JP2014115019A - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
JP2014115019A
JP2014115019A JP2012269642A JP2012269642A JP2014115019A JP 2014115019 A JP2014115019 A JP 2014115019A JP 2012269642 A JP2012269642 A JP 2012269642A JP 2012269642 A JP2012269642 A JP 2012269642A JP 2014115019 A JP2014115019 A JP 2014115019A
Authority
JP
Japan
Prior art keywords
control system
ventilation fan
conditioning control
gas sensor
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269642A
Other languages
English (en)
Other versions
JP5999353B2 (ja
Inventor
Koji Sakamoto
浩司 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012269642A priority Critical patent/JP5999353B2/ja
Priority to PCT/JP2013/007048 priority patent/WO2014091708A1/ja
Priority to EP13862814.4A priority patent/EP2930442A4/en
Priority to US14/648,899 priority patent/US20150300670A1/en
Publication of JP2014115019A publication Critical patent/JP2014115019A/ja
Application granted granted Critical
Publication of JP5999353B2 publication Critical patent/JP5999353B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

【課題】換気量が必要換気量よりも過剰となるのを抑制することが可能な空調制御システムを提供する。
【解決手段】空調制御システムは、換気扇100と、人の存否を検知可能な人感センサ200と、二酸化炭素濃度を検知可能なガスセンサ300と、制御装置である制御盤400とを備える。制御盤400は、人感センサ200の出力信号とガスセンサ300の出力信号とに基づいて換気扇100を制御する。ここで、制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値未満のとき、人感センサ200の出力信号に基づいて換気扇100の換気量が切り替わるように換気扇100を制御する。
【選択図】図1

Description

本発明は、空調制御システムに関するものである。
空調制御システムとしては、COセンサを備えた空調制御システムが提案されている(特許文献1)。
特許文献1に記載された空調制御システムは、空調機を外気処理系と循環処理系とに分けてある。この空調制御システムは、外気処理系の送気量を、室内に設置されたCOセンサの出力によって調整できる構成となっている。また、この空調制御システムは、循環処理系の送気量を室内温度センサによって調整できるようになっている。
また、特許文献1には、上述のCOセンサに代えて、室内に入った人数を計数する人感センサを設け、この人感センサによって、外気処理系の送気量を調整するようにした空調制御システムが記載されている。
特開平6−109313号公報
ところで、特許文献1に開示された空調制御システムでは、COセンサ又は人感センサの出力によって外気処理系の送気量を調整するとともに、循環処理系の送気量を室内温度センサによって調整する一方で、排気量を制御しているので、暖房時や冷房時のエネルギロスが増えてしまう懸念がある。
本発明は上記事由に鑑みて為されたものであり、その目的は、換気量が必要換気量よりも過剰となるのを抑制することが可能な空調制御システムを提供することにある。
本発明の空調制御システムは、換気扇と、人の存否を検知可能な人感センサと、二酸化炭素濃度を検知可能なガスセンサと、制御装置とを備え、前記制御装置は、前記人感センサの出力と前記ガスセンサの出力とに基づいて前記換気扇を制御し、前記ガスセンサにより検知された二酸化炭素濃度が第1閾値未満のとき、前記人感センサの出力信号に基づいて前記換気扇の換気量が切り替わるように前記換気扇を制御することを特徴とする。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値以上のとき、前記人感センサの出力に関わらず、前記換気扇が動作するように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値未満のとき、前記人感センサにより人が検知されていない場合、前記人感センサにより人が検知されている場合よりも前記換気扇の換気量が少なくなるように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値未満のとき、前記人感センサにより人が検知されていない場合、前記換気扇が停止するように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値よりも低濃度の第2閾値未満のとき、前記人感センサの出力信号に基づいて前記換気扇の換気量が切り替わるように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値未満のとき、前記人感センサにより人が検知されていない場合、前記人感センサにより人が検知されている場合よりも前記換気扇の換気量が少なくなるように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値未満のとき、前記人感センサにより人が検知されていない場合、前記換気扇が停止するように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値以上のとき、前記人感センサにより人が検知されている場合、前記人感センサにより人が検知されていない場合よりも前記換気扇の換気量が多くなるように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値以上のとき、前記人感センサにより人が検知されている場合、前記人感センサにより人が検知されていない場合よりも前記換気扇の換気量が多くなるように前記換気扇を制御することが好ましい。
この空調制御システムにおいて、前記ガスセンサは、光源と、光検出器と、前記光源と前記光検出器との間に配置された試料セルと、信号処理部とを備え、前記光検出器は、二酸化炭素の吸収波長を透過するように透過帯域が設定された第1光学フィルタと、前記第1光学フィルタにおける前記光源側とは反対側に配置された第1受光部と、二酸化炭素に吸収されない参照波長の赤外線を透過し透過帯域が前記第1光学フィルタとは重複しない第2光学フィルタと、前記第2光学フィルタにおける前記光源側とは反対側に配置された第2受光部とを備え、前記信号処理部は、前記第1受光部の出力信号と前記第2受光部の出力信号との差分もしくは比に基づいて二酸化炭素濃度を求めることが好ましい。
この空調制御システムにおいて、前記試料セルは、筒状であり、その内面が前記光源から放射された赤外線を反射する反射面であり、前記反射面は、前記試料セルの中心軸上に規定した長軸を回転軸とする回転楕円体の長軸方向の両端部それぞれを長軸に直交する2つの平面によりカットした形状であり、前記光源は、前記中心軸上において、前記回転楕円体の一方の焦点近傍に配置され、前記光検出器は、前記中心軸上において、前記回転楕円体の他方の焦点よりも前記光源に近い側に配置されていることが好ましい。
この空調制御システムにおいて、前記制御装置は、前記換気扇を動作させているとき、前記ガスセンサにより検知された二酸化炭素濃度が低いほど換気量を少なくすることが好ましい。
この空調制御システムにおいて、前記第1閾値は、前記ガスセンサを配置する室内の二酸化炭素の許容濃度に設定してあることが好ましい。
