JP2018016878A - Manufacturing method of tin plating copper terminal material - Google Patents

Manufacturing method of tin plating copper terminal material Download PDF

Info

Publication number
JP2018016878A
JP2018016878A JP2016150741A JP2016150741A JP2018016878A JP 2018016878 A JP2018016878 A JP 2018016878A JP 2016150741 A JP2016150741 A JP 2016150741A JP 2016150741 A JP2016150741 A JP 2016150741A JP 2018016878 A JP2018016878 A JP 2018016878A
Authority
JP
Japan
Prior art keywords
tin
layer
zinc
plating
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150741A
Other languages
Japanese (ja)
Other versions
JP6743556B2 (en
Inventor
賢治 久保田
Kenji Kubota
賢治 久保田
圭栄 樽谷
Yoshie Tarutani
圭栄 樽谷
中矢 清隆
Kiyotaka Nakaya
清隆 中矢
Original Assignee
三菱マテリアル株式会社
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, Mitsubishi Materials Corp filed Critical 三菱マテリアル株式会社
Priority to JP2016150741A priority Critical patent/JP6743556B2/en
Publication of JP2018016878A publication Critical patent/JP2018016878A/en
Application granted granted Critical
Publication of JP6743556B2 publication Critical patent/JP6743556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a tin plating terminal material having no generation of electric corrosion by using copper or a copper alloy substrate as a terminal which is crimped to a terminal of a wire consisting of an aluminum wire material.SOLUTION: A manufacturing method has a ground layer forming process for forming a ground layer consisting of nickel or nickel alloy with a nickel percentage content of 80 mass% or more with thickness of 0.1 μm to 5.0 μm on a surface of a substrate consisting of copper or copper alloy, a tin zinc alloy layer forming process for forming a tin zinc alloy layer with zinc percentage content of 3 mass% to 35 mass% with thickness of 0.1 μm to 5.0 μm on the ground layer and a tin plating process for forming a tin layer by conducting tin plating on the tin zinc alloy layer.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム線材からなる電線の端末に圧着される端子として用いられ、銅又は銅合金基材の表面に錫又は錫合金からなるめっきを施した錫めっき付銅端子材の製造方法に関する。   The present invention relates to a method of manufacturing a tin-plated copper terminal material that is used as a terminal to be crimped to an end of an electric wire made of an aluminum wire, and in which a copper or copper alloy base material is plated with tin or a tin alloy.
従来、銅又は銅合金で構成されている電線の端末部に、銅又は銅合金で構成された端子を圧着し、この端子を別の機器の端子に接続することにより、その電線を上記別の機器に接続することが行われている。また、電線の軽量化等のために、電線を、銅又は銅合金に代えて、アルミニウム又はアルミニウム合金で構成している場合がある。
例えば、特許文献1には、アルミニウム合金からなる自動車ワイヤーハーネス用アルミ電線が開示されている。
Conventionally, by crimping a terminal made of copper or a copper alloy to the terminal part of an electric wire made of copper or a copper alloy, and connecting the terminal to a terminal of another device, Connecting to equipment is done. Further, in order to reduce the weight of the electric wire, the electric wire may be made of aluminum or aluminum alloy instead of copper or copper alloy.
For example, Patent Document 1 discloses an aluminum wire for an automobile wire harness made of an aluminum alloy.
ところで、電線(導線)をアルミニウム又はアルミニウム合金で構成し、端子を銅又は銅合金で構成すると、水が圧着部(端子と電線との係合部)に入ったときに、異金属の電位差によるガルバニック電食が発生することがある。そして、その電線の腐食に伴い、圧着部での電気抵抗値の上昇や固着力(端子と電線との結合力)の低下が生ずるおそれがある。   By the way, when the electric wire (conducting wire) is made of aluminum or an aluminum alloy and the terminal is made of copper or a copper alloy, when water enters the crimping portion (engagement portion between the terminal and the electric wire), it depends on the potential difference between different metals. Galvanic electric corrosion may occur. And with the corrosion of the electric wire, there is a risk that an increase in the electric resistance value at the crimping portion and a decrease in the adhering force (bonding force between the terminal and the electric wire) may occur.
この腐食の防止法としては、例えば特許文献2や特許文献3記載のものがある。
特許文献2には、鉄または鉄合金からなる基材層と、最も外側に形成された錫層との間に、基材層に対して犠牲防食作用を有する金属からなる防食層が形成された端子が開示されている。防食層としては亜鉛または亜鉛合金からなる層が記載されている。
Examples of methods for preventing this corrosion include those described in Patent Document 2 and Patent Document 3.
In Patent Document 2, an anticorrosion layer made of a metal having a sacrificial anticorrosive action on the base material layer is formed between the base material layer made of iron or an iron alloy and the tin layer formed on the outermost side. A terminal is disclosed. As the anticorrosion layer, a layer made of zinc or a zinc alloy is described.
特許文献3には、コネクタ用電気接点材料として、金属材料よりなる基材と、基材上に形成された合金層と、合金層の表面に形成された導電性皮膜層とを有しており、その合金層が、Snを必須に含有し、さらにCu、Zn、Co、Ni及びPdから選択される1種または2種以上の添加元素Mを含んでおり、導電性皮膜層4は、Sn32(OH)2の水酸化酸化物を含んでいるものが開示されている。
また、SnにZnを添加した例としては、特許文献4に、銅又は銅合金の表面に下地Niめっき層、中間Sn−Cuめっき層及び表面Snめっき層を順に有するSnめっき材であって、下地Niめっき層はNi又はNi合金で構成され、中間Sn−Cuめっき層は少なくとも表面Snめっき層に接する側にSn−Cu−Zn合金層が形成されたSn−Cu系合金で構成され、表面Snめっき層はZnを5〜1000質量ppm含有するSn合金で構成され、最表面にZn濃度が0.1質量%を超えて10質量%までのZn高濃度層をさらに有するSnめっき材が開示されている。
Patent Document 3 has a base material made of a metal material, an alloy layer formed on the base material, and a conductive coating layer formed on the surface of the alloy layer as an electrical contact material for the connector. The alloy layer essentially contains Sn, and further contains one or more additive elements M selected from Cu, Zn, Co, Ni and Pd, and the conductive coating layer 4 is made of Sn. What contains 3 O 2 (OH) 2 hydroxide oxide is disclosed.
In addition, as an example of adding Zn to Sn, in Patent Document 4, a Sn plating material having a base Ni plating layer, an intermediate Sn—Cu plating layer, and a surface Sn plating layer on the surface of copper or a copper alloy in order, The underlying Ni plating layer is made of Ni or a Ni alloy, and the intermediate Sn—Cu plating layer is made of a Sn—Cu alloy in which a Sn—Cu—Zn alloy layer is formed on at least the side in contact with the surface Sn plating layer. An Sn plating layer is composed of an Sn alloy containing 5 to 1000 ppm by mass of Zn, and an Sn plating material further having a Zn high concentration layer with a Zn concentration of more than 0.1 to 10% by mass on the outermost surface is disclosed. Has been.
