JP2012125449A - Apparatus for producing dilution water for making dialysate - Google Patents

Apparatus for producing dilution water for making dialysate Download PDF

Info

Publication number
JP2012125449A
JP2012125449A JP2010280382A JP2010280382A JP2012125449A JP 2012125449 A JP2012125449 A JP 2012125449A JP 2010280382 A JP2010280382 A JP 2010280382A JP 2010280382 A JP2010280382 A JP 2010280382A JP 2012125449 A JP2012125449 A JP 2012125449A
Authority
JP
Japan
Prior art keywords
water
storage tank
raw
purified
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010280382A
Other languages
Japanese (ja)
Other versions
JP5616771B2 (en
Inventor
Tomoji Asakawa
友二 浅川
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2010280382A priority Critical patent/JP5616771B2/en
Publication of JP2012125449A publication Critical patent/JP2012125449A/en
Application granted granted Critical
Publication of JP5616771B2 publication Critical patent/JP5616771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To carry out hot water washing of an apparatus for producing dilution water for making dialysate, in a comparatively short time to maintain the apparatus at high cleanliness for a long period of time.SOLUTION: The apparatus includes a raw water storage tank 3, a pretreatment means 5 containing activated carbon, an RO membrane module 8, a purified water storage tank 9, etc., arranged in this order. An EDI 15 is installed to separate permeated water from the RO membrane module 8 into desalted water, electrode water and concentrated water. The apparatus further includes a desalted water supply passage 24 for supplying desalted water from the EDI to the purified water storage tank 9; circulating lines 12, 13, 21, 22, 23 for returning the permeated water and concentrated water from the RO film module 8 and the desalted water, electrode water and concentrated water from the EDI 15 to the raw water storage tank 3; a heating means 28 provided at the raw water storage tank 3 to heat raw water in the raw water storage tank 3 and circulating water into the raw water storage tank 3 when the RO membrane module 8 and EDI 15 are washed with hot water; and a three-way valve 25 for switching the desalted water supply passage 24 to the desalted water circulating line 21 so that the desalted water in the desalted water supply passage 24 is not supplied to the purified water storage tank 9 during hot water washing.

Description

本発明は、血液透析用の透析液を透析用粉末剤または透析用濃縮原液と希釈水とを所定の比率で混合して作成するのに用いられる、透析液作成用希釈水の製造装置に関する。   The present invention relates to an apparatus for producing dialysate-producing dilution water, which is used to prepare a dialysate for hemodialysis by mixing a powder for dialysis or a concentrated concentrate for dialysis and dilution water at a predetermined ratio.

多人数用の血液透析を中央で集中管理できるようにした、いわゆるセントラル透析システムにおいては、個々の血液透析に用いられる透析液を調製するに際し、とくに所定濃度の透析用原液が多量に調製されることが多い。これら透析用原液は、透析用粉末剤または透析用濃縮原液と希釈水とを所定の混合比率で混合し、透析用粉末剤を希釈水で溶解あるいは透析用濃縮原液を希釈水で所定濃度に希釈することにより、多量に調製される。このような透析液作成用希釈水には、通常、高い清浄度が要求される。   In a so-called central dialysis system that allows centralized management of hemodialysis for a large number of people, when preparing dialysate for use in individual hemodialysis, a large amount of stock solution for dialysis is prepared. There are many cases. These dialysis stock solutions are prepared by mixing dialysis powder or dialysis concentrate and dilution water at a predetermined mixing ratio, and dissolving the dialysis powder with dilution water or diluting the dialysis concentrate to a predetermined concentration with dilution water. Is prepared in large quantities. Such a dialysate preparation dilution water usually requires high cleanliness.

近年、透析液作成用希釈水の清浄度要求はさらに高まりつつある。透析液作成用希釈水の製造装置としては、逆浸透膜モジュール(以下、逆浸透をROと略す。)を備えた装置が知られており、さらに水質向上を図るためには、RO膜モジュールを2段直列に接続することが知られている。   In recent years, the cleanliness requirement for dilution water for preparing dialysate has been further increased. As a device for producing dialysate dilution water, a device equipped with a reverse osmosis membrane module (hereinafter, reverse osmosis is abbreviated as RO) is known. In order to further improve water quality, an RO membrane module is used. It is known to connect two stages in series.

さらに、透析液作成用希釈水の製造分野よりも水質基準の高い医薬品用精製水の製造分野では、RO膜モジュールに加えて電気再生式純水製造装置(この装置は電気式脱イオン水製造装置とも呼ばれ、以下、EDIと略称する。)が使用されている(特許文献1参照)。このEDIは、基本的にはカチオン交換膜とアニオン交換膜で形成される隙間にイオン交換体を充填して脱塩室を構成し、このイオン交換体に被処理水を通過させると共に、両イオン交換膜を介して直流電流を作用させて、両イオン交換膜の外側に流れている濃縮水中へ被処理水中の不純物イオンを電気的に排除しながら脱イオン水を製造するものである。このようなEDIをRO膜モジュールの後段に設けることで、RO膜の透過水をさらに清浄化することができる。   Furthermore, in the field of pharmaceutical purified water, which has a higher water quality standard than the field of manufacturing dilution water for dialysate preparation, in addition to the RO membrane module, an electric regenerative pure water production device (this device is an electric deionized water production device) (Hereinafter referred to as EDI)) is used (see Patent Document 1). This EDI is basically a desalination chamber in which a gap formed by a cation exchange membrane and an anion exchange membrane is filled with an ion exchanger to form a desalination chamber. A deionized water is produced by applying a direct current through the exchange membrane to electrically exclude impurity ions in the water to be treated into the concentrated water flowing outside the ion exchange membranes. By providing such EDI in the subsequent stage of the RO membrane module, the permeated water of the RO membrane can be further purified.

透析液作成用希釈水の製造分野においても希釈水の水質基準の高度化に追従するため、RO膜モジュールの後段にEDIを追加した透析液作成用希釈水製造装置が検討されている(特許文献2参照)。   In the field of manufacturing dialysate preparation dilution water, a dialysate preparation diluting water manufacturing apparatus in which EDI is added after the RO membrane module is being studied in order to follow the advancement of water quality standards for dilution water (Patent Documents). 2).

特開2004−74109号公報JP 2004-74109 A 特開2007−252396号公報JP 2007-252396 A 特開2010−194092号公報JP 2010-194092 A

透析液作成用希釈水の製造装置では、人体に入れる透析液の希釈に使う水を製造するため、通常の製造を開始する前に系内の殺菌を行う必要がある。特許文献1に開示された医薬品用精製水の製造装置では、熱水による殺菌洗浄が実施されている。   In the apparatus for producing dialysate preparation dilution water, water used for diluting the dialysate to be put into the human body is produced, and therefore, it is necessary to sterilize the system before starting normal production. In the device for producing purified water for pharmaceuticals disclosed in Patent Document 1, sterilization cleaning with hot water is performed.

そこで、RO膜モジュールとEDIを用いた透析液作成用希釈水の製造装置においても、RO膜の1次側および2次側ラインと、EDIの脱塩水ライン、電極水ラインおよび濃縮水ラインの殺菌を確実に行い長期的に高い清浄度を維持するために、熱水による殺菌洗浄を実施することを考えた。しかしながら、この実施においては以下のような課題がある。   Therefore, also in the apparatus for producing dialysate preparation dilution water using RO membrane module and EDI, sterilization of RO membrane primary and secondary lines, EDI desalted water line, electrode water line and concentrated water line In order to ensure the cleanliness and maintain high cleanliness in the long term, it was considered to carry out sterilization washing with hot water. However, this implementation has the following problems.

1)上記の熱水洗浄の実施において、特許文献1に示されているように、熱湯を作るための加熱手段を原水タンクに備え、熱湯をRO膜モジュールおよびEDIに順次通水して再び原水タンクに戻す循環方式を採用することが考えられる。しかし、特許文献1に開示された装置は原水タンクとRO膜モジュールとEDIをこの順番に備えた系であり、熱水洗浄で循環させられる水は、EDIの脱塩水ライン濃縮水ラインを通る熱湯だけである。   1) In the above hot water cleaning, as shown in Patent Document 1, the raw water tank is provided with heating means for making hot water, and the hot water is sequentially passed through the RO membrane module and the EDI, and the raw water is again supplied. It is conceivable to adopt a circulation system that returns to the tank. However, the apparatus disclosed in Patent Document 1 is a system comprising a raw water tank, an RO membrane module, and EDI in this order, and the water circulated by hot water cleaning is hot water passing through the EDI desalted water line concentrated water line. Only.

