provided.

脱イオン装置21は、MF膜18を透過した透過水の脱イオンを行う装置であり、当該脱イオン装置21本体内の前段側に配置されたRO(Reverse Osmosis:逆浸透)膜22と、後段側に配置されたイオン交換装置としてのEDI装置(電気再生式イオン交換装置)23と、で実現されている。   The deionization device 21 is a device that performs deionization of the permeated water that has passed through the MF membrane 18. And an EDI device (electric regenerative ion exchange device) 23 as an ion exchange device arranged on the side.

原水タンク12は、例えば水道水などを適用した原水を一時的に貯留するタンクである。原水ポンプ14は、原水タンク12内に貯留された原水を熱交換器16側に送り出す。一方、蒸気供給部15は、熱交換器16側に加熱蒸気を供給する。熱交換器16は、MF膜18の前段に配置されており、MF膜18を透過する前の原水を加熱する。   The raw water tank 12 is a tank that temporarily stores raw water to which, for example, tap water is applied. The raw water pump 14 sends the raw water stored in the raw water tank 12 to the heat exchanger 16 side. On the other hand, the steam supply unit 15 supplies heated steam to the heat exchanger 16 side. The heat exchanger 16 is disposed in front of the MF membrane 18 and heats the raw water before passing through the MF membrane 18.

MF膜18は、孔径が0.1μm〜10μmのものなどを挙げることができ、懸濁物質、超微粒子など、前記孔径より大きい物質の通過を阻止する。MF膜18は、形状が、中空糸状のもの(中空糸膜)、プリーツ型(畳み込み型)のもの、管状のもの、糸巻き繊維のもの、平膜加工のものなど、多種多様の形状のものを適用できる。なお、MF膜18は、RO膜22の目詰まりを防ぐ保安フィルタとして交換可能なカートリッジ型のものなどを用いるようにしてもよい。   Examples of the MF membrane 18 include those having a pore diameter of 0.1 μm to 10 μm, and block passage of substances larger than the pore diameter, such as suspended substances and ultrafine particles. The MF membrane 18 has a wide variety of shapes such as a hollow fiber shape (hollow fiber membrane), a pleated type (convolution type), a tubular type, a wound fiber type, and a flat membrane type. Applicable. The MF membrane 18 may be a replaceable cartridge type as a security filter that prevents the RO membrane 22 from being clogged.

高圧ポンプ19は、熱交換器16を通過する際に加熱された原水をMF膜18、RO膜22に順に透過させ、さらに、この透過水をイオン交換装置に通過させるための流動力を発生させる。この高圧ポンプ19による水の送り出し量は、例えば、0.5m3/h〜100m3/hである。 The high-pressure pump 19 allows raw water heated when passing through the heat exchanger 16 to pass through the MF membrane 18 and the RO membrane 22 in order, and further generates a fluid force for passing the permeated water through the ion exchange device. . Feed amount of water by the high-pressure pump 19 is, for example, 0.5m 3 / h~100m 3 / h.

RO膜22は、例えばポリアミド系複合膜などを適用して構成されており、イオン分子など、溶解性の細かい物質までろ過することが可能である。RO膜22の後段に配置されたEDI装置23は、イオン交換膜とイオン交換樹脂とを備え、直流電流を用いてイオン交換樹脂を連続再生しつつイオン交換を行う。   The RO membrane 22 is configured by applying, for example, a polyamide-based composite membrane or the like, and can filter even a finely soluble substance such as an ionic molecule. The EDI device 23 arranged at the rear stage of the RO membrane 22 includes an ion exchange membrane and an ion exchange resin, and performs ion exchange while continuously regenerating the ion exchange resin using a direct current.

