JP2016166396A - Copper terminal material with silver platting and terminal - Google Patents
Copper terminal material with silver platting and terminal Download PDFInfo
- Publication number
- JP2016166396A JP2016166396A JP2015047102A JP2015047102A JP2016166396A JP 2016166396 A JP2016166396 A JP 2016166396A JP 2015047102 A JP2015047102 A JP 2015047102A JP 2015047102 A JP2015047102 A JP 2015047102A JP 2016166396 A JP2016166396 A JP 2016166396A
- Authority
- JP
- Japan
- Prior art keywords
- silver plating
- plating layer
- silver
- copper
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 154
- 239000004332 silver Substances 0.000 title claims abstract description 154
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 239000000463 material Substances 0.000 title claims abstract description 74
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 42
- 239000010949 copper Substances 0.000 title claims abstract description 42
- 238000007747 plating Methods 0.000 claims abstract description 182
- 239000013078 crystal Substances 0.000 claims abstract description 65
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 16
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 52
- 229910052759 nickel Inorganic materials 0.000 claims description 27
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 101
- 239000000523 sample Substances 0.000 description 23
- LFAGQMCIGQNPJG-UHFFFAOYSA-N silver cyanide Chemical compound [Ag+].N#[C-] LFAGQMCIGQNPJG-UHFFFAOYSA-N 0.000 description 11
- 229940098221 silver cyanide Drugs 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000001887 electron backscatter diffraction Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 5
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 238000005324 grain boundary diffusion Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000006259 organic additive Substances 0.000 description 4
- 150000003378 silver Chemical class 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 150000002815 nickel Chemical class 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229940026189 antimony potassium tartrate Drugs 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- ISDDBQLTUUCGCZ-UHFFFAOYSA-N dipotassium dicyanide Chemical compound [K+].[K+].N#[C-].N#[C-] ISDDBQLTUUCGCZ-UHFFFAOYSA-N 0.000 description 1
- WBTCZEPSIIFINA-MSFWTACDSA-J dipotassium;antimony(3+);(2r,3r)-2,3-dioxidobutanedioate;trihydrate Chemical compound O.O.O.[K+].[K+].[Sb+3].[Sb+3].[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O.[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O WBTCZEPSIIFINA-MSFWTACDSA-J 0.000 description 1
- FODIHFPARWJLJA-UHFFFAOYSA-N disodium;dicyanide Chemical compound [Na+].[Na+].N#[C-].N#[C-] FODIHFPARWJLJA-UHFFFAOYSA-N 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005088 metallography Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- UQPSGBZICXWIAG-UHFFFAOYSA-L nickel(2+);dibromide;trihydrate Chemical compound O.O.O.Br[Ni]Br UQPSGBZICXWIAG-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
本発明は、銅又は銅合金からなる基材に銀めっきを施した銀めっき付き銅端子材及びそのような銀めっきを施した端子に関する。 The present invention relates to a copper terminal material with silver plating obtained by silver-plating a base material made of copper or a copper alloy, and a terminal subjected to such silver plating.
ハイブリットカーや電気自動車ではモーターを動力とするため、バッテリーとモーター間を接続する高圧ケーブルに流れる電流量は、従来の自動車電気配線のものよりも飛躍的に増大している。高圧ケーブルの端末には組立時と整備時に取り外しするための端子が取り付けられることがある。この端子は大電流が流れた際に接点部で発生する発熱を抑えるため接点部に銀めっきが施されるとともに、大型で非常に高い接圧に設定されるため、挿抜時に端子の銀めっきが削れないように硬度が高いことが求められる。また、当該箇所は通電電流量が大きいためジュール熱の発生が不可避であり、熱負荷がかかった際の接触抵抗上昇がないことが求められている。 Since a hybrid car or an electric vehicle uses a motor as power, the amount of current flowing through the high-voltage cable connecting the battery and the motor is dramatically increased as compared with that of conventional automobile electric wiring. Terminals for removal during assembly and maintenance may be attached to the end of the high voltage cable. This terminal is silver-plated at the contact part to suppress the heat generated at the contact part when a large current flows, and it is large and set at a very high contact pressure. High hardness is required to prevent scraping. In addition, since the energization current amount is large in this portion, the generation of Joule heat is inevitable, and it is required that there is no increase in contact resistance when a thermal load is applied.
特許文献1には、銅又は銅合金からなる母材の表面が銀めっき層により被覆されているコネクタ用銀めっき端子において、銀めっき層が、下層側の第一の銀めっき層と、該第一の銀めっき層の上層側の第二の銀めっき層とからなり、第一の銀めっき層の結晶粒径が第二の銀めっき層の結晶粒径よりも大きく、平均粒径で2μm以上であるものが開示されている。特許文献1に開示の端子においては、銀めっき層を下層と上層とに分け、母材側の銀めっき層の結晶粒を肥大なものとして銅の拡散を防ぎ、表面側の銀めっき層の結晶粒を微細なものとすることで耐摩耗性を保持しつつも、接触抵抗の悪化を防ごうとしている。 In Patent Literature 1, in a silver plating terminal for a connector in which a surface of a base material made of copper or a copper alloy is covered with a silver plating layer, the silver plating layer includes a first silver plating layer on the lower layer side, and the first A second silver plating layer on the upper layer side of one silver plating layer, the crystal grain size of the first silver plating layer is larger than the crystal grain size of the second silver plating layer, and the average grain size is 2 μm or more Is disclosed. In the terminal disclosed in Patent Document 1, the silver plating layer is divided into a lower layer and an upper layer, the crystal grains of the silver plating layer on the base material side are enlarged to prevent copper diffusion, and the crystal of the silver plating layer on the surface side It is trying to prevent the contact resistance from deteriorating while maintaining the wear resistance by making the grains fine.
また、特許文献2には、素材上に{111}面と{200}面と{220}面と{311}面の各々のX線回折強度の和に対する{200}面のX線回折強度の割合が40%以上である第1の銀めっき層が形成され、この第1の銀めっき層上にビッカース硬度Hv140以上でアンチモンを含む第2の銀めっき層が形成されている銀めっき材が開示されている。結晶方位を制御した第1の銀めっき層の上にアンチモン含有銀めっき層を形成することで、接触抵抗の悪化を防ぎつつも耐摩耗性を向上している。 Patent Document 2 discloses the X-ray diffraction intensity of the {200} plane relative to the sum of the X-ray diffraction intensities of the {111} plane, {200} plane, {220} plane, and {311} plane on the material. Disclosed is a silver plating material in which a first silver plating layer having a ratio of 40% or more is formed, and a second silver plating layer having a Vickers hardness of Hv 140 or more and containing antimony is formed on the first silver plating layer. Has been. By forming the antimony-containing silver plating layer on the first silver plating layer whose crystal orientation is controlled, the wear resistance is improved while preventing the contact resistance from deteriorating.
さらに、特許文献3では、素材の表面または素材上に形成された下地層の表面に、銀からなる表層が形成された銀めっき材において、表層の{200}方位の面積分率が15%以上であるものが開示されており、曲げ加工性が良好であり且つ高温環境下で使用しても接触抵抗の上昇を抑制することができると記載されている。 Further, in Patent Document 3, in the silver plating material in which the surface layer made of silver is formed on the surface of the material or the surface of the underlayer formed on the material, the area fraction of the surface layer in the {200} direction is 15% or more. In other words, it is disclosed that bending workability is good and an increase in contact resistance can be suppressed even when used in a high temperature environment.