このような系ではEDIの電極室を流れる水(電極水)は陰極又は陽極付近の水であり、EDIの電圧印加時(通常運転時)には、電解生成物、すなわち陰極水は水素ガス、陽極水は酸素ガス、塩素ガス、オゾンガス、過酸化水素などの酸化性ガスを含有している。そのため、特に酸化性ガスを含む陽極水を原水タンクに戻すと、後段のRO膜の性能低下(酸化劣化)を引き起こしたり、場合によってはRO膜すらも透過してEDIに酸化性ガスが流入し性能低下(酸化劣化)を引き起こす可能性がある。したがって、これら電極水は系外へ排出するラインを設け、系外へ排出せざるを得なかった。   In such a system, the water flowing in the EDI electrode chamber (electrode water) is water near the cathode or anode, and when an EDI voltage is applied (during normal operation), the electrolytic product, ie, the cathode water is hydrogen gas, The anodized water contains an oxidizing gas such as oxygen gas, chlorine gas, ozone gas, and hydrogen peroxide. For this reason, when anodized water containing oxidizing gas is returned to the raw water tank, the performance of the RO membrane in the latter stage (oxidation degradation) may be reduced, or even the RO membrane may permeate into the EDI in some cases. It may cause performance degradation (oxidation degradation). Therefore, a line for discharging these electrode waters to the outside of the system has been provided, and it has been necessary to discharge them outside the system.

したがって、原水タンク、RO膜モジュール、EDIをこの順番に備えただけの系においては、水回収率が100%とならない。加えて、熱水による殺菌洗浄時(EDIの電圧停止時)においても同じラインを使用するため電極水を系外へ排出することになり、原水タンクに還流される熱湯は減少し、原水タンクからRO膜モジュールを経てEDIへ供給される熱湯は減少し続ける。つまり、熱水の利用効率が低い。これを改善するには、熱水による洗浄処理中に原水タンク内の水が無くなって空だき運転にならないように、洗浄時間中に排出される電極水の水量に相当する分を原水タンクに追加しておく必要がある。この結果、原水タンクが大型化するという問題が生じる。透析液は医薬品製造工場ではなく病院施設内で作製されるため、透析液作成用希釈水の製造装置には、病院施設内で容易に搬送および設置できる大きさのものが求められており、上記原水タンクの大型化の問題はこの要求に応えられない。さらに、電極水の排出の為にその排出ラインに付随して排水処理設備が本製造装置の設置と共に必要になり、病院施設内で作る透析液作成用希釈水の製造装置としては適さない。   Therefore, the water recovery rate does not become 100% in a system in which the raw water tank, the RO membrane module, and the EDI are provided in this order. In addition, since the same line is used during sterilization washing with hot water (when the EDI voltage is stopped), the electrode water is discharged out of the system, and the hot water returned to the raw water tank is reduced. Hot water supplied to the EDI via the RO membrane module continues to decrease. That is, the utilization efficiency of hot water is low. In order to improve this, an amount equivalent to the amount of electrode water discharged during the cleaning time is added to the raw water tank so that the water in the raw water tank is not exhausted during the hot water cleaning process. It is necessary to keep it. As a result, there arises a problem that the raw water tank is enlarged. Since the dialysate is produced in a hospital facility, not in a pharmaceutical manufacturing factory, a device for manufacturing the dialysate preparation dilution water is required to have a size that can be easily transported and installed in the hospital facility. The problem of increasing the size of the raw water tank cannot meet this requirement. Furthermore, a drainage treatment facility is required along with the discharge line for discharging the electrode water together with the installation of this manufacturing apparatus, and is not suitable as a manufacturing apparatus for diluting water for making dialysate in a hospital facility.

2)RO膜およびEDIのイオン交換膜に一気に高温の熱湯を供給するのは好ましくないため、原水タンク内の昇温は上記RO膜とEDIと原水タンクとの間で循環を行いながら徐々に昇温していくことが望ましい。しかし、上述したように原水タンクに還流される熱湯が減少すること、RO膜およびEDIのイオン交換膜が昇温の阻害になっていることなどで、昇温の際の熱効率が低く、所望の昇温に時間を要する。また、電極水の排出と一緒に系内の熱も一部放出されてしまうことや、通常運転後は未だ電極室に酸化性ガスを含む陽極水が残っているため陽極水をすべて系外に排出しそれから熱湯洗浄運転を実施する必要があることから、通常運転後に直ぐに熱湯洗浄運転を開始することはできない。   2) Since it is not preferable to supply hot water to the RO membrane and the EDI ion exchange membrane at once, the temperature rise in the raw water tank gradually increases while circulating between the RO membrane, EDI and the raw water tank. It is desirable to keep warm. However, as described above, the hot water recirculated to the raw water tank is reduced, and the RO membrane and the EDI ion exchange membrane inhibit the temperature rise. It takes time to raise the temperature. In addition, some of the heat in the system is released along with the discharge of the electrode water, and the anode water containing oxidizing gas remains in the electrode chamber after normal operation. Since it is necessary to perform the hot water washing operation after discharging, the hot water washing operation cannot be started immediately after the normal operation.

3)夜間透析などの実施により1日の透析治療時間が長くなる傾向にあり、翌日の透析までの待機時間が短くなってきているため、夜間に熱湯洗浄を行う場合には短時間で洗浄工程を終了する必要がある。しかし、上述したように洗浄水の昇温に時間を要するため、この短時間での洗浄の要求に応えることが困難となる。   3) The daily dialysis treatment time tends to be longer due to the implementation of night dialysis, etc., and the waiting time until the next day dialysis is shortened. Need to finish. However, as described above, since it takes time to raise the temperature of the cleaning water, it is difficult to meet the demand for cleaning in this short time.

なお、本発明に関連する技術として、特許文献1に、医薬品用精製水の製造において熱水殺菌を行う技術が記載されているが、特許文献1に記載の技術は、処理対象が本発明とは異なり、医薬品製造用の精製水を対象としており、透析液については言及されていない。また、特許文献1記載の装置はRO膜モジュールおよびEDIをこの順に備えた系と原水タンクとの間で熱水を循環可能な循環経路を設けているが、RO膜モジュールおよびEDIを経た処理水を熱交換器のみに通す構成であり、また熱水の循環経路に少なくとも活性炭を含む前処理手段も備えられていない。よって、本発明のように原水タンク、前処理手段、RO膜モジュールおよびEDIに順次熱湯を通水した後、EDIの脱塩水、電極水および濃縮水をそれぞれ原水タンクに循環させる循環経路を設ける構成とは異なる。   As a technique related to the present invention, Patent Document 1 describes a technique for performing hot water sterilization in the production of purified water for pharmaceuticals. However, the technique described in Patent Document 1 is subject to treatment with the present invention. Is different from the purified water for pharmaceutical production and does not mention dialysate. Further, the apparatus described in Patent Document 1 has a circulation path through which hot water can be circulated between a system equipped with an RO membrane module and EDI in this order and a raw water tank, but treated water that has passed through the RO membrane module and EDI. Is passed through only the heat exchanger, and pretreatment means including at least activated carbon is not provided in the hot water circulation path. Therefore, as in the present invention, after passing hot water sequentially through the raw water tank, the pretreatment means, the RO membrane module, and the EDI, a circulation path for circulating the EDI demineralized water, electrode water, and concentrated water to the raw water tank is provided. Is different.

さらに、加熱方式も本発明とは異なり、特許文献1記載の装置では循環配管中に加熱器を設けているので、原水タンクに加温手段を備える場合に比べ加熱効率が低く、所望の加温に長時間を要するおそれがある。   Furthermore, the heating method is different from the present invention. In the apparatus described in Patent Document 1, since a heater is provided in the circulation pipe, the heating efficiency is lower than the case where the raw water tank is provided with a heating means, and the desired heating is performed. May take a long time.

また、本発明に関連する技術として、特許文献2に、透析液作成用希釈水の製造において、RO膜とEDIを用いる技術が記載されているが、特許文献2には熱水洗浄については全く言及されていない。   In addition, as a technique related to the present invention, Patent Document 2 describes a technique that uses an RO membrane and EDI in the production of dilution water for dialysis fluid preparation. Not mentioned.

また、本発明に関連する技術として、特許文献3に、透析液作成用希釈水の製造において、系内の熱水殺菌を行う技術が記載されているが、特許文献3に記載の装置は、原水タンク、前処理手段およびRO膜モジュールをこの順に備える構成であり、EDIを備えていない点で本発明とは異なる。   In addition, as a technique related to the present invention, Patent Document 3 describes a technique for performing hot water sterilization in the system in the production of dilution water for preparing dialysate, but the apparatus described in Patent Document 3 The raw water tank, the pretreatment means, and the RO membrane module are provided in this order, and are different from the present invention in that the EDI is not provided.

