JP6994376B2 - Pure water production equipment and its operation method - Google Patents

Pure water production equipment and its operation method Download PDF

Info

Publication number
JP6994376B2
JP6994376B2 JP2017238594A JP2017238594A JP6994376B2 JP 6994376 B2 JP6994376 B2 JP 6994376B2 JP 2017238594 A JP2017238594 A JP 2017238594A JP 2017238594 A JP2017238594 A JP 2017238594A JP 6994376 B2 JP6994376 B2 JP 6994376B2
Authority
JP
Japan
Prior art keywords
water
line
flow rate
membrane filtration
filtration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017238594A
Other languages
Japanese (ja)
Other versions
JP2019103978A (en
Inventor
修 堀内
賢治 樋口
貴充 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2017238594A priority Critical patent/JP6994376B2/en
Publication of JP2019103978A publication Critical patent/JP2019103978A/en
Application granted granted Critical
Publication of JP6994376B2 publication Critical patent/JP6994376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、純水製造装置およびその運転方法に関する。 The present invention relates to a pure water production apparatus and an operation method thereof.

従来から、医薬品製造などに使用される純水(精製水や注射用水など)を製造する装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有し、工業用水、井水、市水などの原水を透過水と濃縮水とに分離する膜ろ過装置と、透過水をイオン交換体に通水することで脱イオン水(純水)を製造する電気式脱イオン水製造装置とを組み合わせた純水製造装置が知られている。 Conventionally, as a device for producing pure water (purified water, water for injection, etc.) used for pharmaceutical production, etc., it has a back-penetration film (RO film) or nanofiltration film (NF film), and is used for industrial water and well water. , A membrane filtration device that separates raw water such as city water into permeated water and concentrated water, and an electric deionized water production device that produces deionized water (pure water) by passing the permeated water through an ion exchanger. A pure water production device in combination with is known.

このような純水製造装置では、医薬品製造などに使用される純水を製造するという性質上、日本薬局方などの各国の薬局方の要求を担保するために、系内の生菌数を低減させる殺菌処理が定期的に行われている。この殺菌処理は、一般に、例えば60℃以上の熱水を系内に通水することで行われている。 Due to the nature of producing pure water used for manufacturing pharmaceuticals, such pure water production equipment reduces the number of viable bacteria in the system in order to meet the demands of the pharmacopoeia of each country such as the Japanese Pharmacopoeia. The sterilization process is performed regularly. This sterilization treatment is generally performed by passing hot water having a temperature of 60 ° C. or higher through the system.

特許文献1には、熱水の温度や流量を安定的に維持することを目的として、熱水による通水の際に、膜ろ過装置から電気式脱イオン水製造装置に供給される熱水(透過水)の圧力を設定圧力に調整する方法が提案されている。この方法によれば、熱水の温度や流量が安定的に維持されることで殺菌処理が確実に実施されることが期待される。 Patent Document 1 describes hot water supplied from a membrane filtration device to an electric deionized water production device when water is passed by hot water for the purpose of stably maintaining the temperature and flow rate of hot water. A method of adjusting the pressure of permeated water) to the set pressure has been proposed. According to this method, it is expected that the sterilization treatment is surely carried out by maintaining the temperature and the flow rate of the hot water in a stable manner.

特開2014-124481号公報Japanese Unexamined Patent Publication No. 2014-124481

しかしながら、特許文献1に記載されているように、膜ろ過装置からの熱水の圧力を設定圧力に調整したとしても、経年変化によって膜ろ過装置の下流側の圧力損失が増加した場合には、その下流側での熱水の流量が当初の流量に比べて低下してしまう。そのため、流量低下に伴う放熱により熱水の温度が低下して、十分な殺菌処理が行われなくなるおそれがある。このような経年変化による圧力損失の増大は、熱による膨張と収縮とを繰り返すことでイオン交換膜やイオン交換樹脂が変形するなどの理由により、電気式脱イオン水製造装置で特に顕著である。このことは、同じくイオン交換樹脂を備えたイオン交換装置においても同様に発生する可能性があり、さらに、精密ろ過膜(MF膜)や限外ろ過膜(UF膜)などの分離膜においても同様に発生する可能性がある。 However, as described in Patent Document 1, even if the pressure of hot water from the membrane filtration device is adjusted to the set pressure, if the pressure loss on the downstream side of the membrane filtration device increases due to aging, the pressure loss on the downstream side of the membrane filtration device increases. The flow rate of hot water on the downstream side is lower than the initial flow rate. Therefore, there is a possibility that the temperature of the hot water will drop due to heat dissipation due to the decrease in the flow rate, and sufficient sterilization treatment will not be performed. Such an increase in pressure loss due to aging is particularly remarkable in an electric deionized water producing apparatus because the ion exchange membrane and the ion exchange resin are deformed by repeating expansion and contraction due to heat. This may occur similarly in an ion exchange device also equipped with an ion exchange resin, and further in a separation membrane such as a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane). May occur in.

そこで、本発明の目的は、熱水による殺菌処理を長期にわたり安定して実施可能な純水製造装置およびその運転方法を提供することである。 Therefore, an object of the present invention is to provide a pure water production apparatus capable of stably performing a sterilization treatment with hot water for a long period of time and an operation method thereof.

上述した目的を達成するために、本発明の純水製造装置は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する膜ろ過装置と、膜ろ過装置に被処理水を供給する供給ラインと、膜ろ過装置からの透過水を流通させる透過水ラインと、膜ろ過装置からの濃縮水を流通させる濃縮水ラインと、供給ラインに設けられ、膜ろ過装置への被処理水の供給圧力を調整する圧力調整手段と、供給ラインの圧力調整手段の上流側に設けられ、膜ろ過装置に供給される被処理水を加熱する加熱手段と、透過水ラインに設けられ、透過水ラインを流れる透過水の流量を検出する流量検出手段と、流量検出手段により検出された透過水の流量に基づいて圧力調整手段を制御し、透過水ラインを流れる透過水の流量を設定流量に調整する流量制御手段と、を有し、流量制御手段は、加熱手段によって被処理水が45℃以上に加熱されたときに、膜ろ過装置に供給される被処理水と膜ろ過装置からの透過水と膜ろ過装置からの濃縮水とのいずれかの水温に基づいて、透過水ラインを流れる透過水の設定流量を決定する。 In order to achieve the above-mentioned object, the pure water production apparatus of the present invention is applied to a membrane filtration apparatus having a back-penetrating membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water, and the membrane filtration apparatus. A supply line for supplying treated water, a permeated water line for circulating permeated water from the membrane filtering device, a concentrated water line for circulating concentrated water from the membrane filtering device, and a supply line provided for the membrane filtering device. A pressure adjusting means for adjusting the supply pressure of the water to be treated, a heating means provided on the upstream side of the pressure adjusting means of the supply line to heat the water to be treated supplied to the membrane filtration device, and a permeated water line. , Controls the pressure adjusting means based on the flow rate detecting means for detecting the flow rate of the permeated water flowing through the permeated water line and the flow rate of the permeated water detected by the flow rate detecting means, and sets the flow rate of the permeated water flowing through the permeated water line. It has a flow control means for adjusting the flow rate, and the flow control means is from the water to be treated and the membrane filtering device supplied to the membrane filtering device when the water to be treated is heated to 45 ° C. or higher by the heating means. The set flow rate of the permeated water flowing through the permeated water line is determined based on the water temperature of either the permeated water or the concentrated water from the membrane filtration device.