本発明の空調制御システムは、換気量が必要換気量よりも過剰となるのを抑制することが可能となる。
実施形態1の空調制御システムのシステム構成図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムの動作説明図である。 実施形態1の空調制御システムにおけるガスセンサの概略構成図である。 実施形態1の空調制御システムにおけるガスセンサの要部の概略分解斜視図である。 (a)は実施形態1の空調制御システムにおけるガスセンサの要部の斜視図、(b)は実施形態1の空調制御システムにおけるガスセンサの要部の一部破断した斜視図である。 実施形態1の空調制御システムにおけるガスセンサの模式説明図である。 (a)は実施形態1の空調制御システムにおけるガスセンサの光源の概略平面図、(b)は(a)のX−X’概略断面図である。 実施形態1の空調制御システムにおけるガスセンサの光検出器の説明図である。 実施形態1の空調制御システムにおけるガスセンサの動作説明図である。 実施形態1の空調制御システムにおけるガスセンサの動作説明図である。 実施形態1の空調制御システムの他の構成例を示すシステム構成図である。 実施形態1の空調制御システムの別の構成例を示すシステム構成図である。 実施形態2の空調制御システムのシステム構成図である。 実施形態3の空調制御システムのシステム構成図である。 実施形態4の空調制御システムのシステム構成図である。 実施形態5の空調制御システムのシステム構成図である。
(実施形態1)
以下では、本実施形態の空調制御システムについて図1に基づいて説明する。
空調制御システムは、換気扇100と、人の存否を検知可能な人感センサ200と、二酸化炭素(以下、「CO」ともいう。)濃度を検知可能なガスセンサ300と、制御盤400とを備える。制御盤400は、人感センサ200の出力信号とガスセンサ300の出力信号とに基づいて換気扇100を制御する制御装置である。ここで、制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1(図2参照)未満のとき、人感センサ200の出力信号に基づいて換気扇100の換気量が切り替わるように換気扇100を制御する。なお、図1中に破線で示した四角は、部屋等の空間的な境界を模式的に示したものである。
これにより、空調制御システムは、換気量が必要換気量よりも過剰となるのを抑制することが可能となる。よって、空調制御システムは、例えば、暖房時において暖房に要するエネルギが無駄になるのを抑制することが可能となり、暖房時における空調機の消費エネルギの低減に寄与することが可能になる。また、空調制御システムは、冷房時において冷房に要するエネルギが無駄になるのを抑制することが可能となり、冷房時における空調機の消費エネルギの低減に寄与することが可能になる。
空調制御システムを設置する対象の建物としては、例えば、ビルを挙げることができるが、これに限らず、例えば、病院、学校、住宅等が挙げられる。
ビルの室内の二酸化炭素濃度の基準に関して、例えば日本国では、建築基準法並びに建築物における衛生的環境の確保に関する法律(「建築物衛生法」又は「ビル衛生管理法」とも言われる。)において、二酸化炭素濃度の基準が1000ppm以下と定められている。1000ppmという許容濃度(上限値)は、COそのものの有害限度ではなく、空気の物理的、化学的性状が、COの増加に比例して悪化すると仮定したときの汚染の指標としての許容濃度を意味する。また、学校の室内の二酸化炭素濃度の基準に関して、例えば日本国では、学校保健安全法(昭和三十三年法律第五十六号)第六条第一項の規定に基づき定められた学校環境衛生基準(平成二十一年四月一日から施行)で「換気の基準として、二酸化炭素は、1500ppm以下であることが望ましい。」と記載されている。
空調制御システムは、第1閾値TH1が、ガスセンサ300を配置する室内の二酸化炭素の許容濃度に設定してあるのが好ましい。これにより、空調制御システムは、ガスセンサ300を配置する室内の空気中の二酸化炭素濃度が許容濃度を超えるのを抑制することが可能となる。空調制御システムは、ビルに適用する場合、第1閾値TH1を例えば1000ppmに設定し、学校に適用する場合、第1閾値TH1を例えば1500ppmに設定すればよい。空調制御システムは、病院や住宅に適用する場合、第1閾値TH1を例えば1000ppmに設定すればよい。第1閾値TH1は、空調制御システムは、この空調制御システムを適用する建築物に関して、その建築物が建築される国等の法律で基準がある場合、その基準を満たすように設定することが好ましい。第1閾値TH1は、二酸化炭素の許容濃度に限らず、許容濃度以下でもよいが、許容濃度に近い値が好ましく、例えば、許容濃度の90%以上の値が好ましい。
換気扇100は、建物において各部屋等に設置される。換気扇100は、室内と室外の空気の入れ替え(換気)を行うために用いられる換気設備であり、モータによりファン等を回転させて空気の流れを発生させる。よって、換気扇100は、室内の空気を室外へ出すことができるので、室内の二酸化炭素濃度を低下させる働きをする。換気扇100は、換気量(排気量)を段階的に変化させることができるものでもよいし、換気量を連続的に変化させることができるものでもよい。換気扇100は、例えば、排気用のものである。換気扇100は、制御盤400に対して、電源ラインL1を介して接続され、また、信号ラインL2を介して接続されている。空調制御システムは、複数の換気扇100を備えている場合、制御盤400が各換気扇100を個別に制御できるように、例えば、各換気扇100ごとに、異なる固有アドレスを設定されているのが好ましい。空調制御システムは、制御盤400と換気扇100を複数の信号線で接続して、換気扇100の換気量を切り替えるように換気扇100を制御するようにしてもよい。
人感センサ200は、例えば、建物において各部屋等に配置される。人感センサ200は、その人感センサ200が配置された部屋に人がいるかいないかを検知するためのセンサである。人感センサ200としては、例えば、人から放射される赤外線を利用して人がいるかいないかを検知する赤外線式の人感センサを採用することができる。赤外線式の人感センサとしては、例えば、赤外線検出素子とレンズとを備えた構成のものが好ましい。赤外線検出素子としては、例えば、焦電素子、サーモパイル、抵抗ボロメータ等を採用することができる。焦電素子としては、例えば、4つの受光部を備えたクワッド素子や、2つの受光部を備えたデュアル素子が好ましい。また、人感センサ200は、超音波を利用して人が居るか居ないかを検知する超音波式の人感センサを採用することもできる。人感センサ200は、低消費電力化の観点から、焦電素子とフレネルレンズとを組み合わせた人感センサが好ましい。人感センサ200は、制御盤400に対して、電源ラインL1を介して接続され、また、信号ラインL2を介して接続されている。空調制御システムは、複数の人感センサ200を備えている場合、制御盤400が各人感センサ200の出力信号を各人感センサ200に対応付けて認識できるように、例えば、各人感センサ200ごとに、異なる固有アドレスが設定されているのが好ましい。なお、空調制御システムは、信号ラインL2に換気扇100及び人感センサ200が接続されているが、換気扇100が接続される信号ラインL2と人感センサが接続される信号ラインL2とを分けてもよい。また、空調制御システムは、人感センサ200とガスセンサ300とを備えた複合センサ装置250が信号ラインL2に接続されていてもよい。複合センサ装置250は、その複合センサ装置250の備える人感センサ200の固有アドレスとガスセンサ300の固有アドレスとを共通としてもよし、別々としてもよい。
制御盤11は、例えば、建物の防災センタや管理室等に設置される。制御盤11は、ガスセンサ300の出力信号、人感センサ200の出力信号それぞれを受信し、各部屋ごとのガスセンサ300の出力信号と人感センサ200の出力信号とに基づいて、各部屋それぞれの換気扇100を個別に制御する。
制御盤400は、電源ラインL1を介して各換気扇100、各人感センサ200及び各ガスセンサ300に所定電圧を与えている。所定電圧は、例えば、DC12V、AC24V、AC100V等である。
