JP2014122403A - Tin-plated electroconductive material and production method thereof - Google Patents

Tin-plated electroconductive material and production method thereof Download PDF

Info

Publication number
JP2014122403A
JP2014122403A JP2012279880A JP2012279880A JP2014122403A JP 2014122403 A JP2014122403 A JP 2014122403A JP 2012279880 A JP2012279880 A JP 2012279880A JP 2012279880 A JP2012279880 A JP 2012279880A JP 2014122403 A JP2014122403 A JP 2014122403A
Authority
JP
Japan
Prior art keywords
layer
plating
alloy
thickness
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012279880A
Other languages
Japanese (ja)
Inventor
Naoki Kato
直樹 加藤
Yuki TANINOUCHI
勇樹 谷ノ内
Yuki Inoue
雄基 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012279880A priority Critical patent/JP2014122403A/en
Publication of JP2014122403A publication Critical patent/JP2014122403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tin-plated electroconductive material in which the barrier properties of an underlying base material comprising Cu or a Cu alloy are enhanced, and diffusion of Cu is surely prevented to improve the heat resistance thereof and which can keep stabilized contact resistance even under a high-temperature environment and to provide a production method of the tin-plated electroconductive material.SOLUTION: The tin-plated electroconductive material is obtained by forming a Ni layer, an intermediate layer comprising a Cu-Sn alloy layer, a surface layer comprising Sn or a Sn alloy in this order on the surface of the base material which has no work-affected layer and comprises Cu or the Cu alloy. The Ni layer is grown epitaxially on the base material. The average diameter of crystal grains of the Ni layer is 1 μm or larger. The thickness of the Ni layer is 0.1-1.0 μm, that of the intermediate layer is 0.2-1.0 μm, and that of the surface layer is 0.5-2.0 μm.

Description

本発明は、半導体装置や電子・電気部品の素材として利用されるSnめっき付き導電材及びその製造方法に関する。   The present invention relates to a conductive material with Sn plating used as a material for semiconductor devices and electronic / electrical components, and a method for manufacturing the same.

端子、コネクタ、リードフレーム等の導電材として、Cu又はCu合金基材の表面にSnめっきを施したものが多く用いられている。また、近年のエレクトロニクスの発達により、自動車のエンジンルーム近傍などの高温環境下で電子部品が使用される機会が多くなっている。
このため、導電材としても、厳しい温度環境で使用できる耐熱性を有することが求められており、例えば、160℃で1000時間といった高温環境下で長時間置かれた後でも、接触抵抗の増加が小さく、剥離せず、変色が見られない、耐熱信頼性の高いめっき材の要求が大きくなっている。
As a conductive material such as a terminal, a connector, or a lead frame, a material obtained by applying Sn plating to the surface of a Cu or Cu alloy base material is often used. In addition, with the recent development of electronics, there are increasing opportunities for electronic components to be used in a high temperature environment such as in the vicinity of an automobile engine room.
For this reason, the conductive material is also required to have heat resistance that can be used in a severe temperature environment. For example, even after being placed in a high temperature environment such as 160 ° C. for 1000 hours, the contact resistance increases. There is an increasing demand for a plating material that is small, does not peel off, and does not show discoloration and has high heat resistance.

そこで、特許文献1又は特許文献2に記載されるような導電材が開発されている。
特許文献1記載の導電材は、Cu又はCu合金からなる基材の表面に、Ni又はNi合金層が形成され、最表面側にSn又はSn合金層が形成され、Ni又はNi合金層とSn又はSn合金層の間にCuとSnを含む中間層が1層以上形成された構成とされている。この場合、Ni又はNi合金層の厚さは0.05〜1.0μm、中間層のうちSn又はSn合金層と接している中間層の厚さは0.2〜2.0μm、Sn又はSn合金層の厚さは0.25〜1.5μmとされている。
Therefore, a conductive material as described in Patent Document 1 or Patent Document 2 has been developed.
In the conductive material described in Patent Document 1, a Ni or Ni alloy layer is formed on the surface of a substrate made of Cu or Cu alloy, an Sn or Sn alloy layer is formed on the outermost surface side, and the Ni or Ni alloy layer and Sn are formed. Alternatively, one or more intermediate layers containing Cu and Sn are formed between the Sn alloy layers. In this case, the thickness of the Ni or Ni alloy layer is 0.05 to 1.0 μm, and the thickness of the intermediate layer in contact with the Sn or Sn alloy layer is 0.2 to 2.0 μm, Sn or Sn. The thickness of the alloy layer is 0.25 to 1.5 μm.

また、特許文献2記載の導電材も、特許文献1のものと同様、Cu又はCu合金からなる基材の表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成されており、Ni層の厚さが0.1〜1.0μm、Cu−Sn合金層の厚さが0.1〜1.0μm、Sn層の厚さが0.1〜0.5μmとされている。
いずれも、Cu又はCu合金からなる基材の上にNiめっき、Cuめっき、Snめっきをこの順に施した後、リフロー処理することにより製作される。
Also, the conductive material described in Patent Document 2 is similar to that of Patent Document 1 in that a surface plating layer composed of a Ni layer, a Cu-Sn alloy layer, and a Sn layer is formed in this order on the surface of a substrate composed of Cu or Cu alloy. The Ni layer has a thickness of 0.1 to 1.0 μm, the Cu—Sn alloy layer has a thickness of 0.1 to 1.0 μm, and the Sn layer has a thickness of 0.1 to 0.5 μm. Has been.
In either case, Ni plating, Cu plating, and Sn plating are performed in this order on a substrate made of Cu or a Cu alloy, and then reflow treatment is performed.