特開2004−134212号公報JP 2004-134212 A 特開2013−218866号公報JP 2013-218866 A 特開2015−133306号公報Japanese Patent Laid-Open No. 2015-133306
しかしながら、特許文献2のように下地に亜鉛または亜鉛合金からなる防食層を設けた場合、防食層上にSnめっきを実施する際にSn置換が生じて防食層とSnめっきの密着性が悪くなるという問題があった。特許文献3のようにSnSn(OH)2の水酸化酸化物層を設けた場合も、腐食環境や加熱環境にさらされた際に速やかに水酸化酸化物層に欠損が生じるため持続性が低いという問題があった。さらに特許文献4のようにSn−Cu合金層上にZn−Sn合金を積層し、再表層にZn高濃度層をもつものはSn−Zn合金めっきの生産性が悪く、Sn−Cu合金層のCuが表層に露出した場合にアルミニウム線に対する防食効果がなくなるという問題があった。 However, when an anticorrosion layer made of zinc or a zinc alloy is provided on the base as in Patent Document 2, Sn substitution occurs when Sn plating is performed on the anticorrosion layer, resulting in poor adhesion between the anticorrosion layer and the Sn plating. There was a problem. Even when a SnSn 3 O 2 (OH) 2 hydroxide oxide layer is provided as in Patent Document 3, the hydroxide oxide layer is rapidly damaged when exposed to a corrosive environment or a heating environment. There was a problem of low nature. Further, as in Patent Document 4, a Zn—Sn alloy layered on a Sn—Cu alloy layer and a Zn high-concentration layer on the surface layer has poor productivity of Sn—Zn alloy plating. When Cu is exposed on the surface layer, there is a problem that the anticorrosive effect on the aluminum wire is lost.
本発明は、前述の課題に鑑みてなされたものであって、アルミニウム線材からなる電線の端末に圧着される端子として銅又は銅合金基材を用いて電食の生じない錫めっき付端子材の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is a tin-plated terminal material that does not cause electrolytic corrosion using a copper or copper alloy base material as a terminal to be crimped to an end of an electric wire made of an aluminum wire. An object is to provide a manufacturing method.
本発明の錫めっき付銅端子材の製造方法は、銅又は銅合金からなる基材の上に、亜鉛含有率が3質量%以上35質量%以下の錫亜鉛合金層を0.1μm以上5.0μm以下の厚さで形成する錫亜鉛合金層形成工程と、前記錫亜鉛合金層の上に錫めっきを施して錫層を形成する錫めっき工程とを有する。   In the method for producing a tin-plated copper terminal material of the present invention, a tin-zinc alloy layer having a zinc content of 3% by mass or more and 35% by mass or less is formed on a substrate made of copper or a copper alloy by 0.1 μm or more and 5. A tin-zinc alloy layer forming step of forming a thickness of 0 μm or less; and a tin plating step of forming a tin layer by applying tin plating on the tin-zinc alloy layer.
この錫めっき付銅端子材の製造方法においては、錫めっき工程の前に錫亜鉛合金層を形成することにより、錫めっき時の置換反応を抑制し、錫層の密着性を向上させることができる。そして、錫層の下に形成される錫亜鉛合金層中の金属亜鉛が錫層中に拡散するため、表面の錫層に、錫よりも腐食電位がアルミニウムと近い金属亜鉛が含有され、アルミニウム製電線との接触による電食の発生を抑えることができる。   In this method for producing a tin-plated copper terminal material, by forming a tin-zinc alloy layer before the tin plating step, the substitution reaction during tin plating can be suppressed and the adhesion of the tin layer can be improved. . And since the metallic zinc in the tin-zinc alloy layer formed under the tin layer diffuses into the tin layer, the surface tin layer contains metallic zinc whose corrosion potential is closer to that of aluminum than tin. Generation of electrolytic corrosion due to contact with the electric wire can be suppressed.
この場合、錫亜鉛合金層中の亜鉛含有率が35質量%を超えると、錫めっき時に置換反応が発生し、錫層の密着性が著しく低下するとともに、亜鉛が過剰に拡散して接触抵抗が悪化する。亜鉛含有率が3質量%未満では亜鉛が十分に拡散せず、表面の腐食電位を卑化させる効果が得られない。
また、錫亜鉛合金層の厚みが0.1μm未満では、錫層表面の腐食電位を卑化させる効果がなく、5.0μmを超えると端子へのとプレス加工時に割れが発生するおそれがある。
なお、基材と表面の錫層との間に、アルミニウムと腐食電位が比較的近い錫亜鉛合金層が形成されているので、錫層が消失して錫亜鉛合金層が露出したとしても、電食の発生を抑えることができる。
In this case, if the zinc content in the tin-zinc alloy layer exceeds 35% by mass, a substitution reaction occurs during tin plating, the adhesion of the tin layer is significantly reduced, and zinc diffuses excessively, resulting in contact resistance. Getting worse. If the zinc content is less than 3% by mass, zinc is not sufficiently diffused, and the effect of lowering the corrosion potential of the surface cannot be obtained.
Further, if the thickness of the tin-zinc alloy layer is less than 0.1 μm, there is no effect of lowering the corrosion potential on the surface of the tin layer, and if it exceeds 5.0 μm, there is a possibility that cracking may occur during pressing into the terminal.
In addition, since a tin-zinc alloy layer having a corrosion potential relatively close to that of aluminum is formed between the base material and the surface tin layer, even if the tin layer disappears and the tin-zinc alloy layer is exposed, the electric The occurrence of food can be suppressed.
本発明の錫めっき付銅端子材の製造方法において、前記錫亜鉛合金層形成工程の前に、前記基材の表面にニッケル含有率が80質量%以上のニッケル又はニッケル合金からなる下地層を0.1μm以上5.0μm以下の厚さで形成する下地層形成工程を有するとよい。   In the method for producing a tin-plated copper terminal material according to the present invention, before the tin-zinc alloy layer forming step, a base layer made of nickel or a nickel alloy having a nickel content of 80% by mass or more is formed on the surface of the base material. It is preferable to have a base layer forming step of forming a thickness of 1 μm or more and 5.0 μm or less.