しかしながら特許文献1に開示の構成では熱負荷がかかった際に銀が再結晶してしまい、表面側の微細結晶粒を保持できず、挿抜時に表面側の銀めっき層が削れてしまう問題がある。また、特許文献2に開示の銀めっき材では、アンチモン含有銀めっき層の再結晶は抑えられるものの、熱負荷がかかった際に表面でアンチモン酸化皮膜が形成されて接触抵抗が上昇してしまう問題があった。特許文献3に開示の銀めっき材においても、熱負荷時の再結晶化の抑制効果はまだ不十分であった。 However, in the configuration disclosed in Patent Document 1, there is a problem that silver is recrystallized when a thermal load is applied, and fine crystal grains on the surface side cannot be retained, and the silver plating layer on the surface side is scraped during insertion / extraction. . Further, in the silver plating material disclosed in Patent Document 2, although recrystallization of the antimony-containing silver plating layer is suppressed, an antimony oxide film is formed on the surface when a thermal load is applied, and the contact resistance increases. was there. Even in the silver plating material disclosed in Patent Document 3, the effect of suppressing recrystallization at the time of heat load was still insufficient.
本発明は、前述の課題に鑑みてなされたものであって、熱負荷時の銀めっき層の再結晶化を抑制して、挿抜時の銀めっき層の削れを防止するとともに、接触抵抗の上昇を抑制することを目的とする。 The present invention has been made in view of the above-described problems, and suppresses recrystallization of the silver plating layer at the time of thermal load, prevents the silver plating layer from being scraped at the time of insertion and removal, and increases the contact resistance. It aims at suppressing.
本発明の銀めっき付き銅端子材は、銅又は銅合金からなる基材に銀めっき層が形成された端子材であって、前記銀めっき層は、炭素が0.1質量%以上0.6質量%以下の含有率で共析しているとともに、銀結晶組織の平均結晶粒径が2μm以上25μm以下であり、全結晶粒界の長さに対して特殊粒界が占める長さの比率が60%以上85%以下である。 The copper terminal material with silver plating of the present invention is a terminal material in which a silver plating layer is formed on a substrate made of copper or a copper alloy, and the silver plating layer has a carbon content of 0.1% by mass or more and 0.6%. While eutectoid with a content of not more than mass%, the average crystal grain size of the silver crystal structure is 2 μm or more and 25 μm or less, and the ratio of the length occupied by the special grain boundary to the total grain boundary length is It is 60% or more and 85% or less.
この銀めっき付き銅端子材は、銀めっき層中に炭素が上記の質量比率で共析していることにより、この炭素の析出物によるピン止め効果によって熱負荷がかかったときの再結晶化が阻止される。したがって、銀結晶組織の微細な結晶粒が維持されることから、銀めっき層が軟化せずにコネクタとしての挿抜時の削れを防止することができる。この場合、炭素の含有量が0.1質量%未満では硬度を保つ効果がなく、0.6質量%を超えると銀めっき層が脆くなり加工性が悪化する。また、平均結晶粒径が2μm未満では銀めっき層が脆くなって加工性が悪化し、25μmを超えると硬度が低下して耐摩耗性が悪化する。
特殊粒界は一般粒界よりも原子の整合性が高いため、粒界拡散を起こしがたい。このため粒界拡散の観点からは特殊粒界の長さ比率がなるべく高い方がよく、最低60%以上必要である。一方で、特殊粒界の長さ比率が85%を超えると硬度が保てなくなる。
This silver-plated copper terminal material is recrystallized when a thermal load is applied due to the pinning effect of the carbon precipitates because carbon is co-deposited in the silver plating layer at the above mass ratio. Be blocked. Therefore, since fine crystal grains of the silver crystal structure are maintained, the silver plating layer can be prevented from being softened and prevented from being scraped during insertion and removal as a connector. In this case, if the carbon content is less than 0.1% by mass, there is no effect of maintaining the hardness, and if it exceeds 0.6% by mass, the silver plating layer becomes brittle and the workability deteriorates. On the other hand, when the average crystal grain size is less than 2 μm, the silver plating layer becomes brittle and the workability deteriorates. When it exceeds 25 μm, the hardness decreases and the wear resistance deteriorates.
Special grain boundaries have higher atomic consistency than general grain boundaries, and are therefore less likely to cause grain boundary diffusion. For this reason, from the viewpoint of grain boundary diffusion, the length ratio of the special grain boundary is preferably as high as possible, and at least 60% is required. On the other hand, if the length ratio of the special grain boundary exceeds 85%, the hardness cannot be maintained.
本発明の銀めっき付き銅端子材において、前記銀めっき層は、シュミットファクターの値が0.45未満である結晶粒が、表面の面積比率で30%以上含有しているとよい。ここでのシュミットファクターは端子材の板厚方向に平行な圧縮力を加える条件において解析される値である。 In the silver-plated copper terminal material of the present invention, the silver plating layer preferably contains 30% or more of crystal grains having a Schmitt factor value of less than 0.45 in terms of surface area ratio. The Schmitt factor here is a value analyzed under a condition in which a compressive force parallel to the thickness direction of the terminal material is applied.
シュミットファクターが小さい結晶粒は変形し難いため、このような結晶粒が多い金属組織は、塑性変形し難く強度が高くなる。このためシュミットファクターの値が0.45未満の結晶粒が面積率で30%以上を占めると、銀めっき層の強度が高まり、耐摩耗性が向上する。30%未満では耐摩耗性を向上させる効果が乏しい。
従来のアンチモン添加型の銀めっきでは平均結晶粒径を2μm以下と非常に微細化することで高い硬度を得ていたが、この手法で得た銀めっき皮膜は脆く曲げ加工性が劣るという問題があったところ、本発明では、シュミットファクターの値を最適に制御することで、平均結晶粒径が2μm以上であっても比較的高い硬さを保持し、さらに加工性が良好な銀めっき皮膜を得ることができる。
Since crystal grains having a small Schmid factor are difficult to deform, such a metal structure having many crystal grains is difficult to plastically deform and has high strength. For this reason, when the crystal grains having a Schmitt factor value of less than 0.45 occupy 30% or more in terms of area ratio, the strength of the silver plating layer is increased and the wear resistance is improved. If it is less than 30%, the effect of improving the wear resistance is poor.
In conventional antimony-added silver plating, the average crystal grain size has been reduced to 2 μm or less and high hardness has been obtained. However, the silver plating film obtained by this method is brittle and has poor bending workability. As a result, in the present invention, by controlling the Schmid factor optimally, a relatively high hardness can be maintained even when the average crystal grain size is 2 μm or more, and a silver plating film with good workability can be obtained. Can be obtained.
本発明の銀めっき付き銅端子材において、前記銀めっき層の厚みは1μm以上70μm以下であるとよい。銀めっき層の厚みが1μm未満であると、下地である基材からの銅の拡散を防ぐことが難しく、銅の拡散により接触抵抗の増大を招くおそれがある。一方、銀めっき層の厚みが70μmを超えると加工性が悪化するおそれがある。 The copper terminal material with silver plating of this invention WHEREIN: The thickness of the said silver plating layer is good in it being 1 micrometer or more and 70 micrometers or less. If the thickness of the silver plating layer is less than 1 μm, it is difficult to prevent copper from diffusing from the base material that is the base, and there is a risk of increasing contact resistance due to copper diffusion. On the other hand, when the thickness of the silver plating layer exceeds 70 μm, the workability may be deteriorated.