特許第3880877号公報Japanese Patent No. 3880877 特許第4090302号公報Japanese Patent No. 4090302

これら特許文献記載の導電材において、Ni層は、Cu又はCu合金からなる下地基材からのCuの拡散を防止し、その上のCu−Sn合金層はNiの拡散を防止する役割を果たすためのものであり、これにより、所望の耐熱性を確保するものである。
しかしながら、従来のNiめっき浴から析出するNi皮膜は、例えば175℃程度の高温環境下では下地のCuに対する拡散防止効果が十分でなく、高温下で保持された場合にNiめっき層中のNiが基材へ拡散してしまい、また下地から拡散してきたCuがSn層と反応し、Snを消費してSn層が消滅してしまうため、接触抵抗が増加するといった問題があった。
In the conductive materials described in these patent documents, the Ni layer prevents Cu diffusion from the base substrate made of Cu or Cu alloy, and the Cu-Sn alloy layer on the Ni layer plays a role of preventing Ni diffusion. This ensures the desired heat resistance.
However, the Ni film deposited from the conventional Ni plating bath does not have a sufficient diffusion preventing effect on the underlying Cu under a high temperature environment of about 175 ° C., for example, and Ni in the Ni plating layer is not retained when held at a high temperature. There is a problem that contact resistance increases because Cu diffused to the base material and Cu diffused from the base reacts with the Sn layer to consume Sn and disappear.

本発明は、このような事情に鑑みてなされたもので、Cu又はCu合金からなる下地基材に対するバリア性を高め、Cuの拡散をより確実に防止して耐熱性を向上させ、高温環境下でも安定した接触抵抗を維持することができるSnめっき付き導電材及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and enhances the barrier property to the base substrate made of Cu or Cu alloy, more reliably prevents the diffusion of Cu, improves the heat resistance, and in a high temperature environment. However, it aims at providing the electrically conductive material with Sn plating which can maintain the stable contact resistance, and its manufacturing method.

本発明者らは鋭意研究した結果、従来のめっき法によって形成したNi層では微細なNi層の粒界を通じて、下地からCuが拡散するため、Ni層を基材上にエピタキシャル成長させボイド等の欠陥の無い、粗大な結晶に制御することにより、バリア層としての性能が向上し、前述の問題を解決できることを見出した。   As a result of diligent research, the present inventors have found that in a Ni layer formed by a conventional plating method, Cu diffuses from the underlying layer through the grain boundaries of the fine Ni layer. It has been found that by controlling the crystal to be coarse and free of crystal, the performance as a barrier layer is improved and the above-mentioned problems can be solved.

すなわち、本発明のSnめっき付き導電材は、加工変質層のないCu又はCu合金からなる基材の表面に、Ni層、Cu−Sn合金層からなる中間層、Sn又はSn合金からなる表面層がこの順で形成され、前記Ni層が基材上にエピタキシャル成長しており、Ni層の平均結晶粒径が1μm以上、Ni層の厚さが0.1〜1.0μm、かつ前記中間層の厚さが0.2〜1.0μm、前記表面層の厚さが0.5〜2.0μmであることを特徴とする。   That is, the conductive material with Sn plating according to the present invention has a Ni layer, an intermediate layer composed of a Cu-Sn alloy layer, a surface layer composed of Sn or Sn alloy on the surface of a substrate composed of Cu or Cu alloy without a work-affected layer. Are formed in this order, the Ni layer is epitaxially grown on the substrate, the average crystal grain size of the Ni layer is 1 μm or more, the thickness of the Ni layer is 0.1 to 1.0 μm, and the intermediate layer The thickness is 0.2 to 1.0 μm, and the thickness of the surface layer is 0.5 to 2.0 μm.

加工変質層のない基材表面に、Ni層をエピタキシャル成長させ、膜厚が均一でボイド等の欠陥の無い、結晶粒径が1μm以上に制御したNi層をバリア層に用いることで、下地からのCuの拡散に対するバリア性が向上し、高温下で使用しても表面層のSnが消滅することが無く、安定した接触抵抗を維持することが出来る。結晶粒径が1μm未満では、バリア効果が不十分で、高温で拡散が生じる。
この場合、Ni層の厚さが0.1μm未満であると拡散防止効果が十分でなく、1.0μmを超えると曲げ加工等が困難になる。
また、Cu又はCu−Sn合金からなる中間層は、厚さが0.2μm未満であると、その下のNi層からのNiの拡散が生じるおそれがあり、一方、1.0μmを超えると、中間層がもろくなり、剥離の原因になり易い。
また、Sn又はSn合金からなる表面層は、厚さが0.5μm未満であると、高温時にCuが拡散して表面にCuの酸化物が形成され易くなることから接触抵抗が増加し、一方、2.0μmを超えると、柔軟なSnによる表面層が厚くなり過ぎることから、その下層の中間層による支持効果が薄れ、コネクタ等の使用時の挿抜力の増大を招き易い。
The Ni layer is epitaxially grown on the surface of the base material without the work-affected layer, and the barrier layer is a Ni layer having a uniform film thickness and no defects such as voids and having a crystal grain size controlled to 1 μm or more. The barrier property against diffusion of Cu is improved, and even when used at high temperatures, Sn in the surface layer does not disappear and stable contact resistance can be maintained. When the crystal grain size is less than 1 μm, the barrier effect is insufficient and diffusion occurs at a high temperature.
In this case, if the thickness of the Ni layer is less than 0.1 μm, the anti-diffusion effect is not sufficient, and if it exceeds 1.0 μm, bending or the like becomes difficult.
Further, if the thickness of the intermediate layer made of Cu or Cu—Sn alloy is less than 0.2 μm, Ni may be diffused from the underlying Ni layer, whereas if it exceeds 1.0 μm, The intermediate layer becomes brittle and easily causes peeling.
Further, if the surface layer made of Sn or Sn alloy has a thickness of less than 0.5 μm, Cu diffuses at high temperatures and Cu oxide is easily formed on the surface, so that the contact resistance increases. When the thickness exceeds 2.0 μm, the surface layer made of flexible Sn becomes too thick, so that the support effect by the intermediate layer below it is weakened, and the insertion / extraction force during use of a connector or the like tends to increase.