精製水タンク25は、EDI装置23(脱イオン装置21)の後段に配置されており、EDI装置23を通過した被処理水、つまり、精製水を貯留するためのタンクである。なお、精製水製造装置10には、精製水タンク25内の精製水を送り出すための精製水送出ポンプや、この精製水送出ポンプに送り出された精製水が使用されるユースポイントなどが設けられている。また、精製水製造装置10には、精製水送出ポンプによって送り出されかつユースポイントを通過した精製水を再び精製水タンク25内に帰還させるための精製水循環路なども設けられている。   The purified water tank 25 is disposed in the subsequent stage of the EDI device 23 (deionization device 21), and is a tank for storing treated water that has passed through the EDI device 23, that is, purified water. The purified water production apparatus 10 is provided with a purified water delivery pump for sending purified water in the purified water tank 25, a use point where purified water sent to the purified water delivery pump is used, and the like. Yes. The purified water production apparatus 10 is also provided with a purified water circulation path for returning the purified water sent out by the purified water delivery pump and passed through the use point back into the purified water tank 25 again.

ここで、本実施形態の精製水製造装置10では、MF膜18から、高圧ポンプ19、RO膜22を経て、EDI装置23を通過し終えるまでの被処理水(EDI装置23から送り出される精製水)の温度が、50℃以上、90℃以下になるように原水が熱交換器16によって加熱される。   Here, in the purified water production apparatus 10 of the present embodiment, the water to be treated (purified water sent out from the EDI apparatus 23 until passing through the EDI apparatus 23 from the MF film 18 via the high pressure pump 19 and the RO film 22). The raw water is heated by the heat exchanger 16 so that the temperature of) becomes 50 ° C. or higher and 90 ° C. or lower.

すなわち、この実施形態の精製水製造装置10では、温度センサ17は、熱交換器16の通過直後の原水の温度を検出し、一方、温度センサ24は、EDI装置23の通過直後の被処理水の温度を検出する。さらに、前述した蒸気供給部15は、温度センサ17、24の検出結果に基づいて、(MF膜18からEDI装置23通過後までの被処理水が50℃以上、90℃以下の温度となる温度勾配を算出して)熱交換器16側に供給すべき加熱蒸気の温度を制御する。   That is, in the purified water production apparatus 10 of this embodiment, the temperature sensor 17 detects the temperature of the raw water immediately after passing through the heat exchanger 16, while the temperature sensor 24 is treated water immediately after passing through the EDI apparatus 23. Detect the temperature. Furthermore, the steam supply unit 15 described above is based on the detection results of the temperature sensors 17 and 24 (the temperature at which the water to be treated from the MF membrane 18 to after passing through the EDI device 23 becomes a temperature of 50 ° C. or more and 90 ° C. or less. The temperature of the heating steam to be supplied to the heat exchanger 16 side is controlled by calculating the gradient.

さらに、精製水製造装置10では、MF膜18、高圧ポンプ19、RO膜22、及びEDI装置23、並びに、精製水タンク25及び水処理流路27は、少なくとも90℃以上の耐熱性を有している。上記の水処理流路27は、耐熱型の塩化ビニールパイプや、ステンレス管(例えば多管式のステンレスチューブ)などで構成されている。   Further, in the purified water production apparatus 10, the MF membrane 18, the high pressure pump 19, the RO membrane 22, the EDI device 23, the purified water tank 25, and the water treatment flow path 27 have a heat resistance of at least 90 ° C. or more. ing. The water treatment flow path 27 is composed of a heat-resistant vinyl chloride pipe, a stainless pipe (for example, a multi-tubular stainless tube), or the like.

したがって、本実施形態に係る精製水製造装置10では、50℃以上、90℃以下の温度に加熱された原水をMF膜18、RO膜22の順に透過させ、この温度範囲内にある透過水をさらにEDI装置23を通過させて精製水を得るので、熱水による殺菌処理と精製水を製造する処理とを同時(連続的)に行うことができる。より詳細には、50℃以上の加熱水が流れる通水路上では、日本薬局方の要求水準を満たす生菌数となる精製水を製造できる。これにより、精製水製造装置10によれば、微生物の殺菌効果を高めつつ、しかも効率良く精製水を製造することができる。   Therefore, in the purified water production apparatus 10 according to the present embodiment, raw water heated to a temperature of 50 ° C. or higher and 90 ° C. or lower is permeated in the order of the MF membrane 18 and the RO membrane 22, and permeated water within this temperature range is passed. Furthermore, since purified water is obtained by passing through the EDI device 23, the sterilization process using hot water and the process for producing purified water can be performed simultaneously (continuously). More specifically, on the water channel through which heated water of 50 ° C. or higher flows, purified water having a viable cell count that satisfies the required level of the Japanese Pharmacopoeia can be produced. Thereby, according to the purified water manufacturing apparatus 10, purified water can be manufactured efficiently, improving the bactericidal effect of microorganisms.