本発明の銀めっき付き銅端子材において、前記基材と前記銀めっき層との間に厚み0.3μm以上2μm以下のニッケルめっき層が形成されており、前記銀めっき層は前記ニッケルめっき層の上に積層されているとよい。下地めっき層としてのニッケルめっき層は、基材からの銅の拡散をより防ぐ効果があり、その厚みが0.3μm以上あると効果的である。一方で、このニッケルめっき層は靱性に乏しいため、厚みが2μmを超えると割れやすくなり、加工性が悪化するおそれがある。 In the copper terminal material with silver plating of the present invention, a nickel plating layer having a thickness of 0.3 μm or more and 2 μm or less is formed between the base material and the silver plating layer, and the silver plating layer is formed of the nickel plating layer. It is good to be laminated on top. The nickel plating layer as the base plating layer has an effect of further preventing the diffusion of copper from the base material, and is effective when the thickness is 0.3 μm or more. On the other hand, since this nickel plating layer is poor in toughness, if the thickness exceeds 2 μm, it tends to break and the workability may be deteriorated.
本発明の銀めっき付き銅端子材において、前記基材と前記銀めっき層との間に、前記基材から順に銅錫合金層、錫層が積層されているとよい。端子材として一般的に用いられるリフロー錫めっき端子材に本発明を適用することで、はんだ付け性等にも優れる端子を得ることができる。 In the copper terminal material with silver plating of the present invention, it is preferable that a copper tin alloy layer and a tin layer are laminated in order from the base material between the base material and the silver plating layer. By applying the present invention to a reflow tin-plated terminal material generally used as a terminal material, a terminal having excellent solderability can be obtained.
本発明の銀めっき付き銅端子は、銅又は銅合金からなる基材に銀めっき層が形成された端子であって、前記銀めっき層は、炭素が0.1質量%以上0.6質量%以下共析しているとともに、銀結晶組織の平均結晶粒径が2μm以上25μm以下であり、全結晶粒界の長さに対して特殊粒界が占める長さの比率が60%以上85%以下である。
この場合、基材に銀めっき層を形成してから端子に成形してもよいし、基材により端子を成形した後に銀めっき層を形成してもよい。また、端子として電線と接続される部分と他の端子等に挿抜される部分とに分けたときに、挿抜される部分にのみ銀めっき層を形成してもよい。
The copper terminal with silver plating of the present invention is a terminal in which a silver plating layer is formed on a base material made of copper or a copper alloy, and the silver plating layer has a carbon content of 0.1% by mass to 0.6% by mass. In addition to eutectoid, the average grain size of the silver crystal structure is 2 μm or more and 25 μm or less, and the ratio of the length occupied by the special grain boundary to the length of the total grain boundary is 60% or more and 85% or less. It is.
In this case, the silver plating layer may be formed on the base material and then molded into the terminal, or the silver plating layer may be formed after the terminal is molded with the base material. Moreover, when it divides into the part connected with an electric wire as a terminal, and the part inserted / extracted by another terminal etc., you may form a silver plating layer only in the part inserted / extracted.
本発明の銀めっき付き端子材によれば、炭素共析によるピン止め効果により、熱負荷がかかった際の再結晶が阻止され、銀めっき層が軟化しないので、コネクタとしての挿抜時の削れの発生が防止され、また、基材からの銅の粒界拡散を防ぎ、低い接触抵抗を維持することができる。 According to the terminal material with silver plating of the present invention, the pinning effect by carbon eutectoid prevents recrystallization when a thermal load is applied, and the silver plating layer does not soften. Generation | occurrence | production is prevented, and the grain-boundary diffusion of copper from a base material can be prevented, and low contact resistance can be maintained.
本発明の実施形態の銀めっき付き銅端子材を説明する。
本実施形態の銀めっき付き銅端子材は、銅又は銅合金からなる基材上にニッケルめっき層を介して銀めっき層が形成されている。
The copper terminal material with silver plating of embodiment of this invention is demonstrated.
In the copper terminal material with silver plating of this embodiment, a silver plating layer is formed on a base material made of copper or a copper alloy via a nickel plating layer.
基材は、銅又は銅合金からなるものであれば、特に、その組成が限定されるものではない。 If a base material consists of copper or a copper alloy, the composition in particular will not be limited.
ニッケルめっき層は、基材の上に銀めっき層を形成する前の下地層として、基材にニッケル又はニッケル合金を電解めっきすることにより形成される。このニッケルめっき層は、基材からの銅の拡散を防ぐ効果があり、その厚みが0.3μm以上存在すると効果的である。一方で、このニッケルめっき層は靱性に乏しいため、厚みが2μmを超えると割れやすくなり、加工性が悪化するおそれがある。 The nickel plating layer is formed by electroplating nickel or a nickel alloy on the base material as a base layer before forming the silver plating layer on the base material. This nickel plating layer has an effect of preventing diffusion of copper from the base material, and is effective when the thickness is 0.3 μm or more. On the other hand, since this nickel plating layer is poor in toughness, if the thickness exceeds 2 μm, it tends to break and the workability may be deteriorated.
銀めっき層は、炭素が0.1質量%以上0.6質量%以下の含有率で共析しているとともに、銀結晶組織の平均結晶粒径が2μm以上25μm以下であり、全結晶粒界の長さに対して特殊粒界が占める長さの比率が60%以上85%以下である。 In the silver plating layer, carbon is eutectoid with a content of 0.1% by mass or more and 0.6% by mass or less, and the average crystal grain size of the silver crystal structure is 2 μm or more and 25 μm or less. The ratio of the length occupied by the special grain boundary to the length is 60% or more and 85% or less.
銀めっき層中に炭素が上記の質量比率で共析していることにより、この炭素の析出物によるピン止め効果によって熱負荷がかかったときの再結晶化が阻止される。したがって、銀結晶組織の微細な結晶粒が維持されることから、軟化せずにコネクタとしての挿抜時の削れを防止することができる。この場合、炭素の含有量が0.1質量%未満では硬度を保つ効果がなく、0.6質量%を超えると銀めっき層が脆くなり加工性が悪化する。 When the carbon is co-deposited in the above-described mass ratio in the silver plating layer, recrystallization when a thermal load is applied due to the pinning effect of the carbon precipitates is prevented. Therefore, since fine crystal grains of the silver crystal structure are maintained, it is possible to prevent scraping during insertion and removal as a connector without softening. In this case, if the carbon content is less than 0.1% by mass, there is no effect of maintaining the hardness, and if it exceeds 0.6% by mass, the silver plating layer becomes brittle and the workability deteriorates.
銀結晶組織の平均結晶粒径が2μm未満では銀めっき層が脆くなって加工性が悪化し、25μmを超えると硬度が低下して耐摩耗性が悪化する。この平均結晶粒径は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)による後方散乱電子線回折(Electron Backscatter Diffraction Pattern:EBSD又はEBSP)法にて銀めっき層表面から測定することができる。 If the average crystal grain size of the silver crystal structure is less than 2 μm, the silver plating layer becomes brittle and the workability deteriorates. If it exceeds 25 μm, the hardness decreases and the wear resistance deteriorates. The average crystal grain size can be measured from the surface of the silver plating layer by a backscattered electron diffraction (Electron Backscatter Diffraction Pattern: EBSD or EBSP) method using a scanning electron microscope (SEM).