基材にニッケル又はニッケル合金からなる下地層を設けた上で錫亜鉛合金層を形成することにより、錫亜鉛合金層の密着性が高められる。下地層の厚みが0.1μm未満では錫亜鉛合金層の密着性を高める効果に乏しく、5.0μmを超える厚さで成膜しても効果は飽和する。その下地層中のニッケル含有率は80質量%未満では密着性を高める効果に乏しい。
また、この下地層を設けることにより、銅又は銅合金からなる基材から錫亜鉛合金層や錫層への銅の拡散を防止する効果もある。
The adhesion of the tin-zinc alloy layer is enhanced by forming the tin-zinc alloy layer after providing the base layer made of nickel or nickel alloy on the base material. If the thickness of the underlayer is less than 0.1 μm, the effect of increasing the adhesion of the tin-zinc alloy layer is poor, and the effect is saturated even if the film is formed with a thickness exceeding 5.0 μm. If the nickel content in the underlayer is less than 80% by mass, the effect of improving the adhesion is poor.
Further, the provision of the underlayer also has an effect of preventing the diffusion of copper from the base material made of copper or copper alloy to the tin-zinc alloy layer or tin layer.
本発明の錫めっき付銅端子材の製造方法において、前記錫めっき工程の後に、40℃以上160℃以下に30分以上保持して、前記錫亜鉛合金層の亜鉛を前記錫層に拡散させる拡散処理工程を有するとよい。   In the method for producing a copper terminal material with tin plating according to the present invention, after the tin plating step, diffusion is performed by diffusing zinc in the tin-zinc alloy layer into the tin layer by holding at 40 ° C. or more and 160 ° C. or less for 30 minutes or more. It is good to have a processing step.
前述した錫亜鉛合金層中の金属亜鉛の拡散は、常温においても生じるが、この温度条件で拡散処理を施すことにより、亜鉛の拡散を速やかに生じさせることができる。40℃未満では亜鉛を短時間で拡散させる効果に乏しい。40℃以上の温度に30分以上曝せば、錫層の表面に金属亜鉛の濃縮層を確実に形成することができる。160℃を超えると、逆に錫が錫亜鉛合金層側に拡散し、亜鉛の拡散を阻害する。さらに190℃を超えると錫層が溶融し、錫亜鉛合金層が溶融錫をはじいて、錫はじき箇所が発生するため好ましくない。   The diffusion of metallic zinc in the tin-zinc alloy layer described above occurs even at room temperature, but by performing diffusion treatment under this temperature condition, the diffusion of zinc can be promptly generated. Below 40 ° C., the effect of diffusing zinc in a short time is poor. When exposed to a temperature of 40 ° C. or more for 30 minutes or more, a concentrated layer of metallic zinc can be reliably formed on the surface of the tin layer. When the temperature exceeds 160 ° C., tin diffuses to the tin-zinc alloy layer side and inhibits the diffusion of zinc. Further, when the temperature exceeds 190 ° C., the tin layer is melted, the tin-zinc alloy layer repels molten tin, and a tin repelling portion is generated.
本発明の錫めっき付き銅端子材の製造方法において、前記基材は、予めプレス加工によりフープ材に形成されており、前記フープ材は、帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、端子に成形されるべき複数の端子用部材が前記キャリア部の長さ方向に間隔をおいて連結されているとよい。   In the method for manufacturing a tin-plated copper terminal material according to the present invention, the base material is previously formed into a hoop material by press working, and the hoop material is formed in a strip shape and in the length direction thereof. It is preferable that a plurality of terminal members to be formed on the terminal are connected to the along carrier part at intervals in the length direction of the carrier part.
予め端子用部材を加工しておくことにより、基材の端面も錫亜鉛合金層及び錫層が形成され、端面も含めて優れた防食効果を発揮することができる。   By processing the terminal member in advance, a tin-zinc alloy layer and a tin layer are formed on the end face of the base material, and an excellent anticorrosive effect can be exhibited including the end face.
本発明の錫めっき付き銅端子材の製造方法によれば、錫めっき工程の前に、錫亜鉛合金層を形成することにより、錫めっき時の置換反応を抑制し、錫層の密着性を向上させることができる。さらに、錫層中に金属亜鉛が拡散することにより、アルミニウム製電線と接触による電食の発生を抑えることができる。しかも、錫層の下の錫亜鉛合金層からの拡散により錫層中の金属亜鉛を高濃度に維持することができ、長期的に耐食性に優れた端子を形成することができる。   According to the method for producing a copper terminal material with tin plating of the present invention, by forming a tin-zinc alloy layer before the tin plating step, the substitution reaction during tin plating is suppressed and the adhesion of the tin layer is improved. Can be made. Furthermore, the occurrence of electrolytic corrosion due to contact with the aluminum electric wire can be suppressed by diffusion of metallic zinc into the tin layer. In addition, the metal zinc in the tin layer can be maintained at a high concentration by diffusion from the tin-zinc alloy layer under the tin layer, and a terminal having excellent corrosion resistance can be formed in the long term.
本発明に係る錫めっき付銅合金端子材の製造方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the copper alloy terminal material with a tin plating which concerns on this invention. 本発明の製造方法により製造される錫めっき付銅合金端子材の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically embodiment of the copper alloy terminal material with a tin plating manufactured by the manufacturing method of this invention. 実施形態の端子材の平面図である。It is a top view of the terminal material of an embodiment. 実施形態の端子材が適用される端子の例を示す斜視図である。It is a perspective view which shows the example of the terminal to which the terminal material of embodiment is applied. 図4の端子を圧着した電線の端末部を示す正面図である。It is a front view which shows the terminal part of the electric wire which crimped | bonded the terminal of FIG. 試料8について錫層を形成する前の断面の顕微鏡写真である。6 is a micrograph of a cross section of Sample 8 before forming a tin layer. 試料8について錫層を形成し、拡散処理をした後の断面の顕微鏡写真である。It is the microscope picture of the cross section after forming a tin layer about the sample 8 and carrying out the diffusion process.
本発明の実施形態の錫めっき付銅端子材の製造方法を説明する。
本実施形態の製造方法により形成される錫めっき付銅端子材1について説明しておくと、この錫めっき付銅端子材1は、図3に全体を示したように、複数の端子を成形するための帯板状のフープ材であり、長さ方向に沿うキャリア部21に、端子として成形すべき複数の端子用部材22がキャリア部21の長さ方向に間隔をおいて配置され、各端子用部材22が細幅の連結部23を介してキャリア部21に連結されている。各端子用部材22は例えば図4に示すような端子10の形状に成形され、連結部23から切断されることにより、端子10として完成する。
この端子10は、図4の例ではメス端子を示しており、先端から、オス端子(図示略)が嵌合される接続部11、電線12の露出した心線12aがかしめられる心線かしめ部13、電線12の被覆部12bがかしめられる被覆かしめ部14がこの順で一体に形成されている。
図5は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13が電線12の心線12aに直接接触することになる。
The manufacturing method of the tin-plated copper terminal material of embodiment of this invention is demonstrated.