また、本発明の純水製造装置の運転方法は、被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する膜ろ過装置と、膜ろ過装置に被処理水を供給する供給ラインと、膜ろ過装置からの透過水を流通させる透過水ラインと、膜ろ過装置からの濃縮水を流通させる濃縮水ラインと、を有する純水製造装置の運転方法であって、供給ラインを通じて膜ろ過装置に45℃以上の熱水を供給し、熱水により供給ラインと膜ろ過装置と透過水ラインと濃縮水ラインとを殺菌する工程と、殺菌中に、膜ろ過装置への熱水の供給圧力を調整して透過水ラインを流れる熱水の流量を設定流量に調整する工程と、を含み、熱水の流量を調整する工程が、供給ラインと透過水ラインと濃縮水ラインとのいずれかを流れる熱水の水温に基づいて、透過水ラインを流れる熱水の設定流量を決定することを含んでいる。 Further, in the operation method of the pure water production apparatus of the present invention, the membrane filtration apparatus having a back-penetrating membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water, and the membrane filtration apparatus are supplied with the water to be treated. It is an operation method of a pure water production apparatus having a supply line, a permeated water line for circulating permeated water from the membrane filtration device, and a concentrated water line for circulating concentrated water from the membrane filtration device. Hot water of 45 ° C or higher is supplied to the membrane filtration device through the process, and the supply line, the membrane filtration device, the permeated water line, and the concentrated water line are sterilized by the hot water, and the hot water to the membrane filtration device during sterilization. The process of adjusting the flow rate of hot water including the step of adjusting the supply pressure of the hot water flowing through the permeated water line to the set flow rate is the step of adjusting the flow rate of hot water between the supply line, the permeated water line and the concentrated water line. It involves determining the set flow rate of hot water flowing through the permeated water line based on the water temperature of the hot water flowing through either.

このような純水製造装置およびその運転方法によれば、経年変化によって膜ろ過装置の下流側の圧力損失の変動した場合であっても、透過水ラインを流れる透過水(熱水)の流量を一定に保持することができる。その結果、流量低下によって熱水の水温が低下することを抑制することができ、熱水による殺菌処理を安定して実施することができる。 According to such a pure water production device and its operation method, even if the pressure loss on the downstream side of the membrane filtration device fluctuates due to aging, the flow rate of permeated water (hot water) flowing through the permeated water line can be increased. It can be kept constant. As a result, it is possible to suppress the decrease in the water temperature of the hot water due to the decrease in the flow rate, and it is possible to stably carry out the sterilization treatment with the hot water.

以上、本発明によれば、熱水による殺菌処理を長期にわたり安定して実施可能な純水製造装置およびその運転方法を提供することができる。 As described above, according to the present invention, it is possible to provide a pure water production apparatus and an operation method thereof that can stably carry out sterilization treatment with hot water for a long period of time.

本発明の一実施形態に係る純水製造装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the pure water production apparatus which concerns on one Embodiment of this invention. 逆浸透膜を備えた膜ろ過装置における原水の水温と透過水の設定流量との対応関係を表すグラフである。It is a graph which shows the correspondence relationship between the water temperature of raw water and the set flow rate of permeation water in the membrane filtration apparatus provided with the reverse osmosis membrane.

以下、図面を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る純水製造装置の構成を示す概略図である。 FIG. 1 is a schematic view showing the configuration of a pure water production apparatus according to an embodiment of the present invention.

純水製造装置1は、原水タンク2と、膜ろ過装置3と、電気式脱イオン水製造装置4と、分離膜5とを有し、被処理水(原水)を順次処理して純水を製造するものである。さらに、純水製造装置1は、純水製造装置1の運転を制御する制御部6を有している。 The pure water production device 1 has a raw water tank 2, a membrane filtration device 3, an electric deionized water production device 4, and a separation membrane 5, and sequentially treats the water to be treated (raw water) to produce pure water. It is manufactured. Further, the pure water production apparatus 1 has a control unit 6 that controls the operation of the pure water production apparatus 1.

膜ろ過装置3は、原水タンク2から供給される原水中の不純物を除去して透過水を生成する装置であって、原水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離する逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。膜ろ過装置3には、膜ろ過装置3に原水を供給する供給ラインL1と、膜ろ過装置3からの透過水を流通させる透過水ラインL2と、膜ろ過装置3からの濃縮水を流通させる濃縮水ラインL3とが接続されている。濃縮水ラインL3は、濃縮水ラインL3を流れる濃縮水の一部を外部へ排出する排水ラインL4と、濃縮水の残りを供給ラインL1に還流させる還流水ラインL5とに分岐している。原水タンク2には、原水供給ラインL6が接続され、必要に応じて原水が供給されるようになっている。 The membrane filtration device 3 is a device that removes impurities in the raw water supplied from the raw water tank 2 to generate permeated water, and divides the raw water into concentrated water containing impurities and permeated water from which impurities have been removed. It has a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane) to be separated. The membrane filtration device 3 includes a supply line L1 for supplying raw water to the membrane filtration device 3, a permeation water line L2 for circulating permeated water from the membrane filtration device 3, and a concentration for circulating concentrated water from the membrane filtration device 3. It is connected to the water line L3. The concentrated water line L3 is branched into a drainage line L4 that discharges a part of the concentrated water flowing through the concentrated water line L3 to the outside, and a reflux water line L5 that returns the rest of the concentrated water to the supply line L1. A raw water supply line L6 is connected to the raw water tank 2, and raw water is supplied as needed.

供給ラインL1には、温度センサ11と、送水ポンプ12と、熱交換器13と、温度センサ14と、活性炭ろ過器15と、加圧ポンプ16と、流量調整弁17とが設けられている。なお、活性炭ろ過器15は、必ずしも設けられている必要はなく、省略されていてもよい。透過水ラインL2には、流量調整弁21と透過水流量計22とが設けられ、濃縮水ラインL3には、定流量弁31と流量調整弁32とが設けられている。排水ラインL4には、流量調整弁41と排水流量計42とが設けられ、還流水ラインL5には、手動弁51が設けられている。なお、還流水ラインL5は、供給ラインL1の活性炭15と加圧ポンプ16との間に接続されている。 The supply line L1 is provided with a temperature sensor 11, a water pump 12, a heat exchanger 13, a temperature sensor 14, an activated carbon filter 15, a pressurizing pump 16, and a flow rate adjusting valve 17. The activated carbon filter 15 does not necessarily have to be provided and may be omitted. The permeated water line L2 is provided with a flow rate adjusting valve 21 and a permeated water flow meter 22, and the concentrated water line L3 is provided with a constant flow rate valve 31 and a flow rate adjusting valve 32. The drainage line L4 is provided with a flow rate adjusting valve 41 and a drainage flow meter 42, and the recirculation water line L5 is provided with a manual valve 51. The reflux water line L5 is connected between the activated carbon 15 of the supply line L1 and the pressurizing pump 16.

温度センサ11は、後述する殺菌工程時に加熱殺菌用の熱水の水温を検出するために設けられている。送水ポンプ12は、加圧ポンプ16と共に、原水タンク2に貯留された原水を膜ろ過装置3に供給するために設けられ、必要に応じて、インバータ(図示せず)によって回転数が制御されるようになっている。熱交換器13は、膜ろ過装置3に供給される原水を加熱する加熱手段として機能し、上述した加熱殺菌用の熱水を生成するために設けられている。温度センサ14は、膜ろ過装置3に供給される原水の水温を検出する水温検出手段として機能する。活性炭ろ過器15は、膜ろ過装置3に供給される原水から塩素を除去するために設けられている。加圧ポンプ16は、インバータ(図示せず)によって回転数が制御されるようになっており、膜ろ過装置3への原水の供給圧力を調整する圧力調整手段としても機能する。 The temperature sensor 11 is provided to detect the temperature of hot water for heat sterilization during the sterilization step described later. The water pump 12 is provided together with the pressurizing pump 16 to supply the raw water stored in the raw water tank 2 to the membrane filtration device 3, and the rotation speed is controlled by an inverter (not shown) as needed. It has become like. The heat exchanger 13 functions as a heating means for heating the raw water supplied to the membrane filtration device 3, and is provided to generate the hot water for heat sterilization described above. The temperature sensor 14 functions as a water temperature detecting means for detecting the temperature of the raw water supplied to the membrane filtration device 3. The activated carbon filter 15 is provided to remove chlorine from the raw water supplied to the membrane filtration device 3. The rotation speed of the pressurizing pump 16 is controlled by an inverter (not shown), and also functions as a pressure adjusting means for adjusting the supply pressure of raw water to the membrane filtration device 3.