特殊粒界は一般粒界よりも原子の整合性が高いため、粒界拡散を起こしがたい。このため粒界拡散の観点からは特殊粒界の長さ比率がなるべく高い方がよく、最低60%以上必要である。一方で、特殊粒界の長さ比率が85%を超えると硬度が保てなくなる。 Special grain boundaries have higher atomic consistency than general grain boundaries, and are therefore less likely to cause grain boundary diffusion. For this reason, from the viewpoint of grain boundary diffusion, the length ratio of the special grain boundary is preferably as high as possible, and at least 60% is required. On the other hand, if the length ratio of the special grain boundary exceeds 85%, the hardness cannot be maintained.
ここで、特殊粒界とは、「Trans.Met.Soc.AIME,185,501(1949)」に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、「Acta.Metallurgica.Vol.14,p.1479,(1966)」で述べられている当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界であるとして定義される。 Here, the special grain boundary is a corresponding grain boundary belonging to 3 ≦ Σ ≦ 29 with a Σ value defined based on “Trans.Met.Soc.AIME, 185,501 (1949)”, and “ Acta.Metallurica.Vol.14, p.1479, (1966) ”, the corresponding corresponding portion lattice orientation defect Dq in the corresponding grain boundary is a grain boundary satisfying Dq ≦ 15 ° / Σ1 / 2. Is defined as being.
特殊粒界の長さ比率は、EBSD法にて測定した、表面の結晶粒の粒界のうち、全結晶粒の全粒界長さLを単位面積1mm2当たりに換算した単位全粒界長さLNに対する、特殊粒界の全特殊粒界長さLσを単位面積1mm2当たりに換算した単位全特殊粒界長さLσNの比率(LσN/LN)である。 The length ratio of the special grain boundary is the unit total grain boundary length obtained by converting the total grain boundary length L of all crystal grains among the grain boundaries of the surface crystal grains measured by the EBSD method per unit area 1 mm 2. is for L N, the special grain boundaries of all the special grain boundary length Erushiguma the unit area 1 mm 2 per in-converted units all special grain boundary length Erushiguma N ratio of (Lσ N / L N).
EBSD測定装置(HITACHI製 S4300−SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)とを用いて、試料表面から得られる「菊池線」と呼ばれる電子線の回折パターンに関する情報を解析することにより、結晶粒界、特殊粒界を特定し、単位全粒界長さLNおよび単位全特殊粒界長さLσNを求めることができる。 “Kikuchi” obtained from the sample surface using an EBSD measuring device (HITACHI S4300-SE, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver. 5.2) By analyzing information on the diffraction pattern of the electron beam called “line”, the crystal grain boundary and the special grain boundary are specified, and the unit total grain boundary length L N and the unit total special grain boundary length Lσ N can be obtained. it can.
また、この銀めっき層は、シュミットファクターの値が0.45未満である結晶粒が、表面の面積比率で30%以上含有していることが好ましい。このシュミットファクターについては、銀めっき浴として、シアン化カリウムとシアン化銀やシアン化銀カリウムを主成分とするカリウム浴に特定の有機添加剤を加えることで、結晶の成長方位を制御し、所望の値を得ることができる。
金属組織学において塑性変形は、結晶の原子密度が細密な面、いわゆるすべり面がすべり、結晶が変形することに起因する。このすべり面のすべりやすさの指標がシュミットファクター(最大は0.5)である。材料の引張り方向と結晶すべり面の法線の角度(θ)、及び引張り方向と結晶のすべり方向の角度(φ)により決定されるものであり(シュミットファクター=cos(θ)cos(φ))、それぞれの角度が45°の時に、シュミットファクターは最大値(0.5)となる。
The silver plating layer preferably contains 30% or more of crystal grains having a Schmitt factor value of less than 0.45 in terms of the surface area ratio. For this Schmitt factor, as the silver plating bath, a specific organic additive is added to potassium cyanide and a potassium bath containing silver cyanide or potassium cyanide as a main component, thereby controlling the crystal growth direction and a desired value. Can be obtained.
In metallography, plastic deformation is caused by the fact that the crystal has a fine atomic density, that is, a so-called slip surface, and the crystal is deformed. The index of the slipperiness of the slip surface is the Schmitt factor (maximum is 0.5). It is determined by the angle (θ) between the tensile direction of the material and the normal direction of the crystal slip surface (θ), and the angle (φ) between the tensile direction and the crystal slip direction (Schmitt factor = cos (θ) cos (φ)) When each angle is 45 °, the Schmitt factor becomes the maximum value (0.5).
このシュミットファクターも、EBSD法で測定して得られたデータを上記のソフトを使って解析することで算出でき、加える応力に対する各結晶粒における所定のシュミットファクターの値、もしくは所定のシュミットファクターの値の範囲の結晶粒が測定領域内に占める割合を面積率で算出することができる。 This Schmitt factor can also be calculated by analyzing the data obtained by the EBSD method using the above software, and a predetermined Schmitt factor value for each crystal grain or a predetermined Schmitt factor value for the applied stress. The ratio of the crystal grains in the range to the measurement region can be calculated by the area ratio.
本発明の端子材は、多結晶体であるので、銀めっき層内に複数の結晶粒が存在しており、その複数の結晶粒はそれぞれの結晶方位を有する。ここで各結晶粒の方位が異なると、すべり面の向きが異なる、つまり様々なシュミットファクターの結晶粒が存在していることになる。シュミットファクターが小さい結晶粒は、シュミットファクターを解析する際に規定した方向の応力に対して変形し難いため、このような結晶粒が多い金属組織は、塑性変形し難く強度が高くなる。このためシュミットファクターの値が0.45未満の結晶粒が面積率で30%以上を占めると、銀めっき層の強度が高まり、耐摩耗性が向上する。30%未満では耐摩耗性を向上させる効果が乏しい。 Since the terminal material of the present invention is a polycrystal, a plurality of crystal grains exist in the silver plating layer, and the plurality of crystal grains have respective crystal orientations. Here, if the orientation of each crystal grain is different, the orientation of the slip plane is different, that is, crystal grains having various Schmid factors exist. A crystal grain having a small Schmid factor is difficult to be deformed by a stress in a direction defined when the Schmit factor is analyzed. Therefore, such a metal structure having many crystal grains is difficult to be plastically deformed and has high strength. For this reason, when the crystal grains having a Schmitt factor value of less than 0.45 occupy 30% or more in terms of area ratio, the strength of the silver plating layer is increased and the wear resistance is improved. If it is less than 30%, the effect of improving the wear resistance is poor.
さらに、銀めっき層の厚みは、1μm以上70μm以下が好ましい。厚みが1μm未満であると、下地である基材からの銅の拡散を防ぐことが難しく、銅の拡散により接触抵抗の増大を招くおそれがある。一方、銀めっき層の厚みが70μmを超えると加工性が悪化するおそれがある。 Furthermore, the thickness of the silver plating layer is preferably 1 μm or more and 70 μm or less. When the thickness is less than 1 μm, it is difficult to prevent copper from diffusing from the base material, which is the base, and there is a risk of increasing contact resistance due to copper diffusion. On the other hand, when the thickness of the silver plating layer exceeds 70 μm, the workability may be deteriorated.
このように構成される銀めっき付き銅端子材は、銅又は銅合金からなる基材に、脱脂、酸洗等の処理をすることによって表面を清浄にした後、ニッケルめっき、銀めっきを順に施すことにより製造される。 The copper terminal material with silver plating constituted in this way is subjected to nickel plating and silver plating in order after cleaning the surface by subjecting the substrate made of copper or copper alloy to degreasing, pickling, etc. It is manufactured by.