The tin-plated copper terminal material 1 formed by the manufacturing method of this embodiment will be described. The tin-plated copper terminal material 1 is formed with a plurality of terminals as shown in FIG. A plurality of terminal members 22 to be molded as terminals are arranged at intervals in the length direction of the carrier portion 21 on the carrier portion 21 along the length direction. The member 22 is connected to the carrier portion 21 via a narrow connecting portion 23. Each terminal member 22 is formed into the shape of the terminal 10 as shown in FIG. 4, for example, and is cut from the connecting portion 23 to complete the terminal 10.
The terminal 10 is a female terminal in the example of FIG. 4, and a connecting portion 11 into which a male terminal (not shown) is fitted from the tip, and a caulking portion in which the exposed core wire 12 a of the electric wire 12 is caulked. 13. A covering caulking portion 14 to which the covering portion 12b of the electric wire 12 is caulked is integrally formed in this order.
FIG. 5 shows a terminal portion structure in which the terminal 10 is caulked to the electric wire 12, and the core wire caulking portion 13 is in direct contact with the core wire 12 a of the electric wire 12.
そして、この錫めっき付銅端子材1は、図2に模式的に示したように、銅又は銅合金からなる基材2上にニッケル又はニッケル合金からなる下地層3、錫亜鉛合金層4、錫層5がこの順に積層されている。   And this copper terminal material 1 with a tin plating, as typically shown in FIG. 2, on the base material 2 which consists of copper or a copper alloy, the base layer 3 which consists of nickel or a nickel alloy, the tin zinc alloy layer 4, Tin layer 5 is laminated in this order.
次に、この錫めっき付銅端子材1の製造方法について説明する。
基材2は、銅又は銅合金からなるものであれば、特に、その組成が限定されるものではない。
そして、この基材2をプレス加工等によって図3に示す形状のフープ材に加工し(基材加工工程)、このフープ材にニッケル又はニッケル合金からなる下地層3を形成するための下地層形成工程、錫亜鉛合金層4を形成するための錫亜鉛合金層形成工程、錫又は錫合金からなる錫層5を形成する錫めっき工程、錫層5を形成した後、所定の温度に一定時間保持することにより錫亜鉛合金層4の亜鉛を錫層5に拡散させる拡散処理工程をこの順序で施す。
以下、図1のフローチャートにしたがって個々に説明する。
<基材加工工程>
この板材に裁断、穴明け等の加工を施すことにより、図3に示すような、キャリア部21に複数の端子用部材22を連結部23を介して連結されてなるフープ材に成形する。プレス加工後、脱脂、酸洗等の処理をすることによって表面を清浄にする。
Next, the manufacturing method of this copper terminal material 1 with a tin plating is demonstrated.
If the base material 2 consists of copper or a copper alloy, the composition in particular will not be limited.
Then, the base material 2 is processed into a hoop material having a shape shown in FIG. 3 by press working or the like (base material processing step), and the base layer formation for forming the base layer 3 made of nickel or a nickel alloy is formed on the hoop material. A step, a tin-zinc alloy layer forming step for forming the tin-zinc alloy layer 4, a tin plating step for forming a tin layer 5 made of tin or a tin alloy, and a predetermined temperature after holding the tin layer 5 By doing so, the diffusion treatment process for diffusing zinc of the tin-zinc alloy layer 4 into the tin layer 5 is performed in this order.
Hereinafter, each will be described according to the flowchart of FIG.
<Base material processing step>
By processing the plate material such as cutting and punching, a plurality of terminal members 22 are formed into a hoop material connected to the carrier portion 21 via the connecting portion 23 as shown in FIG. After pressing, the surface is cleaned by degreasing, pickling and the like.
<下地層形成工程>
基材加工工程後のフープ材に下地層3を形成する。
この下地層3を形成するためのニッケル又はニッケル合金めっきは緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。ニッケル合金めっきとしてはニッケルタングステン(Ni−W)合金、ニッケルリン(Ni−P)合金、ニッケルコバルト(Ni−Co)合金、ニッケルクロム(Ni−Cr)合金、ニッケル鉄(Ni−Fe)合金、ニッケル亜鉛(Ni−Zn)合金、ニッケルボロン(Ni−B)合金などを利用することができる。
端子10へのプレス曲げ性と銅に対するバリア性を勘案すると、スルファミン酸浴から得られる純ニッケルめっきが望ましい。
このようにして形成される下地層3は、厚さが0.1μm以上5.0μm以下で、ニッケル含有率は80質量%以上である。この下地層3は、基材2から亜鉛ニッケル合金層4や錫層5への銅の拡散を防止する機能があり、その厚みが0.1μm未満では銅の拡散を防止する効果に乏しく、5.0μmを超えるとプレス加工時に割れが生じ易い。下地層3の厚さは、0.3μm以上2.0μm以下がより好ましい。
また、そのニッケル含有率は80質量%未満では銅が亜鉛ニッケル合金層4や錫層5へ拡散することを防止する効果が小さい。このニッケル含有率は90質量%以上とするのがより好ましい。
<Underlayer formation process>
The base layer 3 is formed on the hoop material after the base material processing step.
The nickel or nickel alloy plating for forming the underlayer 3 is not particularly limited as long as a dense nickel-based film can be obtained. Electricity using a known watt bath, sulfamic acid bath, citric acid bath or the like can be used. It can be formed by plating. As nickel alloy plating, nickel tungsten (Ni-W) alloy, nickel phosphorus (Ni-P) alloy, nickel cobalt (Ni-Co) alloy, nickel chromium (Ni-Cr) alloy, nickel iron (Ni-Fe) alloy, A nickel zinc (Ni—Zn) alloy, a nickel boron (Ni—B) alloy, or the like can be used.
Considering the press bendability to the terminal 10 and the barrier property against copper, pure nickel plating obtained from a sulfamic acid bath is desirable.
The underlayer 3 thus formed has a thickness of 0.1 μm to 5.0 μm and a nickel content of 80% by mass or more. The underlayer 3 has a function of preventing copper diffusion from the base material 2 to the zinc-nickel alloy layer 4 and the tin layer 5, and is less effective in preventing copper diffusion when its thickness is less than 0.1 μm. If it exceeds 0.0 μm, cracking is likely to occur during press working. The thickness of the underlayer 3 is more preferably 0.3 μm or more and 2.0 μm or less.
Further, when the nickel content is less than 80% by mass, the effect of preventing copper from diffusing into the zinc-nickel alloy layer 4 and the tin layer 5 is small. The nickel content is more preferably 90% by mass or more.