透過水流量計22は、透過水ラインL2を流れる透過水の流量を検出する機能を有し、定流量弁31は、濃縮水ラインL3を流れる濃縮水の流量を一定に保持する機能を有している。流量調整弁41は、排水ラインL4を流れる濃縮水(以下、「濃縮排水」という)の流量を調整する流量調整手段として機能し、排水流量計42は、濃縮排水の流量を検出する機能を有している。手動弁51は、排水ラインL4を流れる濃縮水と還流水ラインL5を流れる濃縮水の圧力バランスを調整する圧力調整弁として機能する。なお、流量調整弁17,21,32の機能については、殺菌工程の説明と共に後述する。 The permeated water flow meter 22 has a function of detecting the flow rate of the permeated water flowing through the permeated water line L2, and the constant flow valve 31 has a function of keeping the flow rate of the concentrated water flowing through the concentrated water line L3 constant. ing. The flow rate adjusting valve 41 functions as a flow rate adjusting means for adjusting the flow rate of the concentrated water (hereinafter referred to as "concentrated drainage") flowing through the drainage line L4, and the drainage flow meter 42 has a function of detecting the flow rate of the concentrated drainage. is doing. The manual valve 51 functions as a pressure adjusting valve for adjusting the pressure balance between the concentrated water flowing through the drainage line L4 and the concentrated water flowing through the recirculation water line L5. The functions of the flow rate adjusting valves 17, 21, and 32 will be described later together with the explanation of the sterilization process.

電気式脱イオン水製造装置4は、イオン交換体による被処理水の脱イオン化(脱塩)処理と、イオン交換体の再生処理とを同時に行う装置である。電気式脱イオン水製造装置4には、透過水ラインL2が接続され、膜ろ過装置3からの透過水が被処理水として供給されるようになっている。また、電気式脱イオン水製造装置4には、製造される処理水(脱イオン水)を流通させて処理水タンクまたはユースポイントに供給する処理水ラインL7が接続されている。 The electric deionized water producing apparatus 4 is an apparatus that simultaneously performs a deionization (desalting) treatment of the water to be treated by an ion exchanger and a regeneration treatment of the ion exchanger. A permeated water line L2 is connected to the electric deionized water producing device 4, so that the permeated water from the membrane filtration device 3 is supplied as the water to be treated. Further, the electric deionized water production apparatus 4 is connected to a treated water line L7 that circulates the produced treated water (deionized water) and supplies it to the treated water tank or the point of use.

電気式脱イオン水製造装置4は、一例として、陽極および陰極と、陽極および陰極の間に配置され、カチオン交換体とアニオン交換体との少なくとも一方が充填された脱塩室と、イオン交換膜を介して脱塩室の両側に配置された一対の濃縮室とを有している。膜ろ過装置3から供給される透過水は、脱塩室に通水されてイオン成分が除去され、処理水(脱イオン水)として脱塩室から流出し、処理水ラインL7を通じて処理水タンクまたはユースポイントに供給される。一方、脱塩室で除去されたイオン成分は、両極間に直流電圧が印加されることで発生する電位差により、脱塩室に隣接する濃縮室に移動し、濃縮室に供給される濃縮水に取り込まれる。電気式脱イオン水製造装置4には、こうしてイオン成分を取り込んだ濃縮水を外部に排出するための濃縮水排出ラインL8が接続されている。なお、脱塩室では、水解離反応(水が水素イオンと水酸化物イオンとに解離する反応)が連続的に進行しており、これら水素イオンおよび水酸化物イオンが脱塩室内のイオン交換体に吸着したイオン成分と交換されて、脱塩室内のイオン交換体が再生される。 The electric deionized water production apparatus 4 is, for example, an anode and a cathode, a desalting chamber arranged between the anode and the cathode and filled with at least one of a cation exchanger and an anion exchanger, and an ion exchange membrane. It has a pair of concentration chambers arranged on both sides of the desalting chamber via the. The permeated water supplied from the membrane filtration device 3 is passed through the desalting chamber to remove ionic components, flows out of the desalting chamber as treated water (deionized water), and is passed through the treated water line L7 to the treated water tank or. Supplied to use points. On the other hand, the ionic component removed in the desalting chamber moves to the concentrating chamber adjacent to the desalting chamber due to the potential difference generated by applying a DC voltage between the two electrodes, and becomes concentrated water supplied to the concentrating chamber. It is captured. The electric deionized water production apparatus 4 is connected to a concentrated water discharge line L8 for discharging the concentrated water that has taken in the ionic component to the outside. In the desalting chamber, a water dissociation reaction (a reaction in which water dissociates into hydrogen ions and hydroxide ions) is continuously proceeding, and these hydrogen ions and hydroxide ions exchange ions in the desalting chamber. The ion exchanger in the desalting chamber is regenerated by being exchanged with the ion component adsorbed on the body.

分離膜5は、精密ろ過膜(MF膜)または限外ろ過膜(UF膜)であり、電気式脱イオン水製造装置4で製造された処理水(脱イオン水)中の微粒子、微生物、エンドトキシンなどを除去するために、処理水ラインL7に設けられている。なお、UF膜のろ過方式として、クロスフロー方式を用いることもできる。処理水ラインL7の分離膜5の下流側には、バルブV1が設けられ、処理水ラインL7の分離膜5とバルブV1との間には、バルブV2を介して原水タンク2に接続された処理水還流ラインL9が接続されている。これにより、例えば、装置起動時や運転再開時、ユースポイントで処理水(純水)の需要がないときなど、電気式脱イオン水製造装置4で製造される処理水を原水タンク2に還流させて循環運転を行うこともできる。また、濃縮水排出ラインL8には、バルブV3が設けられ、濃縮水排出ラインL8のバブルV3の上流側には、バルブV4を介して原水タンク2に接続された濃縮水還流ラインL10が設けられている。これにより、濃縮水の水質によっては、その一部または全部を原水タンク2に還流させることもできる。 The separation membrane 5 is a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane), and is fine particles, microorganisms, and endotoxins in the treated water (deionized water) produced by the electric deionized water producing apparatus 4. It is provided in the treated water line L7 in order to remove such a substance. A cross-flow method can also be used as the filtration method for the UF membrane. A valve V1 is provided on the downstream side of the separation membrane 5 of the treated water line L7, and the treatment connected to the raw water tank 2 via the valve V2 between the separation membrane 5 and the valve V1 of the treated water line L7. The water recirculation line L9 is connected. As a result, the treated water produced by the electric deionized water producing apparatus 4 is returned to the raw water tank 2 at the time of starting the apparatus, restarting the operation, or when there is no demand for the treated water (pure water) at the point of use. It is also possible to perform circulation operation. Further, a valve V3 is provided in the concentrated water discharge line L8, and a concentrated water recirculation line L10 connected to the raw water tank 2 via the valve V4 is provided on the upstream side of the bubble V3 of the concentrated water discharge line L8. ing. Thereby, depending on the water quality of the concentrated water, a part or all of the concentrated water can be returned to the raw water tank 2.

なお、膜ろ過装置3からの透過水を処理する処理手段として、電気式脱イオン水製造装置4の代わりに、あるいはそれと共に、例えば非再生型混床式イオン交換装置(カートリッジポリッシャー)などのイオン交換装置が設けられていてもよい。また、膜ろ過装置3と電気式脱イオン水製造装置4との間、あるいは電気式脱イオン水製造装置4の代わりに、別の膜ろ過装置が追加されていてもよい。 As a treatment means for treating the permeated water from the membrane filtration device 3, instead of or together with the electric deionized water production device 4, ions such as a non-regenerative mixed bed type ion exchange device (cartridge polisher) are used. An exchange device may be provided. Further, another membrane filtration device may be added between the membrane filtration device 3 and the electric deionized water production device 4, or instead of the electric deionized water production device 4.