ニッケルめっきは、一般的なニッケルめっき浴を用いればよく、硫酸ニッケル(NiSO4)、ホウ酸(H3BO3)を主成分としたワット浴、スルファミン酸ニッケル(Ni(NH2SO3)2)、ホウ酸(H3BO3)を主成分としたスルファミン酸浴等が用いられる。酸化反応を起こし易くする塩類として塩化ニッケル(NiCl2)などが加えられる場合もある。また、浴の温度は40℃以上55℃以下、電流密度は1A/dm2以上40A/dm2以下とされる。 For nickel plating, a general nickel plating bath may be used. A watt bath mainly composed of nickel sulfate (NiSO 4 ), boric acid (H 3 BO 3 ), nickel sulfamate (Ni (NH 2 SO 3 ) 2 ), A sulfamic acid bath containing boric acid (H 3 BO 3 ) as a main component, or the like is used. In some cases, nickel chloride (NiCl 2 ) or the like is added as a salt that easily causes an oxidation reaction. The bath temperature is 40 ° C. or more and 55 ° C. or less, and the current density is 1 A / dm 2 or more and 40 A / dm 2 or less.
銀めっきは、一般的な銀めっき浴であるシアン化銀めっき浴に、皮膜の組織を所望の形とするためにめっき膜中に取り込まれやすい有機添加剤を添加すればよい。有機添加剤としては、例えば、2,2チオエタノールなどのチオアルコール類、ベンゾチアゾール類、ベンゾトリアゾールなどのアゾール類、イミダゾールなどのイミダゾール類を用いることができる。この有機添加剤の添加濃度は0.1g/L以上10g/L以下とするのがよい。シアン化銀めっき浴にはシアン化カリウムとシアン化銀やシアン化銀カリウムを主成分とするカリウム浴とシアン化ナトリウムとシアン化銀やシアン化銀ナトリウムを主成分とするナトリウム浴が従来から用いられているが、本発明ではカリウム浴を用いることが望ましい。カリウム浴とナトリウム浴では結晶の優先成長方位が異なり、ナトリウム浴ではシュミットファクターの小さい結晶粒の比率が少なくなり、強度が劣る傾向がある。銀めっき浴の温度は15℃以上35℃以下、電流密度は0.1A/dm2以上10A/dm2以下とされる。なお、この銀めっきの前に、いわゆる銀ストライクめっきを施してもよく、めっき層の密着性を高めることができる。 In silver plating, an organic additive that is easily incorporated into a plating film may be added to a silver cyanide plating bath, which is a general silver plating bath, in order to obtain a desired film structure. As the organic additive, for example, thioalcohols such as 2,2thioethanol, azoles such as benzothiazole and benzotriazole, and imidazoles such as imidazole can be used. The addition concentration of the organic additive is preferably 0.1 g / L or more and 10 g / L or less. Conventionally, potassium cyanide, silver cyanide and potassium cyanide potassium bath, and sodium cyanide, silver cyanide and sodium cyanide sodium bath as main components are used as silver cyanide plating baths. However, it is desirable to use a potassium bath in the present invention. The preferential growth orientation of crystals differs between the potassium bath and the sodium bath, and the proportion of crystal grains having a small Schmid factor tends to decrease and the strength tends to be poor in the sodium bath. Temperature of the silver plating bath is 15 ℃ or 35 ° C. or less, the current density is set to 0.1 A / dm 2 or more 10A / dm 2 or less. In addition, before this silver plating, what is called silver strike plating may be given and the adhesiveness of a plating layer can be improved.
以上のめっき浴を用いて基材の上にニッケルめっき及び銀めっきを順に施すことにより、銀めっき付き銅端子材を得ることができ、この端子材は、プレス加工により、端子に成形される。大電流の通電による発熱等が生じる場合でも、銀めっき層の再結晶化が抑制され、挿抜時の銀めっき層の削れを防止するとともに、接触抵抗の上昇を抑制することができる。 By performing nickel plating and silver plating on the substrate in order using the above plating bath, a copper terminal material with silver plating can be obtained, and this terminal material is formed into a terminal by pressing. Even when heat generation or the like due to energization with a large current occurs, recrystallization of the silver plating layer is suppressed, so that the silver plating layer can be prevented from being scraped during insertion and removal, and an increase in contact resistance can be suppressed.
なお、実施形態では、ニッケルめっきを下地として形成してから銀めっき層を形成したが、ニッケルめっき層を省略することは可能である。ただし、ニッケルめっき層を下地として形成しておくことにより、基材からの銅の拡散をより効果的に防止することができる。 In the embodiment, the silver plating layer is formed after the nickel plating is formed as a base. However, the nickel plating layer can be omitted. However, the diffusion of copper from the base material can be more effectively prevented by forming the nickel plating layer as a base.
また、端子材として銀めっき層を形成したものを端子に成形したが、銀めっき層を形成していない基材を端子に成形した後に銀めっき層を形成してもよい。その場合、端子の必要な部分(例えば接点部)のみに銀めっき層を形成することも可能である。 Moreover, although what formed the silver plating layer as a terminal material was shape | molded in the terminal, you may form a silver plating layer, after shape | molding the base material which has not formed the silver plating layer in the terminal. In that case, it is also possible to form a silver plating layer only in a necessary portion (for example, a contact portion) of the terminal.
また、本発明は、一般に端子材として用いられているリフロー錫めっき端子材を適用することも可能である。例えば、基材に銅めっき、錫めっきを順に施した後にリフロー熱処理をし、その後、ニッケルめっきを施して銀めっき層を形成することにより、製造することができ、はんだ付け性等にも優れる端子を得ることができる。この場合も、リフロー錫めっき端子材に対して、端子に成形した後に、本発明の銀めっき層を部分的に形成することが可能であり、例えば、端子のうちはんだ付けされる部分は表面をリフロー錫めっき層とし、その他の部分を銀めっき層とすることができる。 The present invention can also apply a reflow tin-plated terminal material that is generally used as a terminal material. For example, a terminal that can be manufactured by subjecting a base material to copper plating and tin plating in order, followed by reflow heat treatment, and then nickel plating to form a silver plating layer. Can be obtained. Also in this case, it is possible to partially form the silver plating layer of the present invention after forming the terminal against the reflow tin-plated terminal material. The reflow tin plating layer can be used, and the other portions can be silver plating layers.
また、基材を端子に成形した後に、必要な部分にのみ錫めっき及び銀めっきを施すことも可能であるが、リフロー錫めっき端子材を製造した後に、銀めっき層を部分的に形成すれば、部分的な錫めっきと銀めっきとを二回実施する場合に比べて生産性がよい。 In addition, it is possible to apply tin plating and silver plating only to necessary portions after the base material is formed into terminals. However, if the silver plating layer is partially formed after the reflow tin plating terminal material is manufactured, The productivity is better than when partial tin plating and silver plating are performed twice.
基材の銅板に、脱脂、酸洗した後、ニッケルめっき、銀めっきを施した。
ニッケルめっき浴の組成としては、スルファミン酸ニッケル400g/L、臭化ニッケル5g/L、ホウ酸35g/Lとし、浴温45℃、電流密度は5A/dm2とした。
The copper plate of the base material was degreased and pickled, and then subjected to nickel plating and silver plating.
The composition of the nickel plating bath was 400 g / L nickel sulfamate, 5 g / L nickel bromide, 35 g / L boric acid, a bath temperature of 45 ° C., and a current density of 5 A / dm 2 .