[第2の実施の形態]
次に、本発明の第2の実施形態を図2に基づき説明する。なお、この図2中において、図1に示した精製水製造装置10が備える構成要素と同一の構成要素については、同一の符号を付与しその説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same constituent elements as those included in the purified water production apparatus 10 shown in FIG.

図2に示すように、本実施形態の精製水製造装置30は、図1に示した第1の実施形態の精製水製造装置10の構成に加え、さらに、熱交換器(第2の熱交換器)31及び90℃以上の耐熱性を有する原水供給経路32を備えている。   As shown in FIG. 2, in addition to the configuration of the purified water production apparatus 10 of the first embodiment shown in FIG. 1, the purified water production apparatus 30 of the present embodiment further includes a heat exchanger (second heat exchange). Vessel) 31 and a raw water supply path 32 having heat resistance of 90 ° C. or higher.

すなわち、熱交換器31は、図2に示すように、イオン交換装置であるEDI装置23の後段に配置されている。一方、原水供給経路32は、原水タンク12及び原水ポンプ14を介してMF膜18の前段の熱交換器(第1の熱交換器)16へ供給される原水の供給路であって、上記熱交換器31(第2の熱交換器)本体を経由する位置に配置(かつ精製水タンク25の前段に配置)されている。これにより、EDI装置23から送り出される被処理水を除熱する一方で、当該除熱された熱で原水を加熱することが可能となる。   That is, as shown in FIG. 2, the heat exchanger 31 is arranged at the subsequent stage of the EDI device 23 that is an ion exchange device. On the other hand, the raw water supply path 32 is a raw water supply path that is supplied to the heat exchanger (first heat exchanger) 16 in front of the MF membrane 18 via the raw water tank 12 and the raw water pump 14. It arrange | positions in the position which passes through the exchanger 31 (2nd heat exchanger) main body (and arrange | positions in the front | former stage of the purified water tank 25). Thereby, while removing the to-be-processed water sent out from the EDI apparatus 23, it becomes possible to heat raw | natural water with the said heat removed.

したがって、本実施形態の精製水製造装置30によれば、熱交換効率の向上を図れるので、加熱源である蒸気供給部15のパワーを節約できるとともに、イオン交換装置の後段でユーザに使用されることになる被処理水(精製水)を、50℃以上、90℃以下の温度範囲よりも、低い温度範囲に冷却することができる。   Therefore, according to the purified water production apparatus 30 of the present embodiment, the heat exchange efficiency can be improved, so that the power of the steam supply unit 15 that is a heating source can be saved and used by the user in the subsequent stage of the ion exchange apparatus. The water to be treated (purified water) to be treated can be cooled to a temperature range lower than the temperature range of 50 ° C. or higher and 90 ° C. or lower.

以上、本発明を第1、第2の実施の形態により具体的に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、RO膜22及びEDI装置23を備えた図1、図2に示す脱イオン装置21に代えて、RO膜22とこのRO膜22の後段に配置された同様の構造を持つ第2の逆浸透膜とを備えた脱イオン装置を適用してもよいし、さらに、脱イオン装置21に代えて、カチオン樹脂塔及びアニオン樹脂塔を配置した脱イオン装置を適用することもできる。   The present invention has been specifically described with reference to the first and second embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the scope of the present invention. . For example, instead of the deionization device 21 shown in FIGS. 1 and 2 having the RO membrane 22 and the EDI device 23, the second reverse structure having the same structure disposed in the subsequent stage of the RO membrane 22 and the RO membrane 22. A deionization apparatus provided with a osmosis membrane may be applied, and a deionization apparatus in which a cation resin tower and an anion resin tower are arranged may be applied instead of the deionization apparatus 21.