<錫亜鉛合金層形成工程>
錫亜鉛合金層4を形成するための錫亜鉛合金めっきは、緻密な膜を所望の組成で得られるものであれば特に限定されず、公知のシアン浴、スルホコハク酸浴、グルコン酸浴、クエン酸浴、ピロリン酸浴、ほうフッ化物浴を用いることが可能である。めっきに代えて、スパッタリング法や蒸着法で成膜することも可能である。
この工程により形成される錫亜鉛合金層4は、亜鉛含有率が3質量%以上35質量%以下で、厚みが0.1μm以上5.0μm以下である。
この錫亜鉛合金層4中の亜鉛含有率が35質量%を超えると、錫層5を形成するための後述する錫めっき時に置換反応が発生し、錫めっき(錫層)の密着性が著しく低下する。また、この錫亜鉛合金層4中の亜鉛は、錫層5中に拡散して、表面の腐食電位を卑化させる効果があるが、亜鉛含有率が35質量%を超えると、亜鉛が過剰に拡散して接触抵抗が悪化する。亜鉛含有率が3質量%未満では亜鉛が十分に拡散せず、表面の腐食電位を卑化させる効果が得られない。この錫亜鉛合金層4中の亜鉛含有率は、5質量%以上15質量%以下とするのがより好ましい。
なお、錫亜鉛合金層4中の亜鉛は、後述の拡散処理により大半が錫層5へ拡散するため、拡散処理後は錫亜鉛合金層4中の亜鉛濃度は大きく低下する。
また、錫亜鉛合金層4の厚みが0.1μm未満では、錫層5表面の腐食電位を卑化させる効果がなく、5.0μmを超えると端子へのとプレス加工時に割れが発生するおそれがある。
<Tin zinc alloy layer formation process>
The tin-zinc alloy plating for forming the tin-zinc alloy layer 4 is not particularly limited as long as a dense film can be obtained with a desired composition. Known cyan bath, sulfosuccinic acid bath, gluconic acid bath, citric acid It is possible to use a bath, pyrophosphoric acid bath or borofluoride bath. It is also possible to form a film by sputtering or vapor deposition instead of plating.
The tin-zinc alloy layer 4 formed by this step has a zinc content of 3% by mass to 35% by mass and a thickness of 0.1 μm to 5.0 μm.
When the zinc content in the tin-zinc alloy layer 4 exceeds 35% by mass, a substitution reaction occurs during tin plating described later for forming the tin layer 5, and the adhesion of the tin plating (tin layer) is significantly reduced. To do. Further, the zinc in the tin-zinc alloy layer 4 has the effect of diffusing into the tin layer 5 and lowering the corrosion potential of the surface. However, when the zinc content exceeds 35 mass%, the zinc is excessive. Diffusion causes contact resistance to deteriorate. If the zinc content is less than 3% by mass, zinc is not sufficiently diffused, and the effect of lowering the corrosion potential of the surface cannot be obtained. The zinc content in the tin-zinc alloy layer 4 is more preferably 5% by mass or more and 15% by mass or less.
In addition, since most zinc in the tin-zinc alloy layer 4 is diffused into the tin layer 5 by the diffusion treatment described later, the zinc concentration in the tin-zinc alloy layer 4 is greatly reduced after the diffusion treatment.
In addition, if the thickness of the tin-zinc alloy layer 4 is less than 0.1 μm, there is no effect of lowering the corrosion potential on the surface of the tin layer 5, and if it exceeds 5.0 μm, there is a possibility that cracks may occur during pressing into terminals. is there.
<錫めっき工程>
錫層5を形成するための錫又は錫合金めっきは、公知の方法により行うことができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴又はアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができる。
なお、高速でのめっき皮膜形成と、めっき皮膜の緻密さ及び亜鉛の拡散し易さを勘案すると、酸性の有機酸浴や硫酸浴を用いるのが好ましい。
この工程により形成される錫層5は、厚み0.1μm以上10μm以下が好ましく、薄過ぎるとはんだ濡れ性の低下および、接触抵抗の低下を招くおそれがあり、厚過ぎると、表面の動摩擦係数の増大を招き、コネクタ等での使用時の着脱抵抗が大きくなるおそれがある。
<Tin plating process>
Tin or tin alloy plating for forming the tin layer 5 can be performed by a known method. For example, an organic acid bath (for example, a phenol sulfonic acid bath, an alkane sulfonic acid bath or an alkanol sulfonic acid bath), borofluoric acid Electroplating can be performed using an acidic bath such as a bath, a halogen bath, a sulfuric acid bath, or a pyrophosphoric acid bath, or an alkaline bath such as a potassium bath or a sodium bath.
In view of the formation of the plating film at high speed, the denseness of the plating film, and the ease of diffusion of zinc, it is preferable to use an acidic organic acid bath or a sulfuric acid bath.
The thickness of the tin layer 5 formed by this process is preferably 0.1 μm or more and 10 μm or less. If it is too thin, there is a risk of lowering solder wettability and contact resistance. There is a risk that the attachment / detachment resistance at the time of use in a connector or the like increases.
<拡散処理工程>
この拡散処理工程は、素材の表面温度が40℃以上160℃以下となる温度で30分以上保持する。この拡散処理により、錫亜鉛合金層4中の亜鉛が錫層5中に拡散する。亜鉛の拡散は速やかに起こるため、40℃以上の温度に30分以上晒すことでよい。ただし、160℃を超えると逆に錫が錫亜鉛合金層4側に拡散し亜鉛の拡散を阻害する、さらに190℃を超えると錫亜鉛合金は溶融錫をはじき、錫層5に錫はじき箇所を形成するため、190℃を超える温度には加熱しない。
<Diffusion treatment process>
In this diffusion treatment step, the surface temperature of the material is kept at a temperature that is 40 ° C. or higher and 160 ° C. or lower for 30 minutes or longer. By this diffusion treatment, zinc in the tin-zinc alloy layer 4 diffuses into the tin layer 5. Since zinc diffusion occurs quickly, it may be exposed to a temperature of 40 ° C. or higher for 30 minutes or longer. However, when the temperature exceeds 160 ° C., tin diffuses to the tin-zinc alloy layer 4 side and inhibits the diffusion of zinc. When the temperature exceeds 190 ° C., the tin-zinc alloy repels molten tin, and the tin layer 5 has a location where tin repels. In order to form, it does not heat to the temperature exceeding 190 degreeC.
このようにして製造された錫めっき付銅端子材1は、全体としては基材2の上にニッケル又はニッケル合金からなる下地層3、錫亜鉛合金層4、錫層5がこの順に積層されている。
そして、プレス加工等によりフープ材のまま図4に示す端子10の形状に加工され、連結部23が切断されることにより、端子10に形成される。
図5は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13が電線12の心線12aに直接接触することになる。
The tin-plated copper terminal material 1 manufactured in this manner is obtained by laminating a base layer 3 made of nickel or a nickel alloy, a tin-zinc alloy layer 4 and a tin layer 5 in this order on a base material 2 as a whole. Yes.