本発明のSnめっき付き導電材の製造方法は、Cu又はCu合金からなる基材表面の加工変質層を除去した後、Niめっき、Cuめっき、Snめっきをこの順に施した後、リフロー処理することを特徴とする。
基材の加工変質層は微細な結晶組織で形成されており、これを除去しておくことにより、Niめっきのエピタキシャル成長によって結晶粒径の大きい、バリア性の高いNi層を形成することができる。
本発明のSnめっき付き導電材の製造方法において、前記Niめっきを、ニッケル塩と酸を主成分とし、光沢剤、平滑剤、硬度向上剤等の添加剤を加えていないNiめっき液を用いて電気めっきするとよい。
これらの添加剤はNiの結晶粒径を微細化する作用があるため、これらを含まないめっき液にてNiめっきを施すとよい。
In the method for producing a conductive material with Sn plating according to the present invention, after removing the work-affected layer on the substrate surface made of Cu or Cu alloy, Ni plating, Cu plating, and Sn plating are performed in this order, and then reflow treatment is performed. It is characterized by.
The work-affected layer of the substrate is formed with a fine crystal structure, and by removing this, a Ni layer having a large crystal grain size and a high barrier property can be formed by epitaxial growth of Ni plating.
In the method for producing a conductive material with Sn plating according to the present invention, the Ni plating is performed using a Ni plating solution mainly composed of a nickel salt and an acid and not added with additives such as a brightener, a smoothing agent, and a hardness improver. Electroplating is recommended.
Since these additives have the effect of refining the crystal grain size of Ni, it is preferable to perform Ni plating with a plating solution that does not contain them.

本発明のSnめっき付き導電材によれば、膜厚が均一で結晶粒径が1μm以上に制御したNi層をバリア層に用いることで、下地からのCuの拡散に対するバリア性が向上し、高温下で使用しても表面層のSnが消滅することが無く、安定した接触抵抗を維持することが出来る。   According to the conductive material with Sn plating of the present invention, by using a Ni layer having a uniform film thickness and a crystal grain size controlled to 1 μm or more as a barrier layer, the barrier property against diffusion of Cu from the base is improved, and high temperature Even if it is used below, Sn in the surface layer does not disappear and stable contact resistance can be maintained.

実施例2のリフロー処理後の断面写真である。It is the cross-sectional photograph after the reflow process of Example 2. 比較例1のリフロー処理後の断面写真である。It is a cross-sectional photograph after the reflow process of Comparative Example 1. 実施例2の表面写真である。6 is a surface photograph of Example 2. 比較例1の表面写真である。2 is a surface photograph of Comparative Example 1. 実施例2の175℃で500時間加熱後の断面写真である。2 is a cross-sectional photograph of Example 2 after heating at 175 ° C. for 500 hours. 比較例1の175℃で500時間加熱後の断面写真である。It is a cross-sectional photograph after heating at 175 degreeC of the comparative example 1 for 500 hours. 実施例2の基材の表面の結晶方位マップである。3 is a crystal orientation map of the surface of the base material of Example 2. 図7の基材の逆極点図である。It is a reverse pole figure of the base material of FIG. 実施例2のNi層表面の結晶方位マップである。6 is a crystal orientation map of the Ni layer surface of Example 2. FIG. 図9のNi層の逆極点図である。It is a reverse pole figure of the Ni layer of FIG.

以下、本発明の一実施形態を説明する。
本実施形態のSnめっき導電材は、加工変質層のないCu又はCu合金からなる基材の表面に、Ni層、Cu−Sn合金からなる中間層、Sn又はSn合金からなる表面層がこの順に形成された全体構成とされている。
基材は、Cu又はCu合金から構成された例えば板状のものであり、導電材として一般的に用いられるものを適用できる。
Hereinafter, an embodiment of the present invention will be described.
In the Sn-plated conductive material of the present embodiment, a Ni layer, an intermediate layer made of a Cu-Sn alloy, and a surface layer made of Sn or Sn alloy are arranged in this order on the surface of a base material made of Cu or Cu alloy without a work-affected layer. The overall configuration is formed.
A base material is a plate-shaped thing comprised from Cu or Cu alloy, and what is generally used as a electrically conductive material is applicable.

Ni層は、基材からのCuの拡散を防止して、剥離を生じにくくするための拡散防止層である。後述するように、基材の加工変質層を除去した後にめっきすることで、基材上にNiがエピタキシャル成長し、ボイド等の欠陥の無い膜厚が均一なNi層が形成されることでバリア性が向上する。このNi層における平均結晶粒径は1μm以上とされる。結晶粒径を1μm以上の大きい結晶とすることにより、粒界を少なくしてバリア性を向上させる。
また、このNi層の厚さは0.1〜1.0μmとされる。その厚さが0.1μm未満であると拡散防止効果が十分でなく、1.0μmを超えると曲げ加工等が困難になるからであり、0.1〜1.0μmの厚さが望ましい。
The Ni layer is a diffusion preventing layer for preventing Cu from diffusing from the base material and making it difficult to peel off. As described later, by plating after removing the work-affected layer of the base material, Ni is epitaxially grown on the base material, and a Ni layer having a uniform film thickness without defects such as voids is formed. Will improve. The average crystal grain size in this Ni layer is 1 μm or more. By making the crystal grain size a large crystal of 1 μm or more, the grain boundary is reduced and the barrier property is improved.
Moreover, the thickness of this Ni layer shall be 0.1-1.0 micrometer. If the thickness is less than 0.1 μm, the anti-diffusion effect is not sufficient, and if it exceeds 1.0 μm, bending or the like becomes difficult, and a thickness of 0.1 to 1.0 μm is desirable.

Cu−Sn合金からなる中間層は、Ni層の上にCuめっき及びSnめっきを施した後にリフロー処理することにより、CuとSnとが拡散して形成された合金層であり、CuSnとCuSnを含有している。Cu層が残存している場合もある。
このCu−Sn合金層からなる中間層は、厚さが0.2〜1.0μmとされる。厚さが0.2μm未満であると、その下のNi層からのNiの拡散が生じるおそれがあり、一方、1.0μmを超えると、中間層がもろくなり、剥離の原因になり易いからであり、0.1〜1.0μmの厚さが望ましい。
The intermediate layer made of a Cu—Sn alloy is an alloy layer formed by diffusing Cu and Sn by performing reflow treatment after applying Cu plating and Sn plating on the Ni layer, and Cu 3 Sn and Cu 6 Sn 5 is contained. The Cu layer may remain.
The intermediate layer made of this Cu—Sn alloy layer has a thickness of 0.2 to 1.0 μm. If the thickness is less than 0.2 μm, Ni may be diffused from the underlying Ni layer. On the other hand, if it exceeds 1.0 μm, the intermediate layer becomes brittle and may cause peeling. Yes, a thickness of 0.1 to 1.0 μm is desirable.

Sn又はSn合金からなる表面層は、Cuのめっき層の上にSn又はSn合金のめっきを施した後にリフロー処理することにより形成されたものであり、導電材としての最表面層を構成する。この表面層は、厚さが0.5〜2.0μmとされる。厚さが0.5μm未満であると、高温時にCuが拡散して表面にCuの酸化物が形成され易くなることから接触抵抗が増加し、一方、2.0μmを超えると、柔軟なSnによる表面層が厚くなり過ぎることから、その下層の中間層による支持効果が薄れ、コネクタ等の使用時の挿抜力の増大を招き易い。このため、表面層4の厚さは0.5〜2.0μmが望ましい。   The surface layer made of Sn or Sn alloy is formed by reflow treatment after plating Sn or Sn alloy on the Cu plating layer, and constitutes the outermost surface layer as a conductive material. The surface layer has a thickness of 0.5 to 2.0 μm. When the thickness is less than 0.5 μm, Cu diffuses at high temperature and Cu oxide is easily formed on the surface, so that the contact resistance increases. On the other hand, when the thickness exceeds 2.0 μm, the Sn is flexible. Since the surface layer becomes too thick, the support effect by the lower intermediate layer is weakened, and the insertion / extraction force during use of the connector or the like tends to increase. For this reason, the thickness of the surface layer 4 is preferably 0.5 to 2.0 μm.

次に、このような層構造としたSnめっき付き導電材の製造方法について説明する。
Cu又はCu合金基材の板材を用意する。一般に、Cu又はCu合金基材は、その製造過程で圧延、研磨等の種々の加工を受けているため、表面部に内部よりも微細な結晶組織の加工変質層が形成されている。そこで、このCu又はCu合金基材に脱脂、酸洗等の処理をすることによって表面を清浄にした後、過酸化水素を主成分とした研磨液等で化学研磨、もしくはリン酸を主成分とした電解研磨液等で電解研磨して加工変質層を除去した後、Niめっき、Cuめっき、Snめっきをこの順序で施す。
Next, a method for producing a conductive material with Sn plating having such a layer structure will be described.
A plate material of Cu or Cu alloy base material is prepared. In general, since a Cu or Cu alloy base material is subjected to various processes such as rolling and polishing in the production process, a work-affected layer having a finer crystal structure than the inside is formed on the surface portion. Therefore, the surface of the Cu or Cu alloy base material is cleaned by degreasing, pickling, etc., and then chemically polished with a polishing liquid containing hydrogen peroxide as a main component, or phosphoric acid as a main component. After removing the work-affected layer by electrolytic polishing with the electrolytic polishing solution or the like, Ni plating, Cu plating, and Sn plating are performed in this order.