制御部6は、純水製造装置1の通常運転(純水製造)時、透過水流量計22により検出された透過水の流量に基づいて加圧ポンプ16を制御し、透過水ラインL2を流れる透過水の流量を設定流量に調整する流量制御手段として機能する。具体的には、制御部7は、透過水流量計22で検出された透過水の流量が一定(予め設定された目標流量)になるように、加圧ポンプ16の回転数を制御する。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、制御部6は、この減少分を補うように、加圧ポンプ16の回転数を上げることで、原水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、制御部6は、この増加分を打ち消すように、加圧ポンプ16の回転数を下げることで、原水の供給圧力を低下させる。このように、制御部6は、加圧ポンプ13の回転数、すなわち原水の供給圧力を調整することで、膜ろ過装置3からの透過水の流量を一定に維持することができる。 The control unit 6 controls the pressurizing pump 16 based on the flow rate of the permeated water detected by the permeated water flow meter 22 during the normal operation (pure water production) of the pure water production device 1 and flows through the permeated water line L2. It functions as a flow rate control means that adjusts the flow rate of permeated water to the set flow rate. Specifically, the control unit 7 controls the rotation speed of the pressurizing pump 16 so that the flow rate of the permeated water detected by the permeated water flow meter 22 becomes constant (a preset target flow rate). That is, as the water temperature decreases, the viscosity of the water increases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane decreases. Therefore, the control unit 6 increases the supply pressure of the raw water by increasing the rotation speed of the pressurizing pump 16 so as to compensate for this decrease. Further, as the water temperature increases, the viscosity of the water decreases, and as a result, the flow rate of the permeated water separated by the RO membrane or the NF membrane increases. Therefore, the control unit 6 lowers the supply pressure of the raw water by lowering the rotation speed of the pressurizing pump 16 so as to cancel out this increase. In this way, the control unit 6 can maintain a constant flow rate of the permeated water from the membrane filtration device 3 by adjusting the rotation speed of the pressurizing pump 13, that is, the supply pressure of the raw water.

なお、膜ろ過装置3への原水の供給圧力の変化(加圧ポンプ16の回転数の変化)に応じて、膜ろ過装置3のRO膜またはNF膜で分離される濃縮水の流量も変化するが、濃縮水ラインL3には、上述したように定流量弁31が設けられている。これにより、加圧ポンプ16の回転数が変化して原水の供給圧力が変化した場合にも、濃縮水ラインL3を流れる濃縮水の流量を一定に保持することができる。その結果、透過水の流量制御が排水ラインL4や還流水ラインL5を流れる濃縮水の流量に影響を及ぼすことがなくなる。そのため、例えば、膜ろ過装置3の回収率調整のための濃縮排水の流量制御、すなわち、排水流量計42により検出された濃縮排水の流量に基づいて流量調整弁41の開度を調整する流量制御を行った場合にも、それが透過水の流量制御と干渉することを回避することができる。 The flow rate of concentrated water separated by the RO membrane or NF membrane of the membrane filtration device 3 also changes according to the change in the supply pressure of raw water to the membrane filtration device 3 (change in the rotation speed of the pressurizing pump 16). However, the concentrated water line L3 is provided with a constant flow valve 31 as described above. As a result, even when the rotation speed of the pressurizing pump 16 changes and the supply pressure of the raw water changes, the flow rate of the concentrated water flowing through the concentrated water line L3 can be kept constant. As a result, the flow rate control of the permeated water does not affect the flow rate of the concentrated water flowing through the drainage line L4 and the recirculation water line L5. Therefore, for example, the flow rate control of the concentrated drainage for adjusting the recovery rate of the membrane filtration device 3, that is, the flow rate control for adjusting the opening degree of the flow rate adjusting valve 41 based on the flow rate of the concentrated drainage detected by the drainage flow meter 42. It is possible to prevent it from interfering with the flow rate control of the permeated water even when the above is performed.

本実施形態の純水製造装置1は、医薬品製造などに使用される純水を製造するものであり、したがって、系内の生菌数を低減させる殺菌処理を定期的に行う必要がある。そのため、制御部6は、通常運転時の純水製造の合間に、熱水による系内の殺菌処理も定期的に実行する。以下、この熱水殺菌方法について詳細に説明する。 The pure water production apparatus 1 of the present embodiment produces pure water used for manufacturing pharmaceuticals and the like, and therefore, it is necessary to periodically perform a sterilization treatment for reducing the viable cell count in the system. Therefore, the control unit 6 also periodically executes sterilization treatment in the system with hot water between the production of pure water during normal operation. Hereinafter, this hot water sterilization method will be described in detail.

(殺菌準備工程)
殺菌準備工程は、純水製造装置1を熱水により殺菌するための準備工程であり、原水タンク2に貯留された原水を処理水(純水)で置換する工程である。ただし、純水の代わりに原水を加熱して熱水殺菌を行う場合には、殺菌準備工程を省略することができる。
(Sterilization preparation process)
The sterilization preparation step is a preparatory step for sterilizing the pure water production apparatus 1 with hot water, and is a step of replacing the raw water stored in the raw water tank 2 with treated water (pure water). However, when hot water sterilization is performed by heating raw water instead of pure water, the sterilization preparation step can be omitted.

殺菌準備工程では、純水製造装置1において通常運転が行われ、原水タンク2内の原水が外部に排出された後、純水製造装置1で製造される純水が原水タンク2に供給されて貯留される。すなわち、殺菌準備工程が開始されると、原水供給ラインL6から原水タンク2への原水の供給が停止され、原水タンク2に貯留されていた原水は供給ラインL1を通じて膜ろ過装置3に供給され、分離された濃縮水が排水ラインL4から外部に排出される。一方で、原水供給ラインL6と供給ラインL1とが直接接続され、原水供給ラインL6から供給ラインL1に原水が供給されて、純水製造装置1において通常運転が行われる。そして、処理水ラインL7のバルブV1が閉鎖されるとともに、処理水還流ラインL9のバルブV2が開放され、処理水ラインL7を流れる処理水(純水)が、処理水還流ラインL9を通じて原水タンク2に貯留される。 In the sterilization preparation step, normal operation is performed in the pure water production apparatus 1, and after the raw water in the raw water tank 2 is discharged to the outside, the pure water produced by the pure water production apparatus 1 is supplied to the raw water tank 2. It is stored. That is, when the sterilization preparation step is started, the supply of raw water from the raw water supply line L6 to the raw water tank 2 is stopped, and the raw water stored in the raw water tank 2 is supplied to the membrane filtration device 3 through the supply line L1. The separated concentrated water is discharged to the outside from the drainage line L4. On the other hand, the raw water supply line L6 and the supply line L1 are directly connected, the raw water is supplied from the raw water supply line L6 to the supply line L1, and the pure water production apparatus 1 performs normal operation. Then, the valve V1 of the treated water line L7 is closed, the valve V2 of the treated water recirculation line L9 is opened, and the treated water (pure water) flowing through the treated water line L7 is passed through the treated water recirculation line L9 to the raw water tank 2. Is stored in.

なお、殺菌準備工程では、電気式脱イオン水製造装置4の濃縮水は、濃縮水排出ラインL8を通じて外部に排出されるか、あるいは、濃縮水の水質によっては、濃縮水還流ラインL10を通じて原水タンク2に還流される。また、電気式脱イオン水製造装置4の電極室(陽極を備えた陽極室および陰極を備えた陰極室)に供給される電極水は、外部に排出される。 In the sterilization preparation step, the concentrated water of the electric deionized water production apparatus 4 is discharged to the outside through the concentrated water discharge line L8, or depending on the water quality of the concentrated water, the raw water tank is discharged through the concentrated water recirculation line L10. It is refluxed to 2. Further, the electrode water supplied to the electrode chamber (anode chamber provided with an anode and the cathode chamber provided with a cathode) of the electric deionized water producing apparatus 4 is discharged to the outside.