また、脱イオン装置21に代えて、RO膜22とこのRO膜22の後段に配置した混床式のイオン交換樹脂塔(MB:ミクスドベット)とを備えた脱イオン装置を用いることも可能である。これらの脱イオン装置を用いる場合でも、MF膜18から個々の脱イオン装置通過後までの被処理水が50℃以上、90℃以下の温度となるよう原水を加熱することで、前記同様、微生物の殺菌効果を好適に得ることができる。   Further, instead of the deionization apparatus 21, a deionization apparatus including an RO membrane 22 and a mixed bed type ion exchange resin tower (MB: mixed bed) disposed at the subsequent stage of the RO membrane 22 may be used. is there. Even in the case of using these deionizers, the raw water is heated so that the water to be treated from the MF membrane 18 after passing through the individual deionizers has a temperature of 50 ° C. or higher and 90 ° C. or lower. The sterilizing effect can be suitably obtained.

10,30…精製水製造装置、12…原水タンク、14…原水ポンプ、15…蒸気供給部、16,31…熱交換器、17,24…温度センサ、18…MF膜、19…高圧ポンプ、21…脱イオン装置、22…RO膜、23…EDI装置、25…精製水タンク、27…水処理流路、32…原水供給経路。   DESCRIPTION OF SYMBOLS 10,30 ... Purified water manufacturing apparatus, 12 ... Raw water tank, 14 ... Raw water pump, 15 ... Steam supply part, 16, 31 ... Heat exchanger, 17, 24 ... Temperature sensor, 18 ... MF membrane, 19 ... High pressure pump, DESCRIPTION OF SYMBOLS 21 ... Deionization apparatus, 22 ... RO membrane, 23 ... EDI apparatus, 25 ... Purified water tank, 27 ... Water treatment flow path, 32 ... Raw water supply path.

Claims (9)