仮に特許文献3に記載の装置に特許文献1による熱水洗浄の思想を考慮しても、前述したような理由で、酸化性ガスを含むEDIの電極水を原水タンクに戻すという発想は起こらない。そのため、上記の課題1)のように電極水を原水タンクに戻せない実情に起因する原水タンクの大型化の問題は依然と残る。   Even if the idea of hot water cleaning according to Patent Document 1 is considered in the apparatus described in Patent Document 3, the idea of returning EDI electrode water containing an oxidizing gas to the raw water tank for the reasons described above does not occur. . Therefore, the problem of enlargement of the raw water tank due to the fact that the electrode water cannot be returned to the raw water tank as in the above problem 1) still remains.

そこで本発明は、上記の課題1)〜3)を解消するものであって、比較的短い時間で装置の熱水洗浄を実施して装置を長期間高い清浄度に維持することができる透析液作成用希釈水の製造装置を提供することを目的とする。更なる目的は、病院施設内で使用できるように原水タンクを最小限の大きさで設置可能にすることである。   Accordingly, the present invention solves the above-mentioned problems 1) to 3), and allows the apparatus to be washed with hot water in a relatively short time to maintain the apparatus at a high degree of cleanliness for a long period of time. It aims at providing the manufacturing apparatus of the dilution water for preparation. A further object is to allow the raw water tank to be installed with a minimum size so that it can be used in hospital facilities.

本発明に係る透析液作成用希釈水の製造装置は、原水を貯留する原水貯留槽と、原水貯留槽より加圧供給された原水を前処理する少なくとも活性炭を含む前処理手段と、前処理手段より前処理されて加圧供給された原水を逆浸透膜で透過水と濃縮水とに分離する逆浸透膜モジュールと、逆浸透膜モジュールからの透過水を脱塩水、電極水および濃縮水に分離する電気再生式純水製造装置(EDI)と、電気再生式純水製造装置の脱塩水を精製水として貯留する精製水貯留槽と、電気再生式純水製造装置の脱塩水を精製水貯留槽に供給する脱塩水供給路と、精製水貯留槽に貯留された精製水を透析液作成用希釈水として供給する精製水供給手段と、を有する。   The apparatus for producing dialysate preparation dilution water according to the present invention includes a raw water storage tank for storing raw water, pretreatment means including at least activated carbon for pretreating raw water supplied under pressure from the raw water storage tank, and pretreatment means. A reverse osmosis membrane module that separates raw water that has been pretreated and pressurized and supplied into reverse osmosis membrane into permeated water and concentrated water, and the permeated water from the reverse osmosis membrane module is separated into desalted water, electrode water, and concentrated water An electric regenerative pure water production apparatus (EDI), a purified water storage tank for storing deionized water of the electric regenerative pure water production apparatus as purified water, and a purified water storage tank for demineralized water of the electric regenerative pure water production apparatus And a purified water supply means for supplying purified water stored in the purified water storage tank as dialysate preparation dilution water.

上記課題を解決するため、本発明の態様の一つによれば、上記逆浸透膜モジュールの透過水および濃縮水、ならびに上記電気再生式純水製造装置の脱塩水、電極水および濃縮水をそれぞれ原水貯留槽に戻す循環経路が設けられている。さらに、逆浸透膜モジュールおよび電気再生式純水製造装置の熱湯洗浄を行うときに上記原水貯留槽内の原水と、上記逆浸透膜モジュールの透過水および濃縮水ならびに上記電気再生式純水製造装置の脱塩水、電極水および濃縮水の原水貯留槽内への循環水を加温する加温手段が上記原水貯留槽に付設されている。さらに、上記熱湯洗浄を行うときに、上記脱塩水供給路の脱塩水が精製水貯留槽に供給されないように脱塩水供給路を、電気再生式純水製造装置の脱塩水を原水貯留槽に戻す脱塩水循環経路に切り替えることが可能な第1の流路切替手段が設けられている。   In order to solve the above problems, according to one aspect of the present invention, the permeated water and concentrated water of the reverse osmosis membrane module, and the demineralized water, electrode water and concentrated water of the electric regenerative pure water production apparatus are respectively A circulation path is provided to return to the raw water storage tank. Furthermore, the raw water in the raw water storage tank, the permeated water and the concentrated water of the reverse osmosis membrane module, and the electric regenerative pure water production apparatus when performing hot water washing of the reverse osmosis membrane module and the electric regenerative pure water production apparatus A heating means for heating circulating water into the raw water storage tank of the demineralized water, electrode water and concentrated water is attached to the raw water storage tank. Furthermore, when performing the hot water cleaning, the desalted water supply path is returned to the raw water storage tank so that the desalted water in the desalted water supply path is not supplied to the purified water storage tank. First flow path switching means capable of switching to the desalted water circulation path is provided.

このような本発明に係る装置においては、逆浸透膜モジュールの透過水と濃縮水、電気再生式純水製造装置の脱塩水、電極水および濃縮水が循環経路を介して原水貯留槽に循環され、原水貯留槽に付設された加温手段により昇温され、逆浸透膜モジュールおよび電気再生式純水製造装置を熱湯洗浄に供される。したがって、逆浸透膜モジュールの透過水(二次側透過水)と濃縮水(一次側濃縮水)、電気再生式純水製造装置の脱塩水、電極水および濃縮水の全量が原水貯留槽に回収されて循環されることになり、熱湯循環水量が減少されずに逆浸透膜モジュールおよび電気再生式純水製造装置が熱湯洗浄され、熱湯による洗浄効果が高く維持される。さらに、原水貯留槽と逆浸透膜モジュールと電気再生式純水製造装置をこの順番に備えた系において、逆浸透膜モジュールの前段に、陽極水に含まれる酸化性ガスを除去できる活性炭を有する前処理手段を設けたことにより、この前処理手段の前段の原水貯留槽へ電気再生式純水製造装置の電極水を戻すことができ、水回収率が100%となる。このため、電気再生式純水製造装置の電極水を排出することが必要な従来構成と違い、電極水の排出量を見越して原水貯留槽の大きさを大きくする必要がなくなり、病院施設内で容易に搬送および設置できる大きさの透析液作成用希釈水の製造装置を提供することができる。また本願の製造装置は、電気再生式純水製造装置の電極水を排水処理する設備が要らないため、病院施設で使用する装置として非常に適している。   In such an apparatus according to the present invention, the permeated water and concentrated water of the reverse osmosis membrane module, the desalted water, the electrode water and the concentrated water of the electric regenerative pure water production apparatus are circulated to the raw water storage tank via the circulation path. The temperature is raised by the heating means attached to the raw water storage tank, and the reverse osmosis membrane module and the electric regenerative pure water production apparatus are subjected to hot water washing. Therefore, the permeated water (secondary side permeated water) and concentrated water (primary side concentrated water) of the reverse osmosis membrane module, and the desalinated water, electrode water, and concentrated water of the electric regenerative pure water production device are recovered in the raw water storage tank. Thus, the reverse osmosis membrane module and the electric regenerative pure water production apparatus are washed with hot water without reducing the amount of hot water circulating water, and the washing effect of hot water is maintained high. Further, in a system including a raw water storage tank, a reverse osmosis membrane module, and an electric regenerative pure water production apparatus in this order, before the reverse osmosis membrane module has activated carbon capable of removing the oxidizing gas contained in the anode water. By providing the treatment means, it is possible to return the electrode water of the electric regenerative pure water production apparatus to the raw water storage tank upstream of the pretreatment means, and the water recovery rate becomes 100%. For this reason, unlike the conventional configuration where it is necessary to discharge the electrode water of the electric regenerative pure water production apparatus, it is not necessary to increase the size of the raw water storage tank in anticipation of the discharge amount of the electrode water. It is possible to provide a device for producing dialysate-preparing dilution water having a size that can be easily transported and installed. In addition, the manufacturing apparatus of the present application is very suitable as an apparatus used in a hospital facility because it does not require a facility for draining the electrode water of an electric regeneration type pure water manufacturing apparatus.