銀めっき浴の組成としては、シアン化カリウム130g/L、シアン化銀50g/L、炭酸カリウム15g/L、非イオン性界面活性剤1g/L、及び表1に示す添加剤を表1に示す濃度で添加したものを用いた。浴温は25℃、電流密度は表1に示す通りとした。また、この銀めっきの前に、3g/Lのシアン化銀と90g/Lのシアン化カリウムからなる銀ストライクめっき浴中で電流密度2.5A/dm2にて10秒の銀ストライクめっき処理を実施した。 The composition of the silver plating bath includes potassium cyanide 130 g / L, silver cyanide 50 g / L, potassium carbonate 15 g / L, nonionic surfactant 1 g / L, and the additives shown in Table 1 at the concentrations shown in Table 1. What was added was used. The bath temperature was 25 ° C. and the current density was as shown in Table 1. Prior to this silver plating, a silver strike plating treatment was carried out for 10 seconds at a current density of 2.5 A / dm 2 in a silver strike plating bath composed of 3 g / L silver cyanide and 90 g / L potassium cyanide. .
表1中、試料1〜7は基材として無酸素銅を用い、試料8は、市販されているリフロー錫めっき端子材を用いた。
試料9は、基材として無酸素銅を用い、銀めっき浴の組成はナトリウム浴とした。浴組成としては、シアン化ナトリウム120g/L、シアン化銀40g/L、炭酸カリウム15g/L、非イオン性界面活性剤1g/L、及び表1に示す添加剤を表1に示す濃度で添加したものを用いた。浴温は25℃、電流密度は表1に示す通りとした。また、この銀めっきの前に、3g/Lのシアン化銀と90g/Lのシアン化カリウムからなる銀ストライクめっき浴中で電流密度2.5A/dm2にて10秒の銀ストライクめっき処理を実施した。
また、試料10は比較例として、上記の銀めっきではなく、公知の硬質銀めっきであるアンチモン添加型の銀めっきを施した。この試料10では、基材として無酸素銅を用い、銀めっき浴はナトリウム浴とした。浴組成としては、シアン化ナトリウム120g/L、シアン化銀40g/L、炭酸カリウム15g/L、非イオン性界面活性剤1g/L、及びアンチモン源として表1に示す酒石酸アンチモニルカリウムを表1に示す濃度で添加したものを用いた。浴温は25℃、電流密度は表1に示す通りとした。また、この銀めっきの前に、3g/Lのシアン化銀と90g/Lのシアン化カリウムからなる銀ストライクめっき浴中で電流密度2.5A/dm2にて10秒の銀ストライクめっき処理を実施した。
In Table 1, samples 1 to 7 used oxygen-free copper as a base material, and sample 8 used a commercially available reflow tin plating terminal material.
Sample 9 used oxygen-free copper as a base material, and the composition of the silver plating bath was a sodium bath. As the bath composition, sodium cyanide 120 g / L, silver cyanide 40 g / L, potassium carbonate 15 g / L, nonionic surfactant 1 g / L, and the additives shown in Table 1 were added at the concentrations shown in Table 1. What was done was used. The bath temperature was 25 ° C. and the current density was as shown in Table 1. Prior to this silver plating, a silver strike plating treatment was carried out for 10 seconds at a current density of 2.5 A / dm 2 in a silver strike plating bath composed of 3 g / L silver cyanide and 90 g / L potassium cyanide. .
Sample 10 was subjected to antimony-added silver plating, which is a known hard silver plating, instead of the above silver plating as a comparative example. In Sample 10, oxygen-free copper was used as the base material, and the silver plating bath was a sodium bath. As the bath composition, sodium cyanide 120 g / L, silver cyanide 40 g / L, potassium carbonate 15 g / L, nonionic surfactant 1 g / L, and antimony potassium tartrate shown in Table 1 as an antimony source are shown in Table 1. The one added at the concentration shown in FIG. The bath temperature was 25 ° C. and the current density was as shown in Table 1. Prior to this silver plating, a silver strike plating treatment was carried out for 10 seconds at a current density of 2.5 A / dm 2 in a silver strike plating bath composed of 3 g / L silver cyanide and 90 g / L potassium cyanide. .
表1のように作製した各試料の銀めっき層における炭素含有量、銀結晶組織の平均結晶粒径、特殊粒界長さ比率、シュミットファクター0.45未満の結晶粒が占める面積割合、銀めっき層及びニッケルめっき層の厚みをそれぞれ測定した。
炭素含有量は、EPMA((Electron Probe Micro Analyzer)を用いて銀めっき層表面の定量分析により測定した。
The carbon content in the silver plating layer of each sample produced as shown in Table 1, the average crystal grain size of the silver crystal structure, the special grain boundary length ratio, the area ratio occupied by crystal grains having a Schmid factor of less than 0.45, silver plating The thickness of each layer and the nickel plating layer was measured.
The carbon content was measured by quantitative analysis of the surface of the silver plating layer using EPMA ((Electron Probe Micro Analyzer).
平均結晶粒径は、銀めっき層表面に電子線を走査し、EBSD法の方位解析により、特殊粒界も含めて全結晶粒界を特定し、面積割合(Area Fraction)により測定した。
特殊粒界長さ比率は、銀めっき層の断面をEBSD法により解析し、測定範囲における結晶粒界の全粒界長さを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を特定し、単位面積1mm2当たりの全粒界長さLNと特殊粒界長さLσNとを算出して求めた。
シュミットファクター0.45未満の結晶粒が占める面積割合は、EBSD法により銀めっき層表面を測定して求めた。
The average crystal grain size was measured by area ratio (Area Fraction) by scanning the surface of the silver plating layer with an electron beam, specifying all crystal grain boundaries including special grain boundaries by orientation analysis of the EBSD method.
The special grain boundary length ratio is a crystal in which the cross section of the silver plating layer is analyzed by the EBSD method, the total grain boundary length of the crystal grain boundary in the measurement range is measured, and the interface between adjacent crystal grains constitutes the special grain boundary. The position of the grain boundary was specified, and the total grain boundary length L N and the special grain boundary length Lσ N per unit area 1 mm 2 were calculated and obtained.
The area ratio occupied by crystal grains having a Schmid factor of less than 0.45 was determined by measuring the surface of the silver plating layer by the EBSD method.
銀めっき層及びニッケルめっき層の厚みは、蛍光X線膜厚計にて測定した。ニッケルめっき層は、銀めっき層を形成する前に測定した。 The thickness of the silver plating layer and the nickel plating layer was measured with a fluorescent X-ray film thickness meter. The nickel plating layer was measured before forming the silver plating layer.
なお、EBSD法の測定条件、走査型電子顕微鏡SEMでの観察条件は以下の通りとし、試料表面をイオンミリング装置により加速電圧6kV、照射時間2時間で表面を調整した後、測定した。
<EBSD条件>
解析範囲:10.0μm×50.0μm(測定範囲:10.0μm×50.0μm)
測定ステップ:0.1μm
取込時間:11msec/point
<SEM条件>
加速電圧:15kV
ビーム電流:約3.5nA
WD:15mm
これらの分析結果、測定結果を表2に示す。
The measurement conditions of the EBSD method and the observation conditions with the scanning electron microscope SEM were as follows. The sample surface was measured after adjusting the surface with an ion milling device at an acceleration voltage of 6 kV and an irradiation time of 2 hours.
<EBSD conditions>
Analysis range: 10.0 μm × 50.0 μm (Measurement range: 10.0 μm × 50.0 μm)
Measurement step: 0.1 μm
Acquisition time: 11msec / point
<SEM conditions>
Acceleration voltage: 15 kV
Beam current: about 3.5nA
WD: 15mm
These analysis results and measurement results are shown in Table 2.