Niめっき層形成のためのめっき浴としては、ニッケル塩として硫酸ニッケルを用いる場合は酸として硫酸を、スルファミン酸ニッケルの場合はスルファミン酸を、塩化ニッケルの場合は塩酸を用いためっき浴を用いればよい。めっき浴の温度は20℃〜50℃、電流密度は1A/dm以上〜30A/dmとされる。このNiめっきにより形成されるNiめっき層の膜厚は0.1〜1.0μmとされる。
なお、このNiめっき浴には、光沢剤、平滑剤、硬度向上剤等の添加剤(例えばサッカリン、ブタンジオール)は含まないことが望ましい。これら添加剤は結晶粒を微細化するため、1μm以上の結晶粒径からなるNi層が得にくくなるからである。ホウ酸、クエン酸等のpH緩衝剤は含有していてもよい。
As a plating bath for forming the Ni plating layer, if nickel sulfate is used as the nickel salt, sulfuric acid is used as the acid, sulfamic acid is used in the case of nickel sulfamate, and plating bath using hydrochloric acid is used in the case of nickel chloride. Good. The temperature of the plating bath is 20 ° C. to 50 ° C., and the current density is 1 A / dm 2 or more to 30 A / dm 2 . The film thickness of the Ni plating layer formed by this Ni plating is 0.1 to 1.0 μm.
In addition, it is desirable that this Ni plating bath does not contain additives such as brighteners, smoothing agents and hardness improvers (for example, saccharin and butanediol). This is because these additives make the crystal grains finer, making it difficult to obtain a Ni layer having a crystal grain size of 1 μm or more. A pH buffer such as boric acid or citric acid may be contained.

Cuめっきは一般的なCuめっき浴を用いればよく、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は20〜50℃、電流密度は1〜30A/dmとされる。このCuめっきにより形成されるCuめっき層の膜厚は0.1〜0.5μmとされる。 For Cu plating, a general Cu plating bath may be used. For example, a copper sulfate bath mainly composed of copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) may be used. The temperature of the plating bath is 20 to 50 ° C., and the current density is 1 to 30 A / dm 2 . The film thickness of the Cu plating layer formed by this Cu plating is 0.1 to 0.5 μm.

Snめっき層形成のためのめっき浴としては、一般的なSnめっき浴を用いればよく、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は15〜35℃、電流密度は1〜20A/dmとされる。このSnめっき層の膜厚は1〜3μmとされる。 As a plating bath for forming the Sn plating layer, a general Sn plating bath may be used. For example, a sulfuric acid bath mainly composed of sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) is used. Can do. The temperature of the plating bath is 15 to 35 ° C., and the current density is 1 to 20 A / dm 2 . The film thickness of this Sn plating layer shall be 1-3 micrometers.

このようなめっき浴を用いて、Cu又はCu合金の基材にNiめっき層、Cuめっき層、Snめっき層を順に施したのち、リフロー処理する。リフロー処理条件としては、特に限定されないが、例えば窒素囲気中で、基材の表面温度が240〜360℃になるまで昇温後、当該温度に1〜12秒間保持した後急冷することが好ましい。
このリフロー処理により、Niめっき層の上のCuめっき層のCuとSnめっき層のSnとが合金化してCu−Sn合金層を形成する。このCu−Sn合金層は、CuSnとCuSnを有し、表面が凹凸状に形成される。
Using such a plating bath, a Ni plating layer, a Cu plating layer, and a Sn plating layer are sequentially applied to a Cu or Cu alloy substrate, and then reflow treatment is performed. Although it does not specifically limit as reflow process conditions, For example, it is preferable to carry out rapid cooling, after heating up until the surface temperature of a base material will be 240-360 degreeC in nitrogen atmosphere, hold | maintaining at the said temperature for 1 to 12 seconds.
By this reflow process, Cu of the Cu plating layer on the Ni plating layer and Sn of the Sn plating layer are alloyed to form a Cu—Sn alloy layer. The Cu-Sn alloy layer has a Cu 3 Sn and Cu 6 Sn 5, the surface is formed in an uneven shape.

このようにして形成されたSnめっき付き導電材は、エピタキシャル成長した、膜厚が均一でボイド等の欠陥の無い、結晶粒径が1μm以上に制御したNi層がバリア層として形成されることで、下地基材のCu拡散に対する高いバリア性を発揮し、高温下で使用しても表面層のSnが消滅することがなく、安定した接触抵抗を維持することができる。   The conductive material with Sn plating thus formed is formed as a barrier layer by epitaxially growing a Ni layer having a uniform film thickness and no defects such as voids and having a crystal grain size controlled to 1 μm or more. The base substrate exhibits high barrier properties against Cu diffusion, and even when used at high temperatures, Sn in the surface layer does not disappear and stable contact resistance can be maintained.

次に、本発明の有効性を確認するために行った実験結果について説明する。
結晶粒径の異なる板厚0.25mmの銅合金を基材とし、脱脂、酸洗後、電解研磨、Niめっき、Cuめっき、Snめっきを順に施した。条件を表1、2に示す。比較例として電解研磨せず加工変質層が残存した基材上にめっきを施したものも作製した。
Next, the results of experiments conducted to confirm the effectiveness of the present invention will be described.
A copper alloy having a thickness of 0.25 mm with different crystal grain sizes was used as a base material, and after degreasing and pickling, electrolytic polishing, Ni plating, Cu plating, and Sn plating were performed in this order. The conditions are shown in Tables 1 and 2. As a comparative example, an electropolished substrate on which a damaged layer remained was plated.

このめっき処理後、実施例、比較例とも、窒素囲気中で、基材の表面温度が270℃になるまで昇温後、当該温度に3〜9秒間保持した後水冷した。
そして、このようにして得られた試料につき、Ni層、Cu−Sn合金層、Sn層の厚みをエスアイアイ・ナノテクノロジー株式会社製蛍光X線膜厚計(SF9400)にて測定した。この場合、Cu−Sn合金層及びSn層については、最初にリフロー後のサンプルの全Sn厚を測定した後、例えばレイボルド株式会社製のL80等の純SnをエッチングしCu−Sn合金を腐食しない成分からなるめっき被膜剥離用のエッチング液に5分間浸漬することによりSn系表面層が除去され、その下層のCu−Sn金属間化合物層を露出させCu−Sn厚を測定した後、(全Sn厚−CuSn厚)をSn表面層厚とした。
また、基材及びNi層の結晶粒径を電子顕微鏡(SEM)により観察して測定した。
After this plating treatment, both the examples and comparative examples were heated in a nitrogen atmosphere until the surface temperature of the substrate reached 270 ° C., held at that temperature for 3 to 9 seconds, and then cooled with water.
And about the sample obtained by doing in this way, the thickness of Ni layer, Cu-Sn alloy layer, and Sn layer was measured with the SII nanotechnology Co., Ltd. fluorescence X-ray film thickness meter (SF9400). In this case, for the Cu-Sn alloy layer and the Sn layer, first, after measuring the total Sn thickness of the sample after reflowing, pure Sn such as L80 manufactured by Reybold Co., Ltd. is etched to not corrode the Cu-Sn alloy. The Sn-based surface layer was removed by immersing in an etching solution for removing the plating film made of the components for 5 minutes, the underlying Cu-Sn intermetallic compound layer was exposed, and the Cu-Sn thickness was measured. (Thickness−CuSn thickness) was defined as the Sn surface layer thickness.
Further, the crystal grain sizes of the substrate and the Ni layer were measured by observing with an electron microscope (SEM).

そして、各試料を耐熱性を評価するため、大気中で175℃×1000時間加熱し、接触抵抗の経時変化を測定した。測定方法はJIS−C−5402に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)により、摺動式(1mm)で0から50gまでの荷重変化−接触抵抗を測定した。なお、試験機の性能上20mΩ以上の抵抗値はすべて20mΩと表示されている。荷重を50gとしたときの接触抵抗値の変化は表3に示す通りであった。
表3において、基材の加工変質層を除去したものを「無」、加工変質層が残存しているものを「有」とした。
And in order to evaluate heat resistance, each sample was heated in air | atmosphere 175 degreeC x 1000 hours, and the time-dependent change of contact resistance was measured. The measuring method is based on JIS-C-5402, 4 terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding type (1mm) load change from 0 to 50g-contact resistance Was measured. In addition, all resistance values of 20 mΩ or more are indicated as 20 mΩ because of the performance of the testing machine. The change in contact resistance value when the load was 50 g was as shown in Table 3.
In Table 3, “None” was obtained by removing the work-affected layer of the base material, and “Yes” was obtained by leaving the work-affected layer.

この表3から明らかなように、実施例はいずれも175℃で1000時間加熱後も5mΩ以下の低い接触抵抗値を示す。特にNi層の厚みが0.3μm以上あるものは、2mΩ以下と非常に低い値を維持することができる。電解研磨せず加工変質層が残存した基材上にNiめっきした場合(比較例1)や、基材の結晶粒径が小さくエピタキシャル成長させてもNiの結晶粒径が1μm未満であった場合(比較例2)、Cu−Sn中間層が0.2μm未満と薄くNi層にダメージが生じた場合(比較例3)や、Ni層が0.1μm未満と薄い場合(比較例4)はいずれも、加熱されない初期の状態においては、接触抵抗が低いが、長時間加熱されることにより接触抵抗が著しく増大している。なお、表では中間層を便宜上CuSn層と記述しているが、Cu/CuSnの多層構造となっているものも含まれている。   As is apparent from Table 3, all the examples show a low contact resistance value of 5 mΩ or less even after heating at 175 ° C. for 1000 hours. In particular, the Ni layer having a thickness of 0.3 μm or more can maintain a very low value of 2 mΩ or less. In the case where Ni is plated on the base material on which the work-affected layer remains without being electropolished (Comparative Example 1), or when the crystal grain size of the base material is epitaxially grown and the crystal grain size of Ni is less than 1 μm ( Comparative Example 2), Cu—Sn intermediate layer is less than 0.2 μm thin and Ni layer is damaged (Comparative Example 3), and Ni layer is less than 0.1 μm thin (Comparative Example 4) In the initial state where the heating is not performed, the contact resistance is low, but the contact resistance is remarkably increased by heating for a long time. In the table, the intermediate layer is described as a CuSn layer for the sake of convenience, but includes a multilayer structure of Cu / CuSn.

図1は実施例2の、図2は比較例1のリフロー処理後の断面写真である。実施例は電解研磨を実施しているので加工変質層がなく、Niがエピタキシャル成長しているのがわかる。これに対し比較例は加工変質層があるためNiがエピタキシャル成長せず微細な構造となっている。
図3は実施例2の、図4は比較例1の表面写真である。どちらも基材の平均結晶粒径は4μmであるが、加工変質層を除去するとエピタキシャル成長するため平均粒径4μmと大きいのに対し、加工変質層を除去しないと平均粒径0.4μmの微細な結晶であることがわかる。
図5は実施例2の、図6は比較例1の175℃で500時間加熱後の断面写真である。実施例はCu層がなくなり、全てCuSn層となっているが、基材からのCuの拡散が抑制されているため、Sn層がしっかりと残存している。これに対し、比較例はNi層のバリア性が不十分なため基材からのCuの拡散を抑制できず、CuSn層が厚く成長し、Sn層殆ど残存していないことがわかる。また、Ni層直下には、剥離の原因となるCuの拡散により生じたカーケンダルボイドが多数見られる。
FIG. 1 is a cross-sectional photograph of Example 2 and FIG. In the example, since electropolishing is performed, there is no work-affected layer, and it can be seen that Ni is epitaxially grown. On the other hand, since the comparative example has a work-affected layer, Ni does not grow epitaxially and has a fine structure.
3 is a surface photograph of Example 2 and FIG. 4 is a surface photograph of Comparative Example 1. In both cases, the average crystal grain size of the base material is 4 μm, but when the work-affected layer is removed, it grows epitaxially, so the average grain diameter is as large as 4 μm. It turns out that it is a crystal.
5 is a cross-sectional photograph of Example 2 and FIG. 6 is a cross-sectional photograph of Comparative Example 1 after heating at 175 ° C. for 500 hours. In the example, there is no Cu layer, and all are Cu 6 Sn 5 layers, but since the diffusion of Cu from the substrate is suppressed, the Sn layer remains firmly. On the other hand, it can be seen that the comparative example cannot suppress the diffusion of Cu from the substrate because the Ni layer has insufficient barrier properties, the Cu 6 Sn 5 layer grows thick, and the Sn layer hardly remains. In addition, a lot of Kirkendall voids caused by the diffusion of Cu, which causes peeling, can be seen directly under the Ni layer.

また、図7及び図8は実施例2における電解研磨後の基材表面をEBSD法にて測定した結晶方位マップと逆極点図、図9及び図10は、その実施例2のNiめっき後の結晶方位マップと逆極点図である。これらの図は同一箇所を測定したものではないが、平均結晶粒径が基材とNi層とで同じ(表3に示すようにいずれも4μm)であり、優先方位も、ともに(101)であることから、Ni層は、基材表面でエピタキシャル成長して、基材表面の組織の特徴をそのまま引き継いだ表面組織になっていると認められる。   7 and 8 are crystal orientation maps and reverse pole figures obtained by measuring the substrate surface after electropolishing in Example 2 by the EBSD method, and FIGS. 9 and 10 are diagrams after Ni plating in Example 2. It is a crystal orientation map and a reverse pole figure. Although these figures do not measure the same location, the average crystal grain size is the same for the substrate and the Ni layer (both 4 μm as shown in Table 3), and the preferred orientation is both (101). Therefore, it is recognized that the Ni layer is epitaxially grown on the surface of the base material and has a surface structure that inherits the characteristics of the structure of the base material surface as it is.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

Claims (3)

加工変質層のないCu又はCu合金からなる基材の表面に、Ni層、Cu−Sn合金層からなる中間層、Sn又はSn合金からなる表面層がこの順で形成され、前記Ni層が基材上にエピタキシャル成長しており、Ni層の平均結晶粒径が1μm以上、Ni層の厚さが0.1〜1.0μm、かつ前記中間層の厚さが0.2〜1.0μm、前記表面層の厚さが0.5〜2.0μmであることを特徴とするSnめっき付き導電材。   An Ni layer, an intermediate layer made of Cu-Sn alloy layer, and a surface layer made of Sn or Sn alloy are formed in this order on the surface of the base material made of Cu or Cu alloy without the work-affected layer. Epitaxially grown on the material, the Ni layer has an average crystal grain size of 1 μm or more, the Ni layer has a thickness of 0.1 to 1.0 μm, and the intermediate layer has a thickness of 0.2 to 1.0 μm, A conductive material with Sn plating, wherein the surface layer has a thickness of 0.5 to 2.0 μm. Cu又はCu合金からなる基材の表面に存在する加工変質層を除去した後、Niめっき、Cuめっき、Snめっきをこの順に施した後、リフロー処理することを特徴とするSnめっき付き導電材の製造方法。   After removing the work-affected layer on the surface of the base material made of Cu or Cu alloy, Ni plating, Cu plating, Sn plating are performed in this order, and then reflow treatment is performed. Production method. 前記Niめっきを、ニッケル塩と酸を主成分とし、光沢剤、平滑剤、硬度向上剤等の添加剤を加えていないNiめっき液を用いて電気めっきすることを特徴とする請求項2記載のSnめっき付き導電材の製造方法。   3. The Ni plating according to claim 2, wherein the Ni plating is electroplated using a Ni plating solution mainly composed of a nickel salt and an acid and not added with additives such as a brightener, a smoothing agent and a hardness improver. The manufacturing method of the electrically conductive material with Sn plating.
JP2012279880A 2012-12-21 2012-12-21 Tin-plated electroconductive material and production method thereof Pending JP2014122403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012279880A JP2014122403A (en) 2012-12-21 2012-12-21 Tin-plated electroconductive material and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012279880A JP2014122403A (en) 2012-12-21 2012-12-21 Tin-plated electroconductive material and production method thereof

Publications (1)

Publication Number Publication Date
JP2014122403A true JP2014122403A (en) 2014-07-03

Family

ID=51403134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012279880A Pending JP2014122403A (en) 2012-12-21 2012-12-21 Tin-plated electroconductive material and production method thereof

Country Status (1)

Country Link
JP (1) JP2014122403A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056422A (en) * 2014-09-11 2016-04-21 株式会社オートネットワーク技術研究所 Member for terminal and method for manufacturing the same, and terminal for connector
JPWO2016194738A1 (en) * 2015-06-01 2017-06-15 古河電気工業株式会社 Conductive strip and manufacturing method thereof
JP2017150028A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Copper terminal material with plating and terminal
KR20180044886A (en) 2015-09-01 2018-05-03 후루카와 덴키 고교 가부시키가이샤 Plating material excellent in heat resistance and manufacturing method thereof
US10890868B2 (en) 2019-04-11 2021-01-12 Fuji Xerox Co., Ltd. Fixing member, fixing unit, and image forming apparatus
WO2021065866A1 (en) 2019-09-30 2021-04-08 三菱マテリアル株式会社 Terminal material for connectors
WO2021166467A1 (en) 2020-02-19 2021-08-26 千住金属工業株式会社 Metal body, fitting-type connection terminal, and metal body forming method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129894A (en) * 1997-07-09 1999-02-02 Mishima Kosan Co Ltd Method for plating mold piece used in continuous casting
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129894A (en) * 1997-07-09 1999-02-02 Mishima Kosan Co Ltd Method for plating mold piece used in continuous casting
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056422A (en) * 2014-09-11 2016-04-21 株式会社オートネットワーク技術研究所 Member for terminal and method for manufacturing the same, and terminal for connector
CN107532321B (en) * 2015-06-01 2019-09-17 古河电气工业株式会社 Electric conductivity web and its manufacturing method
CN107532321A (en) * 2015-06-01 2018-01-02 古河电气工业株式会社 Electric conductivity web and its manufacture method
KR20180014697A (en) 2015-06-01 2018-02-09 후루카와 덴키 고교 가부시키가이샤 CONSTRUCTION MATERIAL AND PREPARATION METHOD
JPWO2016194738A1 (en) * 2015-06-01 2017-06-15 古河電気工業株式会社 Conductive strip and manufacturing method thereof
KR102521145B1 (en) * 2015-06-01 2023-04-13 후루카와 덴키 고교 가부시키가이샤 Conductive material and its manufacturing method
KR102503365B1 (en) 2015-09-01 2023-02-24 후루카와 덴키 고교 가부시키가이샤 Plating material with excellent heat resistance and its manufacturing method
KR20180044886A (en) 2015-09-01 2018-05-03 후루카와 덴키 고교 가부시키가이샤 Plating material excellent in heat resistance and manufacturing method thereof
JP2017150028A (en) * 2016-02-24 2017-08-31 三菱マテリアル株式会社 Copper terminal material with plating and terminal
US10890868B2 (en) 2019-04-11 2021-01-12 Fuji Xerox Co., Ltd. Fixing member, fixing unit, and image forming apparatus
WO2021065866A1 (en) 2019-09-30 2021-04-08 三菱マテリアル株式会社 Terminal material for connectors
KR20220069005A (en) 2019-09-30 2022-05-26 미쓰비시 마테리알 가부시키가이샤 Terminal material for connector
US11905614B2 (en) 2019-09-30 2024-02-20 Mitsubishi Materials Corporation Terminal material for connector
KR20220131981A (en) 2020-02-19 2022-09-29 센주긴조쿠고교 가부시키가이샤 Metal body, fitting-fit connection terminal, and method of forming metal body
WO2021166467A1 (en) 2020-02-19 2021-08-26 千住金属工業株式会社 Metal body, fitting-type connection terminal, and metal body forming method

Similar Documents

Publication Publication Date Title
JP2014122403A (en) Tin-plated electroconductive material and production method thereof
TWI570283B (en) Metallic copper alloy terminal material with excellent plugability and manufacturing method thereof
JP4372835B1 (en) Conductive member and manufacturing method thereof
CN103732805B (en) The excellent Tinplated copper alloy terminal material of plug property
KR102355331B1 (en) Tin-plated copper alloy terminal material and method for producing same
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
WO2009123144A1 (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP6423025B2 (en) Tin-plated copper terminal material excellent in insertion / removability and manufacturing method thereof
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
TW201447053A (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2016166396A (en) Copper terminal material with silver platting and terminal
JP2015143385A (en) tin-plated copper alloy terminal material
JP2012036436A (en) Sn ALLOY PLATED CONDUCTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME
KR20150050397A (en) Tin-plated copper alloy terminal member
JP5640922B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP5621570B2 (en) Conductive material with Sn plating and manufacturing method thereof
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP2018104776A (en) Plated copper terminal material and terminal
JPWO2017038825A1 (en) Plating material excellent in heat resistance and method for producing the same
JP2023101466A (en) NANO-TWINNED Cu-Ni ALLOY LAYER AND METHOD FOR MANUFACTURING THE SAME
JP6011129B2 (en) Copper alloy terminal material excellent in insertion / removability and manufacturing method thereof
JP2017150028A (en) Copper terminal material with plating and terminal
JP5979615B2 (en) Manufacturing method of plating material
JP2016141835A (en) Tinned copper alloy terminal material
WO2022145290A1 (en) Plating structure comprising ni electrolytic plating film, and lead frame including said plating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228