また、加温手段により原水および上記循環経路の循環水が徐々に昇温されるので、逆浸透膜に一気に高温熱湯が供給されることはなく、逆浸透膜および電気再生式純水製造装置は望ましい温度条件にて洗浄され得る。また、循環水は水量が減少されずに、その全量が原水貯留槽に付設された加温手段により昇温され、とくに系外への熱水の排出が無いため原水貯留槽では昇温のための熱容量を大きい状態に維持でき、結果、高い加温効率が得られ、短時間のうちに目標とする温度に昇温可能となる。目標温度への昇温に時間を要しないため、所望の熱湯洗浄を短時間で終えることが可能になり、短くなりつつある夜間の洗浄可能時間にも容易に対応できるようになる。さらに、昇温された熱湯は逆浸透膜モジュールおよび電気再生式純水製造装置のみならず原水貯留槽から前処理手段にも通水されるので、効率のよい前処理手段の熱湯洗浄も可能になり、前処理手段での細菌コンタミ等をより適切に防止できるようになり、システム全体の優れた洗浄が可能になる。このように優れた性能の洗浄が短時間で可能になるので、比較的多量の透析液作成用希釈水の製造が要求されるセントラル透析システムにおける希釈水製造にも容易に対応できるようになる。   In addition, since the raw water and the circulating water in the circulation path are gradually heated by the heating means, high-temperature hot water is not supplied to the reverse osmosis membrane at once, and the reverse osmosis membrane and the electric regenerative pure water production apparatus are It can be washed at the desired temperature conditions. In addition, the total amount of circulating water is not reduced, but the whole amount is heated by the heating means attached to the raw water storage tank. As a result, high heating efficiency can be obtained, and the temperature can be raised to the target temperature in a short time. Since it does not take time to raise the temperature to the target temperature, it is possible to finish the desired hot water cleaning in a short time, and it is possible to easily cope with the cleaning time at night which is getting shorter. Furthermore, since the heated hot water is passed not only from the reverse osmosis membrane module and the electric regenerative pure water production apparatus but also from the raw water storage tank to the pretreatment means, efficient hot water cleaning of the pretreatment means is also possible. Thus, bacterial contamination and the like in the pretreatment means can be more appropriately prevented, and excellent cleaning of the entire system becomes possible. Since cleaning with excellent performance is possible in a short time, it is possible to easily handle dilution water production in a central dialysis system that requires production of a relatively large amount of dilution water for preparing dialysate.

本発明に係る透析液作成用希釈水の製造装置によれば、熱水洗浄において電気再生式純水製造装置を経た電極水を原水貯留槽に戻すことができるため、原水貯留槽の大きさが最小限で済み、装置を病院施設内で使用できるようになる。   According to the apparatus for producing dialysate preparation dilution water according to the present invention, the electrode water that has passed through the electric regeneration type pure water production apparatus in hot water cleaning can be returned to the raw water storage tank. Minimize and allow the device to be used in hospital facilities.

さらに、逆浸透膜モジュールおよび電気再生式純水製造装置の洗浄のための原水および循環水を効率よく所望の温度に加温でき、逆浸透膜モジュール、電気再生式純水製造装置、さらには前処理手段についても、短時間のうちに効率よく熱湯洗浄でき、セントラル透析システムにおける透析液作成用希釈水の製造に容易に対応できるようになる。   Furthermore, the raw water and the circulating water for cleaning the reverse osmosis membrane module and the electric regenerative pure water production apparatus can be efficiently heated to a desired temperature, and the reverse osmosis membrane module, the electric regenerative pure water production apparatus, The treatment means can also be efficiently washed with hot water in a short time, and can easily cope with the production of diluting water for preparing dialysate in the central dialysis system.

本発明の第1実施形態に係る透析液作成用希釈水の製造装置の機器系統図である。It is an equipment system diagram of a manufacturing device of dilution water for dialysate preparation concerning a 1st embodiment of the present invention. 図1のEDIと代替可能な別のEDIの構成例を示した模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a configuration example of another EDI that can be substituted for the EDI in FIG. 1.

以下に、本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の第1実施形態に係る透析液作成用希釈水の製造装置を示しており、RO膜モジュールが1段の場合の一例を示している。図1に示す透析液作成用希釈水の製造装置1は、供給されてくる原水2を貯留する原水貯留槽3と、原水貯留槽3内の原水を加圧し供給する加圧ポンプ4と、加圧ポンプ4により供給された原水を前処理する前処理手段5と、前処理手段5により前処理された原水をさらに加圧し供給する高圧ポンプ6と、高圧ポンプ6により供給された原水を逆浸透膜(以下、RO膜と略す。)により透過水と濃縮水とに分離するRO膜モジュール8と、RO膜モジュール8からの透過水を脱塩水、電極水および濃縮水とに分離する電気再生式純水製造装置(以下、EDIと略す。)15と、EDI15からの脱塩水を精製水として貯留する精製水貯留槽9と、精製水貯留槽9に貯留された精製水を透析液作成用希釈水10として供給する精製水供給手段としての送水ポンプ11とを有している。   FIG. 1 shows an apparatus for producing dialysate-preparing dilution water according to the first embodiment of the present invention, and shows an example in which the RO membrane module has one stage. 1 includes a raw water storage tank 3 for storing the supplied raw water 2, a pressurizing pump 4 for pressurizing and supplying the raw water in the raw water storage tank 3, Pretreatment means 5 for pretreating the raw water supplied by the pressure pump 4, a high pressure pump 6 for further pressurizing and supplying the raw water pretreated by the pretreatment means 5, and reverse osmosis of the raw water supplied by the high pressure pump 6 RO membrane module 8 that separates permeated water and concentrated water by a membrane (hereinafter abbreviated as RO membrane), and electric regeneration type that separates the permeated water from RO membrane module 8 into desalted water, electrode water, and concentrated water Pure water production apparatus (hereinafter abbreviated as EDI) 15, purified water storage tank 9 that stores demineralized water from EDI 15 as purified water, and dilution of purified water stored in purified water storage tank 9 for dialysis fluid preparation Purified water supply means for supplying as water 10 And a water pump 11 of Te.

前処理手段5は、少なくとも活性炭を含み、その他に、例えば、各種濾過膜(MF膜、UF膜、NF膜など)、軟化器、濾過器などの少なくとも一つを含むもので構成される。   The pretreatment means 5 includes at least activated carbon, and includes, for example, at least one of various filter membranes (MF membrane, UF membrane, NF membrane, etc.), softener, and filter.

EDI15は、例えば、カチオン交換膜16とアニオン交換膜17とで画成される室にイオン交換体(イオン交換樹脂、モノリス状有機多孔質イオン交換体、イオン交換繊維等)を充填して脱塩室18を構成し、脱塩室18の両側に2つの濃縮室19a、19bを設け、これら脱塩室18および濃縮室19a、19bを、陰極を備えた陰極室20aと陽極を備えた陽極室20bとの間に配置して構成されている。濃縮室19aと電極室20aの間並びに濃縮室19bと電極室20bの間もアニオン交換膜16又はカチオン交換膜17が備えられている。図1では平板積層型のEDIを示しているが、スパイラル型あるいは同心円型などでもよい。また、脱塩室18が一つの場合を例示しているが、図2に示すように脱塩室18内に他のイオン交換膜(ここではアニオン交換膜17)を備え、脱塩室18を分割する構成であってもよい。   The EDI 15 is desalted by, for example, filling a chamber defined by the cation exchange membrane 16 and the anion exchange membrane 17 with an ion exchanger (ion exchange resin, monolithic organic porous ion exchanger, ion exchange fiber, etc.). The chamber 18 is configured, and two concentration chambers 19a and 19b are provided on both sides of the desalting chamber 18, and the desalting chamber 18 and the concentration chambers 19a and 19b are divided into a cathode chamber 20a having a cathode and an anode chamber having an anode. 20b. An anion exchange membrane 16 or a cation exchange membrane 17 is also provided between the concentration chamber 19a and the electrode chamber 20a and between the concentration chamber 19b and the electrode chamber 20b. Although FIG. 1 shows a flat plate type EDI, a spiral type or a concentric type may be used. Moreover, although the case where the number of the desalination chamber 18 is one is illustrated, as shown in FIG. 2, another ion exchange membrane (anion exchange membrane 17 in this case) is provided in the desalination chamber 18, and the desalination chamber 18 is provided. The structure which divides | segments may be sufficient.