And it forms into the terminal 10 by processing into the shape of the terminal 10 shown in FIG.
FIG. 5 shows a terminal portion structure in which the terminal 10 is caulked to the electric wire 12, and the core wire caulking portion 13 is in direct contact with the core wire 12 a of the electric wire 12.
この端子10は、表面の錫層5に、錫よりもアルミニウムと腐食電位が近い亜鉛が含有されていることから、アルミニウム製心線12aに圧着された状態であっても、電食の発生を防止することができる。この場合、図3のフープ材の状態でめっき処理し、熱処理したことから、端子10の端面も基材2が露出していないので、優れた防食効果を発揮することができる。
しかも、錫層5の下に錫亜鉛合金層4が形成されており、その亜鉛が錫層5中に拡散してくるので、錫層5中の亜鉛が高濃度に維持される。また、万一、摩耗等により錫層5の全部又は一部が消失した場合でも、その下の錫亜鉛合金層4はアルミニウムと腐食電位が近いので、電食の発生を抑えることができる。
Since this terminal 10 contains zinc whose corrosion potential is closer to that of aluminum than tin in the tin layer 5 on the surface, even if the terminal 10 is crimped to the aluminum core wire 12a, the occurrence of electrolytic corrosion is prevented. Can be prevented. In this case, since the plating treatment was performed in the state of the hoop material in FIG. 3 and the heat treatment was performed, the base material 2 was not exposed on the end surface of the terminal 10, and thus an excellent anticorrosion effect could be exhibited.
Moreover, since the tin-zinc alloy layer 4 is formed under the tin layer 5 and the zinc diffuses into the tin layer 5, the zinc in the tin layer 5 is maintained at a high concentration. Even if all or part of the tin layer 5 disappears due to wear or the like, the tin-zinc alloy layer 4 below has a corrosion potential close to that of aluminum, so that the occurrence of electrolytic corrosion can be suppressed.
なお、本発明は上記実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
上記実施形態では、錫めっき工程の後に拡散処理工程を設けたが、この拡散処理工程は必ずしも必要ではなく、拡散処理工程を経ないで端子に加工してもよい。前述の拡散処理工程を経ると、亜鉛が速やかに拡散して好ましいが、拡散処理工程を経ないでも、例えば10℃以上の常温に放置しておくことにより、錫亜鉛合金層4から金属亜鉛を錫層5に拡散させることができる。
また、電線12は導線が露出したままの裸電線、導線を心線として周囲を絶縁層で被覆した被覆電線のいずれにも適用することができる。本発明では、裸電線、被覆電線の心線のいずれをも含めて電線と称す。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
In the said embodiment, although the diffusion process process was provided after the tin plating process, this diffusion process process is not necessarily required and you may process into a terminal without passing through a diffusion process process. The zinc is preferably diffused quickly through the above-described diffusion treatment step. However, the metal zinc is removed from the tin-zinc alloy layer 4 by leaving it at a room temperature of 10 ° C. or higher, for example, without passing through the diffusion treatment step. It can be diffused into the tin layer 5.
Moreover, the electric wire 12 can be applied to any of a bare electric wire with a conductive wire exposed and a covered electric wire having a conductive wire as a core wire and a periphery covered with an insulating layer. In the present invention, both the bare wire and the core wire of the covered wire are referred to as an electric wire.
基材の銅板を電解脱脂、酸洗した後、下地層としてのニッケルめっき、錫亜鉛合金めっき、錫めっきを順に施した。各めっきの条件は以下のとおりとした。
また、これらのめっき処理により得られる下地層、錫亜鉛合金は表1に示す厚さとした。また、試料1,2,11〜13は下地層を形成せず、試料10は、錫亜鉛合金めっきを実施しなかった。
After electrolytic degreasing and pickling the copper plate of the base material, nickel plating, tin-zinc alloy plating, and tin plating as an underlayer were sequentially applied. The conditions for each plating were as follows.
The underlayer and tin-zinc alloy obtained by these plating treatments have the thicknesses shown in Table 1. Samples 1, 2, 11 to 13 did not form an underlayer, and sample 10 was not subjected to tin-zinc alloy plating.
<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:5g/L
ホウ酸:30g/L
・浴温:45℃
・電流密度:5A/dm
<Nickel plating conditions>
・ Plating bath composition Nickel sulfamate: 300 g / L
Nickel chloride: 5g / L
Boric acid: 30 g / L
・ Bath temperature: 45 ℃
・ Current density: 5 A / dm 2
<錫亜鉛合金めっき条件>
・めっき浴組成
硫酸錫(II):40g/L
硫酸亜鉛七水和物:5g/L
クエン酸三ナトリウム:65g/L
非イオン性界面活性剤:1g/L
・pH=5.0
・浴温:25℃
・電流密度:3A/dm
この錫亜鉛合金めっき条件は、亜鉛含有率が15質量%となる例であり、錫亜鉛合金層中の亜鉛含有率は、めっき浴中の錫と亜鉛の濃度比を調整することにより、表1に示す含有率とした。
<Tin zinc alloy plating conditions>
・ Plating bath composition Tin (II) sulfate: 40 g / L
Zinc sulfate heptahydrate: 5g / L
Trisodium citrate: 65 g / L
Nonionic surfactant: 1 g / L
・ PH = 5.0
・ Bath temperature: 25 ° C
・ Current density: 3 A / dm 2
This tin-zinc alloy plating condition is an example in which the zinc content is 15% by mass, and the zinc content in the tin-zinc alloy layer is adjusted by adjusting the concentration ratio of tin and zinc in the plating bath. The content shown in FIG.
<錫めっき条件>
・めっき浴組成
メタンスルホン酸錫:200g/L
メタンスルホン酸:100g/L
光沢剤
・浴温:25℃
・電流密度:5A/dm
<Tin plating conditions>
・ Plating bath composition Tin methanesulfonate: 200 g / L
Methanesulfonic acid: 100 g / L
Brightener and bath temperature: 25 ° C
・ Current density: 5 A / dm 2
なお、錫亜鉛合金層中の亜鉛含有率は、電子線マイクロアナライザー(EPMA)日本電子社製JXA−8530Fを用いて、所定のめっき条件にて錫亜鉛合金めっきのみ成膜した試料を表面から加速電圧6.5kVで観察を行い、φ30μmのビーム径にて測定した。   The zinc content in the tin-zinc alloy layer was accelerated from the surface using a JXA-8530F manufactured by JEOL Ltd., an electron beam microanalyzer (EPMA), under a predetermined plating condition. Observation was performed at a voltage of 6.5 kV, and measurement was performed with a beam diameter of φ30 μm.