この表2によれば、試料1〜3は添加剤にチオエタノールを採用したため、炭素含有量、平均粒径、特殊粒界比率、シュミットファクターが最適値範囲内である。試料9は、銀めっき浴が試料1〜8とは異なりナトリウム浴であるため、結晶配向性が変わってシュミットファクターが他の試料のものより小さくなっている。試料5はニッケルめっき層の厚みが他の試料のものより小さく、試料6は逆に大きくなっている。試料7は銀めっき層の厚みが他のものより小さい。 According to Table 2, since Samples 1 to 3 employ thioethanol as an additive, the carbon content, average particle size, special grain boundary ratio, and Schmitt factor are within the optimum value range. In Sample 9, since the silver plating bath is a sodium bath unlike Samples 1 to 8, the crystal orientation is changed and the Schmit factor is smaller than those of other samples. In sample 5, the thickness of the nickel plating layer is smaller than that of the other samples, and in contrast, sample 6 is larger. In Sample 7, the thickness of the silver plating layer is smaller than the others.
次いで、これらの試料につき、ビッカース強度、接触抵抗を測定し、曲げ加工性を評価した。
ビッカース硬度は、ミツトヨ製マイクロビッカース硬度計を用いて荷重30gfにて銀めっき層表面から測定した。試料作製直後(初期ビッカース硬度とする)と、試料を150℃で1000時間放置した後のそれぞれについて測定した。
接触抵抗は、150℃で1000時間放置した試料につき、山崎精機製接点シミュレーターCRS−1を使用し、接点荷重50g、電流200mAの条件で4端子法にて測定した。
Subsequently, Vickers strength and contact resistance were measured for these samples, and bending workability was evaluated.
The Vickers hardness was measured from the surface of the silver plating layer with a load of 30 gf using a Mitutoyo micro Vickers hardness tester. Measurements were made immediately after sample preparation (initial Vickers hardness) and after the sample was left at 150 ° C. for 1000 hours.
The contact resistance was measured by a 4-terminal method using a contact simulator CRS-1 manufactured by Yamazaki Seiki for a sample left at 150 ° C. for 1000 hours under the conditions of a contact load of 50 g and a current of 200 mA.
曲げ加工性については、試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具を用い、圧延方向に対して直角方向となるように9.8×103Nの荷重で曲げ加工を施した。その後、実体顕微鏡にて観察を行った。曲げ加工性評価は、試験後の曲げ加工部に発生したクラックにより銅合金母材の露出が認められないレベルを「良」と評価し、発生したクラックにより銅合金母材が露出しているレベルを「不良」と評価した。
これらの測定結果、評価結果を表3に示す。
Regarding the bending workability, the test piece was cut out so that the rolling direction was long, and using a W bending test jig defined in JISH3110, 9.8 × 10 3 N so as to be perpendicular to the rolling direction. Bending was performed with a load of. Then, it observed with the stereomicroscope. Bending workability is evaluated as “good” when the copper alloy base material is not exposed due to cracks occurring in the bent part after the test, and the level where the copper alloy base material is exposed due to the generated cracks. Was evaluated as “bad”.
These measurement results and evaluation results are shown in Table 3.
この表3からわかるように、試料1〜3については初期のビッカース硬度が120以上であり、加熱後も硬度がほとんど変化せず、接触抵抗も1mΩ以下と、非常に良い値をとっている。試料4については接触抵抗は優れているものの、シュミットファクター評価が最適値から外れているため、ビッカース硬度がやや低い。試料5はニッケルめっき層が薄いため、接触抵抗が高いが、実用上の問題はないと考えられる。試料6はニッケルめっき層が厚すぎるため、部分的に母材の露出が認められており、試料10と比較すると曲げ加工性がやや劣る結果となった。試料7は銀めっき層の厚みが不足しているため、接触抵抗がやや高いが、実用上の問題はないと考えられる。試料8は最適条件の銀めっき層をリフロー錫めっき端子材の上に施したが、優れた特性を示している。試料9は銀めっき浴にナトリウム浴を用いたため硬度が劣っていた。試料10に関しては、アンチモンを共析させたため、初期のビッカース硬度は優れているが、加熱後に硬度が大幅に低下し、なおかつアンチモン酸化膜が表面に形成したため接触抵抗が悪化した。また銀めっき層が硬いため曲げ加工性が劣っていた。
As can be seen from Table 3, samples 1 to 3 have an initial Vickers hardness of 120 or more, hardly change after heating, and have a very good value of 1 mΩ or less in contact resistance. Although the contact resistance of Sample 4 is excellent, the Vickers hardness is slightly low because the Schmitt factor evaluation deviates from the optimum value. Since the sample 5 has a thin nickel plating layer, the contact resistance is high, but it is considered that there is no practical problem. In Sample 6, since the nickel plating layer was too thick, the base material was partially exposed, and the bending workability was slightly inferior to Sample 10. Sample 7 has a slightly high contact resistance due to the insufficient thickness of the silver plating layer, but it is considered that there is no practical problem. In Sample 8, a silver plating layer under optimum conditions was applied on the reflow tin plating terminal material, and it showed excellent characteristics. Sample 9 was inferior in hardness because a sodium bath was used as the silver plating bath. Regarding sample 10, the initial Vickers hardness was excellent because antimony was co-deposited, but the hardness decreased significantly after heating, and the contact resistance deteriorated because an antimony oxide film was formed on the surface. Moreover, since the silver plating layer was hard, bending workability was inferior.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047102A JP6380174B2 (en) | 2015-03-10 | 2015-03-10 | Silver plated copper terminal material and terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015047102A JP6380174B2 (en) | 2015-03-10 | 2015-03-10 | Silver plated copper terminal material and terminal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016166396A true JP2016166396A (en) | 2016-09-15 |
JP6380174B2 JP6380174B2 (en) | 2018-08-29 |
Family
ID=56897519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015047102A Active JP6380174B2 (en) | 2015-03-10 | 2015-03-10 | Silver plated copper terminal material and terminal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6380174B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020002429A (en) * | 2018-06-28 | 2020-01-09 | 三菱伸銅株式会社 | Conductive member for connector terminal and connector terminal |
JP2020105551A (en) * | 2018-12-26 | 2020-07-09 | 三菱マテリアル株式会社 | Terminal material for connector |
WO2020202718A1 (en) * | 2019-03-29 | 2020-10-08 | Dowaメタルテック株式会社 | Plated material and method for manufacturing same |
JP2021055128A (en) * | 2019-09-27 | 2021-04-08 | 三菱マテリアル株式会社 | Copper alloy for electronic and electric device, copper alloy sheet and bar material for electronic and electric device, component for electronic and electric device, terminal, and bus bar |
WO2021166965A1 (en) * | 2020-02-19 | 2021-08-26 | Jx金属株式会社 | Silver plating material, contact or terminal component, and autonomous vehicle |
WO2021166964A1 (en) * | 2020-02-19 | 2021-08-26 | Jx金属株式会社 | Silver-plated material and method for producing same, contact or terminal component, and automobile |
WO2021171818A1 (en) * | 2020-02-25 | 2021-09-02 | Dowaメタルテック株式会社 | Silver-plated material and method for producing same |
JP2021130856A (en) * | 2020-02-20 | 2021-09-09 | 三菱マテリアル株式会社 | Connector terminal material |
JP2021130866A (en) * | 2020-02-19 | 2021-09-09 | Jx金属株式会社 | Silver-plated material and method for producing the same, contact or terminal component, and automobile |
JP2021130867A (en) * | 2020-02-19 | 2021-09-09 | Jx金属株式会社 | Silver-plated material, contact or terminal component, and automobile |
US11211730B2 (en) | 2019-05-16 | 2021-12-28 | Autonetworks Technologies, Ltd. | Connector terminal, electrical wire with terminal, and terminal pair |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6916971B1 (en) * | 2020-09-15 | 2021-08-11 | Dowaメタルテック株式会社 | Silver plating material and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127641A (en) * | 2006-11-22 | 2008-06-05 | Dowa Metaltech Kk | Method for producing composite plated material |