図1の構成の場合、RO膜モジュール8からの透過水は分岐され、脱塩室18内に充填されたイオン交換体の層、濃縮室19a、19b、および電極室20a,20bを通過するようになっている。図2の構成の場合は、RO膜モジュール8の透過水は第1の脱塩室18aを通過した後に第2の脱塩室18bを通過するようにするのがよい。いずれの場合も、電極室20aの陰極と電極室20bの陽極との間に電圧が印加され、脱塩室18の両側のカチオン交換膜16とアニオン交換膜17を介して水の流れに対して直角方向に直流電流が作用されることにより、脱塩室18を流れるRO膜透過水中の不純物イオンが、濃縮室19a、19b中を流れるRO膜透過水中へ電気的に排除されながら、処理水として脱塩水が製造される。脱塩室18からの不純物イオン(塩類)を受け取った濃縮室19a、19bのRO膜透過水は濃縮水としてEDI15の外へ排出される。また、電極室20a,20b中を流れるRO膜透過水は水素ガスや、酸素ガス、塩素ガス、オゾンガス、過酸化水素などの酸化性ガス等の電解生成物を含んで電極水としてEDI15の外へ排出される。   In the case of the configuration of FIG. 1, the permeated water from the RO membrane module 8 is branched and passes through the ion exchanger layer filled in the desalting chamber 18, the concentration chambers 19 a and 19 b, and the electrode chambers 20 a and 20 b. It has become. In the case of the configuration of FIG. 2, it is preferable that the permeated water of the RO membrane module 8 passes through the second desalting chamber 18b after passing through the first desalting chamber 18a. In any case, a voltage is applied between the cathode of the electrode chamber 20a and the anode of the electrode chamber 20b, and the water flows through the cation exchange membrane 16 and the anion exchange membrane 17 on both sides of the desalting chamber 18. By applying a direct current in a perpendicular direction, impurity ions in the RO membrane permeated water flowing through the desalting chamber 18 are electrically excluded into the RO membrane permeated water flowing through the concentrating chambers 19a and 19b. Demineralized water is produced. The RO membrane permeated water in the concentration chambers 19a and 19b that has received the impurity ions (salts) from the desalting chamber 18 is discharged out of the EDI 15 as concentrated water. Further, the RO membrane permeate flowing in the electrode chambers 20a and 20b contains electrolytic products such as hydrogen gas, oxygen gas, chlorine gas, ozone gas, hydrogen peroxide, and other oxidizing gas, and is discharged outside the EDI 15 as electrode water. Discharged.

RO膜モジュール8の濃縮水および透過水、EDI15の脱塩水、電極水および濃縮水は、それぞれ、RO膜モジュール8からの濃縮水循環経路12および透過水循環経路13、ならびに、EDI15からの脱塩水循環経路21、濃縮水循環経路22および電極水循環経路23を介して原水貯留槽3に循環されることが可能に構成されている。EDI15の脱塩水循環経路21は、EDI15の脱塩室18から精製水貯留槽9へ送られる脱塩水供給路24に三方弁25を介して接続されている。三方弁25(第1の流路切替手段)により、透析液作成用希釈水の製造の際には脱塩水をEDI15の脱塩室18から精製水貯留層9へ送る脱塩水供給路24に、透析液作成用希釈水製造前の熱湯洗浄の際には熱湯をEDI15の脱塩室18から原水貯留槽3へ送る脱塩水循環経路21に切り替え可能となっている。   The concentrated water and permeated water of the RO membrane module 8, the demineralized water of the EDI 15, the electrode water and the concentrated water are the concentrated water circulating path 12 and the permeated water circulating path 13 from the RO membrane module 8, and the desalted water circulating path from the EDI 15, respectively. 21, it is configured to be circulated to the raw water storage tank 3 through the concentrated water circulation path 22 and the electrode water circulation path 23. The demineralized water circulation path 21 of the EDI 15 is connected via a three-way valve 25 to a demineralized water supply path 24 sent from the demineralized chamber 18 of the EDI 15 to the purified water storage tank 9. By the three-way valve 25 (first flow path switching means), the desalted water supply path 24 that sends the desalted water from the desalting chamber 18 of the EDI 15 to the purified water storage layer 9 in the production of the dilution water for dialysate preparation, At the time of washing with hot water before production of the dialysate preparation dilution water, the hot water can be switched to the desalted water circulation path 21 that sends the hot water from the desalting chamber 18 of the EDI 15 to the raw water storage tank 3.

また、精製水貯留槽9に貯留された精製水は、透析液作成用希釈水の製造の際に送水ポンプ11により透析液作成用希釈水10として供給されるか、透析液作成用希釈水製造前の熱湯洗浄の際に三方弁26(第2の流路切替手段)により切り替えた精製水循環経路14を介して原水貯留槽3に循環されることが可能に構成されている。   Further, the purified water stored in the purified water storage tank 9 is supplied as the dialysate preparation dilution water 10 by the water pump 11 when the dialysate preparation dilution water is manufactured, or the dialysate preparation dilution water is manufactured. It is configured to be circulated to the raw water storage tank 3 through the purified water circulation path 14 switched by the three-way valve 26 (second flow path switching means) at the time of previous hot water washing.

原水貯留槽3には、原水および、各循環経路12,13,14,21,22,23を介して回収されてくる循環水を加温する加温手段28が付設されている。この加温手段としては、ヒータ等の一般的な加温手段をそのまま転用すればよい。   The raw water storage tank 3 is provided with a heating means 28 for heating the raw water and the circulating water collected through the circulation paths 12, 13, 14, 21, 22, and 23. As this heating means, a general heating means such as a heater may be used as it is.

透析液作成用希釈水の製造前にRO膜モジュール8およびEDI15の熱水洗浄を行う場合は、三方弁25によって脱塩水供給路24を脱塩水循環経路21のみに接続し、開閉弁27を開けて原水貯留槽3内に原水3を必要量貯める。その後、加温手段28、加圧ポンプ4および高圧ポンプ6を動作させる。これにより、原水貯留槽3内の原水が前処理手段5、RO膜モジュール8、およびEDI15へこの順番に通水されるとともに、各循環経路14,21,22,23を介して再び原水貯留槽3へ還流する。こうした循環を繰り返すことより、前処理手段5、RO膜モジュール8およびEDI15の通過のたびに原水貯留槽3内の原水の清浄度が増し、かつ、加温手段28で徐々に昇温される。こうしてRO膜モジュール8およびEDI15が熱湯洗浄に供される。   When the RO membrane module 8 and the EDI 15 are washed with hot water before the dialysate preparation dilution water is manufactured, the desalted water supply path 24 is connected only to the desalted water circulation path 21 by the three-way valve 25 and the on-off valve 27 is opened. The required amount of raw water 3 is stored in the raw water storage tank 3. Thereafter, the heating means 28, the pressure pump 4 and the high pressure pump 6 are operated. Thereby, the raw water in the raw water storage tank 3 is passed through the pretreatment means 5, the RO membrane module 8 and the EDI 15 in this order, and again through the circulation paths 14, 21, 22, and 23. Reflux to 3. By repeating such circulation, the purity of the raw water in the raw water storage tank 3 increases each time the pretreatment means 5, the RO membrane module 8 and the EDI 15 pass, and the temperature is gradually raised by the heating means 28. Thus, the RO membrane module 8 and the EDI 15 are subjected to hot water cleaning.

ただし、昇温された熱湯により、前処理手段5から精製水貯留槽9までを含めたシステム全体の洗浄も可能である。これは、三方弁25によって、脱塩水供給路24を脱塩水循環経路21との接続から精製水貯留槽9との接続に切り替えると同時に、三方弁26により、精製水貯留槽9から精製水循環経路14に切り替えることで可能になる。   However, the entire system including the pretreatment means 5 to the purified water storage tank 9 can be cleaned with the heated hot water. This is because the three-way valve 25 switches the desalted water supply path 24 from the connection with the desalted water circulation path 21 to the connection with the purified water storage tank 9, and at the same time, the three-way valve 26 switches from the purified water storage tank 9 to the purified water circulation path. It becomes possible by switching to 14.

さらに本実施形態では、加圧ポンプ4の出口側と高圧ポンプ6の入口側とを連通し前処理手段5をバイパスするバイパス回路29が設けられている。バイパス回路29によって前処理手段5を通水させる経路と通水させない経路とに切り替えることが可能であり、これにより、前処理手段5に通水する熱湯の温度と、RO膜モジュール8以降に通水する熱湯の温度との切り替えが可能になっている。   Further, in the present embodiment, a bypass circuit 29 is provided that connects the outlet side of the pressurizing pump 4 and the inlet side of the high-pressure pump 6 to bypass the pretreatment means 5. The bypass circuit 29 can be switched between a path for allowing the pretreatment means 5 to pass through and a path for preventing the passage of the pretreatment means 5, whereby the temperature of the hot water passing through the pretreatment means 5 and the passage after the RO membrane module 8 are passed. It is possible to switch to the temperature of hot water to be used.

このように構成された透析液作成用希釈水の製造装置1は次のようないくつかの効果を奏する。   The apparatus 1 for producing dialysate-preparing dilution water configured as described above has several effects as follows.

RO膜モジュール8により分離された透過水と濃縮水、EDI15の脱塩水、電極水、および濃縮水がそれぞれの循環経路12、13、21、22、23を介して原水貯留槽3に循環され、原水貯留槽3に付設された加温手段28によって徐々に昇温される。したがって、循環水量が減少されることなく、全量循環され、加温された循環水の全量がRO膜モジュール8とEDI15の熱湯洗浄に供され、熱水の利用効率が高く維持される。特に、原水貯留槽3とRO膜モジュール8とEDI15をこの順番に備えた系において、RO膜モジュール8の前段に、陽極水に含まれる酸化性ガスを除去できる活性炭を含む前処理手段5を設けたことにより、この前処理手段5の前段の原水貯留槽3へEDI15の電極水を戻せるので、水回収率が100%となる。このため、EDIの電極水を排出することが必要な従来構成と違い、電極水の排出量を見越して原水貯留槽3の大きさを大きくする必要がなくなる。   Permeated water and concentrated water separated by the RO membrane module 8, demineralized water of EDI 15, electrode water, and concentrated water are circulated to the raw water storage tank 3 via the respective circulation paths 12, 13, 21, 22, 23, The temperature is gradually raised by the heating means 28 attached to the raw water storage tank 3. Therefore, the total amount of the circulating water that has been circulated and heated without being reduced is supplied to the RO membrane module 8 and the EDI 15 with hot water, and the use efficiency of the hot water is maintained high. In particular, in a system including the raw water storage tank 3, the RO membrane module 8 and the EDI 15 in this order, the pretreatment means 5 including activated carbon capable of removing the oxidizing gas contained in the anode water is provided in the preceding stage of the RO membrane module 8. As a result, the electrode water of the EDI 15 can be returned to the raw water storage tank 3 upstream of the pretreatment means 5, so that the water recovery rate becomes 100%. For this reason, unlike the conventional configuration which requires discharging the EDI electrode water, it is not necessary to increase the size of the raw water storage tank 3 in anticipation of the discharge amount of the electrode water.

電極水を循環させられない従来構成の場合、例えば、EDIからの電極水の排出量が1時間当たり30リットルとすると、4時間の熱水洗浄で120リットルの水が失われる。また図1に示すように原水貯留槽3からRO膜モジュール8やEDI15等を経て再び原水貯留槽3へ水を還流させる系では、空運転させないために、原水貯留槽3以外の構成要素にも水を保有させておく必要がある。このような保有水量が例えば70リットルであるとすると、電極水の消失水量と合わせて従来構成では原水貯留槽3内に190リットルの原水を貯留しておかなければならない。つまり、原水貯留槽3は少なくとも190リットルの原水を収容できる大きさでなければならない。これに対し、電極水を原水貯留槽3に戻せる本願発明では系内の熱水は減らないので、上記の保有水量の70リットルを最小限貯留できればよい。上記の数値例で言うと、本願発明によれば、従来構成よりも半分以下に原水タンク容量を減らすことができる。   In the case of the conventional configuration in which the electrode water cannot be circulated, for example, if the discharge amount of the electrode water from the EDI is 30 liters per hour, 120 liters of water is lost after 4 hours of hot water washing. Further, as shown in FIG. 1, in the system for returning water from the raw water storage tank 3 to the raw water storage tank 3 again through the RO membrane module 8 and EDI 15 and the like, the components other than the raw water storage tank 3 are also used in order not to run idle. It is necessary to keep water. If the amount of retained water is, for example, 70 liters, 190 liters of raw water must be stored in the raw water storage tank 3 in the conventional configuration together with the amount of lost water in the electrode water. That is, the raw water storage tank 3 must be large enough to accommodate at least 190 liters of raw water. On the other hand, in the present invention in which the electrode water can be returned to the raw water storage tank 3, the hot water in the system is not reduced. In the above numerical example, according to the present invention, the capacity of the raw water tank can be reduced to half or less than the conventional configuration.

したがって、EDIの電極水を排出することが必要な従来構成と違い、病院施設内で容易に搬送および設置できる大きさの透析液作成用希釈水の製造装置を提供することができる。また本発明の製造装置は、電極水の排出ラインが不要であるため、本製造装置に付随して排水処理設備を用意する必要がなく、病院施設内で作る透析液の製造装置として好適である。   Therefore, unlike the conventional configuration in which EDI electrode water needs to be discharged, it is possible to provide a device for producing dialysate-producing diluted water that can be easily transported and installed in a hospital facility. In addition, the production apparatus of the present invention does not require an electrode water discharge line, so there is no need to prepare a waste water treatment facility accompanying the production apparatus, and it is suitable as a production apparatus for dialysate produced in a hospital facility. .

また、上述したように加温手段28により循環水が徐々に昇温されるので、RO膜モジュール8およびEDI15の内部が一気に高温熱湯に曝されることはなく、RO膜やイオン交換体等は望ましい温度条件で洗浄される。さらに、循環水は水量が減少されずに、その全量が原水貯留槽3に付設された加温手段28により昇温され、とくに系外への熱水の排出が無いため原水貯留槽では昇温のための熱容量を大きい状態に維持できる。結果、高い加温効率を実現でき、短時間のうちに目標温度まで昇温できる。昇温時間の短縮により、所定の洗浄時間も短くなり、短くなりつつある夜間の洗浄可能時間中に、十分な洗浄を行うことが可能になる。   In addition, since the circulating water is gradually heated by the heating means 28 as described above, the inside of the RO membrane module 8 and the EDI 15 is not exposed to high-temperature hot water all at once, and the RO membrane, ion exchanger, etc. Washed at desired temperature conditions. Furthermore, the total amount of the circulating water is not reduced, but the entire amount is heated by the heating means 28 attached to the raw water storage tank 3, and since there is no discharge of hot water to the outside of the system, the temperature is raised in the raw water storage tank. The heat capacity for can be maintained in a large state. As a result, high heating efficiency can be realized, and the temperature can be raised to the target temperature in a short time. By shortening the temperature raising time, the predetermined cleaning time is also shortened, and it becomes possible to perform sufficient cleaning during the nightly cleaning possible time.

また、昇温された熱湯は前処理手段5にも通水されるので、RO膜モジュール8とEDI15のみならず前処理手段5の効率のよい熱湯洗浄も可能になり、洗浄後の希釈水製造の際の前処理手段5での細菌コンタミ等をより適切に防止できるようになる。さらに、精製水貯留槽9も循環水により熱湯洗浄可能であり、システム全体の効率のよい優れた洗浄が可能である。   Further, since the heated hot water is passed through the pretreatment means 5, not only the RO membrane module 8 and the EDI 15 but also the pretreatment means 5 can be efficiently washed with hot water. In this case, bacterial contamination and the like in the pretreatment means 5 can be prevented more appropriately. Furthermore, the purified water storage tank 9 can also be washed with hot water using circulating water, and the whole system can be cleaned efficiently and efficiently.

さらに、バイパス回路29による流路切り替えを利用することにより、前処理手段5とRO膜モジュール8とEDI15にとって最適とされる熱湯通水温度が互いに異なる場合にあっても、各部位をそれぞれ最適な熱湯温度でより適切に洗浄できるようになる。例えばバイパス回路29を閉じて前処理手段5側のみに通水した場合には、前処理手段5の洗浄に最適な温度の熱湯を前処理手段5に通過させることができ、バイパス回路29を開いて前処理手段5側に通水させない場合には、RO膜8モジュールおよびEDI15の洗浄に最適な温度の熱湯をRO膜8モジュールおよびEDI15に通過させることができる。   Furthermore, by using the flow path switching by the bypass circuit 29, even when the hot water flow temperatures that are optimum for the pretreatment means 5, the RO membrane module 8 and the EDI 15 are different from each other, each part is optimized. It becomes possible to wash more appropriately at the hot water temperature. For example, when the bypass circuit 29 is closed and water is passed only to the pretreatment means 5 side, hot water having an optimum temperature for cleaning the pretreatment means 5 can be passed through the pretreatment means 5 and the bypass circuit 29 is opened. When water is not passed through the pretreatment means 5 side, hot water having a temperature optimal for cleaning the RO membrane 8 module and the EDI 15 can be passed through the RO membrane 8 module and the EDI 15.