また、制御盤400は、各人感センサ200それぞれの出力信号及び各ガスセンサ300それぞれの出力信号を、信号線ラインL2を介して受け取り、換気扇100に、信号線ラインL2を介して、換気量の指示データ及びアドレスデータを含む制御信号を伝送する。各換気扇100は、固有アドレスが割り当てられており、制御信号のアドレスデータが自己の固有アドレスに一致する場合、その制御信号に含まれている換気量の指示データを読み取り、読み取った指示データに基づいて、自己の換気量を制御する。換気扇100は、例えば、モータを駆動するモータ駆動回路を備えている場合、モータ駆動回路によってモータの回転速度を制御することで換気量を調節することができる。モータ駆動回路は、例えば、モータへ与える電圧を変えることで換気量を調節するようにしたり、モータをPWM制御するようにしてもよい。指示データは、換気量を直接指示するデータでもよいし、換気量の関数でもよいし、換気扇100のオンオフや風量の切り替えを指示するデータでもよい。
制御盤400は、上述の第1閾値TH1を記憶する記憶部を備えており、各人感センサ200それぞれの出力信号及び各ガスセンサ300それぞれの出力信号に基づいて、上述の制御信号を生成する信号生成部等を備えている。
空調制御システムは、制御盤400において、二酸化炭素濃度の第1閾値TH1の他に第1閾値TH1よりも低濃度の第2閾値TH2(例えば、図15〜図23)も併せて記憶させるようにしてもよい。
制御盤400は、例えば、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1以上のとき、人感センサ200の出力信号に関わらず、換気扇100が動作する(例えば、図2〜図23参照)ように換気扇100を制御することが好ましい。これにより、空調制御システムは、室内の空気中の二酸化炭素濃度が第1閾値TH1以上となったままになるのを抑制することが可能となる。図2〜図23の各々において、(a)は人感センサ200により人が検知されている場合(人がいると検知されている場合)の二酸化炭素濃度と換気量との関係を模式的に示している。また、図2〜図23の各々において、(b)は人感センサ200により人が検知されていない場合(人がいないと検知されている場合)の二酸化炭素濃度と換気量との関係を模式的に示している。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1未満のとき、人感センサ200により人が検知されていない場合、人感センサにより人が検知されている場合よりも換気扇100の換気量が少なくなる(例えば、図2〜図12、図15〜図20参照)ように換気扇300を制御することが好ましい。これにより、空調制御システムは、換気量が必要換気量よりも過剰となるのを抑制することが可能となる。換気扇100の換気量を少なくするとは、換気量を零とする場合も含む概念である。換気量を零にするには、換気扇100を停止すればよい。要するに、制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1未満のとき、人感センサ200により人が検知されていない場合、換気扇100が停止する(図2、図9〜図12、図19、図20及び図23参照)ように換気扇100を制御するようにしてもよい。これにより、空調制御システムは、換気量が必要換気量よりも過剰となるのをより抑制することが可能となる。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1以上のとき、人感センサ200により人が検知されている場合、人感センサ200により人が検知されていない場合よりも換気扇100の換気量が多くなる(図13、図14、図21〜図23参照)ように換気扇100を制御するようにしてもよい。これにより、空調制御システムは、室内の空気中の二酸化炭素濃度が上昇するのを抑制することが可能となる。
制御盤400は、換気扇100を動作させているとき、ガスセンサ300により検知された二酸化炭素濃度が低いほど換気量を少なくする(図4、図6、図11、図14、図16、図18及び図22参照)ようにしてもよい。これにより、空調制御システムは、換気量が必要換気量よりも過剰となるのをより抑制することが可能となる。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1よりも低濃度の第2閾値TH2未満のとき、人感センサ200の出力信号に基づいて換気扇100の換気量が切り替わる(図15〜図20及び図23)ように換気扇100を制御するようにしてもよい。これにより、空調制御システムは、空調制御システムは、換気量が必要換気量よりも過剰となるのをより抑制することが可能となる。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第2閾値TH2未満のとき、人感センサ200により人が検知されていない場合、人感センサ200により人が検知されている場合よりも換気扇100の換気量が少なくなる(図15〜図20及び図23)ように換気扇100を制御するのが好ましい。これにより、空調制御システムは、省エネルギ化を図ることが可能となる。換気扇100の換気量を少なくするとは、換気量を零とする場合も含む概念である。換気量を零にするには、換気扇100を停止すればよい。要するに、制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第2閾値TH2未満のとき、人感センサ200により人が検知されていない場合、換気扇100が停止する(図19、図20及び図23)ように換気扇100を制御してもよい。これにより、空調制御システムは、換気量が必要換気量よりも過剰となるのをより抑制することが可能となる。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第1閾値TH1以上のとき、人感センサ200により人が検知されている場合、人感センサ200により人が検知されていない場合よりも換気扇100の換気量が多くなる(図13、図14及び図21〜図23)ように換気扇100を制御するようにしてもよい。
制御盤400は、ガスセンサ300により検知された二酸化炭素濃度が第2閾値TH2以上のとき、人感センサ200により人が検知されている場合、人感センサ200により人が検知されていない場合よりも換気扇100の換気量が多くなる(図17、図18及び図21〜図23)ように換気扇100を制御するようにしてもよい。
ガスセンサ300は、赤外線式ガスセンサである。赤外線式ガスセンサは、センサ材料として酸化物半導体を用いた半導体式ガスセンサに比べて、識別性が高い、寿命が長い、等の利点がある。
赤外線式ガスセンサは、検知対象ガスの分子構造から決まる吸収波長の赤外線の吸光度を計測することにより、検知対象ガスの濃度を計測するものである。
吸光度Dは、ランベルト・ベールの法則により、下記(1)式で与えられる。
D=−log10(I/I) (1)式
(1)式では、物質に入射する光の強度をI、物質中を光路長Lだけ通過した後の光の強度をIとしてある。
また、吸光度Dは、物質に固有の吸収係数(その物質の吸収波長および温度により決まる定数)をα、物質の濃度をC、光路長をLとすると、ランベルト・ベールの法則に従い、下記(2)式で与えられる。
D=αCL (2)式
(2)式からは、吸光度Dが物質の濃度Cおよび光路長Lに比例することが分かる。
また、透過率Tは、下記(3)式で表される。
T=I0/I (3)式
よって、(2)式および(3)式から、透過率Tは下記(4)式で与えられる。
T=10−D=10−αCL (4)式
したがって、光源から放射された任意の波長λの赤外線の光量をP、計測ガスを光路長Lだけ通過した後の光検出器で受光する赤外線の受光量(受光パワー)をIとすると、受光量Iは、下記(5)式で求められる。
I=P×10−αCL (5)式
受光量Iと検知対象ガスの濃度との関係は、(5)式から分かるように、検知対象ガスの濃度が高くなるにつれて受光量Iが徐々に減衰する曲線となる。よって、赤外線式ガスセンサは、受光量Iの減衰量を計測することで検知対象ガスの濃度を計測することが可能となる。
なお、吸収波長は、例えば、CH(メタン)が3.3μm、CO(二酸化炭素)が4.3μm、CO(一酸化炭素)が4.7μm、NO(一酸化窒素)が5.3μmである。
ガスセンサ300は、図24に示すように、光源1と、光検出器2と、光源1と光検出器2との間に配置された試料セル3と、信号処理部40と、光源1を駆動する駆動回路50とを備えている。なお、図24中の矢印付きの線は、光源1から放射された赤外線の進行経路を模式的に示したものである。
光源1は、赤外線を放射する赤外光源である。光検出器2は、赤外線を受光して光電変換する光電変換器である。試料セル3は、検知対象ガスを含む気体が試料ガスとして導入されるセルである。ガスセンサ300は、駆動回路50によって光源1から放射される赤外線の強度を変調させる。駆動回路50は、光源1から放射される光の強度が一定周期で周期的に変化するようにしているが、連続的に変化させてもよいし間欠的に変化させてもよい。信号処理部40は、受光部2の出力信号を増幅する増幅回路41と、増幅回路41にて増幅された出力信号に基づいて検知対象ガスの濃度を求める信号処理回路42とを備えている。