(昇温工程および熱水殺菌工程)
昇温工程は、原水タンク2に貯留された純水を系内で循環させつつ、熱交換器13によって60℃程度以上、好ましくは90℃程度まで加熱する工程である。熱水殺菌工程は、こうして生成された熱水の循環により、供給ラインL1、膜ろ過装置3、透過水ラインL2、電気式脱イオン水製造装置4、処理水ラインL8、および処理水還流ラインL9を含む純水製造装置1の系内を殺菌する工程である。
(Heating process and hot water sterilization process)
The temperature raising step is a step of heating the pure water stored in the raw water tank 2 to about 60 ° C. or higher, preferably about 90 ° C. by the heat exchanger 13 while circulating it in the system. In the hot water sterilization step, the supply line L1, the membrane filtration device 3, the permeated water line L2, the electric deionized water production device 4, the treated water line L8, and the treated water recirculation line L9 are formed by circulating the hot water thus generated. This is a step of sterilizing the inside of the system of the pure water production apparatus 1 including.

昇温工程は、殺菌準備工程において、原水タンク2に設けられた水位計(図示せず)により、原水タンク2内の水位が所定の上限水位以上になったと判定された場合に開始される。昇温工程が開始されると、原水供給ラインL6と供給ラインL1との接続が解除され、原水供給ラインL6から供給ラインL1への原水の供給が停止される。そして、原水タンク2内の純水が、供給ラインL1、透過水ラインL2、処理水ラインL7、および処理水還流ラインL9を通じて循環される。それと同時に、熱交換器13により、循環する純水が60℃~90℃になるまで加熱される。こうして生成された熱水が循環することにより、熱水殺菌工程が実行され、純水製造装置1の系内が殺菌される。なお、熱水殺菌工程では、排水ラインL4の流量調整弁41が閉鎖され、還流水ラインL5の手動弁51が開放されることで、濃縮水ラインL3および還流水ラインL5も熱水により殺菌される。また、電気式脱イオン水製造装置4の濃縮水排出ラインL8のバルブV3が閉鎖され、濃縮水還流ラインL10のバルブV4が開放されることで、濃縮水還流ラインL10も殺菌される。 The temperature raising step is started when it is determined by the water level gauge (not shown) provided in the raw water tank 2 that the water level in the raw water tank 2 has reached a predetermined upper limit water level or higher in the sterilization preparation step. When the temperature raising step is started, the connection between the raw water supply line L6 and the supply line L1 is disconnected, and the supply of raw water from the raw water supply line L6 to the supply line L1 is stopped. Then, the pure water in the raw water tank 2 is circulated through the supply line L1, the permeated water line L2, the treated water line L7, and the treated water recirculation line L9. At the same time, the heat exchanger 13 heats the circulating pure water to 60 ° C to 90 ° C. By circulating the hot water thus generated, the hot water sterilization step is executed, and the inside of the system of the pure water production apparatus 1 is sterilized. In the hot water sterilization step, the flow control valve 41 of the drainage line L4 is closed and the manual valve 51 of the recirculation water line L5 is opened, so that the concentrated water line L3 and the recirculation water line L5 are also sterilized by hot water. To. Further, the valve V3 of the concentrated water discharge line L8 of the electric deionized water production apparatus 4 is closed, and the valve V4 of the concentrated water recirculation line L10 is opened, so that the concentrated water recirculation line L10 is also sterilized.

昇温工程での昇温速度は、膜ろ過装置3や電気式脱イオン水製造装置4へのダメージを軽減するために、1~2℃/分程度であることが好ましい。また、熱水殺菌工程の所要時間は、熱水の温度によっても異なるが、十分な殺菌処理を行うために20~60分程度であることが好ましい。例えば、60℃の熱水を循環させる場合には60分程度、80℃の熱水を循環させる場合には30分程度、90℃の熱水を循環させる場合には20分程度であることが好ましい。ここで、熱水殺菌工程での熱水の温度は、温度センサ11による検出値に基づいて調整されるが、温度センサ11の位置は、熱水の循環方向において熱交換器13からできるだけ離れた位置であれば特に限定されず、例えば、送水ポンプ12と熱交換器13との間であってもよく、あるいは、処理水還流ラインL9上であってもよい。換言すると、温度センサ11の代わりに、熱水の循環方向において熱交換器13の直後に設置された温度センサ14を用いることは好ましくなく、本実施形態では、2つの温度センサ11,14が別個に設けられていることが好ましい。 The rate of temperature rise in the temperature rise step is preferably about 1 to 2 ° C./min in order to reduce damage to the membrane filtration device 3 and the electric deionized water production device 4. The time required for the hot water sterilization step varies depending on the temperature of the hot water, but is preferably about 20 to 60 minutes for sufficient sterilization treatment. For example, it may take about 60 minutes to circulate hot water at 60 ° C, about 30 minutes to circulate hot water at 80 ° C, and about 20 minutes to circulate hot water at 90 ° C. preferable. Here, the temperature of the hot water in the hot water sterilization step is adjusted based on the value detected by the temperature sensor 11, but the position of the temperature sensor 11 is as far as possible from the heat exchanger 13 in the hot water circulation direction. The position is not particularly limited, and may be, for example, between the water supply pump 12 and the heat exchanger 13, or may be on the treated water recirculation line L9. In other words, it is not preferable to use the temperature sensor 14 installed immediately after the heat exchanger 13 in the hot water circulation direction instead of the temperature sensor 11, and in the present embodiment, the two temperature sensors 11 and 14 are separate. It is preferable that it is provided in.

熱水殺菌工程では、通常運転時と同様に、制御部6による流量制御が実行され、透過水ラインL2を流れる透過水(熱水)の流量が設定流量に調整されるようになっている。これにより、膜ろ過装置3の下流側の圧力損失の変動にかかわらず、透過水ラインL2を流れる熱水の流量、すなわち熱水の循環流量を一定に保持することができる。換言すると、熱水による殺菌処理を繰り返し行うことで電気式脱イオン水製造装置4の圧力損失が増大したり、経年変化により分離膜5の圧力損失が増大したりした場合にも、熱水の循環流量が当初の流量よりも低下することを抑制することができ、流量低下に伴う放熱により熱水の温度が低下することを抑制することができる。その結果、熱水による殺菌処理を繰り返し行った場合にも、熱水の循環流量を安定的に維持することができ、殺菌処理を安定して実施することができる。 In the hot water sterilization step, the flow rate is controlled by the control unit 6 as in the normal operation, and the flow rate of the permeated water (hot water) flowing through the permeated water line L2 is adjusted to the set flow rate. As a result, the flow rate of hot water flowing through the permeated water line L2, that is, the circulating flow rate of hot water can be kept constant regardless of the fluctuation of the pressure loss on the downstream side of the membrane filtration device 3. In other words, even when the pressure loss of the electric deionized water production apparatus 4 increases due to repeated sterilization treatment with hot water, or the pressure loss of the separation membrane 5 increases due to aging, the hot water also increases. It is possible to suppress a decrease in the circulating flow rate from the initial flow rate, and it is possible to suppress a decrease in the temperature of hot water due to heat dissipation accompanying the decrease in the flow rate. As a result, even when the sterilization treatment with hot water is repeatedly performed, the circulating flow rate of the hot water can be stably maintained, and the sterilization treatment can be stably carried out.