そして、下地層、錫亜鉛合金層、錫層を順に形成しためっき層付き銅板のうち試料4〜9は表1に示す温度条件で拡散処理を施して試料とした。   And among the copper plates with plating layers in which an underlayer, a tin-zinc alloy layer, and a tin layer were formed in order, Samples 4 to 9 were subjected to diffusion treatment under the temperature conditions shown in Table 1 to obtain samples.
得られた試料について、腐食電流、曲げ加工性、界面ボイドの有無、接触抵抗について測定、評価を行った。   The obtained samples were measured and evaluated for corrosion current, bending workability, presence / absence of interface voids, and contact resistance.
<腐食電流>
腐食電流については、直径2mmの露出部を残し樹脂で被覆した純アルミニウム線と直径6mmの露出部を残し樹脂で被覆した試料とを距離1mmにて露出部を対向させて設置し、23℃の5質量%食塩水中でアルミニウム線と試料との間に流れる腐食電流を測定した。腐食電流測定には北斗電工株式会社製無抵抗電流計HA1510を用い、試料を150℃で1時間加熱した後と加熱前との腐食電流を比較した。1000分間の平均電流値を比較した。
<Corrosion current>
For the corrosion current, a pure aluminum wire covered with a resin leaving an exposed portion with a diameter of 2 mm and a sample coated with a resin leaving an exposed portion with a diameter of 6 mm were placed with the exposed portion facing each other at a distance of 1 mm, The corrosion current flowing between the aluminum wire and the sample in 5% by mass saline was measured. For the corrosion current measurement, a resistance resistance ammeter HA1510 manufactured by Hokuto Denko Corporation was used, and the corrosion currents after the sample was heated at 150 ° C. for 1 hour and before the heating were compared. The average current value for 1000 minutes was compared.
<曲げ加工性>
曲げ加工性については、試験片を圧延方向が長手となるように切出し、JISH3110に規定されるW曲げ試験治具を用い、圧延方向に対して直角方向となるように9.8×10Nの荷重で曲げ加工を施した。その後、実体顕微鏡にて観察を行った。曲げ加工性評価は、試験後の曲げ加工部に明確なクラックが認められないレベルを「優」と評価し、発生したクラックにより銅合金母材の露出が認められないレベルを「良」と評価し、発生したクラックにより銅合金母材が露出しているレベルを「不良」と評価した。
<Bending workability>
Regarding the bending workability, the test piece was cut out so that the rolling direction was long, and using a W bending test jig defined in JISH3110, 9.8 × 10 3 N so as to be perpendicular to the rolling direction. Bending was performed with a load of. Then, it observed with the stereomicroscope. For the evaluation of bending workability, the level at which no clear crack is observed in the bent part after the test is evaluated as “excellent”, and the level at which the copper alloy base material is not exposed due to the generated crack is evaluated as “good”. The level at which the copper alloy base material was exposed due to the generated cracks was evaluated as “bad”.
<接触抵抗>
接触抵抗の測定方法はJCBA−T323に準拠し、4端子接触抵抗試験機(山崎精機研究所製:CRS−113−AU)を用い、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。平板試料のめっき表面に対して測定を実施した。
<Contact resistance>
The contact resistance measurement method conforms to JCBA-T323, using a four-terminal contact resistance tester (manufactured by Yamazaki Seiki Laboratories: CRS-113-AU), sliding resistance (1 mm) and contact resistance at a load of 0.98 N Was measured. Measurement was performed on the plated surface of the flat plate sample.
<界面ボイド>
錫めっき時の錫置換による界面ボイドの有無は、サンプルをクロスセクションポリッシャーにて断面加工し、錫亜鉛合金層と錫層との界面付近を電解放射型走査電子顕微鏡にて観察し、直径0.3μmを超える明確なボイドが認められたものを有とし、明確なボイドがないものを無とした。
これらの結果を表2に示す。
<Interface void>
The presence or absence of interface voids due to tin substitution during tin plating was performed by cross-sectioning the sample with a cross section polisher and observing the vicinity of the interface between the tin-zinc alloy layer and the tin layer with an electrolytic emission scanning electron microscope. The case where a clear void exceeding 3 μm was observed was judged as “Yes”, and the case where no clear void was present was marked as “None”.
These results are shown in Table 2.
表2の結果から、亜鉛含有率が3質量%以上35質量%以下の錫亜鉛合金層を厚み0.1μm以上5.0μm以下で形成した後に錫めっきした試料1〜9は、錫置換に起因するボイドの発生はごくわずかか、全く認められず、優れた電食防止効果を有し、曲げ加工性も良好であることがわかる。
また、基材と錫亜鉛合金層との間に、厚みが0.1μm以上5.0μm以下で、ニッケル含有率が80質量%以上の下地層を形成した試料5〜9は、下地層を有しない試料1,2より優れた電食防止効果を有しており、その中でも、拡散処理として40℃以上160℃以下の温度に30分以上保持した試料7,8,9は、曲げ加工性が良好で、接触抵抗も他より低く、特に優れた結果となっている。
From the results in Table 2, Samples 1 to 9, which were tin-plated after a tin-zinc alloy layer having a zinc content of 3% by mass to 35% by mass with a thickness of 0.1 μm to 5.0 μm, were attributed to tin substitution. It can be seen that the generation of voids is very little or not at all, and has an excellent electrolytic corrosion prevention effect and good bending workability.
Samples 5 to 9 in which a base layer having a thickness of 0.1 μm or more and 5.0 μm or less and a nickel content of 80% by mass or more is formed between the base material and the tin-zinc alloy layer have the base layer. Samples 1, 8, and 9 that have a better electric corrosion prevention effect than samples 1 and 2 that are held at a temperature of 40 ° C. or higher and 160 ° C. or lower for 30 minutes or more as diffusion treatment, have bending workability. It is good and the contact resistance is lower than others, which is a particularly excellent result.
これに対して、比較例の試料10は、錫亜鉛合金層を形成しなかったため、高い腐食電流であった。また、試料11は、錫亜鉛合金層の亜鉛含有率が高かったため、界面ボイドが発生して錫層の密着性が低下(曲げ加工性が悪化)し、接触抵抗が増大した。試料12は、錫亜鉛合金層の亜鉛含有率が3質量%未満であったため、亜鉛の拡散が不十分で表面の腐食電流が高く、曲げ加工性も悪化した。試料13は、錫亜鉛合金層が6μmと厚かったため、曲げ加工性が悪化した。試料14は、錫亜鉛合金層が0.07μmと薄すぎたため、亜鉛の拡散が不十分で腐食電流が高くなった。   On the other hand, since the sample 10 of the comparative example did not form a tin-zinc alloy layer, the corrosion current was high. In Sample 11, since the zinc content of the tin-zinc alloy layer was high, an interface void was generated, the adhesion of the tin layer was lowered (bending workability was deteriorated), and the contact resistance was increased. In Sample 12, the zinc content of the tin-zinc alloy layer was less than 3% by mass, so that the zinc diffusion was insufficient, the surface corrosion current was high, and the bending workability was also deteriorated. In Sample 13, since the tin-zinc alloy layer was as thick as 6 μm, the bending workability deteriorated. In Sample 14, the tin-zinc alloy layer was too thin at 0.07 μm, so that the zinc diffusion was insufficient and the corrosion current was high.