赤外線式ガスセンサは、高精度の計測が要求される場合、雑ガス、光源の出力パワーのばらつき、光源1の経時劣化や試料セル3の汚れや経時劣化等に起因した誤差を補正する必要がある。
このため、ガスセンサ300は、光検出器2が、第1光学フィルタ31と、第1受光部2Aと、第2光学フィルタ32と、第2受光部2Bとを備え、信号処理部40が、第1受光部2Aの出力信号と第2受光部2Bの出力信号との差分や比に基づいて二酸化炭素濃度を求めるのが好ましい。
第1光学フィルタ31は、二酸化炭素の吸収波長λ(図29参照)を透過するように透過帯域が設定されている(図29中に実線で示した分光特性を参照)。二酸化炭素の吸収波長λは、4.3μmである。第1受光部2Aは、第1光学フィルタ31における光源1側とは反対側に配置されている。第2光学フィルタ32は、二酸化炭素に吸収されない参照波長λ(図29参照)の赤外線を透過し透過帯域が第1光学フィルタ31とは重複しないのが好ましい(図29中に一点鎖線で示した分光特性を参照)。参照波長λは、例えば、3.9μmに設定することができる。第2受光部2Bは、第2光学フィルタ32における光源1側とは反対側に配置されている。これにより、ガスセンサ300は、第1受光部2Aの出力信号と第2受光部2Bの出力信号との差分が二酸化炭素濃度に応じた値となるから、信号処理部40において二酸化炭素濃度を精度良く求めることが可能となる。図30は、二酸化炭素濃度が時間経過とともにA0のように上昇した場合の第1受光部2Aの出力信号A1と第2受光部2Bの出力信号A2とを模式的に示してある。また、図31は、二酸化炭素濃度が一定で例えば光源1の経時劣化により光源1の出力が低下した場合の第1受光部2Aの出力信号A1と第2受光部2Bの出力信号A2とを模式的に示してある。
光検出器2は、受光部と、受光部の前方に配置される光学フィルタとの組を少なくとも2組備え、受光部を同じ構成とし、光学フィルタの透過帯域を互いに異ならせ、1つの光学フィルタがCOを透過するように分光特性を設計し、他の1つの光学フィルタがCOを透過しないように分光特性を設計するのが好ましい。そして、光検出器2は、受光部と光学フィルタとの組を3組以上備えることにより、2種類の検知対象ガスの濃度を検知することが可能となる。つまり、ガスセンサ300は、二酸化炭素の濃度と、他のガス(例えば、一酸化炭素等)の濃度とを検知することが可能となる。
光源1は、COの吸収波長を含む所定の波長域の赤外線を放射することができるものであればよい。例えば、ガスセンサ300において二酸化炭素濃度のみを測定する場合、所定の波長域は、COに吸収されない参照波長(例えば、3.9μm)とCOの吸収波長(4.3μm)とを包含する波長域であればよい。参照波長は、COに限らず、CO以外のガス(HO、CH、CO、NO等)にも吸収されない波長に設定するのが好ましい。
光源1としては、例えば、赤外線を放射する赤外線放射素子51と、この赤外線放射素子51を収納したパッケージ1pとを備え、赤外線検出素子51の前方に窓孔1rを有し、窓材1wにより窓孔1rが塞がれている構成のものを用いることができる。赤外線放射素子51としては、例えば、図28に示すように、基板52と、基板52の一表面側に設けられた薄膜部53と、基板52の厚み方向に貫通した孔52aと、薄膜部53における基板52側とは反対側に設けられた赤外線放射層54と、薄膜部53における基板52側とは反対側で赤外線放射層54を覆う保護層55と、赤外線放射層54に電気的に接続された複数のパッド59とを備えた構成のものを採用することができる。保護層55は、赤外線放射層54から放射される赤外線を透過可能な材料により形成されている。赤外線放射層54と各パッド59とは、配線58を介して電気的に接続されている。
この赤外線放射素子51は、赤外線放射層54への通電により赤外線放射層54が発熱し、赤外線放射層54から赤外線が放射される。
基板52は、例えば、単結晶のシリコン基板、多結晶のシリコン基板等を採用することができる。
薄膜部53は、例えば、基板52側のシリコン酸化膜531と、シリコン酸化膜531における基板52側とは反対側に積層されたシリコン窒化膜532との積層膜により構成することができる。薄膜部53は、例えば、シリコン酸化膜やシリコン窒化膜の単層構造でもよい。
赤外線放射層54の材料は、例えば、窒化タンタル、窒化チタン、ニッケルクロム、タングステン、チタン、トリウム、白金、ジルコニウム、クロム、バナジウム、ロジウム、ハフニウム、ルテニウム、ボロン、イリジウム、ニオブ、モリブデン、タンタル、オスミウム、レニウム、ニッケル、ホルミウム、コバルト、エルビウム、イットリウム、鉄、スカンジウム、ツリウム、パラジウム、ルテチウム、導電性ポリシリコン等を採用してもよい。
赤外線放射素子51は、例えば、駆動回路50から一対のパッド59間に与える入力電力を調整することにより、赤外線放射層54に発生するジュール熱を変化させることができ、赤外線放射層54の温度を変化させることができる。よって、赤外線放射素子51は、赤外線放射層54の温度を変化させることで赤外線放射層54から放射される赤外線のピーク波長λを変化させることができる。
また、赤外線放射素子51としては、例えば、赤外光を放射する赤外発光ダイオードのベアチップを採用することもできる。
パッケージ1pとしては、例えば、キャンパッケージを採用することができる。キャンパッケージは、赤外線放射素子51が実装されるステム1aと、赤外線放射素子51を覆うようにステム1aに固着されるキャップ1bとを備え、キャップ1bにおける赤外線放射素子51の前方に窓孔1rが形成された構成とすることができる。なお、ステム1aには、赤外線放射素子51への給電用の複数本のピン1dが厚み方向に貫通して設けられている。
光源1は、赤外線放射素子51とパッケージ1pとを備えた構成に限らず、例えば、ハロゲンランプ等を採用することもできる。
光検出器2は、パッケージ2pを備え、このパッケージ2p内に、上述の第1受光部2A及び第2受光部2Bが収納されているのが好ましい。この場合、光検出器2は、例えば、パッケージ2pにおける第1受光部2A及び第2受光部2Bそれぞれの前方に窓孔2c、2cを有し、各窓孔2c、2cそれぞれを塞ぐように第1光学フィルタ31及び第2光学フィルタ32を配置することができる。第1受光部2Aと第2受光部2Bとは、並んで配置されているのが好ましい。第1受光部2A及び第2受光部2Bは、焦電体基板2gの表側、裏側それぞれに形成され互いに対向する第1電極2h、第2電極2iと、この焦電性基板2gにおいて第1電極2hと第2電極2iとに挟まれた部分とで構成されている。焦電体基板2gは、例えば、単結晶のLiTaO基板を採用することができる。焦電体基板2gの材料としては、LiTaOを採用しているが、これに限らず、例えば、LiNbO3、PbTiO、PZT、PZT−PMN(:Pb(Zr,Ti)O3−Pb(Mn,Nb)O3)等を採用してもよい。第1電極2h及び第2電極2iは、導電性を有し且つ検知対象の赤外線を吸収可能な導電膜により構成されている。この導電膜は、NiCr膜からなる。導電膜は、NiCr膜に限らず、例えば、Ni膜や金黒膜等でもよい。
第1受光部2Aと第2受光部2Bとは、光源1の光軸に直交する一平面上において、この光軸と当該一平面との交点を中心として点対称となるように配置されているのが好ましい。光検出器2は、第1受光部2Aと第2受光部2Bとがそれぞれ別々の焦電体基板2gを備えた構成でもよいし、第1受光部2Aと第2受光部2Bとが1枚の焦電体基板2gに形成された構成でもよい。光検出器2は、第1受光部2Aと第2受光部2Bとが、電気的に逆直列に接続されている。これにより、増幅回路41は、第1受光部2Aの出力信号と第2受光部2Bの出力信号との差分を増幅することができる。光検出器2は、互いに極性の異なる2つ1組の第1受光部2A及び第2受光部2Bが逆直列に接続されているので、組をなす2つの第1受光部2A及び第2受光部2Bの直流バイアス成分を相殺することが可能となる。直流バイアス成分は、雑ガスや太陽光等の外来光によるバイアス成分である。よって、ガスセンサ300は、増幅回路41のゲインを大きくできてS/N比の向上が可能となる。光検出器2は、第1受光部2Aと第2受光部2Bとが、電気的に逆直列に接続されているが、これに限らず、逆並列に接続されていてもよい。
増幅回路41及び信号処理回路42は、光検出器2とは別に設けてあるが、これに限らず、光検出器2のパッケージ2p内に収納してもよい。この場合には、増幅回路41と信号処理回路42とを集積化して1チップのIC素子とすれば、ガスセンサ300の小型化を図ることが可能となる。
第1光学フィルタ31及び第2光学フィルタ32、例えば、赤外線を透過する基材と、この基材の一表面側に形成された狭帯域透過フィルタ部(バンドパスフィルタ部)とで構成することができる。基材としては、例えば、シリコン基板、ゲルマニウム基板、サファイア基板、酸化マグネシウム基板等を採用することができる。
光検出器2は、第1光学フィルタ31及び第2光学フィルタ32それぞれが別々の基材を備えた構成でもよいし、2つの狭帯域透過フィルタ部が1枚の基材に形成された構成でもよい。
各狭帯域フィルタ部は、互いに異なる所望の選択波長の赤外線を選択的に透過させる。各狭帯域透過フィルタ部は、例えば、第1のλ/4多層膜と、波長選択層と、第2のλ/4多層膜とで構成することができる。第1のλ/4多層膜は、屈折率が異なり且つ光学膜厚が等しい複数種類の薄膜が積層された多層膜である。第2のλ/4多層膜は、複数種類の薄膜が積層された多層膜である。波長選択層は、第1のλ/4多層膜と第2のλ/4多層膜との間に介在する。波長選択層は、選択波長に応じて光学膜厚を各薄膜の光学膜厚とは異ならせてある。なお、第1のλ/4多層膜及び第2のλ/4多層膜は、屈折率周期構造を有していればよく、3種類以上の薄膜を積層したものでもよい。薄膜の材料としては、例えば、Ge、Si、MgF、Al、SiO、Ta、SiN等を採用することができる。
第1光学フィルタ31の狭帯域透過フィルタ部の選択波長は、4.3μmであり、第2光学フィルタ32の狭帯域透過フィルタ部の選択波長は、例えば、3.9μmとすればよい。
光検出器2のパッケージ2pとしては、例えば、キャンパッケージを採用することができる。キャンパッケージは、第1受光部2A及び第2受光部2Bが一面側に配置されるステム2aと、第1受光部2A及び第2受光部2Bを覆うようにステム2aに固着されるキャップ2bとを備え、キャップ2bにおける第1受光部2A及び第2受光部2Bそれぞれの前方に窓孔2c、2cが形成された構成とすることができる。なお、ステム2aには、複数本のリードピン2dが厚み方向に貫通して設けられている。リードピン2dの数は、例えば、3本とすることができ、この場合、2本のリードピン2dを信号取り出し用、1本のリードピンをグランド用とすることができる。
次に、ガスセンサ300の試料セル3について図24〜図27に基づいて説明する。
試料セル3は、筒状に形成されている。試料セル3は、その内部空間と外部とを連通させる複数の通気孔9が、試料セル3の軸方向に直交する方向に貫通して形成されているのが好ましい。試料セル3が、円筒状に形成されている場合、通気孔9は、試料セル3の径方向に貫通して形成されているのが好ましい。試料セル3は、通気孔9を通して外部からの気体が導入されたり、内部空間の空気が導出されたりする。外部からの気体は、ガスセンサ300が配置されている室内の空気である。
ガスセンサ300は、試料セル3の軸方向の一端部側に光源1が配置され、試料セル3の軸方向の他端部側に光検出器2が配置されている。ガスセンサ300は、通気孔9を通って試料セル3の内部空間に、室内の空気が導入されるので、試料セル3の内部空間にある空気中の二酸化炭素濃度が増加すると、光検出器2へ入射する赤外線の光量が低下し、試料セル3の内部空間にある空気中の二酸化炭素濃度が低下すると、光検出器2へ入射する赤外線の光量が増加する。
試料セル3は、この試料セル3の中心軸OX(図27参照)を含む平面で分割された対になる半割体4、5(図25参照)を結合することにより形成されている。半割体4と半割体5とは、例えば、嵌め合い、超音波溶着、接着等から選択される技術により結合することができる。
試料セル3は、光源1から放射された赤外線を光検出器2側へ反射する光学要素を兼ねているのが好ましい。ここで、試料セル3は、例えば、合成樹脂により形成されている場合、内側に赤外線を反射する反射層を備えた構成とするのが好ましい。
試料セル3の材料は、合成樹脂に限らず、例えば、金属を採用してもよい。試料セル3は、特定波長の赤外線に対する反射率が比較的高い金属により形成されている場合、反射層を別途に備えていてもよいし、備えていなくてもよい。
要するに、試料セル3は、筒状であり、その内面が光源1から放射された赤外線を反射する反射面6であるのが好ましい。上述の反射層を備えている場合には、この反射層の表面が反射面6を構成することができる。なお、図27中の矢印付きの線は、光源1から放射された赤外線の進行経路を模式的に示したものである。
ガスセンサ300は、光源1を保持する保持部材10を備え、この保持部材10が試料セル3に取り付けられている。また、ガスセンサ300は、光検出器2を保持する保持部材20を備え、この保持部材20が試料セル3に取り付けられている。
保持部材10は、キャップ部11と、押さえ板12とからなる。キャップ部11は、円盤状であって、試料セル3側の端面に、試料セル3の一端部が挿入される凹部11aが設けられ、凹部11aの底部の中央に、光源1が挿入される貫通孔11bが設けられている。押さえ板12は、キャップ部11に対して光源1を押さえるためのものである。
保持部材10は、押さえ板12及びキャップ部11の孔12b,11dに通された取付ねじ(図示せず)が試料セル3の一端部のねじ部4d,5dにねじ込まれることによって、試料セル3に取り付けられている。
保持部材20は、キャップ部21と、押さえ板22とからなる。キャップ部21は、円盤状であって、試料セル3側の端面に、試料セル3の他端部が挿入される凹部21aが設けられ、凹部21aの底部の中央に、光検出器2が挿入される貫通孔21bが設けられている。押さえ板22は、キャップ部21に対して光検出器2を押さえるためのものである。
保持部材20は、押さえ板22及びキャップ部21の孔22b,21dに通された取付ねじ(図示せず)が試料セル3の他端部のねじ部にねじ込まれることによって、試料セル3に取り付けられている。
なお、保持部材10,20それぞれの構造は、特に限定するものではない。また、試料セル3への保持部材10,20それぞれの取付構造も特に限定するものではない。
ところで、試料セル3の反射面6は、試料セル3の中心軸OX上に規定した長軸を回転軸とする回転楕円体の長軸方向の両端部それぞれを長軸に直交する2つの平面VP1、VP2(図27参照)によりカットした形状としてある。よって、試料セル3は、回転楕円体(長楕円体)の一部に対応する内部空間が形成されている。
ガスセンサ300は、光源1を、試料セル3の中心軸OX上において、上記回転楕円体の一方の焦点P1に配置し、光検出器2を、試料セル3の中心軸OX上において、上記回転楕円体の他方の焦点P2よりも光源1に近い側に配置するのが好ましい。
ガスセンサ300は、光源1が、上記回転楕円体の一方の焦点P1近傍に配置されている。近傍とは、焦点P1と光源1との距離が所定値より小さい全ての点からなる部分集合であり、焦点P1の点も含む。上記所定値は、上記回転楕円体の焦点P1と焦点P2との距離によって変わる。要するに、光源1は、厳密な意味で焦点P1に配置されている必要はなく、実質的に焦点P1に配置されているとみなせれる位置にあればよい。光源1から斜め方向に放射された赤外線は、反射面6によって反射されて、他方の焦点P2に集光されるように導光される。しかしながら、他方の焦点P2に光検出器2を配置した比較例のガスセンサでは、試料セル3の他端部において反射面6で反射されて第1光学フィルタ31や第2光学フィルタ32に入射する赤外線の入射角が大きくなりやすい。そして、第1光学フィルタ31及び第2光学フィルタ32は、入射角が大きくなるほど、分光特性(透過率−波長特性)が短波長側へのずれが大きくなり、選択波長を含む特定波長域の赤外線の透過率が低下してしまう。よって、比較例のガスセンサでは、S/N比が低下してしまう懸念がある。一方、試料セル3の中心軸OXに沿った方向における試料セル3と光検出器2との距離が長くなるほど、赤外線のロスが多くなってしまう。
これに対して、ガスセンサ300は、光検出器2を、試料セル3の中心軸OX上において、反射面の他方の焦点P2よりも光源1に近い側に配置してある。つまり、光検出器2は、各光学フィルタ及び各受光部2A,2Bが、試料セル3の中心軸OXに沿った方向において、他方の焦点P2とよりも光源1に近い側であって、試料セル3と他方の焦点P2との間に配置されている。これにより、ガスセンサ300は、試料セル3の中心軸OXに沿った方向における試料セル3と光検出器2との距離を比較例と同じとした場合、比較例に比べて、試料セル3の他端部において反射面6で反射されて光学フィルタに入射する赤外線の入射角を小さくすることが可能となる。よって、ガスセンサ300は、比較例のガスセンサに比べて、特定波長域の赤外線の透過率が低下するのを抑制することが可能となり、S/N比を向上させることが可能となる。また、光学フィルタを透過した赤外線が、その光学フィルタに対向している受光部以外の受光部に入射するクロストークの発生を抑制することが可能となり、測定精度の向上を図ることが可能となる。試料セル3の中心軸OXに沿った方向における試料セル3と光検出器2との距離は、短い方が好ましく、零がより好ましい。
本実施形態の空調制御システムは、図1の構成に限らず、各部屋に配置される換気扇100、人感センサ200及びガスセンサ300それぞれの数を各部屋の広さやレイアウト等に基づいて適宜変更することができる。よって、空調制御システムは、例えば、図32に示す構成とすることもできる。
また、空調制御システムは、図33に示すように、制御盤400と各換気扇100、各人感センサ200及び各センサ装置250の各々が個別の信号ラインL2により接続された構成でもよい。
(実施形態2)
以下では、本実施形態の空調制御システムについて図34に基づいて説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の空調制御システムは、電源ラインL1及び信号ラインL2に無線受信機500を接続してある。そして、人感センサ200、ガスセンサ300及びセンサ装置250は、出力信号を無線によって無線受信機500に送信することが可能な無線式人感センサ、無線式ガスセンサ、無線式センサ装置としてある。
人感センサ200、ガスセンサ300及びセンサ装置250は、それぞれの筐体(図示せず)内に電源としての電池を備えたものでもよいし、外部電源等から電力が供給されるものでもよい。電池としては、例えば、リチウム電池や、リチウムイオン電池等を採用することができる。
本実施形態の空調制御システムでは、実施形態1の空調制御システムに比べて、人感センサ200、ガスセンサ300及びセンサ装置250それぞれの設置場所の自由度が高くなり、また、施工が容易になる。
(実施形態3)
以下では、本実施形態の空調制御システムについて図35に基づいて説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の空調制御システムは、実施形態1の空調制御システムにおける制御盤400(図1参照)を備えていない。その代わりに、各換気扇100、各人感センサ200及び各がスセンサ300の各々は、電源ラインL11に接続されている。電源ラインL11は、図示しない外部電源から各換気扇100、各人感センサ200及び各ガスセンサ300に所定電圧を与えるためのラインである。所定電圧は、例えば、DC12V、AC100V等である。
また、本実施形態の空調制御システムは、各部屋ごとに、人感センサ200及びガスセンサ300が信号ラインL12を介して換気扇100に接続されている。本実施形態の空調制御システムは、換気扇100が、人感センサ200の出力信号とガスセンサ300の出力信号とに基づいて換気扇100を制御する制御装置を兼ねている。
(実施形態4)
以下では、本実施形態の空調制御システムについて図36に基づいて説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の空調制御システムは、実施形態1の空調制御システムにおける制御盤400(図1参照)を備えていない。その代わりに、各換気扇100の各々は、電源ラインL11に接続されている。電源ラインL11は、図示しない外部電源から各換気扇100に所定電圧を与えるためのラインである。所定電圧は、例えば、DC12V、AC100V等である。
本実施形態の空調制御システムは、各換気扇100の各々が無線受信機110を備えている。そして、人感センサ200、ガスセンサ300及びセンサ装置250は、出力信号を無線によって無線受信機110に送信することが可能な無線式人感センサ、無線式ガスセンサ、無線式センサ装置としてある。本実施形態の空調制御システムでは、無線受信機110が、人感センサ200の出力信号とガスセンサ300の出力信号とに基づいて換気扇100を制御する制御装置を兼ねている。
人感センサ200、ガスセンサ300及びセンサ装置250は、それぞれの筐体(図示せず)内に電源としての電池を備えたものでもよいし、外部電源等から電力が供給されるものでもよい。電池としては、例えば、リチウム電池や、リチウムイオン電池等を採用することができる。
本実施形態の空調制御システムでは、実施形態1の空調制御システムに比べて、人感センサ200、ガスセンサ300及びセンサ装置250それぞれの設置場所の自由度が高くなり、また、施工が容易になる。
(実施形態5)
以下では、本実施形態の空調制御システムについて図37に基づいて説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の空調制御システムは、実施形態1の空調制御システムにおける制御盤400(図1参照)を備えていない。その代わりに、各換気扇100の各々は、電源ラインL11に接続されている。電源ラインL11は、図示しない外部電源から各換気扇100に所定電圧を与えるためのラインである。所定電圧は、例えば、DC12V、AC100V等である。
本実施形態の空調制御システムは、各換気扇100ごとに信号ラインL13を介して接続される無線受信機500を備えている。そして、人感センサ200、ガスセンサ300及びセンサ装置250は、出力信号を無線によって無線受信機500に送信することが可能な無線式人感センサ、無線式ガスセンサ、無線式センサ装置としてある。本実施形態の空調制御システムでは、無線受信機500が、人感センサ200の出力信号とガスセンサ300の出力信号とに基づいて換気扇100を制御する制御装置を兼ねている。
人感センサ200、ガスセンサ300及びセンサ装置250は、それぞれの筐体(図示せず)内に電源としての電池を備えたものでもよいし、外部電源等から電力が供給されるものでもよい。電池としては、例えば、リチウム電池や、リチウムイオン電池等を採用することができる。
本実施形態の空調制御システムでは、実施形態1の空調制御システムに比べて、人感センサ200、ガスセンサ300及びセンサ装置250それぞれの設置場所の自由度が高くなり、また、施工が容易になる。
1 光源
2 光検出器
2A 第1受光部
2B 第2受光部
3 試料セル
31 第1光学フィルタ
32 第2光学フィルタ
40 信号処理部
100 換気扇
200 人感センサ
300 ガスセンサ
400 制御盤(制御装置)
TH1 第1閾値
TH2 第2閾値
OX 中心軸
P1 焦点
P2 焦点

Claims (13)

  1. 換気扇と、人の存否を検知可能な人感センサと、二酸化炭素濃度を検知可能なガスセンサと、制御装置とを備え、前記制御装置は、前記人感センサの出力信号と前記ガスセンサの出力信号とに基づいて前記換気扇を制御し、前記ガスセンサにより検知された二酸化炭素濃度が第1閾値未満のとき、前記人感センサの出力信号に基づいて前記換気扇の換気量が切り替わるように前記換気扇を制御することを特徴とする空調制御システム。
  2. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値以上のとき、前記人感センサの出力に関わらず、前記換気扇が動作するように前記換気扇を制御することを特徴とする請求項1記載の空調制御システム。
  3. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値未満のとき、前記人感センサにより人が検知されていない場合、前記人感センサにより人が検知されている場合よりも前記換気扇の換気量が少なくなるように前記換気扇を制御することを特徴とする請求項1又は2記載の空調制御システム。
  4. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値未満のとき、前記人感センサにより人が検知されていない場合、前記換気扇が停止するように前記換気扇を制御することを特徴とする請求項3記載の空調制御システム。
  5. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値よりも低濃度の第2閾値未満のとき、前記人感センサの出力信号に基づいて前記換気扇の換気量が切り替わるように前記換気扇を制御することを特徴とする請求項1乃至4のいずれか1項に記載の空調制御システム。
  6. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値未満のとき、前記人感センサにより人が検知されていない場合、前記人感センサにより人が検知されている場合よりも前記換気扇の換気量が少なくなるように前記換気扇を制御することを特徴とする請求項5記載の空調制御システム。
  7. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値未満のとき、前記人感センサにより人が検知されていない場合、前記換気扇が停止するように前記換気扇を制御することを特徴とする請求項6記載の空調制御システム。
  8. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第1閾値以上のとき、前記人感センサにより人が検知されている場合、前記人感センサにより人が検知されていない場合よりも前記換気扇の換気量が多くなるように前記換気扇を制御することを特徴とする請求項1乃至7のいずれか1項に記載の空調制御システム。
  9. 前記制御装置は、前記ガスセンサにより検知された二酸化炭素濃度が前記第2閾値以上のとき、前記人感センサにより人が検知されている場合、前記人感センサにより人が検知されていない場合よりも前記換気扇の換気量が多くなるように前記換気扇を制御することを特徴とする請求項5乃至7のいずれか1項に記載の空調制御システム。
  10. 前記ガスセンサは、光源と、光検出器と、前記光源と前記光検出器との間に配置された試料セルと、信号処理部とを備え、前記光検出器は、二酸化炭素の吸収波長を透過するように透過帯域が設定された第1光学フィルタと、前記第1光学フィルタにおける前記光源側とは反対側に配置された第1受光部と、二酸化炭素に吸収されない参照波長の赤外線を透過し透過帯域が前記第1光学フィルタとは重複しない第2光学フィルタと、前記第2光学フィルタにおける前記光源側とは反対側に配置された第2受光部とを備え、前記信号処理部は、前記第1受光部の出力信号と前記第2受光部の出力信号との差分もしくは比に基づいて二酸化炭素濃度を求めることを特徴とする請求項1乃至9のいずれか1項に記載の空調制御システム。
  11. 前記試料セルは、筒状であり、その内面が前記光源から放射された赤外線を反射する反射面であり、前記反射面は、前記試料セルの中心軸上に規定した長軸を回転軸とする回転楕円体の長軸方向の両端部それぞれを長軸に直交する2つの平面によりカットした形状であり、前記光源は、前記中心軸上において、前記回転楕円体の一方の焦点近傍に配置され、前記光検出器は、前記中心軸上において、前記回転楕円体の他方の焦点よりも前記光源に近い側に配置されていることを特徴とする請求項10記載の空調制御システム。
  12. 前記制御装置は、前記換気扇を動作させているとき、前記ガスセンサにより検知された二酸化炭素濃度が低いほど換気量を少なくすることを特徴とする請求項1乃至11のいずれか1項に記載の空調制御システム。
  13. 前記第1閾値は、前記ガスセンサを配置する室内の二酸化炭素の許容濃度に設定してあることを特徴とする請求項1乃至12のいずれか1項に記載の空調制御システム。
JP2012269642A 2012-12-10 2012-12-10 空調制御システム Expired - Fee Related JP5999353B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012269642A JP5999353B2 (ja) 2012-12-10 2012-12-10 空調制御システム
PCT/JP2013/007048 WO2014091708A1 (ja) 2012-12-10 2013-12-02 空調制御システム
EP13862814.4A EP2930442A4 (en) 2012-12-10 2013-12-02 AIR CONDITIONING CONTROL SYSTEM
US14/648,899 US20150300670A1 (en) 2012-12-10 2013-12-02 Air-conditioning control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269642A JP5999353B2 (ja) 2012-12-10 2012-12-10 空調制御システム

Publications (2)

Publication Number Publication Date
JP2014115019A true JP2014115019A (ja) 2014-06-26
JP5999353B2 JP5999353B2 (ja) 2016-09-28

Family

ID=50934016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269642A Expired - Fee Related JP5999353B2 (ja) 2012-12-10 2012-12-10 空調制御システム

Country Status (4)

Country Link
US (1) US20150300670A1 (ja)
EP (1) EP2930442A4 (ja)
JP (1) JP5999353B2 (ja)
WO (1) WO2014091708A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729034A (zh) * 2015-04-09 2015-06-24 郭陇军 一种通风系统
JP2018119752A (ja) * 2017-01-26 2018-08-02 ダイキン工業株式会社 換気システム
CN109579238A (zh) * 2018-12-20 2019-04-05 象山兑鹏电子科技有限公司 一种定制化智能通风系统
KR20200022938A (ko) * 2018-08-24 2020-03-04 주윤식 열회수 양 기로(氣路) 파이프 환기장치
KR20200056141A (ko) * 2018-11-14 2020-05-22 주식회사 더밸류 공기질 관리 장치 및 시스템
WO2020136774A1 (ja) * 2018-12-26 2020-07-02 三菱電機株式会社 換気制御システム及び二酸化炭素濃度推定方法
JPWO2020090640A1 (ja) * 2018-11-02 2021-09-16 パナソニックIpマネジメント株式会社 環境制御システム、及び、環境制御方法
US11236927B2 (en) * 2018-02-23 2022-02-01 Mitsubishi Electric Corporation Indoor system and indoor unit of air-conditioning apparatus
WO2022249325A1 (ja) * 2021-05-26 2022-12-01 三菱電機株式会社 換気扇および換気システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204625A1 (de) * 2014-03-13 2015-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Kohlendioxidgehaltes einer Umgebungsluft
US10648960B2 (en) 2015-05-29 2020-05-12 Rebellion Photonics, Inc. Hydrogen sulfide imaging system
EP3318809B1 (en) * 2015-07-01 2019-10-16 Mitsubishi Electric Corporation Air-conditioning system control device and air-conditioning system
FR3047797B1 (fr) * 2016-02-15 2018-02-09 Thermor Pacific Procede de regulation d'un appareil de chauffage comprenant au moins un capteur de co2 et au moins un detecteur d'absence/presence et appareil de chauffage associe