ただし、膜ろ過装置3のRO膜またはNF膜には、メーカーによって推奨される運転温度範囲および運転圧力範囲が設定されているが、熱水殺菌工程における熱水の温度は、一般に、この運転温度範囲を上回ることになる。そのため、安全面を考慮すると、熱水殺菌工程では、膜ろ過装置3への原水の供給圧力が上述の運転圧力範囲を下回るような安全な圧力範囲に収まるようにすることが好ましい。そこで、本実施形態では、昇温工程、熱水殺菌工程、および後述する降温工程を通じて、制御部6が、温度センサ14により検出された熱水の温度に基づいて、透過水ラインL2を流れる透過水(熱水)の設定流量を決定するようになっている。これにより、水温が上述の運転温度範囲を逸脱した場合にも、透過水(熱水)の設定流量を、膜ろ過装置3への原水の供給圧力が安全な圧力範囲に収まるような流量にすることで、安全な運転を実行することができる。その結果、純水製造装置1を長期にわたり安定して運転すること可能になる。 However, although the operating temperature range and operating pressure range recommended by the manufacturer are set for the RO membrane or NF membrane of the membrane filtration device 3, the temperature of hot water in the hot water sterilization step is generally the operating temperature. It will exceed the range. Therefore, in consideration of safety, in the hot water sterilization step, it is preferable to keep the supply pressure of the raw water to the membrane filtration device 3 within a safe pressure range that is lower than the above-mentioned operating pressure range. Therefore, in the present embodiment, the control unit 6 permeates the permeated water line L2 based on the temperature of the hot water detected by the temperature sensor 14 through the temperature raising step, the hot water sterilization step, and the temperature lowering step described later. The set flow rate of water (hot water) is determined. As a result, even if the water temperature deviates from the above-mentioned operating temperature range, the set flow rate of the permeated water (hot water) is set to a flow rate such that the supply pressure of the raw water to the membrane filtration device 3 falls within the safe pressure range. By doing so, it is possible to carry out safe driving. As a result, the pure water production apparatus 1 can be stably operated for a long period of time.

なお、透過水(熱水)の設定流量を決定するためには、膜ろ過装置3に供給される原水と膜ろ過装置3からの透過水と膜ろ過装置3からの濃縮水とのいずれかの水温が検出されればよい。したがって、温度センサ14の位置は、供給ラインL1上に限定されず、透過水ラインL2上または濃縮水ラインL3上であってもよい。 In order to determine the set flow rate of the permeated water (hot water), either the raw water supplied to the membrane filtration device 3, the permeated water from the membrane filtration device 3, or the concentrated water from the membrane filtration device 3 is determined. It suffices if the water temperature is detected. Therefore, the position of the temperature sensor 14 is not limited to the supply line L1 and may be on the permeated water line L2 or the concentrated water line L3.

透過水(熱水)の設定流量は、十分な殺菌処理を実現するとともに殺菌処理に要する時間を短縮するために、できるだけ大きいことが好ましい。そのため、原水の温度が運転温度範囲内にある場合の設定流量は、膜ろ過装置3への原水の供給圧力が運転圧力範囲内で最大になるように決定されることが好ましい。一方で、原水の温度が運転温度範囲を上回る場合の設定流量は、膜ろ過装置3への原水の供給圧力が設定圧力範囲内で最大になるように決定されることが好ましい。ここで「設定圧力範囲」とは、上述の運転圧力範囲とは別に予め実験によって求めたものであり、膜が破損しない圧力範囲を温度ごとに求めたものである。一例として、図2に、RO膜を備えた膜ろ過装置3における原水の水温と透過水の設定流量との対応関係を表すグラフを示す。 The set flow rate of the permeated water (hot water) is preferably as large as possible in order to realize sufficient sterilization treatment and shorten the time required for sterilization treatment. Therefore, it is preferable that the set flow rate when the temperature of the raw water is within the operating temperature range is determined so that the supply pressure of the raw water to the membrane filtration device 3 becomes the maximum within the operating pressure range. On the other hand, when the temperature of the raw water exceeds the operating temperature range, the set flow rate is preferably determined so that the supply pressure of the raw water to the membrane filtration device 3 becomes maximum within the set pressure range. Here, the "set pressure range" is obtained by an experiment in advance separately from the above-mentioned operating pressure range, and the pressure range in which the film is not damaged is obtained for each temperature. As an example, FIG. 2 shows a graph showing the correspondence between the water temperature of raw water and the set flow rate of permeated water in the membrane filtration device 3 provided with the RO membrane.

図2に示す例では、RO膜の運転温度範囲は45℃未満であり、この温度範囲における透過水の設定流量は、運転圧力範囲に基づいて決定され、水温によらず一定である。一方、原水の水温が45℃以上のときには、透過水の設定流量は、設定圧力範囲に基づいて決定され、1300L/hから2170L/hまで水温に応じて変化する。こうして水温に応じて透過水の設定流量を変更することで、昇温工程、熱水殺菌工程、および後述する降温工程を通じて、膜ろ過装置3への原水の供給圧力を、RO膜の運転圧力範囲を下回る安全な圧力範囲に維持することができる。なお、本明細書で「熱水」とは、この設定圧力範囲が適用される温度範囲、すなわち45℃以上の水を指すものとする。また、図2に示す透過水の設定流量は、あくまで一例であり、これに限定されるものではない。 In the example shown in FIG. 2, the operating temperature range of the RO membrane is less than 45 ° C., and the set flow rate of the permeated water in this temperature range is determined based on the operating pressure range and is constant regardless of the water temperature. On the other hand, when the water temperature of the raw water is 45 ° C. or higher, the set flow rate of the permeated water is determined based on the set pressure range and changes from 1300 L / h to 2170 L / h according to the water temperature. By changing the set flow rate of the permeated water according to the water temperature in this way, the supply pressure of the raw water to the membrane filtration device 3 can be adjusted to the operating pressure range of the RO membrane through the temperature raising step, the hot water sterilization step, and the temperature lowering step described later. Can be maintained in a safe pressure range below. In addition, in this specification, "hot water" means the temperature range to which this set pressure range is applied, that is, water of 45 degreeC or more. Further, the set flow rate of the permeated water shown in FIG. 2 is merely an example, and is not limited thereto.

ところで、熱水殺菌工程では、加圧ポンプ16の回転数が下限値に調整されても、膜ろ過装置3への原水の供給圧力が上述した設定圧力範囲を上回ってしまうことがあるが、その場合にも、供給ラインL1に設けられた流量調整弁17の開度を絞ることで、膜ろ過装置3への原水の供給圧力を設定圧力範囲に収めることができる。また、透過水ラインL2とその下流側で圧力損失が極端に低い場合には、透過水ラインL2に熱水が流れ過ぎてしまい、それにより、濃縮水ラインL3に熱水が流れにくくなり、結果として濃縮水ラインL3の殺菌処理が十分に行えない可能性がある。その場合にも、透過水ラインL2に設けられた流量調整弁21の開度を絞ることで、透過水ラインL2を流れる熱水の流量を減少させることができ、したがって、濃縮水ラインL3を流れる熱水の流量を増加させることができる。 By the way, in the hot water sterilization step, even if the rotation speed of the pressurizing pump 16 is adjusted to the lower limit value, the supply pressure of the raw water to the membrane filtration device 3 may exceed the set pressure range described above. Even in this case, the supply pressure of the raw water to the membrane filtration device 3 can be kept within the set pressure range by reducing the opening degree of the flow rate adjusting valve 17 provided in the supply line L1. Further, when the pressure loss is extremely low in the permeated water line L2 and its downstream side, hot water flows too much in the permeated water line L2, which makes it difficult for hot water to flow in the concentrated water line L3, resulting in. As a result, the concentrated water line L3 may not be sufficiently sterilized. Even in that case, the flow rate of the hot water flowing through the permeated water line L2 can be reduced by reducing the opening degree of the flow rate adjusting valve 21 provided in the permeated water line L2, and therefore, the flow rate flows through the concentrated water line L3. The flow rate of hot water can be increased.