また三方弁25,26を操作することにより、原水貯留槽3とRO膜モジュール8およびEDI15との間で循環される熱湯の温度が所定温度に達し、所定時間循環を行った後、RO膜モジュール8およびEDI15を経た熱湯を精製水貯留槽9に供給するとともに、送水ポンプ11により精製水循環経路14を介して精製水貯留槽9と原水貯留槽3との間で精製水を循環させ、該循環水により原水貯留槽3から精製水貯留槽9までを熱湯洗浄することもできる。すなわち、所定時間原水貯留槽3とRO膜モジュール8およびEDI15との間の循環を行って洗浄がある程度進んだ段階で、送水ポンプ11を利用して精製水貯留槽9の精製水を原水貯留槽3に循環させることができる。これにより、より清浄な精製水を用いて最終的な熱湯洗浄を行うことが可能となり、最終洗浄後すぐに希釈水の製造を適切に開始できるようになる。   Further, by operating the three-way valves 25 and 26, the temperature of the hot water circulated between the raw water storage tank 3, the RO membrane module 8 and the EDI 15 reaches a predetermined temperature, and after circulating for a predetermined time, the RO membrane module The hot water that has passed through 8 and EDI 15 is supplied to the purified water storage tank 9, and the purified water is circulated between the purified water storage tank 9 and the raw water storage tank 3 via the purified water circulation path 14 by the water supply pump 11. It is also possible to wash hot water from the raw water storage tank 3 to the purified water storage tank 9 with water. That is, the purified water in the purified water storage tank 9 is supplied from the raw water storage tank 9 using the water pump 11 when the cleaning is advanced to some extent by circulating between the raw water storage tank 3 and the RO membrane module 8 and the EDI 15 for a predetermined time. 3 can be circulated. As a result, it is possible to perform final hot water washing using cleaner purified water, and production of diluted water can be appropriately started immediately after the final washing.

以上、実施形態を示して本発明を説明したが、本発明は上記の実施形態に限定されるものではない。本発明の形や細部には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。   While the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment. Various modifications that can be understood by those skilled in the art can be made to the shape and details of the present invention within the scope of the technical idea of the present invention.

例えば、上記では、前処理手段5とEDI15の間の流路上に一つのRO膜モジュールが設置された装置を示したが、RO膜モジュール8が少なくとも2段直列に配置された装置であってもよい。この装置の場合も、追加されたRO膜モジュールの濃縮水および透過水を原水貯留槽3へ戻す循環経路や、高圧ポンプを適宜追加することができる。こうした多段のRO膜モジュールを備えることにより、透析液作成用希釈水を製造する際の希釈水の清浄度をさらに高めることができる。   For example, in the above description, an apparatus in which one RO membrane module is installed on the flow path between the pretreatment means 5 and the EDI 15 is shown. However, even if the RO membrane module 8 is arranged in at least two stages in series, Good. Also in the case of this apparatus, a circulation path for returning the concentrated water and permeated water of the added RO membrane module to the raw water storage tank 3 and a high-pressure pump can be added as appropriate. By providing such a multistage RO membrane module, it is possible to further increase the cleanliness of the dilution water when producing the dilution water for preparing dialysate.

本発明は、前処理手段とRO膜モジュールとEDIとを有するあらゆる透析液作成用希釈水の製造に適用でき、とくに多人数用の血液透析を中央で集中管理できるようにしたセントラル透析システムにおける透析液作成用希釈水の製造に好適なものである。   INDUSTRIAL APPLICABILITY The present invention can be applied to the production of any dialysate-preparing dilution water having pretreatment means, RO membrane module, and EDI. This is suitable for the production of dilution water for liquid preparation.

1 透析液作成用希釈水の製造装置
2 原水
3 原水貯留槽
4 加圧ポンプ
5 前処理手段
6 高圧ポンプ
8 逆浸透膜モジュール
9 精製水貯留槽
10 透析液作成用希釈水
11 精製水供給手段としての送水ポンプ
12 RO膜モジュールの濃縮水循環経路
13 RO膜モジュールの透過水循環経路
14 精製水循環経路
15 EDI
16 カチオン交換膜
17 アニオン交換膜
18、18a、18b 脱塩室
19a、19b 濃縮室
20a、20b 電極室
21 脱塩水循環経路
22 濃縮水循環経路
23 電極水循環経路
24 脱塩水供給路
25、26 三方弁
27 開閉弁
28 加温手段
29 バイパス回路
DESCRIPTION OF SYMBOLS 1 Production apparatus for dilution water for dialysate preparation 2 Raw water 3 Raw water storage tank 4 Pressure pump 5 Pretreatment means 6 High pressure pump 8 Reverse osmosis membrane module 9 Purified water storage tank 10 Dilution water 11 for dialysate preparation Purified water supply means Water pump 12 Concentrated water circulation path 13 of RO membrane module Permeated water circulation path 14 of RO membrane module Purified water circulation path 15 EDI
16 Cation exchange membrane 17 Anion exchange membrane 18, 18a, 18b Desalination chamber 19a, 19b Concentration chamber 20a, 20b Electrode chamber 21 Desalted water circulation path 22 Concentrated water circulation path 23 Electrode water circulation path 24 Desalted water supply path 25, 26 Three-way valve 27 On-off valve 28 Heating means 29 Bypass circuit

Claims (4)

原水を貯留する原水貯留槽と、
前記原水貯留槽より加圧供給された原水を前処理する少なくとも活性炭を含む前処理手段と、
前記前処理手段より前処理されて加圧供給された原水を逆浸透膜で透過水と濃縮水とに分離する逆浸透膜モジュールと、
前記逆浸透膜モジュールからの透過水を脱塩水、電極水および濃縮水に分離する電気再生式純水製造装置(EDI)と、
前記電気再生式純水製造装置の脱塩水を精製水として貯留する精製水貯留槽と、
前記電気再生式純水製造装置の脱塩水を前記精製水貯留槽に供給する脱塩水供給路と、
前記精製水貯留槽に貯留された精製水を透析液作成用希釈水として供給する精製水供給手段と、を有し、さらに、
前記逆浸透膜モジュールの透過水および濃縮水、ならびに前記電気再生式純水製造装置の脱塩水、電極水および濃縮水をそれぞれ前記原水貯留槽に戻す循環経路と、
前記原水貯留槽に付設され、前記逆浸透膜モジュールおよび前記電気再生式純水製造装置の熱湯洗浄を行うときに前記原水貯留槽内の原水と、前記逆浸透膜モジュールの透過水および濃縮水ならびに前記電気再生式純水製造装置の脱塩水、電極水および濃縮水の前記原水貯留槽内への循環水とを加温する加温手段と、
前記熱湯洗浄を行うときに、前記脱塩水供給路の脱塩水が前記精製水貯留槽に供給されないように前記脱塩水供給路を、前記電気再生式純水製造装置の脱塩水を前記原水貯留槽に戻す脱塩水循環経路に切り替えることが可能な第1の流路切替手段と、
を有する透析液作成用希釈水の製造装置。
Raw water storage tank for storing raw water,
Pretreatment means including at least activated carbon for pretreating raw water supplied under pressure from the raw water storage tank;
A reverse osmosis membrane module that separates raw water that has been pretreated from the pretreatment means and supplied under pressure with a reverse osmosis membrane into permeated water and concentrated water;
An electric regenerative pure water production apparatus (EDI) for separating permeated water from the reverse osmosis membrane module into demineralized water, electrode water and concentrated water;
A purified water storage tank for storing demineralized water of the electric regenerative pure water production apparatus as purified water;
A demineralized water supply path for supplying demineralized water of the electric regenerative pure water production apparatus to the purified water storage tank;
Purified water supply means for supplying purified water stored in the purified water storage tank as dialysate preparation dilution water,
Circulation paths for returning the permeated water and concentrated water of the reverse osmosis membrane module and the desalted water, electrode water and concentrated water of the electric regenerative pure water production apparatus to the raw water storage tank, respectively.
Attached to the raw water storage tank, when performing hot water washing of the reverse osmosis membrane module and the electric regenerative pure water production apparatus, raw water in the raw water storage tank, permeated water and concentrated water of the reverse osmosis membrane module, Heating means for heating the deionized water, electrode water, and concentrated water circulating in the raw water storage tank of the electric regenerative pure water production apparatus;
When performing the hot water washing, the demineralized water supply path is used so that the demineralized water in the demineralized water supply path is not supplied to the purified water storage tank, and the demineralized water of the electric regenerative pure water production apparatus is used as the raw water storage tank. First flow path switching means capable of switching to a demineralized water circulation path to return to
An apparatus for producing diluting water for preparing dialysate.
前記精製水貯留槽内の精製水を前記原水貯留槽に戻す精製水循環経路と、
前記精製水供給手段で供給される精製水を前記精製水循環経路への流れに切り替えることが可能な第2の流路切替手段とをさらに有し、
前記熱湯洗浄を行うときに前記第1の流路切替手段により前記脱塩水供給路の脱塩水を前記精製水貯留槽に供給し、前記第2の流路切替手段により前記精製水貯留槽内の精製水を前記精製水循環経路に流すことが可能に構成されたことを特徴とする請求項1に記載の透析液作成用希釈水の製造装置。
A purified water circulation path for returning purified water in the purified water storage tank to the raw water storage tank;
A second flow path switching means capable of switching the purified water supplied by the purified water supply means to the flow to the purified water circulation path;
When performing the hot water cleaning, the first flow path switching means supplies demineralized water in the demineralized water supply path to the purified water storage tank, and the second flow path switching means stores the purified water storage tank. 2. The apparatus for producing diluted water for preparing dialysate according to claim 1, wherein the purified water is configured to flow through the purified water circulation path.
多段に直列接続された複数の前記逆浸透膜モジュールが前記前処理手段と前記電気再生式純水製造装置の間に配されていることを特徴とする請求項1または2に記載の透析液作成用希釈水の製造装置。   The dialysate preparation according to claim 1 or 2, wherein a plurality of the reverse osmosis membrane modules connected in series in multiple stages are arranged between the pretreatment means and the electric regeneration type pure water production apparatus. Dilution water production equipment. 前記前処理手段は、軟化器、濾過器、および濾過膜の少なくとも一つをさらに含むもので構成されていることを特徴とする請求項1から3のいずれか1項に記載の透析液作成用希釈水の製造装置。   The dialysate preparation according to any one of claims 1 to 3, wherein the pretreatment means further includes at least one of a softener, a filter, and a filter membrane. Dilution water production equipment.
JP2010280382A 2010-12-16 2010-12-16 Dilution water production equipment for dialysate preparation Active JP5616771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010280382A JP5616771B2 (en) 2010-12-16 2010-12-16 Dilution water production equipment for dialysate preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010280382A JP5616771B2 (en) 2010-12-16 2010-12-16 Dilution water production equipment for dialysate preparation