原水を精密ろ過膜と逆浸透膜に順に透過させ、この透過水をイオン交換装置に通過させることからなる精製水の製造方法において、
前記精密ろ過膜の前段に熱交換器を配置して、前記精密ろ過膜から前記イオン交換装置通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱することを特徴とする精製水の製造方法。
In a method for producing purified water comprising sequentially passing raw water through a microfiltration membrane and a reverse osmosis membrane, and passing the permeate through an ion exchange device,
A heat exchanger is disposed in front of the microfiltration membrane, and the raw water is heated so that the water to be treated from the microfiltration membrane to after passing through the ion exchange device has a temperature of 50 ° C. or higher. A method for producing purified water.
前記イオン交換装置が、混床式のイオン交換樹脂塔又は電気再生式イオン交換装置であることを特徴とする請求項1記載の精製水の製造方法。   The method for producing purified water according to claim 1, wherein the ion exchange device is a mixed bed type ion exchange resin tower or an electric regeneration type ion exchange device. 前記イオン交換装置の後段に第2の熱交換器を配置するとともに前記精密ろ過膜の前段の熱交換器へ供給される原水の供給経路を当該第2の熱交換器を経由させるように配置することによって、前記被処理水を除熱する一方で当該除熱された熱で前記原水を加熱することを特徴とする請求項1又は2記載の精製水の製造方法。   A second heat exchanger is disposed downstream of the ion exchange device, and a raw water supply path to be supplied to the heat exchanger upstream of the microfiltration membrane is disposed so as to pass through the second heat exchanger. 3. The method for producing purified water according to claim 1, wherein the raw water is heated with the heat removed while removing the water to be treated. 前記イオン交換装置に代えて第2の逆浸透膜を配置し、かつ前記精密ろ過膜から当該第2の逆浸透膜通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱することを特徴とする請求項1ないし3のいずれか1項に記載の精製水の製造方法。   A second reverse osmosis membrane is disposed instead of the ion exchange device, and the raw water is heated so that the water to be treated from the microfiltration membrane to after passing through the second reverse osmosis membrane has a temperature of 50 ° C. or higher. The method for producing purified water according to any one of claims 1 to 3, wherein: 前記逆浸透膜及び前記イオン交換装置に代えてカチオン樹脂塔及びアニオン樹脂塔を配置し、かつ前記精密ろ過膜から当該カチオン樹脂塔及び当該アニオン樹脂塔通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱することを特徴とする請求項1ないし3のいずれか1項に記載の精製水の製造方法。   In place of the reverse osmosis membrane and the ion exchange device, a cation resin tower and an anion resin tower are arranged, and the water to be treated from the microfiltration membrane to after passing through the cation resin tower and the anion resin tower is 50 ° C. or more. The method for producing purified water according to any one of claims 1 to 3, wherein the raw water is heated to a temperature. 前記精密ろ過膜から前記イオン交換装置通過後まで、前記精密ろ過膜から前記第2の逆浸透膜通過後まで、若しくは前記精密ろ過膜から前記カチオン樹脂塔及び前記アニオン樹脂塔通過後まで、の被処理水が50℃以上、90℃以下の温度となるよう前記原水を加熱することを特徴とする請求項1ないし5のいずれか1項に記載の精製水の製造方法。   From the microfiltration membrane to after passing through the ion exchange device, from the microfiltration membrane to after passing through the second reverse osmosis membrane, or from the microfiltration membrane to after passing through the cation resin tower and the anion resin tower, The method for producing purified water according to any one of claims 1 to 5, wherein the raw water is heated so that treated water has a temperature of 50 ° C or higher and 90 ° C or lower. 原水を順に透過させる精密ろ過膜及び逆浸透膜とこれらの膜を透過した透過水を通過させるイオン交換装置とを少なくとも備えた精製水の製造装置において、
前記精密ろ過膜の前段に配置され、かつ前記精密ろ過膜から前記イオン交換装置通過後までの被処理水が50℃以上の温度となるよう前記原水を加熱する熱交換器をさらに備えたことを特徴とする精製水の製造装置。
In a purified water production apparatus comprising at least a microfiltration membrane and a reverse osmosis membrane that sequentially permeate raw water, and an ion exchange device that allows permeate to pass through these membranes,
A heat exchanger that is disposed in front of the microfiltration membrane and that heats the raw water so that the water to be treated from the microfiltration membrane to after passing through the ion exchange device has a temperature of 50 ° C. or higher. A device for producing purified water.
前記イオン交換装置が、混床式のイオン交換樹脂塔又は電気再生式イオン交換装置であることを特徴とする請求項7記載の精製水の製造装置。   8. The apparatus for producing purified water according to claim 7, wherein the ion exchange device is a mixed bed type ion exchange resin tower or an electric regeneration type ion exchange device. 前記イオン交換装置の後段に配置された第2の熱交換器と、当該第2の熱交換器を経由させるように配置されかつ前記精密ろ過膜の前段の熱交換器へ原水を供給する供給経路と、を設け、前記被処理水を除熱する一方で当該除熱された熱で前記原水を加熱することを特徴とする請求項7又は8記載の精製水の製造装置。   A second heat exchanger disposed downstream of the ion exchange device, and a supply path that is disposed so as to pass through the second heat exchanger and that supplies raw water to the heat exchanger upstream of the microfiltration membrane The apparatus for producing purified water according to claim 7 or 8, wherein the raw water is heated with the heat removed while removing the water to be treated.
JP2009122273A 2009-05-20 2009-05-20 Purified water production method and purified water production apparatus Active JP5336926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122273A JP5336926B2 (en) 2009-05-20 2009-05-20 Purified water production method and purified water production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122273A JP5336926B2 (en) 2009-05-20 2009-05-20 Purified water production method and purified water production apparatus

Publications (2)

Publication Number Publication Date
JP2010269235A true JP2010269235A (en) 2010-12-02
JP5336926B2 JP5336926B2 (en) 2013-11-06

Family

ID=43417714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122273A Active JP5336926B2 (en) 2009-05-20 2009-05-20 Purified water production method and purified water production apparatus

Country Status (1)