一方で、濃縮水ラインL3とその下流側で圧力損失が極端に低い場合には、濃縮水ラインL3に熱水が流れ過ぎてしまい、それにより、透過水ラインL2に熱水が流れにくくなり、結果として透過水ラインL2の下流側において殺菌処理が十分に行えない可能性がある。これに対し、本実施形態では、濃縮水ラインL3に定流量弁31が設けられていることで、熱水殺菌工程においても、濃縮水ラインL3を流れる熱水の流量を一定に保持することができる。ただし、透過水ラインL2とその下流側で圧力損失が極端に高い場合には、定流量弁31の一次側と二次側の圧力差が作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)を超えてしまい、濃縮水ラインL3に熱水が流れすぎてしまうこともある。その場合にも、濃縮水ラインL3に設けられた流量調整弁32の開度を絞ることで、定流量弁31の一次側と二次側の圧力差を作動差圧範囲内に収めることで、定流量弁31を正常に作動させることができる。 On the other hand, when the pressure loss is extremely low in the concentrated water line L3 and its downstream side, hot water flows too much in the concentrated water line L3, which makes it difficult for hot water to flow in the permeated water line L2. As a result, the sterilization treatment may not be sufficiently performed on the downstream side of the permeated water line L2. On the other hand, in the present embodiment, since the constant flow valve 31 is provided in the concentrated water line L3, the flow rate of the hot water flowing through the concentrated water line L3 can be kept constant even in the hot water sterilization step. can. However, when the pressure loss is extremely high on the permeated water line L2 and its downstream side, the pressure difference between the primary side and the secondary side of the constant flow rate valve 31 is within the operating differential pressure range (primary side and secondary side of the constant flow rate valve). The allowable range of the pressure difference on the side) may be exceeded, and hot water may flow too much to the concentrated water line L3. Even in that case, by narrowing the opening degree of the flow rate adjusting valve 32 provided in the concentrated water line L3, the pressure difference between the primary side and the secondary side of the constant flow rate valve 31 can be kept within the operating differential pressure range. The constant flow valve 31 can be operated normally.

(降温工程)
降温工程は、熱水殺菌工程の終了後、通常運転を再開するために純水製造に適した温度になるまで熱水を冷却する工程である。
(Temperature lowering process)
The temperature lowering step is a step of cooling the hot water to a temperature suitable for pure water production in order to restart the normal operation after the hot water sterilization step is completed.

降温工程では、熱交換器13により、循環する熱水が45℃未満になるまで冷却され、その後、純水製造装置1において通常運転が再開される。そして、処理水還流ラインL9のバルブV2が閉鎖されるとともに、処理水ラインL7のバルブV1が開放され、純水製造装置1で製造された純水が処理水タンクまたはユースポイントに供給される。このとき、原水タンク2と原水供給ラインL6とが接続され、必要に応じて原水タンク2には、原水供給ラインL6を通じて原水が供給される。 In the temperature lowering step, the heat exchanger 13 cools the circulating hot water to less than 45 ° C., and then the normal operation of the pure water production apparatus 1 is restarted. Then, the valve V2 of the treated water recirculation line L9 is closed, the valve V1 of the treated water line L7 is opened, and the pure water produced by the pure water production apparatus 1 is supplied to the treated water tank or the point of use. At this time, the raw water tank 2 and the raw water supply line L6 are connected, and raw water is supplied to the raw water tank 2 through the raw water supply line L6 as needed.

なお、降温工程では、熱交換器13で熱水を冷却する以外にも、例えば、加熱されていない原水を熱水に混合させることで熱水を冷却することもできる。すなわち、循環する熱水の一部を、例えば濃縮水排出ラインL8を通じて外部に排出しながら、原水供給ラインL6を通じて加熱されていない原水を原水タンク2に供給することで、循環する熱水の温度を下げることができる。なお、いずれの場合にも、降温工程における降温速度は、膜ろ過装置3や電気式脱イオン水製造装置4を構成する各部材への温度変動による影響を軽減するために、1~2℃/分程度であることが好ましい。 In the temperature lowering step, in addition to cooling the hot water with the heat exchanger 13, for example, the hot water can be cooled by mixing the unheated raw water with the hot water. That is, the temperature of the circulating hot water is obtained by supplying unheated raw water to the raw water tank 2 through the raw water supply line L6 while discharging a part of the circulating hot water to the outside through, for example, the concentrated water discharge line L8. Can be lowered. In any case, the temperature lowering rate in the temperature lowering step is 1 to 2 ° C./1 in order to reduce the influence of temperature fluctuations on the members constituting the membrane filtration device 3 and the electric deionized water production device 4. It is preferably about a minute.

1 純水製造装置
2 原水タンク
3 膜ろ過装置
4 電気式脱イオン水製造装置
5 分離膜
6 制御部
11,14 温度センサ
12 送水ポンプ
13 熱交換器
15 活性炭ろ過器
16 加圧ポンプ
17,21,32,41 流量調整弁
22 透過水流量計
31 定流量弁
42 排水流量計
51 手動弁
L1 供給ライン
L2 透過水ライン
L3 濃縮水ライン
L4 排水ライン
L5 還流水ライン
L6 原水供給ライン
L7 処理水ライン
L8 濃縮水排出ライン
L9 処理水還流ライン
L10 濃縮水還流ライン
V1~V4 バルブ
1 Pure water production equipment 2 Raw water tank 3 Film filtration equipment 4 Electric deionized water production equipment 5 Separation membrane 6 Control unit 11, 14 Temperature sensor 12 Water supply pump 13 Heat exchanger 15 Activated charcoal filter 16 Pressurized pump 17, 21, 32, 41 Flow control valve 22 Permeation water flow meter 31 Constant flow valve 42 Drainage flow meter 51 Manual valve L1 Supply line L2 Permeation water line L3 Concentrated water line L4 Drainage line L5 Recirculated water line L6 Raw water supply line L7 Treated water line L8 Concentration Water discharge line L9 Treated water recirculation line L10 Concentrated water recirculation line V1 to V4 Valve

Claims (7)