Publications (2)

Publication Number Publication Date
JP2012125449A true JP2012125449A (en) 2012-07-05
JP5616771B2 JP5616771B2 (en) 2014-10-29

Family

ID=46643204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010280382A Active JP5616771B2 (en) 2010-12-16 2010-12-16 Dilution water production equipment for dialysate preparation

Country Status (1)

Country Link
JP (1) JP5616771B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976505A (en) * 2012-10-31 2013-03-20 艾欧史密斯(上海)水处理产品有限公司 Reverse osmosis water purifier
JP2014113512A (en) * 2012-12-06 2014-06-26 Daicen Membrane Systems Ltd Apparatus for producing medical purified water and operation method of the same
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014128767A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Pure water production system
CN103979701A (en) * 2014-06-05 2014-08-13 张筱秋 Zinc alloy internal thread reef seawater desalination device
CN104787911A (en) * 2015-03-27 2015-07-22 成都冠禹科技有限公司 Intelligent monitoring water purifying machine applicable to hospital disinfecting and supply center
CN110590042A (en) * 2019-10-09 2019-12-20 佛山市云米电器科技有限公司 EDR electrodialysis water purification system and water purifier of thermal cycle sterilization
WO2020105580A1 (en) * 2018-11-21 2020-05-28 ニプロ株式会社 Dialysis device cleaning system
CN114074977A (en) * 2020-08-12 2022-02-22 云米互联科技(广东)有限公司 Household water purifying device and table-board water purifying machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020160390A1 (en) 2019-01-31 2020-08-06 Ecolab Usa Inc. Laundry machine kit to enable control of water levels, recirculation, and spray of chemistry
US11572652B2 (en) 2019-01-31 2023-02-07 Ecolab Usa Inc. Controlling water levels and detergent concentration in a wash cycle
MX2021009283A (en) 2019-01-31 2021-09-08 Ecolab Usa Inc Controller for a rinse water reuse system and methods of use.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114576A (en) * 1997-10-20 1999-04-27 Japan Organo Co Ltd Deionized water producing device
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus
JP2010194092A (en) * 2009-02-25 2010-09-09 Toray Medical Co Ltd Apparatus and method for manufacturing dilution water for making dialysate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114576A (en) * 1997-10-20 1999-04-27 Japan Organo Co Ltd Deionized water producing device
JP2004074109A (en) * 2002-08-22 2004-03-11 Japan Organo Co Ltd Method and apparatus for manufacturing purified water for medicines
JP2005288335A (en) * 2004-03-31 2005-10-20 Kurita Water Ind Ltd Sterilization method for pure water manufacturing apparatus, and pure water manufacturing apparatus
JP2010194092A (en) * 2009-02-25 2010-09-09 Toray Medical Co Ltd Apparatus and method for manufacturing dilution water for making dialysate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976505A (en) * 2012-10-31 2013-03-20 艾欧史密斯(上海)水处理产品有限公司 Reverse osmosis water purifier
JP2014113512A (en) * 2012-12-06 2014-06-26 Daicen Membrane Systems Ltd Apparatus for producing medical purified water and operation method of the same
JP2014124482A (en) * 2012-12-27 2014-07-07 Nomura Micro Sci Co Ltd Method of sterilizing pure water production apparatus for pharmaceuticals and pure water production apparatus for pharmaceuticals
JP2014128767A (en) * 2012-12-28 2014-07-10 Kurita Water Ind Ltd Pure water production system
CN103979701A (en) * 2014-06-05 2014-08-13 张筱秋 Zinc alloy internal thread reef seawater desalination device
CN103979701B (en) * 2014-06-05 2015-07-15 张筱秋 Zinc alloy internal thread reef seawater desalination device
CN104787911A (en) * 2015-03-27 2015-07-22 成都冠禹科技有限公司 Intelligent monitoring water purifying machine applicable to hospital disinfecting and supply center
CN104787911B (en) * 2015-03-27 2016-09-14 成都冠禹科技有限公司 A kind of intelligent monitoring water purifier being applicable to hospital disinfection supply center
WO2020105580A1 (en) * 2018-11-21 2020-05-28 ニプロ株式会社 Dialysis device cleaning system
JP7314956B2 (en) 2018-11-21 2023-07-26 ニプロ株式会社 Dialysis machine cleaning system
CN110590042A (en) * 2019-10-09 2019-12-20 佛山市云米电器科技有限公司 EDR electrodialysis water purification system and water purifier of thermal cycle sterilization
CN114074977A (en) * 2020-08-12 2022-02-22 云米互联科技(广东)有限公司 Household water purifying device and table-board water purifying machine

Also Published As

Publication number Publication date
JP5616771B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5616771B2 (en) Dilution water production equipment for dialysate preparation
JP3570304B2 (en) Sterilization method of deionized water production apparatus and method of producing deionized water
JP5307049B2 (en) Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals
CN107381923B (en) Seawater desalination treatment device and method based on membrane capacitance deionization and membrane distillation
JP4996067B2 (en) Water treatment apparatus using reverse osmosis membrane and method of using the same
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP6233297B2 (en) Fresh water generation method
KR20080094303A (en) High efficiency seawater electrolytic apparatus and method including a pretreatment process
CN101108762A (en) Process technique for pharmacy wastewater
JP2010000433A5 (en)
JP5320107B2 (en) Apparatus and method for producing dilution water for dialysate preparation
JP7011457B2 (en) Sterilization method for pure water production equipment
JP5480063B2 (en) Pure water production method and pure water production apparatus
WO2020148961A1 (en) Pure water production apparatus, and method for operating same
JP7246399B2 (en) Pure water production system and pure water production method
JP3299093B2 (en) Pure water production method and pure water production equipment
JP2011125863A (en) Method for disinfecting nanofiltration membrane by hot water
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JP4617696B2 (en) Sterilization method for pure water production apparatus and pure water production apparatus
JP4896657B2 (en) Domestic water supply method and apparatus
JP5019422B2 (en) Domestic water supply method and apparatus
JP4599668B2 (en) Operation method of electrodeionization equipment
JP6638543B2 (en) Heated water production system
JP7483488B2 (en) Medicinal water production system and sterilization method thereof
CN108059282A (en) Purify water production device and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250