Country Link
JP (1) JP5336926B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942276A (en) * 2012-12-13 2013-02-27 山西太钢不锈钢股份有限公司 Boiler feedwater treatment method and treatment system related to reuse of reclaimed water
JP2013119060A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2014091068A (en) * 2012-11-01 2014-05-19 Daicen Membrane Systems Ltd Manufacturing apparatus of refined water for medical treatment, and operational method thereof
JP2014113512A (en) * 2012-12-06 2014-06-26 Daicen Membrane Systems Ltd Apparatus for producing medical purified water and operation method of the same
CN110937733A (en) * 2019-12-23 2020-03-31 上海新阳半导体材料股份有限公司 Dicing knife cleaning cooling liquid recycling device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409981B2 (en) 2020-06-30 2024-01-09 サントリーホールディングス株式会社 Sterilization system and method for drinking water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235916A (en) * 1988-07-22 1990-02-06 Nitto Denko Corp Sterilization treatment process for filteration film device
JPH05293469A (en) * 1992-04-17 1993-11-09 Toda Constr Co Ltd Production of sterilized and purified water and equipment thereof
JPH08173961A (en) * 1994-12-22 1996-07-09 Hitachi Metals Ltd Warm ultra pure water producing apparatus
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235916A (en) * 1988-07-22 1990-02-06 Nitto Denko Corp Sterilization treatment process for filteration film device
JPH05293469A (en) * 1992-04-17 1993-11-09 Toda Constr Co Ltd Production of sterilized and purified water and equipment thereof
JPH08173961A (en) * 1994-12-22 1996-07-09 Hitachi Metals Ltd Warm ultra pure water producing apparatus
JP2005254201A (en) * 2004-03-15 2005-09-22 Japan Organo Co Ltd Bacterium growth inhibition method in electric desalted water production device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119060A (en) * 2011-12-07 2013-06-17 Kurita Water Ind Ltd Ultrapure water production method and apparatus
JP2014091068A (en) * 2012-11-01 2014-05-19 Daicen Membrane Systems Ltd Manufacturing apparatus of refined water for medical treatment, and operational method thereof
JP2014113512A (en) * 2012-12-06 2014-06-26 Daicen Membrane Systems Ltd Apparatus for producing medical purified water and operation method of the same
CN102942276A (en) * 2012-12-13 2013-02-27 山西太钢不锈钢股份有限公司 Boiler feedwater treatment method and treatment system related to reuse of reclaimed water
CN102942276B (en) * 2012-12-13 2014-09-17 山西太钢不锈钢股份有限公司 Boiler feedwater treatment method and treatment system related to reuse of reclaimed water
CN110937733A (en) * 2019-12-23 2020-03-31 上海新阳半导体材料股份有限公司 Dicing knife cleaning cooling liquid recycling device

Also Published As

Publication number Publication date
JP5336926B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5336926B2 (en) Purified water production method and purified water production apparatus
EP0462606B1 (en) Method and system for producing sterile aqueous solutions
JP5093679B2 (en) Disinfection method for purified water production equipment
JP5204995B2 (en) Central system for dialysis treatment and its disinfection method
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2004074109A (en) Method and apparatus for manufacturing purified water for medicines
JP2010000433A5 (en)
JP2009028602A (en) Medical purified water manufacturing device and hot water disinfection method for nanofiltratioin membrane
JP5028397B2 (en) Method for producing medical purified water
CN207845415U (en) A kind of pharmaceutical bipolar reverse osmosis equipment
JP3468259B2 (en) Deionized water production method
JP5459704B2 (en) Purified water production method and purified water production apparatus
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP5903428B2 (en) Disinfection method for electrodeionization equipment
JP6956223B2 (en) Purified water supply system and its operation method
JP6637320B2 (en) Pharmaceutical purified water production apparatus and method for sterilizing pharmaceutical purified water production apparatus
JPS61242687A (en) Purified water generator
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system
JP2021178297A (en) Pharmaceutical water production system and its sterilization method
JPH08252600A (en) Pure water producing device
JPH078996A (en) Method and system for producing aseptic aqueous solution
US20230014172A1 (en) Systems, devices and methods for peritoneal dialysate production and delivery
CN214862554U (en) Sterile water circulation water supply system
JP4016873B2 (en) Deionized water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130802

R150 Certificate of patent or registration of utility model

Ref document number: 5336926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250