被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する膜ろ過装置と、
前記膜ろ過装置に被処理水を供給する供給ラインと、
前記膜ろ過装置からの透過水を流通させる透過水ラインと、
前記膜ろ過装置からの濃縮水を流通させる濃縮水ラインと、
前記供給ラインに設けられ、前記膜ろ過装置への被処理水の供給圧力を調整する圧力調整手段と、
前記供給ラインの前記圧力調整手段の上流側に設けられ、前記膜ろ過装置に供給される被処理水を加熱する加熱手段と、
前記透過水ラインに設けられ、前記透過水ラインを流れる透過水の流量を検出する流量検出手段と、
前記流量検出手段により検出された前記透過水の流量に基づいて前記圧力調整手段を制御し、前記透過水ラインを流れる透過水の流量を設定流量に調整する流量制御手段と、を有し、
前記流量制御手段は、前記加熱手段によって被処理水が45℃以上に加熱されたときに、前記膜ろ過装置に供給される被処理水と前記膜ろ過装置からの透過水と前記膜ろ過装置からの濃縮水とのいずれかの水温に基づいて、前記透過水ラインを流れる透過水の前記設定流量を決定する、純水製造装置。
A membrane filtration device having a reverse osmosis membrane or a nanofiltration membrane that separates the water to be treated into permeated water and concentrated water,
A supply line that supplies water to be treated to the membrane filtration device,
A permeated water line that circulates permeated water from the membrane filtration device,
A concentrated water line that distributes concentrated water from the membrane filtration device,
A pressure adjusting means provided in the supply line to adjust the supply pressure of the water to be treated to the membrane filtration device, and
A heating means provided on the upstream side of the pressure adjusting means of the supply line to heat the water to be treated supplied to the membrane filtration device, and a heating means.
A flow rate detecting means provided in the permeated water line and detecting the flow rate of the permeated water flowing through the permeated water line.
It has a flow rate control means that controls the pressure adjusting means based on the flow rate of the permeated water detected by the flow rate detecting means and adjusts the flow rate of the permeated water flowing through the permeated water line to a set flow rate.
When the water to be treated is heated to 45 ° C. or higher by the heating means, the flow control means includes the water to be treated supplied to the membrane filtration device, the permeated water from the membrane filtration device, and the membrane filtration device. A pure water production apparatus that determines the set flow rate of permeated water flowing through the permeated water line based on the water temperature of any of the concentrated water.
前記濃縮水ラインから分岐して前記供給ラインに接続され、前記濃縮水ラインを流れる濃縮水の少なくとも一部を前記供給ラインに還流させる還流水ラインを有する、請求項1に記載の純水製造装置。 The pure water production apparatus according to claim 1, further comprising a reflux water line that branches from the concentrated water line, is connected to the supply line, and returns at least a part of the concentrated water flowing through the concentrated water line to the supply line. .. 前記濃縮水ラインに設けられ、前記濃縮水ラインを流れる濃縮水の流量を一定に保持する定流量弁を有する、請求項2に記載の純水製造装置。 The pure water production apparatus according to claim 2, further comprising a constant flow rate valve provided in the concentrated water line and maintaining a constant flow rate of concentrated water flowing through the concentrated water line. 前記膜ろ過装置からの透過水を処理する処理手段であって、電気式脱イオン水製造装置、イオン交換装置、限外ろ過膜、および精密ろ過膜の少なくとも1つを含む処理手段を有する、請求項1から3のいずれか1項に記載の純水製造装置。 A treatment means for treating permeated water from the membrane filtration apparatus, the present invention comprising at least one of an electric deionized water production apparatus, an ion exchange apparatus, an ultrafiltration membrane, and a microfiltration membrane. Item 5. The pure water production apparatus according to any one of Items 1 to 3. 前記処理手段からの処理水を流通させる処理水ラインと、前記処理水ラインから分岐して前記供給ラインの前記加熱手段の上流側に接続され、前記処理水ラインを流れる処理水を前記供給ラインに還流させる処理水還流ラインと、を有し、
前記加熱手段により加熱されて前記膜ろ過装置に供給される前記被処理水が、前記処理水還流ラインから前記供給ラインに還流される処理水である、請求項4に記載の純水製造装置。
A treated water line for circulating treated water from the treated means and a treated water branched from the treated water line and connected to the upstream side of the heating means of the supply line and flowing through the treated water line to the supply line. It has a treated water recirculation line to recirculate,
The pure water production apparatus according to claim 4, wherein the treated water heated by the heating means and supplied to the membrane filtration device is the treated water that is refluxed from the treated water recirculation line to the supply line.
前記供給ラインの前記圧力調整手段と前記膜ろ過装置との間に設けられた流量調整弁を有し、
前記流量制御手段は、前記流量検出手段により検出された流量に基づいて、前記圧力調整手段と前記流量調整弁とを制御する、請求項1から5のいずれか1項に記載の純水製造装置。
It has a flow rate adjusting valve provided between the pressure adjusting means of the supply line and the membrane filtration device.
The pure water production apparatus according to any one of claims 1 to 5, wherein the flow rate control means controls the pressure adjusting means and the flow rate adjusting valve based on the flow rate detected by the flow rate detecting means. ..
被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有する膜ろ過装置と、前記膜ろ過装置に被処理水を供給する供給ラインと、前記膜ろ過装置からの透過水を流通させる透過水ラインと、前記膜ろ過装置からの濃縮水を流通させる濃縮水ラインと、を有する純水製造装置の運転方法であって、
前記供給ラインを通じて前記膜ろ過装置に45℃以上の熱水を供給し、該熱水により前記供給ラインと前記膜ろ過装置と前記透過水ラインと前記濃縮水ラインとを殺菌する工程と、
前記殺菌中に、前記膜ろ過装置への熱水の供給圧力を調整して前記透過水ラインを流れる熱水の流量を設定流量に調整する工程と、を含み、
前記熱水の流量を調整する工程が、前記供給ラインと前記透過水ラインと前記濃縮水ラインとのいずれかを流れる熱水の水温に基づいて、前記透過水ラインを流れる熱水の前記設定流量を決定することを含む、純水製造装置の運転方法。
A membrane filtration device having a back-penetration membrane or nanofiltration membrane that separates the water to be treated into permeated water and concentrated water, a supply line that supplies the water to be treated to the membrane filtration device, and permeated water from the membrane filtration device. A method of operating a pure water production apparatus having a permeated water line for circulating water and a concentrated water line for circulating concentrated water from the membrane filtration device.
A step of supplying hot water having a temperature of 45 ° C. or higher to the membrane filtration device through the supply line and sterilizing the supply line, the membrane filtration device, the permeated water line, and the concentrated water line with the hot water.
During the sterilization, a step of adjusting the supply pressure of hot water to the membrane filtration device to adjust the flow rate of hot water flowing through the permeated water line to a set flow rate is included.
The step of adjusting the flow rate of the hot water is the set flow rate of the hot water flowing through the permeated water line based on the water temperature of the hot water flowing through any of the supply line, the permeated water line and the concentrated water line. How to operate a pure water production device, including determining.
JP2017238594A 2017-12-13 2017-12-13 Pure water production equipment and its operation method Active JP6994376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238594A JP6994376B2 (en) 2017-12-13 2017-12-13 Pure water production equipment and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238594A JP6994376B2 (en) 2017-12-13 2017-12-13 Pure water production equipment and its operation method

Publications (2)

Publication Number Publication Date
JP2019103978A JP2019103978A (en) 2019-06-27
JP6994376B2 true JP6994376B2 (en) 2022-01-14

Family

ID=67060723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238594A Active JP6994376B2 (en) 2017-12-13 2017-12-13 Pure water production equipment and its operation method

Country Status (1)

Country Link
JP (1) JP6994376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003765A (en) * 2019-12-31 2020-04-14 佛山市云米电器科技有限公司 Water purification system and water purifier with constant proportion of pure wastewater
JP7459615B2 (en) * 2020-03-30 2024-04-02 三浦工業株式会社 water treatment equipment
JP7109505B2 (en) * 2020-07-13 2022-07-29 オルガノ株式会社 Ultrapure water production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124482A (en) 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014159006A (en) 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Operation method of reverse osmotic membrane device
JP2015013233A (en) 2013-07-03 2015-01-22 栗田工業株式会社 Film separation device operation method and film separation system
JP2016203084A (en) 2015-04-21 2016-12-08 三浦工業株式会社 Reverse osmosis membrane separation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124482A (en) 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014159006A (en) 2013-02-20 2014-09-04 Mitsubishi Heavy Ind Ltd Operation method of reverse osmotic membrane device
JP2015013233A (en) 2013-07-03 2015-01-22 栗田工業株式会社 Film separation device operation method and film separation system
JP2016203084A (en) 2015-04-21 2016-12-08 三浦工業株式会社 Reverse osmosis membrane separation device

Also Published As

Publication number Publication date
JP2019103978A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6994376B2 (en) Pure water production equipment and its operation method
TWI391332B (en) Pure water manufacturing device
JP4867182B2 (en) Pure water production equipment
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP4779391B2 (en) Pure water production equipment
JP5768961B2 (en) Water treatment equipment
JP3575271B2 (en) Pure water production method
JP7011457B2 (en) Sterilization method for pure water production equipment
JP5953726B2 (en) Ultrapure water production method and apparatus
JP2024074880A (en) Sterilization method of medical water production system, and production method of medical water
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2014124483A (en) Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP5708111B2 (en) Water treatment system flushing method, program, controller, and water treatment system
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP2014124482A (en) Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
KR102398703B1 (en) Method for Recycling Reverse Osmosis Membrane, Process for Producing Ultra Pure Water, and System for Manufacturing Ultra Pure Water
JP6953070B2 (en) Medical purified water production equipment
TW202228838A (en) Ultrapure water production system and ultrapure water production method
JP2014124481A (en) Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP6637320B2 (en) Pharmaceutical purified water production apparatus and method for sterilizing pharmaceutical purified water production apparatus
JP2024131086A (en) Pure water production apparatus, water treatment system, and method for operating pure water production apparatus
JP7176586B2 (en) Control method for electrodeionization apparatus
JP2020199436A (en) Ultrapure water production device, and ultrapure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6994376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150