なお、図6は、試料8について、下地層の上に錫亜鉛合金層を形成した後の断面の顕微鏡写真であり、図7は、その錫亜鉛合金層上に錫層を形成し、拡散処理を施した後の断面の顕微鏡写真である。この図7で錫層中に白く斑点状に見えるのが亜鉛であり、錫亜鉛合金層中の亜鉛が減少し、錫層の厚さ方向にわたって拡散している。   6 is a micrograph of a cross section of the sample 8 after forming a tin-zinc alloy layer on the underlayer. FIG. 7 shows a diffusion process in which a tin layer is formed on the tin-zinc alloy layer. It is the microscope picture of the cross section after giving. In FIG. 7, zinc appears white and spotted in the tin layer, and zinc in the tin-zinc alloy layer is reduced and diffused in the thickness direction of the tin layer.
1 錫めっき付銅端子材
2 基材
3 下地層
4 錫亜鉛合金層
5 錫層
10 端子
11 接続部
12 電線
12a 心線
12b 被覆部
13 心線かしめ部
14 被覆かしめ部
DESCRIPTION OF SYMBOLS 1 Copper terminal material with tin plating 2 Base material 3 Underlayer 4 Tin zinc alloy layer 5 Tin layer 10 Terminal 11 Connection part 12 Electric wire 12a Core wire 12b Covering part 13 Core wire crimping part 14 Covering crimping part

Claims (4)

  1. 銅又は銅合金からなる基材の上に、亜鉛含有率が3質量%以上35質量%以下の錫亜鉛合金層を0.1μm以上5.0μm以下の厚さで形成する錫亜鉛合金層形成工程と、前記錫亜鉛合金層の上に錫めっきを施して錫層を形成する錫めっき工程を有することを特徴とする錫めっき付銅端子材の製造方法。   A tin-zinc alloy layer forming step of forming a tin-zinc alloy layer having a zinc content of 3% by mass or more and 35% by mass or less on a substrate made of copper or a copper alloy with a thickness of 0.1 μm or more and 5.0 μm or less. And a method of producing a tin-plated copper terminal material comprising a tin plating step of forming a tin layer by performing tin plating on the tin-zinc alloy layer.
  2. 前記錫亜鉛合金層形成工程の前に、前記基材の表面にニッケル含有率が80質量%以上のニッケル又はニッケル合金からなる下地層を0.1μm以上5.0μm以下の厚さで形成する下地層形成工程を有することを特徴とする請求項1記載の錫めっき付銅端子材の製造方法。   Before the step of forming the tin-zinc alloy layer, a base layer made of nickel or a nickel alloy having a nickel content of 80% by mass or more is formed on the surface of the substrate with a thickness of 0.1 μm or more and 5.0 μm or less. It has a formation formation process, The manufacturing method of the copper terminal material with a tin plating of Claim 1 characterized by the above-mentioned.
  3. 前記錫めっき工程の後に、40℃以上160℃以下に30分以上保持して、前記錫亜鉛合金層の亜鉛を前記錫層に拡散させる拡散処理工程を有することを特徴とする請求項1又は2記載の錫めっき付銅端子材の製造方法。   3. A diffusion treatment step of diffusing zinc in the tin-zinc alloy layer into the tin layer by holding at 40 ° C. or more and 160 ° C. or less for 30 minutes or more after the tin plating step. The manufacturing method of the copper terminal material with a tin plating of description.
  4. 前記基材は、予めプレス加工によりフープ材に形成されており、前記フープ材は、帯板状に形成されるとともに、その長さ方向に沿うキャリア部に、端子に成形されるべき複数の端子用部材が前記キャリア部の長さ方向に間隔をおいて連結されていることを特徴とする請求項1から3のいずれか一項記載の錫めっき付銅端子材の製造方法。
    The base material is previously formed into a hoop material by press working, and the hoop material is formed in a band plate shape, and a plurality of terminals to be formed into terminals on a carrier portion along the length direction thereof. The method for producing a tin-plated copper terminal material according to any one of claims 1 to 3, wherein the members for use are connected with an interval in the length direction of the carrier portion.
JP2016150741A 2016-07-29 2016-07-29 Method for manufacturing tin-plated copper terminal material Active JP6743556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150741A JP6743556B2 (en) 2016-07-29 2016-07-29 Method for manufacturing tin-plated copper terminal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150741A JP6743556B2 (en) 2016-07-29 2016-07-29 Method for manufacturing tin-plated copper terminal material

Publications (2)

Publication Number Publication Date
JP2018016878A true JP2018016878A (en) 2018-02-01
JP6743556B2 JP6743556B2 (en) 2020-08-19

Family

ID=61075995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150741A Active JP6743556B2 (en) 2016-07-29 2016-07-29 Method for manufacturing tin-plated copper terminal material

Country Status (1)

Country Link
JP (1) JP6743556B2 (en)

Also Published As

Publication number Publication date
JP6743556B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6304447B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP6226037B2 (en) Manufacturing method of copper terminal material with tin plating
JP6740635B2 (en) Tin-plated copper terminal material, its manufacturing method, and wire terminal structure
JP2017203214A (en) Copper terminal material with tin plating, terminal and wire terminal part structure
JP2019073803A (en) Connector terminal material, terminal, and electric wire terminal part structure
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
WO2018212174A1 (en) Tin-plated copper terminal material, terminal, and power cable terminal structure
WO2017104682A1 (en) Method for manufacturing tin-plated copper terminal material
JP6620897B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
JP2020056090A (en) Anticorrosive terminal material, manufacturing method therefor, and anticorrosive terminal and wire terminal part structure
JP2018147778A (en) Anticorrosive terminal material, anticorrosive terminal, and wire terminal structure
JP2018016878A (en) Manufacturing method of tin plating copper terminal material
CN110997985A (en) Silver-coated membrane terminal material and silver-coated membrane terminal
JP6812852B2 (en) Anti-corrosion terminal material, anti-corrosion terminal, and electric wire terminal structure
WO2019087926A1 (en) Anticorrosive terminal material, anticorrosive terminal, and electric wire end structure
JP2019011503A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP6930327B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
WO2020138414A1 (en) Anti-corrosion terminal material, terminal, and electrical wire end section structure
KR20210106991A (en) Anti-corrosion terminal material and terminal and wire terminal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150