JP2013231228A (en) * | 2012-04-06 | 2013-11-14 | Autonetworks Technologies Ltd | Plated member, plated terminal for connector, method for producing plated member, and method for producing plated terminal for connector |
WO2014054817A1 (en) * | 2012-10-05 | 2014-04-10 | 古河電気工業株式会社 | Silver reflection film, light reflection member, and manufacturing method for light reflection member |
JP2014181362A (en) * | 2013-03-18 | 2014-09-29 | Mitsubishi Materials Corp | Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment |
-
2015
- 2015-03-10 JP JP2015047102A patent/JP6380174B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008127641A (en) * | 2006-11-22 | 2008-06-05 | Dowa Metaltech Kk | Method for producing composite plated material |
JP2013231228A (en) * | 2012-04-06 | 2013-11-14 | Autonetworks Technologies Ltd | Plated member, plated terminal for connector, method for producing plated member, and method for producing plated terminal for connector |
WO2014054817A1 (en) * | 2012-10-05 | 2014-04-10 | 古河電気工業株式会社 | Silver reflection film, light reflection member, and manufacturing method for light reflection member |
JP2014181362A (en) * | 2013-03-18 | 2014-09-29 | Mitsubishi Materials Corp | Copper alloy for electronic/electric equipment, copper alloy thin sheet for electronic/electric equipment and conductive part and terminal for electronic/electric equipment |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020002429A (en) * | 2018-06-28 | 2020-01-09 | 三菱伸銅株式会社 | Conductive member for connector terminal and connector terminal |
JP7087732B2 (en) | 2018-06-28 | 2022-06-21 | 三菱マテリアル株式会社 | Conductive member for connector terminal and connector terminal |
JP2020105551A (en) * | 2018-12-26 | 2020-07-09 | 三菱マテリアル株式会社 | Terminal material for connector |
JP7172583B2 (en) | 2018-12-26 | 2022-11-16 | 三菱マテリアル株式会社 | Terminal materials for connectors |
US11898263B2 (en) | 2019-03-29 | 2024-02-13 | Dowa Metaltech Co., Ltd. | Plated product and method for producing same |
JP2020164909A (en) * | 2019-03-29 | 2020-10-08 | Dowaメタルテック株式会社 | Plated material and manufacturing method of the same |
JP7364755B2 (en) | 2019-03-29 | 2023-10-18 | Dowaメタルテック株式会社 | Plating material and its manufacturing method |
JP7195201B2 (en) | 2019-03-29 | 2022-12-23 | Dowaメタルテック株式会社 | Plating material and its manufacturing method |
JP2022174108A (en) * | 2019-03-29 | 2022-11-22 | Dowaメタルテック株式会社 | Plated material and manufacturing method of the same |
WO2020202718A1 (en) * | 2019-03-29 | 2020-10-08 | Dowaメタルテック株式会社 | Plated material and method for manufacturing same |
US11211730B2 (en) | 2019-05-16 | 2021-12-28 | Autonetworks Technologies, Ltd. | Connector terminal, electrical wire with terminal, and terminal pair |
JP2021055128A (en) * | 2019-09-27 | 2021-04-08 | 三菱マテリアル株式会社 | Copper alloy for electronic and electric device, copper alloy sheet and bar material for electronic and electric device, component for electronic and electric device, terminal, and bus bar |
JP7351171B2 (en) | 2019-09-27 | 2023-09-27 | 三菱マテリアル株式会社 | Copper alloys for electronic and electrical equipment, copper alloy sheets and strips for electronic and electrical equipment, parts for electronic and electrical equipment, terminals, and bus bars |
WO2021166965A1 (en) * | 2020-02-19 | 2021-08-26 | Jx金属株式会社 | Silver plating material, contact or terminal component, and autonomous vehicle |
JP2021130867A (en) * | 2020-02-19 | 2021-09-09 | Jx金属株式会社 | Silver-plated material, contact or terminal component, and automobile |
JP2021130866A (en) * | 2020-02-19 | 2021-09-09 | Jx金属株式会社 | Silver-plated material and method for producing the same, contact or terminal component, and automobile |
JP7264849B2 (en) | 2020-02-19 | 2023-04-25 | Jx金属株式会社 | Silver-plated materials, contact or terminal parts, and automobiles |
WO2021166964A1 (en) * | 2020-02-19 | 2021-08-26 | Jx金属株式会社 | Silver-plated material and method for producing same, contact or terminal component, and automobile |
JP7040544B2 (en) | 2020-02-20 | 2022-03-23 | 三菱マテリアル株式会社 | Terminal material for connectors |
JP2021130856A (en) * | 2020-02-20 | 2021-09-09 | 三菱マテリアル株式会社 | Connector terminal material |
WO2021171818A1 (en) * | 2020-02-25 | 2021-09-02 | Dowaメタルテック株式会社 | Silver-plated material and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP6380174B2 (en) | 2018-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6380174B2 (en) | Silver plated copper terminal material and terminal | |
JP6304447B2 (en) | Tin-plated copper terminal material and terminal and wire terminal structure | |
JP6445895B2 (en) | Sn plating material and method for producing the same | |
JP5789207B2 (en) | Copper alloy plate with Sn coating layer for fitting type connection terminal and fitting type connection terminal | |
US10801115B2 (en) | Tinned copper terminal material, terminal, and electrical wire end part structure | |
KR102547165B1 (en) | Sn plating material and its manufacturing method | |
JP2009108389A (en) | Sn-PLATED MATERIAL FOR ELECTRONIC PARTS | |
JP6226037B2 (en) | Manufacturing method of copper terminal material with tin plating | |
JP6279170B1 (en) | Surface treatment material, method for producing the same, and component formed using the surface treatment material | |
JP6615350B2 (en) | Surface treatment material and parts produced using the same | |
CN110997985A (en) | Silver-coated membrane terminal material and silver-coated membrane terminal | |
JP6501039B2 (en) | Connector terminal material and terminal and wire end structure | |
JP6620897B2 (en) | Tin-plated copper terminal material and terminal and wire terminal structure | |
JP6535136B2 (en) | SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME | |
WO2018212174A1 (en) | Tin-plated copper terminal material, terminal, and power cable terminal structure | |
JP7121232B2 (en) | Copper terminal material, copper terminal, and method for producing copper terminal material | |
JP5761400B1 (en) | Wire for connector pin, method for manufacturing the same, and connector | |
JP2018104821A (en) | Surface treatment material and component produced thereby | |
JP2018016878A (en) | Manufacturing method of tin plating copper terminal material | |
JPWO2017038825A1 (en) | Plating material excellent in heat resistance and method for producing the same | |
JP5714465B2 (en) | Sn plating material and method for producing the same | |
JP2020128575A (en) | Terminal material for connector, terminal for connector, and method of producing terminal material for connector | |
JP2020056090A (en) | Anticorrosive terminal material, manufacturing method therefor, and anticorrosive terminal and wire terminal part structure | |
JP2018104777A (en) | Copper plate with coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6380174 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |