JP2020002429A - Conductive member for connector terminal and connector terminal - Google Patents

Conductive member for connector terminal and connector terminal Download PDF

Info

Publication number
JP2020002429A
JP2020002429A JP2018123098A JP2018123098A JP2020002429A JP 2020002429 A JP2020002429 A JP 2020002429A JP 2018123098 A JP2018123098 A JP 2018123098A JP 2018123098 A JP2018123098 A JP 2018123098A JP 2020002429 A JP2020002429 A JP 2020002429A
Authority
JP
Japan
Prior art keywords
layer
conductive member
grain size
plating
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018123098A
Other languages
Japanese (ja)
Other versions
JP7087732B2 (en
Inventor
直輝 宮嶋
Naoki Miyajima
直輝 宮嶋
牧 一誠
Kazumasa Maki
一誠 牧
真一 船木
Shinichi Funaki
真一 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2018123098A priority Critical patent/JP7087732B2/en
Publication of JP2020002429A publication Critical patent/JP2020002429A/en
Application granted granted Critical
Publication of JP7087732B2 publication Critical patent/JP7087732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To further improve wear resistance, to suppress the increase of electric resistance, and to securely prevent the generation of peeling upon bending or the like.SOLUTION: A Cu-Sn intermetallic compound layer is formed on a base material made of Cu or a Cu alloy, an Sn layer made of Sn or an Sn alloy is formed thereon, a striped partial film is formed on an engagement scheduled part in which, upon molding into terminals, each terminal will be made into a contact state by engagement in the surface of the Sn layer, the partial film includes an Ni layer made of Ni or an Ni alloy and formed on the Sn layer and an Ag layer made of Ag or an Ag alloy and formed on the Ni layer, an Sn-Ni layer including an Sn-Ni solid solution in which Ni is solid-soluted in Sn and/or an intermetallic compound of Sn and Ni is formed between the Sn layer and the Ni layer, the average crystal grain size viewed from a normal direction to the rolling face of a base material in the Ni layer is 10 to 500 nm, and the variation coefficient of the average crystal grain size is 1 or lower.SELECTED DRAWING: Figure 1

Description

本発明は、コネクタ用導電部材及び該導電部材により形成したコネクタ端子に関する。   The present invention relates to a conductive member for a connector and a connector terminal formed by the conductive member.

最近、表面にAgめっきが施された銅合金条材が耐摩耗性及び導電性が要求される電気自動車の充電用プラグ部、各種摺動部、モーター部、充電部などのコネクタ部材として使用されている。
この電気自動車の充電用プラグ部のコネクタ部品などにおいて、高電流・高電圧環境下での使用に加えて数万回の抜き差しに耐えうる耐摩耗性が求められるようになってきている。この課題に対して、特許文献1により、表面に錫めっきを施した銅合金材料上に電解ニッケルめっきを施した後、さらに電解銀めっきを施しためっき積層体が提案されている。
Recently, copper alloy strips whose surfaces have been plated with Ag are used as connector members for charging plugs, various sliding parts, motors, charging parts, etc. of electric vehicles requiring abrasion resistance and conductivity. ing.
The connector parts of the charging plug portion of the electric vehicle and the like are required to have wear resistance that can withstand tens of thousands of insertions and removals in addition to use under high current and high voltage environments. To cope with this problem, Patent Literature 1 proposes a plating laminate in which electrolytic nickel plating is performed on a copper alloy material whose surface is plated with tin, and then electrolytic silver plating is performed.

しかしながら、抜き差しの繰り返しによりめっきの摩耗が進行し、母材に達することで急激な電気抵抗の増大を招くおそれがあった。また、折り曲げなどにより形成しためっき皮膜が剥離する問題もあった。
また、特許文献2では、Cu系基材の上にCu−Sn金属間化合物層、Sn系表面層を順に備え、Sn系表面層の上にNiめっき、硬質Agめっきを施したコネクタ用導電部材が提案され、コネクタとして長時間実装された後もある程度の高い表面硬度を維持することにより耐摩耗性が向上したが、電気自動車の高性能化等に伴い、使用されるコネクタ数およびその端子数も増加し、より細かい曲げ加工が必要となってきていることから、耐摩耗性のさらなる改良と共に曲げ加工性についてもさらなる改良が望まれていた。
However, there is a possibility that abrasion of the plating progresses due to repeated insertion and removal and reaches the base metal, causing a sudden increase in electric resistance. There is also a problem that a plating film formed by bending or the like peels off.
Further, in Patent Document 2, a conductive member for a connector in which a Cu-Sn intermetallic compound layer and a Sn-based surface layer are sequentially provided on a Cu-based substrate, and Ni plating and hard Ag plating are applied on the Sn-based surface layer Although the wear resistance has been improved by maintaining a certain high surface hardness even after being mounted as a connector for a long time, the number of connectors and the number of terminals used with the improvement in the performance of electric vehicles, etc. And the need for finer bending work has increased, and further improvement in bending workability as well as wear resistance has been desired.

国際公開2014/199547号International Publication No. 2014/199547 特開2015−86446号公報JP-A-2005-86446

本発明では、前記事情に鑑みてなされたもので、耐摩耗性をさらに向上させ、電気抵抗の増大を抑制するとともに、曲げ加工等の際の剥離の発生を確実に防止することを目的とする。   The present invention has been made in view of the above circumstances, and aims to further improve wear resistance, suppress an increase in electric resistance, and reliably prevent the occurrence of peeling during bending or the like. .

本発明のコネクタ端子用導電部材は、Cu又はCu合金からなる基材の上に、Cu及びSnの金属間化合物からなるCu−Sn金属間化合物層が形成され、該Cu−Sn金属間化合物層の上にSn又はSn合金からなるSn層が形成されており、前記Sn層の表面において、端子に成形したときに端子同士が嵌合により接触状態となる予定の嵌合予定部位に、ストライプ状に部分皮膜が形成されており、該部分皮膜は、前記Sn層の上に形成されたNi又はNi合金からなるNi層と、該Ni層の上に形成されたAg又はAg合金からなるAg層とを有し、
前記Sn層における前記Ni層との界面部に、SnにNiが固溶してなるSn−Ni固溶体及び/又はSnとNiとの金属間化合物を含有するSn−Ni層が形成され、
前記Ni層における前記基材の圧延面に対する法線方向から視た平均結晶粒径が10nm以上500nm以下であり、該平均結晶粒径の変動係数が1以下である。
なお、前記Sn−Ni層は、Sn層にNiが拡散することによって形成されるものであるが、局所的にSnが合金化せずそのまま存在している場合もある。平均結晶粒径の変動係数とは、平均結晶粒径の標準偏差を平均結晶粒径で割った値である。
In the conductive member for a connector terminal of the present invention, a Cu-Sn intermetallic compound layer made of an intermetallic compound of Cu and Sn is formed on a base material made of Cu or a Cu alloy, and the Cu-Sn intermetallic compound layer is formed. A Sn layer made of Sn or a Sn alloy is formed on the surface of the Sn layer, and a stripe-shaped portion is formed on a surface of the Sn layer at a portion where the terminals are to be in a contact state by fitting when the terminals are formed. A partial film is formed on the Sn layer, the Ni layer formed on the Sn layer is made of Ni or Ni alloy, and the Ag layer formed on the Ni layer is made of Ag or Ag alloy And having
An Sn—Ni layer containing a Sn—Ni solid solution in which Ni is dissolved in Sn and / or an intermetallic compound of Sn and Ni is formed at an interface between the Sn layer and the Ni layer,
The average crystal grain size of the Ni layer as viewed from the normal to the rolled surface of the substrate is 10 nm or more and 500 nm or less, and the coefficient of variation of the average crystal grain size is 1 or less.
The Sn—Ni layer is formed by diffusing Ni into the Sn layer. However, there is a case where Sn is not alloyed locally but remains as it is. The variation coefficient of the average crystal grain size is a value obtained by dividing the standard deviation of the average crystal grain size by the average crystal grain size.

このコネクタ端子用導電部材は、端子に成形したときに端子同士が嵌合により接触状態となる予定の嵌合予定部位に、表面にAg層を有する部分皮膜が形成されているので、耐摩耗性に優れている。この部分皮膜は嵌合予定部位にストライプ状に形成しているので、高価なAg層の使用が局部に制限され、コスト増を抑制することができる。また、このストライプ状の部分皮膜において、Sn層とNi層との間にSn−Ni固溶体及び/又はSn−Ni金属間化合物からなるSn−Ni層が介在しているので、Ni層とSn層との結合状態がより強固かつ安定的になり、コネクタとして挿抜を繰り返しても摩耗しにくく、抵抗値が安定して維持される。また、皮膜の密着性が高まるので、折り曲げ加工等によっても皮膜の剥離が生じにくい。このため、コネクタ用導電部材として高い信頼性を維持することができる。
この場合、Ni層の平均結晶粒径が10nm未満では、微細な結晶により耐摩耗性は向上するも、硬くなり過ぎて曲げ加工時に割れが生じ易い。Ni層の平均結晶粒径が500nmを超える粗大な結晶粒となると、耐摩耗性が低下する。また、平均結晶粒径の変動係数が1を超えると、結晶粒径のばらつきが大きくなり、実用上好ましいレベルの耐摩耗性を安定して得ることができない。
The conductive member for a connector terminal has a partial coating having an Ag layer on its surface at a portion where the terminal is to be brought into contact by fitting when the terminal is molded, so that the abrasion resistance is high. Is excellent. Since the partial film is formed in a stripe shape at the portion to be fitted, the use of the expensive Ag layer is restricted to a local area, and an increase in cost can be suppressed. In this striped partial film, since the Sn—Ni layer made of a Sn—Ni solid solution and / or Sn—Ni intermetallic compound is interposed between the Sn layer and the Ni layer, the Ni layer and the Sn layer And the connector is more firmly and stably connected, is less likely to be worn even after repeated insertion and removal as a connector, and maintains a stable resistance value. Further, since the adhesion of the film is enhanced, the film is less likely to be peeled even by bending or the like. Therefore, high reliability can be maintained as the conductive member for the connector.
In this case, if the average crystal grain size of the Ni layer is less than 10 nm, the wear resistance is improved by fine crystals, but it is too hard and cracks are likely to occur during bending. When the average crystal grain size of the Ni layer becomes coarse crystal grains exceeding 500 nm, the wear resistance is reduced. On the other hand, when the variation coefficient of the average crystal grain size exceeds 1, the variation in the crystal grain size becomes large, and a practically preferable level of wear resistance cannot be stably obtained.

本発明のコネクタ端子用導電部材の好ましい実施態様として、前記Sn−Ni層の含まれるSn−Ni固溶体及び/又はSn−Ni金属間化合物の平均結晶粒径が0.2μm以上5μm以下であることが好ましい。
Sn−Ni固溶体及び/又はSn−Ni金属間化合物の平均結晶粒径をこの範囲にすることで、Sn層とNi層の密着性が向上する。平均結晶粒径がこの範囲を外れたものは、密着性の向上効果が十分には得られなくなる。
As a preferred embodiment of the conductive member for a connector terminal of the present invention, the average crystal grain size of the Sn-Ni solid solution and / or the Sn-Ni intermetallic compound contained in the Sn-Ni layer is 0.2 μm or more and 5 μm or less. Is preferred.
By setting the average crystal grain size of the Sn-Ni solid solution and / or the Sn-Ni intermetallic compound in this range, the adhesion between the Sn layer and the Ni layer is improved. If the average crystal grain size is out of this range, the effect of improving the adhesion cannot be sufficiently obtained.

本発明のコネクタ端子用導電部材の好ましい実施態様として、前記Sn−Ni層におけるNiの含有量は5at%以上であるのが好ましい
Sn−Ni層中にNi含有量を5at%以上とすることで、安定したSn−Ni金属間化合物層が形成され、Sn層とNi層の密着性が向上する。その含有量が5at%未満であると、Sn含有量が多過ぎるため、柔らかくなり過ぎて耐摩耗性低下のおそれがある。Ni含有量の上限は67at%が好ましい。
As a preferred embodiment of the conductive member for connector terminals of the present invention, the content of Ni in the Sn—Ni layer is preferably 5 at% or more. By setting the Ni content in the Sn—Ni layer to 5 at% or more. As a result, a stable Sn-Ni intermetallic compound layer is formed, and the adhesion between the Sn layer and the Ni layer is improved. If the content is less than 5 at%, the Sn content is too large, so that it becomes too soft and may cause a decrease in wear resistance. The upper limit of the Ni content is preferably 67 at%.

Sn−Ni層におけるSn−Ni固溶体及び/又はSn−Ni金属間化合物の粒子が上記のような範囲で存在することにより、Sn層とNi層の密着性が、界面全体でより安定的に強くなり、曲げ加工時の剥離発生のおそれが低くなる。   When the Sn—Ni solid solution and / or Sn—Ni intermetallic compound particles in the Sn—Ni layer are present in the above-described range, the adhesion between the Sn layer and the Ni layer is more stably enhanced over the entire interface. And the risk of peeling during bending is reduced.

本発明のコネクタ端子用導電部材の好ましい実施態様として、前記Ni層における前記基材の圧延面の法線方向から視た平均結晶粒径をdNDとし、前記基材の圧延幅方向に対して垂直な面での平均結晶粒径をdTDとすると、その粒径比dTD/dNDが1以上10以下であるとよい。
粒径比dTD/dNDの比がこの範囲内であると、より耐摩耗性が良好になる。dTD/dNDが1未満では、粒径が微細になることで、耐摩耗性は向上するが、細かくなり過ぎて、曲げた際に割れが生じ易くなる。dTD/dNDが10を超えると、ニッケル層の表面が粗くなり過ぎ、その凹凸の凸部が先行して摩耗することで摩耗粉が発生し、その摩耗粉の酸化による抵抗値の増大によって接続信頼性が低下するおそれがある。
As a preferred embodiment of the conductive member for connector terminals of the present invention, the average crystal grain size as viewed from the normal direction of the rolled surface of the base material in the Ni layer is d ND , with respect to the rolling width direction of the base material. Assuming that the average crystal grain size in a vertical plane is d TD , the grain size ratio d TD / d ND is preferably 1 or more and 10 or less.
When the ratio of the particle size ratio d TD / d ND is within this range, the abrasion resistance becomes better. When d TD / d ND is less than 1, the wear resistance is improved due to the fine particle diameter, but the particle diameter is too fine and cracks are likely to occur when bent. If d TD / d ND exceeds 10, the surface of the nickel layer becomes too rough, and the projections of the irregularities are worn first, thereby generating wear powder. Connection reliability may be reduced.

本発明のコネクタ端子用導電部材の好ましい実施態様として、前記Ni層において前記Ag層と接する面の算術平均面高さSaが0.5μm以下であるとよい。ここで、算術平均面高さSaとは、ISO25178−2で定義されているarithmetical mean heightのことをいう。
Ni層におけるAg層と接する面のSaが0.5μm以下であると、耐摩耗性がさらに良好になる。0.5μmを超えると、その凹凸の凸部が先行して摩耗することで摩耗粉が発生し、その摩耗粉の酸化による抵抗値の増大によって接続信頼性が低下するおそれがある。
As a preferred embodiment of the conductive member for connector terminals of the present invention, the arithmetic mean surface height Sa of the surface of the Ni layer in contact with the Ag layer is preferably 0.5 μm or less. Here, the arithmetic mean surface height Sa refers to the arithmetic mean height defined in ISO25178-2.
When the surface of the Ni layer in contact with the Ag layer has a Sa of 0.5 μm or less, the wear resistance is further improved. If it exceeds 0.5 μm, the projections of the unevenness will wear first, and wear powder will be generated, and the connection reliability may decrease due to an increase in resistance value due to oxidation of the wear powder.

本発明のコネクタ端子用導電部材は、前記基材は帯板状に形成されているとよい。帯板とすることにより、その長さ方向に沿って連続的に端子を製造することができる。
本発明のコネクタ端子は、前記コネクタ端子用導電部材からなり、相手端子に嵌合状態に接触する嵌合部を有し、該嵌合部の表面に前記部分皮膜が形成されている。
In the conductive member for a connector terminal of the present invention, the base material may be formed in a strip shape. By using the strip, the terminal can be manufactured continuously along the length direction.
The connector terminal of the present invention is formed of the conductive member for a connector terminal, has a fitting portion that comes into contact with a mating terminal in a fitted state, and the partial film is formed on a surface of the fitting portion.

本発明によれば、耐摩耗性が向上し、電気抵抗の増大を抑制するとともに、曲げ加工等の際の剥離の発生を確実に防止して、高い信頼性を維持することができる。   ADVANTAGE OF THE INVENTION According to this invention, while abrasion resistance improves, it suppresses the increase of an electrical resistance, generation | occurrence | production of peeling at the time of a bending process etc. is reliably prevented, and high reliability can be maintained.

本発明に係るコネクタ端子用導電部材の一実施形態の層構造を模式化して示す縦断面図である。It is a longitudinal section showing typically the layer structure of one embodiment of the conductive member for connector terminals concerning the present invention. 雄端子に用いられるコネクタ端子用導電部材の例を示す斜視図である。It is a perspective view which shows the example of the conductive member for connector terminals used for a male terminal. 雌端子に用いられるコネクタ端子用導電部材の例を示す斜視図である。It is a perspective view which shows the example of the conductive member for connector terminals used for a female terminal. コネクタ端子用導電部材を使用して製造された雄端子及び雌端子からなるコネクタの実施形態を示す概略図である。It is the schematic which shows embodiment of the connector which consists of a male terminal and a female terminal manufactured using the conductive member for connector terminals. 試料A4の断面の顕微鏡写真である。It is a microscope picture of a section of sample A4.

以下、本発明のコネクタ端子用導電部材の実施形態を詳細に説明する。
コネクタ端子用導電部材1,11は、Cu又はCu合金からなる基材2の表面に、Cu及びSnの金属間化合物からなるCu−Sn金属間化合物層3が形成され、Cu−Sn金属間化合物層3の上にSn又はSn合金からなるSn層4が形成されており、そのSn層4の表面の一部に部分皮膜5が形成されている。
具体的には、基材2は帯板状に形成された条材であり、Cu−Sn金属間化合物層3及びSn層4が形成されためっき付条材6の表面に、図2及び図3に示すように、その長さ方向に沿ってストライプ状に部分皮膜5が形成されている。なお、図2は雄端子として用いられるコネクタ端子用導電部材1、図3は雌端子として用いられるコネクタ端子用導電部材11を示している。
そして、このコネクタ端子用導電部材1,11をプレス成形することにより、複数の端子が帯板の長さ方向に並んで連続的に成形される。
Hereinafter, an embodiment of a conductive member for connector terminals of the present invention will be described in detail.
In the connector terminal conductive members 1 and 11, a Cu-Sn intermetallic compound layer 3 made of an intermetallic compound of Cu and Sn is formed on a surface of a base material 2 made of Cu or a Cu alloy, and a Cu-Sn intermetallic compound is formed. An Sn layer 4 made of Sn or a Sn alloy is formed on the layer 3, and a partial film 5 is formed on a part of the surface of the Sn layer 4.
Specifically, the base material 2 is a strip formed in a strip shape, and the surface of the plated strip 6 on which the Cu-Sn intermetallic compound layer 3 and the Sn layer 4 are formed is shown in FIGS. As shown in FIG. 3, a partial film 5 is formed in a stripe shape along the length direction. 2 shows a connector terminal conductive member 1 used as a male terminal, and FIG. 3 shows a connector terminal conductive member 11 used as a female terminal.
Then, by press-forming the conductive members 1 and 11 for connector terminals, a plurality of terminals are continuously formed side by side in the length direction of the strip.

このコネクタ端子用導電部材1,11にストライプ状に設けられる部分皮膜5は、端子に成形したときに端子同士が嵌合して接触状態となる予定の嵌合予定部位に形成されることを前提とするものであるが、リード線が圧着状態に接続される予定の圧着予定部位に形成しても良い。図2及び図3は、嵌合予定部位と圧着予定部位の両方に形成した例であり、以下、この例に基づいて説明する。この部分皮膜5は図1に示すように、めっき付条材6のSn層4の上に形成されたNi又はNi合金からなるNi層8と、Ni層8の上に形成されたAg又はAg合金からなるAg層9とを有し、Sn層4とNi層8との間、具体的にはSn層4におけるNi層8との界面部に、SnにNiが固溶してなるSn−Ni固溶体及び/又はSnとNiの金属間化合物を含有するSn−Ni層7が形成されている。   It is assumed that the partial coating 5 provided on the connector terminal conductive members 1 and 11 in the form of a stripe is formed at a fitting site where the terminals are to be fitted into a contact state when the terminals are formed. However, the lead wire may be formed at a portion to be crimped where the lead wire is to be connected in a crimped state. FIG. 2 and FIG. 3 show examples in which both the fitting planned part and the crimping planned part are formed. Hereinafter, description will be made based on this example. As shown in FIG. 1, the partial film 5 includes a Ni layer 8 made of Ni or a Ni alloy formed on the Sn layer 4 of the plated strip 6 and an Ag or Ag formed on the Ni layer 8. An Ag layer 9 made of an alloy is provided. An Sn— layer in which Ni forms a solid solution in Sn is provided between the Sn layer 4 and the Ni layer 8, specifically, at the interface between the Sn layer 4 and the Ni layer 8. An Sn—Ni layer 7 containing a Ni solid solution and / or an intermetallic compound of Sn and Ni is formed.

図4に、このコネクタ用導電部材1、11を使用して製造されたコネクタの一例を示す。
雄端子21は、先端に、雌端子22に嵌合状態に接触する嵌合部31が形成され、その基端部にリード線圧着部32が形成されている。嵌合部31は棒状に形成され、リード線圧着部32は、リード線33の先端に露出している導体33aを嵌合する円筒部34が嵌合部31に連続して形成され、その円筒部34に連続して、一対のかしめ片35a,35bが左右に開いた状態に一体に形成された構成とされている。これらかしめ片35a,35bは、符号35aがリード線33の外被33bをかしめる外被用かしめ片であり、符号35bがリード線33の導体33aをかしめる導体用かしめ片である。
FIG. 4 shows an example of a connector manufactured using the connector conductive members 1 and 11.
The male terminal 21 has a fitting portion 31 formed at the distal end to be in contact with the female terminal 22 in a fitted state, and a lead wire crimping portion 32 formed at a base end thereof. The fitting portion 31 is formed in a rod shape, and the lead wire crimping portion 32 is formed with a cylindrical portion 34 for fitting a conductor 33a exposed at the end of the lead wire 33 continuously to the fitting portion 31. A pair of caulking pieces 35a and 35b are formed integrally with the part 34 so as to be open to the left and right. In these caulking pieces 35a and 35b, the reference numeral 35a is a caulking piece for the sheath for caulking the jacket 33b of the lead wire 33, and the reference numeral 35b is a conductor caulking piece for caulking the conductor 33a of the lead wire 33.

雌端子22は、先端に、雄端子21の嵌合部31を嵌合する嵌合部41が形成され、その基端部にリード線圧着部42が形成されている。嵌合部41は、雄端子21の嵌合部31を緊密に嵌合し得る内径の円筒状に形成され、その先端部を除く中央部分に長さ方向に沿うスリットが周方向に間隔をおいて複数形成されることにより、弾性変形容易部43とされている。リード線圧着部42は、雄端子21と同様に、リード線33の先端の導体33aを嵌合する円筒部44が嵌合部41に連続して形成され、その円筒部44に連続して、一対のかしめ片45a,45bが左右に開いた状態に一体に形成されており、符号45aは外被用かしめ片、符号45bは導体用かしめ片である。   The female terminal 22 has a fitting part 41 for fitting the fitting part 31 of the male terminal 21 at the tip, and a lead wire crimping part 42 at the base end. The fitting portion 41 is formed in a cylindrical shape having an inside diameter capable of tightly fitting the fitting portion 31 of the male terminal 21, and a slit along a length direction is provided at a central portion excluding a tip end thereof at intervals in a circumferential direction. Thus, a plurality of elastic deformation portions 43 are formed. In the lead wire crimping portion 42, a cylindrical portion 44 for fitting the conductor 33a at the tip of the lead wire 33 is formed continuously with the fitting portion 41, similarly to the male terminal 21, and continuously with the cylindrical portion 44, A pair of caulking pieces 45a and 45b are integrally formed in a state where they are opened to the left and right, reference numeral 45a is a caulking piece for a jacket, and reference numeral 45b is a caulking piece for a conductor.

そして、雄端子21では、前述したストライプ状の部分皮膜5が棒状の嵌合部31の基端側に近い部分の外周面、円筒部34の内面及び導体用かしめ片35bの内面にそれぞれ配置されている。一方、雌端子22では、ストライプ状の部分皮膜5が嵌合部41の先端部の内周面、円筒部44の内面及び導体用かしめ片45bの内面にそれぞれ配置されている。
この部分皮膜の形成部位は、コネクタ端子用導電部材1,11を端子に加工したときに、相手端子と嵌合して接触状態となる部位(嵌合予定部とする)及びリード線がかしめられて圧着状態に接続される部位(圧着予定部位とする)にそれぞれ形成され、この部分皮膜5が形成されていない部位は、Sn層4の表面が露出している。通常は、リード線圧着部32,42は、雄端子21では嵌合部31と反対面、雌端子22では嵌合部41と同じ面に形成される。したがって、雄端子21に用いられるコネクタ用導電部材1では、図2に示すように部分皮膜5がめっき付条材6の両面に形成され、雌端子22に用いられるコネクタ用導電部材11では、図3に示すように、めっき付条材6の一方の面にのみ形成される。
なお、「嵌合予定部位」は、雄端子と雌端子とが直接面接触する部分にそれに隣接する若干のマージン幅の部分を加えた部位とするのが好適である。「圧着予定部位」も同様であり、リード線が圧着して接触する部分にそれに隣接する若干のマージン幅の部分を加えた部位とするのが好適である。
この様な個々のコネクタの雄端子21及び雌端子22が、雄端子毎、あるいは雌端子毎に複数本まとめてハウジングに収容されることにより多ピン型のコネクタとなる。
In the male terminal 21, the striped partial film 5 described above is disposed on the outer peripheral surface of the portion near the base end of the rod-shaped fitting portion 31, the inner surface of the cylindrical portion 34, and the inner surface of the conductor caulking piece 35b. ing. On the other hand, in the female terminal 22, the striped partial film 5 is disposed on the inner peripheral surface of the distal end portion of the fitting portion 41, the inner surface of the cylindrical portion 44, and the inner surface of the caulking piece 45b for the conductor.
When the conductive members 1 and 11 for connector terminals are processed into terminals, the portion where the partial film is formed is a portion that will be brought into contact with a mating terminal to be in a contact state (hereinafter referred to as a fitting portion) and a lead wire will be caulked. The portion where the partial coating 5 is not formed is formed at each of the portions that are connected in a press-bonded state (the portions to be press-bonded), and the surface of the Sn layer 4 is exposed. Normally, the lead wire crimping portions 32 and 42 are formed on the surface opposite to the fitting portion 31 in the male terminal 21 and on the same surface as the fitting portion 41 in the female terminal 22. Therefore, in the connector conductive member 1 used for the male terminal 21, the partial coating 5 is formed on both surfaces of the plated strip 6 as shown in FIG. 2, and in the connector conductive member 11 used for the female terminal 22, As shown in FIG. 3, it is formed only on one surface of the plated material 6.
The “fitting portion” is preferably a portion obtained by adding a portion having a slight margin width adjacent to the portion where the male terminal and the female terminal are in direct surface contact. The same applies to the “site to be press-bonded”, and it is preferable to set the portion to which a portion of the marginal width adjacent to the portion to which the lead wire comes into contact by pressing is added.
A plurality of male terminals 21 and female terminals 22 of such individual connectors are collectively housed in the housing for each male terminal or each female terminal, thereby forming a multi-pin connector.

以下、このコネクタ用導電部材1、11の層構造の詳細について説明する。
基材2はコネクタ端子としての使用に適した銅又は銅合金であれば特に限定しないが、導電性、耐熱性、強度、加工性等を考慮すると、以下に列挙する各種銅合金を適用するのが好ましい。
(1)Mg:0.15〜3.0質量%、P:0.0005〜0.1質量%(Pは不可避不純物として存在する品種もある)、残部がCuおよび不可避的不純物である組成を有するCu−Mg系合金であり、例えば三菱伸銅株式会社のMSPシリーズ。
(2)Zn:2.0〜32.5質量%、Sn:0.1〜0.9質量%、Ni:0.05〜1.0質量%、Fe:0.001〜0.1質量%、P:0.005〜0.1質量%、残部がCuおよび不可避的不純物である組成を有するCu−Zn系合金であり、例えば三菱伸銅株式会社のMNEX10。
(3)Cr:0.07〜0.4質量%、Zr:0.01〜0.15質量%、Si:0.005〜0.1質量%、残部がCuおよび不可避的不純物である組成を有するCr−Zr系銅合金であり、例えば三菱伸銅株式会社のMZC1。
(4)Zr:0.005〜0.5質量%、残部がCuおよび不可避的不純物である組成を有する銅合金であり、例えば三菱伸銅株式会社のC151。
Hereinafter, the details of the layer structure of the conductive members 1 and 11 for the connector will be described.
The base material 2 is not particularly limited as long as it is copper or a copper alloy suitable for use as a connector terminal. In consideration of conductivity, heat resistance, strength, workability, and the like, various copper alloys listed below are applied. Is preferred.
(1) Mg: 0.15 to 3.0% by mass, P: 0.0005 to 0.1% by mass (P is a kind that exists as inevitable impurities), and the balance is Cu and inevitable impurities. For example, MSP series of Mitsubishi Shindoh Co., Ltd.
(2) Zn: 2.0 to 32.5 mass%, Sn: 0.1 to 0.9 mass%, Ni: 0.05 to 1.0 mass%, Fe: 0.001 to 0.1 mass% , P: 0.005 to 0.1 mass%, the balance being Cu and a Cu—Zn-based alloy having a composition of inevitable impurities, for example, MNEX10 of Mitsubishi Shindoh Co., Ltd.
(3) Cr: 0.07 to 0.4% by mass, Zr: 0.01 to 0.15% by mass, Si: 0.005 to 0.1% by mass, the balance being Cu and inevitable impurities. For example, MZC1 of Mitsubishi Shindoh Co., Ltd.
(4) Zr: a copper alloy having a composition of 0.005 to 0.5% by mass, with the balance being Cu and inevitable impurities, for example, C151 of Mitsubishi Shindoh Co., Ltd.

(5)Fe:0.05〜0.15質量%、P:0.015〜0.05質量%、残部がCuおよび不可避的不純物である組成を有するFe−P系銅合金であり、例えば三菱伸銅株式会社のTAMAC4。
(6)Fe:2.1〜2.6質量%、Zn:0.05〜0.20質量%、P:0.015〜0.15質量%、残部がCuおよび不可避的不純物である組成を有するFe−Zn系銅合金であり、例えば三菱伸銅株式会社のTAMAC194。
(7)Ni:1.0〜5.0質量%、Si:0.1〜1.5質量%、Mg,Sn,Znのうち1種類または2種類以上を合計で0.01〜2.0質量%、残部がCuおよび不可避的不純物である組成を有するCu−Ni−Si系合金(コルソン系合金)であり、例えば三菱伸銅株式会社のMAXシリーズ。
これらの銅合金は、良好な熱伝導性、強度、熱クリープ性、耐熱性、加工性等を有しており、電気自動車用のコネクタ製造用銅合金条材として最適である。
(5) Fe-P-based copper alloy having a composition in which Fe: 0.05 to 0.15% by mass, P: 0.015 to 0.05% by mass, and the balance being Cu and unavoidable impurities. TAMAC4 of Shinshindo Co., Ltd.
(6) Fe: 2.1 to 2.6% by mass, Zn: 0.05 to 0.20% by mass, P: 0.015 to 0.15% by mass, with the balance being Cu and inevitable impurities. Fe-Zn-based copper alloy, for example, TAMAC194 of Mitsubishi Shindoh Co., Ltd.
(7) Ni: 1.0 to 5.0% by mass, Si: 0.1 to 1.5% by mass, one or more of Mg, Sn and Zn in a total of 0.01 to 2.0. It is a Cu-Ni-Si-based alloy (Corson-based alloy) having a composition of mass%, the balance being Cu and unavoidable impurities, for example, the MAX series of Mitsubishi Shindoh Co., Ltd.
These copper alloys have good thermal conductivity, strength, heat creep properties, heat resistance, workability, and the like, and are most suitable as copper alloy strips for manufacturing connectors for electric vehicles.

Cu−Sn金属間化合物層3及びSn層4は、基材2の上にCu又はCu合金からなるCuめっき層及びSn又はSn合金からなるSnめっき層を順に形成した後に加熱してリフロー処理することによって形成されたものであり、CuSnやCuSn等の金属間化合物を主成分とする。Cu−Sn金属間化合物層3の平均厚みは0.1μm以上3.0μm以下が好ましく、Sn層4の平均厚みは0.1μm以上5.0μm以下が好ましい。このCu−Sn金属間化合物層3とSn層4との界面は凹凸形状に形成される。基材2とCu−Sn金属間化合物層3との間に薄くCu層が形成される場合もある。 The Cu-Sn intermetallic compound layer 3 and the Sn layer 4 are subjected to reflow treatment by heating after sequentially forming a Cu plating layer made of Cu or Cu alloy and a Sn plating layer made of Sn or Sn alloy on the base material 2. The main component is an intermetallic compound such as Cu 6 Sn 5 or Cu 3 Sn. The average thickness of the Cu—Sn intermetallic compound layer 3 is preferably 0.1 μm or more and 3.0 μm or less, and the average thickness of the Sn layer 4 is preferably 0.1 μm or more and 5.0 μm or less. The interface between the Cu-Sn intermetallic compound layer 3 and the Sn layer 4 is formed in an uneven shape. A thin Cu layer may be formed between the base material 2 and the Cu-Sn intermetallic compound layer 3.

ストライプ状の部分皮膜5において、Sn層4の上に形成されているSn−Ni層7、Ni層8及びAg層9は、リフロー処理した後のSn層4の表面における嵌合予定部位及び圧着予定部位に、Ni又はNi合金からなるNiめっき、Ag又はAg合金からなるAgめっきを施した後に加熱処理することにより形成されたものである。   In the striped partial film 5, the Sn—Ni layer 7, the Ni layer 8, and the Ag layer 9 formed on the Sn layer 4 are to be fitted on the surface of the Sn layer 4 after the reflow treatment and to be pressed. It is formed by applying a Ni plating made of Ni or a Ni alloy or an Ag plating made of Ag or an Ag alloy to a predetermined portion and then performing a heat treatment.

Sn−Ni層7は、Sn層4とNi層8との界面近傍のSn層4側に形成され、Sn(結晶構造が正方晶のβ錫)にNiが固溶してなるSn−Ni固溶体及び/又はSnとNiとの金属間化合物を含有している。Sn−Ni層7中のNiの含有量は5at%以上が好ましい。Ni含有量の上限は67at%が好ましい。より好ましくは7at%以上60at%以下、さらに好ましくは10at%以上50at%以下である。
また、このSn−Ni層7の平均厚みは0.02μm以上1μm以下が好ましい。また、Sn−Ni固溶体及び/又はSn−Ni金属間化合物の平均粒径は0.2μm以上5μm以下である。
The Sn—Ni layer 7 is formed on the Sn layer 4 side near the interface between the Sn layer 4 and the Ni layer 8, and is a Sn—Ni solid solution in which Ni is dissolved in Sn (β-tin having a tetragonal crystal structure). And / or contains an intermetallic compound of Sn and Ni. The content of Ni in the Sn—Ni layer 7 is preferably 5 at% or more. The upper limit of the Ni content is preferably 67 at%. More preferably, it is 7 at% or more and 60 at% or less, and further preferably, 10 at% or more and 50 at% or less.
The average thickness of the Sn—Ni layer 7 is preferably 0.02 μm or more and 1 μm or less. The average particle size of the Sn—Ni solid solution and / or the Sn—Ni intermetallic compound is 0.2 μm or more and 5 μm or less.

Ni層8は、その平均厚みが0.2μm以上10μm以下が好ましい。また、基材2の圧延面に対する法線方向から視た平均結晶粒径が10nm以上500nm以下であり、平均結晶粒径の変動係数が1以下である。平均結晶粒径の変動係数とは、平均結晶粒径の標準偏差を平均結晶粒径で割った値である。平均結晶粒径は50nm以上100nm以下がより好ましく、変動係数は0.3以下がより好ましい。
また、このNi層8において、基材2の圧延面の法線方向から視た平均結晶粒径をdNDとし、基材2の圧延幅方向に対して垂直な面での平均結晶粒径をdTDとすると、その比dTD/dNDが1以上10以下である。さらに、このNi層8においてAg層9と接する面のISO25178に準拠した算術平均面高さSaは0.5μm以下である。平均結晶粒径の比dTD/dNDは1以上6以下がより好ましく、算術平均面高さSaは0.2μm以下がより好ましい。
The average thickness of the Ni layer 8 is preferably 0.2 μm or more and 10 μm or less. Further, the average crystal grain size viewed from the normal direction to the rolled surface of the base material 2 is 10 nm or more and 500 nm or less, and the coefficient of variation of the average crystal grain size is 1 or less. The variation coefficient of the average crystal grain size is a value obtained by dividing the standard deviation of the average crystal grain size by the average crystal grain size. The average crystal grain size is more preferably 50 nm or more and 100 nm or less, and the coefficient of variation is more preferably 0.3 or less.
In the Ni layer 8, the average crystal grain size as viewed from the normal direction of the rolled surface of the base material 2 is d ND, and the average crystal grain size in a plane perpendicular to the rolling width direction of the base material 2 is When d TD, the ratio d TD / d ND is 1 to 10. Further, the arithmetic average surface height Sa of the surface of the Ni layer 8 which is in contact with the Ag layer 9 according to ISO25178 is 0.5 μm or less. The ratio d TD / d ND of the average crystal grain size is more preferably 1 or more and 6 or less, and the arithmetic mean surface height Sa is more preferably 0.2 μm or less.

Ag層9は、その平均厚みが0.5μm以上20μm以下が好ましい。また、このAg層9の表面硬さは、コネクタ端子としての使用時の耐久性、特に耐摩耗性の低下を抑制するために、ビッカース硬さで130Hv以上が好ましい。250Hvを超えても、効果は飽和し、コスト高になるため無駄である。
なお、Ag層もNi層も厚い方が耐摩耗性は良くなるが、あまり厚くしても効果は飽和してしまうためコスト的にメリットがなく、逆に厚過ぎると曲げの際に割れる恐れが増大することから、Ag層とNi層の合計厚さは、1μm以上20μm以下の範囲とすることが好ましい。
The Ag layer 9 preferably has an average thickness of 0.5 μm or more and 20 μm or less. Further, the surface hardness of the Ag layer 9 is preferably 130 Vv or more in terms of Vickers hardness in order to suppress a decrease in durability when used as a connector terminal, particularly, abrasion resistance. Even if it exceeds 250 Hv, the effect is saturated and the cost is increased, so that it is useless.
The thicker the Ag layer and the better the Ni layer, the better the abrasion resistance. However, if the thickness is too large, the effect is saturated, so there is no merit in terms of cost. In view of the increase, the total thickness of the Ag layer and the Ni layer is preferably in the range of 1 μm to 20 μm.

このような層構造を有するコネクタ端子用導電部材1,11は、基材2の表面にCuめっき、Snめっきを順に施した後に、リフロー処理し、リフロー処理後のSn層4の上に、Niめっき、Agめっきを順に施して、その後、加熱処理することにより形成される。   The connector terminal conductive members 1 and 11 having such a layer structure are subjected to reflow treatment after Cu plating and Sn plating are sequentially applied to the surface of the base material 2, and Ni is placed on the Sn layer 4 after the reflow treatment. It is formed by sequentially performing plating and Ag plating, and then performing heat treatment.

Cuめっきは一般的なCuめっき浴を用いればよく、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。めっき浴の温度は20〜50℃、電流密度は1〜50A/dmとされる。このCuめっきにより形成されるCuめっき層の膜厚は0.05μm以上0.50μm以下とされる。 For Cu plating, a general Cu plating bath may be used, and for example, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components can be used. The temperature of the plating bath is 20 to 50 ° C., and the current density is 1 to 50 A / dm 2 . The film thickness of the Cu plating layer formed by the Cu plating is 0.05 μm or more and 0.50 μm or less.

Snめっき層形成のためのめっき浴としては、一般的なSnめっき浴を用いればよく、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は15〜35℃、電流密度は1〜30A/dmとされる。このSnめっき層の膜厚は0.1μm以上5.0μm以下とされる。 As a plating bath for forming a Sn plating layer, a general Sn plating bath may be used. For example, a sulfuric acid bath containing sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) as main components may be used. Can be. The temperature of the plating bath is 15 to 35 ° C., and the current density is 1 to 30 A / dm 2 . The film thickness of this Sn plating layer is 0.1 μm or more and 5.0 μm or less.

リフロー処理はCuめっき層及びSnめっき層を加熱して一旦溶融させたのち急冷すればよい。例えば、CO還元性雰囲気にした加熱炉内でCuめっき及びSnめっきを施した後の処理材を20〜75℃/秒の昇温速度で240〜300℃のピーク温度まで加熱する加熱工程と、そのピーク温度に達した後、30℃/秒以下の冷却速度で2〜10秒間冷却する一次冷却工程と、一次冷却後に100〜250℃/秒の冷却速度で20〜60℃まで冷却する二次冷却工程とを有する処理とする。このリフロー処理により、基材2表面から順に、Cu−Sn金属間化合物層3、Sn層4が形成されためっき付条材6が形成される。基材2とCu−Sn金属間化合物層3との間にCuめっき層の一部が残る場合もある。   In the reflow treatment, the Cu plating layer and the Sn plating layer may be heated and once melted, and then rapidly cooled. For example, a heating step of heating the treated material after performing Cu plating and Sn plating in a heating furnace in a CO reducing atmosphere to a peak temperature of 240 to 300 ° C. at a temperature increasing rate of 20 to 75 ° C./sec. After reaching the peak temperature, a primary cooling step of cooling at a cooling rate of 30 ° C./sec or less for 2 to 10 seconds, and a secondary cooling step of cooling to 20 to 60 ° C. at a cooling rate of 100 to 250 ° C./sec after the primary cooling. A process including a cooling step. By this reflow treatment, the plated strip 6 on which the Cu-Sn intermetallic compound layer 3 and the Sn layer 4 are formed in order from the surface of the substrate 2 is formed. A part of the Cu plating layer may remain between the base material 2 and the Cu-Sn intermetallic compound layer 3 in some cases.

Niめっきは一般的なNiめっき浴を用いればよく、例えば硫酸(HSO)と硫酸ニッケル(NiSO)を主成分とした硫酸浴を用いることができる。めっき浴の温度は20℃以上60℃以下、電流密度は5〜60A/dm以下とされる。このNiめっき層の膜厚は通常0.05μm以上20μm以下とされるが、本発明では0.2μm以上10μm以下の範囲で調整される。
このNiめっきを施す前に、Sn層4の表面に薄くストライクめっき(フラッシュめっき)を例えば0.005μm以上0.2μm以下の厚みで施しても良い。ストライクめっきとしては、金、銀、ニッケル等を適用できる。
Agめっきは、一般的なAgめっき浴であるシアン化銀めっき浴を用いればよい。浴の温度は15℃以上35℃以下、電流密度は0.1A/dm以上3A/dm以下が適切である。このAgめっき層の膜厚は通常0.1μm以上50μm以下とされるが、本発明では0.5μm以上20μm以下の範囲で調整される。
For Ni plating, a general Ni plating bath may be used. For example, a sulfuric acid bath containing sulfuric acid (H 2 SO 4 ) and nickel sulfate (NiSO 4 ) as main components can be used. The temperature of the plating bath is from 20 ° C. to 60 ° C., and the current density is from 5 to 60 A / dm 2 . The thickness of the Ni plating layer is usually 0.05 μm or more and 20 μm or less, but is adjusted in the range of 0.2 μm or more and 10 μm or less in the present invention.
Before performing the Ni plating, a thin strike plating (flash plating) may be performed on the surface of the Sn layer 4 with a thickness of, for example, 0.005 μm or more and 0.2 μm or less. Gold, silver, nickel or the like can be applied as strike plating.
For the Ag plating, a silver cyanide plating bath that is a general Ag plating bath may be used. The temperature of the bath 15 ℃ than 35 ° C. or less, the current density is 0.1 A / dm 2 or more 3A / dm 2 or less is appropriate. The thickness of the Ag plating layer is usually 0.1 μm or more and 50 μm or less, but is adjusted in the range of 0.5 μm or more and 20 μm or less in the present invention.

これらNiめっき及びAgめっきを施した後、50℃以上230℃以下の温度で1秒以上10分以下の時間保持する加熱処理を行う。この加熱処理により、Sn層4側のNi層8との界面に、Sn層4とNi層8との間でSnの一部にNiが固溶してなるSn−Ni固溶体及び/又はSnとNiとの金属間化合物が層状に配置されたSn−Ni層7が形成される。   After performing the Ni plating and the Ag plating, a heat treatment is performed at a temperature of 50 ° C. to 230 ° C. for 1 second to 10 minutes. By this heat treatment, at the interface between the Sn layer 4 and the Ni layer 8, an Sn—Ni solid solution and / or Sn in which Ni is partially dissolved in a part of Sn between the Sn layer 4 and the Ni layer 8 are formed. The Sn—Ni layer 7 in which the intermetallic compound with Ni is arranged in a layer is formed.

以上の層構造を有するコネクタ端子用導電部材1,11は、所定の外形にプレス打抜きされ、曲げ加工等の機械的加工が施されて、雄端子21あるいは雌端子22となり、耐久性が高く、密着力が強くて硬度の高い部分皮膜5が、雄端子21と雌端子22との嵌合部31,41に形成される。これにより、繰り返し挿抜に対する高い耐久性を有することができ、特に、厳しい状況下で使用される電気自動車用充電器コネクタの製造に使用されることが好ましい。
更に、リード線圧着部32,42にも部分皮膜5が形成されてもよい。これにより、端子全体としての強度および耐久性が増し、外部リード線33とのはんだ付けなどの接合が容易になる。この外部リード線33と接合する部位は、かしめ加工などを施されることが多く、密着力が強固である部分皮膜5が形成されることにより、加工性が向上する。この場合、このリード線圧着部32,42に形成される部分皮膜5の厚みは、雄端子21と雌端子22との直接の挿抜力が作用しないので、コストダウンの面からも、嵌合部31,41に形成される部分皮膜5の厚みより小さくても良い。
The connector terminal conductive members 1 and 11 having the above-described layer structure are press-punched into a predetermined outer shape and subjected to mechanical processing such as bending to become the male terminal 21 or the female terminal 22 and have high durability. The partial film 5 having high adhesion and high hardness is formed on the fitting portions 31 and 41 between the male terminal 21 and the female terminal 22. Thereby, it is possible to have a high durability against repeated insertion and removal, and it is particularly preferable to use it for manufacturing a battery charger connector for an electric vehicle used under severe conditions.
Further, the partial coating 5 may also be formed on the lead wire crimping portions 32 and 42. As a result, the strength and durability of the terminal as a whole are increased, and joining such as soldering to the external lead wire 33 becomes easy. The portion to be joined to the external lead wire 33 is often subjected to caulking or the like, and the partial film 5 having strong adhesion is formed, thereby improving workability. In this case, the thickness of the partial coating 5 formed on the lead wire crimping portions 32 and 42 is small because the direct insertion / extraction force between the male terminal 21 and the female terminal 22 does not act. The thickness may be smaller than the thickness of the partial coating 5 formed on the bases 31 and 41.

長さ500mm、幅30mm、厚み0.3mmの三菱伸銅株式会社製の商品名「MSP1」(Mg:0.3〜2質量%、P:0.001〜0.1質量%、残部がCuおよび不可避的不純物)を用いた基材の表面に、以下のめっき条件で、0.4μm厚みのCuめっき及び1.2μm厚みのSnめっきを順に施した後に、前述したリフロー処理を施して、めっき付条材を作製した。
(Cuめっき条件)
処理方法:電解めっき
めっき液:硫酸銅めっき液
液温:27℃
電流密度:4A/dm2
(Snめっき条件)
処理方法:電解めっき
めっき液:硫酸錫めっき液
液温:20℃
電流密度:2A/dm2
Trade name "MSP1" manufactured by Mitsubishi Shindoh Co., Ltd. having a length of 500 mm, a width of 30 mm, and a thickness of 0.3 mm (Mg: 0.3 to 2% by mass, P: 0.001 to 0.1% by mass, the balance being Cu And unavoidable impurities) on the surface of the substrate under the following plating conditions, followed by Cu plating of 0.4 μm thickness and Sn plating of 1.2 μm thickness, followed by the reflow treatment described above. An additional material was produced.
(Cu plating conditions)
Treatment method: Electroplating Plating solution: Copper sulfate plating solution Temperature: 27 ° C
Current density: 4 A / dm 2
(Sn plating conditions)
Treatment method: Electroplating Plating solution: Tin sulfate plating solution Temperature: 20 ° C
Current density: 2 A / dm 2

次に、そのめっき付条材の所定の部位に、銀のストライクめっきを施した後、表1に示す厚みでNiめっき及びAgめっきを順に形成した。Niめっきは半光沢ニッケルめっきとした。これらのめっきを施した後、温風を吹き付けながら150℃の温度で1分間保持する加熱処理を行った。
この部分皮膜用の各めっきの条件は以下の通りとした。
(銀ストライクめっき条件)
処理方法:電解めっき
めっき液:シアン化銀ストライクめっき液
液温:室温
電流密度:3A/dm2
(Niめっき条件)
処理方法:電解めっき
めっき液:スルファミン酸ニッケルめっき液
液温:50℃
電流密度:10A/dm2
(Agめっき)
処理方法:電解めっき
めっき液:シアン化銀めっき液
液温:30℃
電流密度:1A/dm2
Next, a predetermined portion of the plated material was subjected to silver strike plating, and then Ni plating and Ag plating were formed in the order shown in Table 1 in order. Ni plating was semi-bright nickel plating. After performing these platings, a heat treatment was performed at a temperature of 150 ° C. for 1 minute while blowing hot air.
The conditions of each plating for this partial film were as follows.
(Silver strike plating conditions)
Treatment method: Electroplating plating solution: Silver cyanide strike plating solution Temperature: Room temperature Current density: 3 A / dm 2
(Ni plating conditions)
Treatment method: Electroplating plating solution: Nickel sulfamate plating solution Temperature: 50 ° C
Current density: 10 A / dm 2
(Ag plating)
Treatment method: electrolytic plating plating solution: silver cyanide plating solution temperature: 30 ° C
Current density: 1 A / dm 2

得られた各試料について、Ni層における平均結晶粒径、変動係数、dTD/dNDの粒径比、Ag層と接する面の算術平均面高さSaを測定し、また、Sn−Ni層における平均粒径、Sn−Ni層中のNiの含有量(at%)を測定した。
Ni層における平均結晶粒径は、試料断面のSEM画像より切断法にて100個の結晶粒径を算出し、これを平均した。その平均結晶粒径の標準偏差を平均結晶粒径で割ることで変動係数を求めた。
TD/dNDの粒径比は、基材の圧延面の法線方向から視た平均結晶粒径dND、及び基材の圧延幅方向に対して垂直な面での平均結晶粒径dTDをそれぞれSEM画像により切断法にて算出し、その比率を求めた。
算術平均面高さは、ISO25178に従い、レーザー共焦点顕微鏡(LSCM)にて測定した。
Sn−Ni層における平均粒径は、SEM−EPMAによりSn−Ni固溶体及び/又はSn−Ni金属間化合物を確認した後、SEM−EBSDにより結晶粒界像を撮影し、100個の結晶粒径から算出した。
Sn−Ni層のNiの含有量(at%)は、TEM−EDXによりSn−Ni層の任意の5点で測定した値から算出した。
For each of the obtained samples, the average crystal grain size in the Ni layer, the coefficient of variation, the particle size ratio of d TD / d ND , and the arithmetic average surface height Sa of the surface in contact with the Ag layer were measured. Were measured for the average particle size and the content (at%) of Ni in the Sn-Ni layer.
The average crystal grain size in the Ni layer was obtained by calculating 100 crystal grain sizes from the SEM image of the sample cross section by a cutting method, and averaging the calculated crystal grain sizes. The coefficient of variation was determined by dividing the standard deviation of the average grain size by the average grain size.
The grain size ratio of d TD / d ND is determined by the average grain size d ND as viewed from the normal direction of the rolled surface of the base material and the average grain size d d in the surface perpendicular to the rolling width direction of the base material. The TD was calculated by a cutting method using SEM images, and the ratio was determined.
The arithmetic mean plane height was measured by a laser confocal microscope (LSCM) according to ISO25178.
The average grain size of the Sn—Ni layer was determined by confirming the Sn—Ni solid solution and / or Sn—Ni intermetallic compound by SEM-EPMA, and then taking a grain boundary image by SEM-EBSD to obtain 100 grain sizes. Calculated from
The Ni content (at%) of the Sn—Ni layer was calculated from values measured at five arbitrary points of the Sn—Ni layer by TEM-EDX.

これらの試料につき、部分皮膜の表面硬さを測定し、耐摩耗性、曲げ加工性を評価した。
表面硬さは、加熱前と、実装時を想定した条件(150℃×1000hr)で加熱保持処理後について、マイクロビッカース硬度計にて測定した。
耐摩耗性(摺動試験)は、山崎精機研究所製精密摺動試験装置CRS−G2050−MTS型を使用し、摺動距離0.25mm、摺動速度0.5mm/s、接触荷重1.2N、摺動回数500往復を1セットとし、これを複数セット繰り返す条件で摺動回数と接触抵抗との関係を評価した。サンプル数は3個とし、サンプルの初期(試験開始前)の接触抵抗が1mΩ以下であることを確認した後、連続的に摺動させながら接触抵抗を測定し、接触抵抗が50mΩ以上となったのが何セット目であるかに基づき、良否を判定した。具体的には、50mΩに到達したセット数について、3個とも10セット目(4501〜5000往復)以降であったものを「優」、いずれか1個でも9セット目であった(ただし、それを含め全て9セット目以降であった)場合は「良」、いずれか1個でも8セット目であった(ただし、それを含め全て8セット目以降であった)場合は「可」とし、いずれか1個でも7セット目以前で50mΩに達してしまったものがあった場合は「不可」とした。
曲げ加工性は、試料をBadWay:圧延垂直方向に幅10mm×長さ60mmに切出し、JIS Z 2248に規定される金属材料曲げ試験方法に準拠し、曲げ半径Rと押し金具の厚さtとの比R/t=1として180°曲げ試験を行い、曲げ部の表面及び断面にクラック等が認められるか否かを光学顕微鏡にて倍率50倍で観察した。クラック等が認められず、表面状態も曲げの前後で大きな変化がなかったものを「◎」、表面は光沢低下などの状態変化が認められたもののクラックの発生は確認できなかったものを「〇」、クラックは認められたものの、めっき剥離は認められなかったものを「△」、めっき自体の剥離が認められたものを「×」とした。
これらの結果を表2に示す。
For these samples, the surface hardness of the partial coating was measured, and the wear resistance and bending workability were evaluated.
The surface hardness was measured by a micro Vickers hardness tester before and after the heating and holding treatment under the conditions (150 ° C. × 1000 hr) assuming the time of mounting.
Abrasion resistance (sliding test) was measured using a precision sliding tester CRS-G2050-MTS type manufactured by Yamazaki Seiki Laboratories, with a sliding distance of 0.25 mm, a sliding speed of 0.5 mm / s, and a contact load of 1. The relationship between the number of times of sliding and the contact resistance was evaluated under the condition that 2N, 500 times of sliding times were set as one set, and this set was repeated plural times. The number of samples was three, and after confirming that the initial contact resistance of the sample (before the start of the test) was 1 mΩ or less, the contact resistance was measured while continuously sliding, and the contact resistance became 50 mΩ or more. The pass / fail was determined based on the number of the set. More specifically, as for the number of sets that reached 50 mΩ, all of the three sets after the tenth set (4501 to 5000 reciprocations) were “excellent”, and any one was the ninth set (however, , If all were in the ninth and subsequent sets), "Good", and if any one of them was in the eighth set (but all were in the eighth and subsequent sets), "OK" If any one of them reached 50 mΩ before the seventh set, it was judged as “impossible”.
The bending workability was determined by cutting a sample to a width of 10 mm and a length of 60 mm in a direction perpendicular to the rolling direction of the metal material and measuring the bending radius R and the thickness t of the press fitting in accordance with the metal material bending test method specified in JIS Z 2248. A 180 ° bending test was performed with the ratio R / t = 1, and whether or not cracks or the like were observed on the surface and cross section of the bent portion was observed with an optical microscope at a magnification of 50 ×. "◎" indicates that no cracks or the like were observed and the surface state did not change significantly before and after bending, and "」 "indicates that the surface showed a state change such as a decrease in gloss but no crack was observed. ”, Cracks were observed, but no peeling of the plating was observed, and“ △ ”was observed when peeling of the plating itself was observed.
Table 2 shows the results.

これらの結果より、本実施例はいずれも、長時間の加熱後も表面硬さは概ね130Hv以上であり、かつ良好な耐摩耗性(高い摺動回数)を示していると共に、曲げ加工性にも優れていることが分かる。
これに対し比較例を見ると、Niの結晶粒径が小さすぎる比較例B1とB2では、結晶粒が微細であるがゆえに耐摩耗性は良好であるが、硬くなりすぎるために曲げ加工性は悪かった。逆に結晶粒が500nm前後と大きくなり、変動係数が1を超えてしまった実施例B3〜B6では、耐摩耗性が非常に悪い結果となった。比較例B7とB8はSn−Ni化合物の形成が認められなかったもので、耐摩耗性は良好であったものの曲げ加工性が悪く、やはり密着性に問題があったものと思われる。比較例B9はわずかであるが変動係数が1を超え、かつSn−Ni中のNi量が多すぎるため、硬くなりすぎて割れが発生した。比較例B10は、変動係数が1を超え、耐摩耗性が悪くなる結果となった。比較例B11は、変動係数が1を超えており、またNiめっきとAgめっきの合計膜厚が0.6μmと薄いために、耐摩耗性が悪くなった。比較例B12は、逆にNiが厚くなり過ぎ、割れやすくなってしまった。また、比較例全体を見ると、半数が加熱後の表面硬さが130を下回っており、そのうちの多くは耐摩耗性も低下していた。
図5は試料A4の断面写真であり、基材の上に、CuSn及びCuSnからなるCu−Sn金属間化合物層、Sn層、Ni層、Ag層が順に形成され、Ni層とSn層との界面にSn−Ni層が形成されているのがわかる。
From these results, in each of the examples, the surface hardness was approximately 130 Hv or more even after heating for a long time, good wear resistance (high sliding frequency), and bending workability was observed. It can be seen that is also excellent.
On the other hand, according to the comparative examples, in comparative examples B1 and B2 in which the crystal grain size of Ni is too small, the wear resistance is good because the crystal grains are fine, but the bending workability is too high because the hardness is too hard. It was bad. Conversely, in Examples B3 to B6, in which the crystal grains were as large as about 500 nm and the variation coefficient exceeded 1, the results were very poor in abrasion resistance. In Comparative Examples B7 and B8, formation of a Sn—Ni compound was not observed, and although the abrasion resistance was good, the bending workability was poor, and it seems that there was also a problem in the adhesion. In Comparative Example B9, although the coefficient of variation was slight, the coefficient of variation exceeded 1, and the amount of Ni in Sn—Ni was too large, so that it became too hard and cracked. In Comparative Example B10, the coefficient of variation exceeded 1, resulting in poor wear resistance. In Comparative Example B11, the coefficient of variation exceeded 1, and the wear resistance was poor because the total thickness of the Ni plating and the Ag plating was as thin as 0.6 μm. In Comparative Example B12, on the other hand, Ni was too thick, and it was easily broken. In addition, looking at the entire comparative example, half showed that the surface hardness after heating was less than 130, and most of them also had reduced wear resistance.
FIG. 5 is a cross-sectional photograph of Sample A4, in which a Cu—Sn intermetallic compound layer composed of Cu 3 Sn and Cu 6 Sn 5 , a Sn layer, a Ni layer, and an Ag layer are sequentially formed on a substrate, and a Ni layer It can be seen that a Sn-Ni layer is formed at the interface between the Sn layer and the Sn layer.

1、11 コネクタ端子用導電部材
2 基材
3 Cu−Sn金属間化合物層
4 Sn層
5 部分皮膜
6 めっき付条材
7 Sn−Ni層
8 Ni層
9 Ag層
31,41 嵌合部
32,42 リード線圧着部
43 弾性変形容易部
34,44 円筒部
35a,45a 外被用かしめ片
35b,45b 導体用かしめ片
DESCRIPTION OF SYMBOLS 1, 11 Conductive member for connector terminals 2 Base material 3 Cu-Sn intermetallic compound layer 4 Sn layer 5 Partial film 6 Plated material 7 Sn-Ni layer 8 Ni layer 9 Ag layer 31, 41 Fitting part 32, 42 Lead wire crimping part 43 Elastic deformation part 34, 44 Cylindrical part 35a, 45a Caulking piece for jacket 35b, 45b Caulking piece for conductor

Claims (7)

Cu又はCu合金からなる基材の上に、Cu及びSnの金属間化合物からなるCu−Sn金属間化合物層が形成され、該Cu−Sn金属間化合物層の上にSn又はSn合金からなるSn層が形成されており、前記Sn層の表面において、端子に成形したときに端子同士が嵌合により接触状態となる予定の嵌合予定部位に、ストライプ状に部分皮膜が形成されており、該部分皮膜は、前記Sn層の上に形成されたNi又はNi合金からなるNi層と、該Ni層の上に形成されたAg又はAg合金からなるAg層とを有し、
前記Sn層における前記Ni層との界面部に、SnにNiが固溶してなるSn−Ni固溶体及び/又はSnとNiとの金属間化合物を含有するSn−Ni層が形成され、
前記Ni層における前記基材の圧延面に対する法線方向から視た平均結晶粒径が10nm以上500nm以下であり、該平均結晶粒径の変動係数が1以下であることを特徴とするコネクタ端子用導電部材。
A Cu-Sn intermetallic compound layer composed of an intermetallic compound of Cu and Sn is formed on a substrate composed of Cu or Cu alloy, and Sn composed of Sn or a Sn alloy is formed on the Cu-Sn intermetallic compound layer. A layer is formed, and on the surface of the Sn layer, a partial film is formed in a stripe shape at a portion where the terminals are to be brought into contact by fitting when the terminals are molded, and a partial coating is formed. The partial coating has a Ni layer formed of Ni or a Ni alloy formed on the Sn layer, and an Ag layer formed of Ag or an Ag alloy formed on the Ni layer,
At the interface between the Sn layer and the Ni layer, an Sn-Ni layer containing a Sn-Ni solid solution in which Ni is dissolved in Sn and / or an intermetallic compound of Sn and Ni is formed,
An average crystal grain size as viewed from a normal direction to a rolled surface of the base material in the Ni layer is 10 nm or more and 500 nm or less, and a coefficient of variation of the average crystal grain size is 1 or less. Conductive member.
前記Sn−Ni層に含まれるSn−Ni固溶体及び/又はSn−Ni金属間化合物の平均結晶粒径が0.2μm以上5μm以下であることを特徴とする請求項1記載のコネクタ端子用導電部材。   The conductive member for a connector terminal according to claim 1, wherein the average crystal grain size of the Sn-Ni solid solution and / or the Sn-Ni intermetallic compound contained in the Sn-Ni layer is 0.2 µm or more and 5 µm or less. . 前記Sn−Ni層におけるNiの含有量は5at%以上であることを特徴とする請求項1又は2記載のコネクタ端子用導電部材。   3. The conductive member for a connector terminal according to claim 1, wherein the content of Ni in the Sn-Ni layer is 5 at% or more. 前記Ni層における前記基材の圧延面の法線方向から視た平均結晶粒径をdNDとし、前記基材の圧延幅方向に対して垂直な面での平均結晶粒径をdTDとすると、その粒径比dTD/dNDが1以上10以下であることを特徴とする請求項1から3のいずれか一項記載のコネクタ端子用導電部材。 When the average crystal grain size in the Ni layer as viewed from the normal direction of the rolling surface of the base material is d ND, and the average crystal grain size in a surface perpendicular to the rolling width direction of the base material is d TD. , any one claim connector terminal conductive member of claims 1 to 3, characterized in that the particle size ratio d TD / d ND is 1 to 10. 前記Ni層において前記Ag層と接する面の算術平均面高さSaが0.5μm以下であることを特徴とする請求項1から4のいずれか一項記載のコネクタ端子用導電部材。   5. The conductive member for a connector terminal according to claim 1, wherein an arithmetic mean surface height Sa of a surface of the Ni layer in contact with the Ag layer is 0.5 μm or less. 6. 前記基材は帯板状に形成されていることを特徴とする請求項1から5のいずれか一項記載のコネクタ端子用導電部材。   The conductive member for a connector terminal according to any one of claims 1 to 5, wherein the base material is formed in a strip shape. 請求項1から5のいずれか一項記載のコネクタ端子用導電部材からなり、相手端子に嵌合状態に接触する嵌合部を有し、該嵌合部の表面に前記部分皮膜が形成されていることを特徴とするコネクタ端子。   A connector comprising the conductive member for a connector terminal according to any one of claims 1 to 5, further comprising a fitting portion that comes into contact with a mating terminal in a fitting state, wherein the partial film is formed on a surface of the fitting portion. A connector terminal.
JP2018123098A 2018-06-28 2018-06-28 Conductive member for connector terminal and connector terminal Active JP7087732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123098A JP7087732B2 (en) 2018-06-28 2018-06-28 Conductive member for connector terminal and connector terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123098A JP7087732B2 (en) 2018-06-28 2018-06-28 Conductive member for connector terminal and connector terminal

Publications (2)

Publication Number Publication Date
JP2020002429A true JP2020002429A (en) 2020-01-09
JP7087732B2 JP7087732B2 (en) 2022-06-21

Family

ID=69098850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123098A Active JP7087732B2 (en) 2018-06-28 2018-06-28 Conductive member for connector terminal and connector terminal

Country Status (1)

Country Link
JP (1) JP7087732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4090484B2 (en) 2005-12-12 2008-05-28 有限会社丸岩商会 Folding attachment and portable brush cutter equipped with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086446A (en) * 2013-10-31 2015-05-07 三菱伸銅株式会社 Conductive member for connector
JP2016065316A (en) * 2013-06-10 2016-04-28 オリエンタル鍍金株式会社 Plated laminate
JP2016166396A (en) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 Copper terminal material with silver platting and terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016065316A (en) * 2013-06-10 2016-04-28 オリエンタル鍍金株式会社 Plated laminate
JP2015086446A (en) * 2013-10-31 2015-05-07 三菱伸銅株式会社 Conductive member for connector
JP2016166396A (en) * 2015-03-10 2016-09-15 三菱マテリアル株式会社 Copper terminal material with silver platting and terminal

Also Published As

Publication number Publication date
JP7087732B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP5192878B2 (en) Connectors and metal materials for connectors
EP2620275B1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
EP3192896B1 (en) Tin-plated copper alloy terminal material and method for producing same
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
EP2896724B1 (en) Tin-plated copper-alloy terminal material
JP2006183068A (en) Conductive material for connecting part and method for manufacturing the conductive material
KR20140029257A (en) Sn-plated copper alloy strip having excellent heat resistance
JP2004179055A (en) Connector terminal, connector and manufacturing method of the same
EP2784190A1 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP3953169B2 (en) Manufacturing method of plating material for mating type connection terminal
JP5479789B2 (en) Metal materials for connectors
JP2020202101A (en) Terminal and electric wire with terminal including the same, and wire harness
JP2006307336A (en) Sn-PLATED STRIP OF Cu-Ni-Si-Zn-BASED ALLOY
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
KR20150050397A (en) Tin-plated copper alloy terminal member
US9954297B2 (en) Terminal fitting and connector
US11211730B2 (en) Connector terminal, electrical wire with terminal, and terminal pair
JP7087732B2 (en) Conductive member for connector terminal and connector terminal
JP7121232B2 (en) Copper terminal material, copper terminal, and method for producing copper terminal material
JP2021055163A (en) Connector terminal material
CN107849721B (en) Plating material having excellent heat resistance and method for producing same
JP7230570B2 (en) Conductive member for connector terminal and connector terminal
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150