EP3207868A1 (en) * 2016-02-19 2017-08-23 Patonomics AB Method and apparatus for identifying a transitory emotional state of a living mammal
WO2018063102A1 (en) * 2016-09-27 2018-04-05 Chitipalungsri Somsak Automatic ventilation control system
US10731882B2 (en) * 2016-10-17 2020-08-04 Lennox Industries Inc. Operating a climate control system based on occupancy status
FR3059084B1 (fr) * 2016-11-22 2019-10-25 Muller Et Cie Procede de regulation d'une installation de ventilation domestique avec protection contre un gaz polluant
CN110579001A (zh) * 2019-08-12 2019-12-17 安徽美博智能电器有限公司 空调器的控制方法及装置
KR102188972B1 (ko) * 2020-04-06 2020-12-10 원태연 창문 장착형 스마트 환기청정기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159046A (ja) * 1984-12-27 1986-07-18 Takenaka Komuten Co Ltd 外気量制御装置
JPH04197415A (ja) * 1990-11-29 1992-07-17 Hitachi Ltd 送風装置
JPH07198589A (ja) * 1993-12-31 1995-08-01 Horiba Ltd 一点集中型高密度光源
JP2005147624A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 換気システム及び換気装置並びに換気機能住宅
JP2007085698A (ja) * 2005-09-26 2007-04-05 Fuji Electric Systems Co Ltd 空調システム、そのプログラム
JP2012220353A (ja) * 2011-04-11 2012-11-12 Panasonic Corp 気体成分検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714220B2 (ja) * 1990-03-31 1998-02-16 株式会社東芝 換気装置
JPH06109313A (ja) 1992-09-25 1994-04-19 Matsushita Electric Works Ltd 変風量制御方式を使用した空調制御システム
US5428222A (en) * 1994-04-06 1995-06-27 Janos Technology Inc. Spectral analyzer with new high efficiency collection optics and method of using same
JPH10118435A (ja) * 1996-10-23 1998-05-12 Matsushita Seiko Co Ltd 空気清浄機付換気扇
US6969857B2 (en) * 2003-01-10 2005-11-29 Southwest Research Institute Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases
DE102005055860B3 (de) * 2005-11-23 2007-05-10 Tyco Electronics Raychem Gmbh Gassensoranordnung mit Lichtkanal in Gestalt eines Kegelschnittrotationskörpers
US8515584B2 (en) * 2009-08-20 2013-08-20 Transformative Wave Technologies Llc Energy reducing retrofit method for a constant volume HVAC system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159046A (ja) * 1984-12-27 1986-07-18 Takenaka Komuten Co Ltd 外気量制御装置
JPH04197415A (ja) * 1990-11-29 1992-07-17 Hitachi Ltd 送風装置
JPH07198589A (ja) * 1993-12-31 1995-08-01 Horiba Ltd 一点集中型高密度光源
JP2005147624A (ja) * 2003-11-19 2005-06-09 Mitsubishi Electric Corp 換気システム及び換気装置並びに換気機能住宅
JP2007085698A (ja) * 2005-09-26 2007-04-05 Fuji Electric Systems Co Ltd 空調システム、そのプログラム
JP2012220353A (ja) * 2011-04-11 2012-11-12 Panasonic Corp 気体成分検出装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104729034A (zh) * 2015-04-09 2015-06-24 郭陇军 一种通风系统
JP2018119752A (ja) * 2017-01-26 2018-08-02 ダイキン工業株式会社 換気システム
US11236927B2 (en) * 2018-02-23 2022-02-01 Mitsubishi Electric Corporation Indoor system and indoor unit of air-conditioning apparatus
KR20200022938A (ko) * 2018-08-24 2020-03-04 주윤식 열회수 양 기로(氣路) 파이프 환기장치
KR102086241B1 (ko) * 2018-08-24 2020-03-06 주윤식 열회수 양 기로(氣路) 파이프 환기장치
JPWO2020090640A1 (ja) * 2018-11-02 2021-09-16 パナソニックIpマネジメント株式会社 環境制御システム、及び、環境制御方法
KR20200056141A (ko) * 2018-11-14 2020-05-22 주식회사 더밸류 공기질 관리 장치 및 시스템
KR102175224B1 (ko) 2018-11-14 2020-11-06 주식회사 더밸류 공기질 관리 장치 및 시스템
CN109579238A (zh) * 2018-12-20 2019-04-05 象山兑鹏电子科技有限公司 一种定制化智能通风系统
WO2020136774A1 (ja) * 2018-12-26 2020-07-02 三菱電機株式会社 換気制御システム及び二酸化炭素濃度推定方法
WO2022249325A1 (ja) * 2021-05-26 2022-12-01 三菱電機株式会社 換気扇および換気システム

Also Published As

Publication number Publication date
EP2930442A4 (en) 2016-01-13
WO2014091708A1 (ja) 2014-06-19
JP5999353B2 (ja) 2016-09-28
EP2930442A1 (en) 2015-10-14
US20150300670A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5999353B2 (ja) 空調制御システム
KR102491854B1 (ko) 분광기
US11686673B2 (en) NDIR detector device for detecting gases having an infrared absorption spectrum
KR101746406B1 (ko) 타원형 광구조물을 갖는 비분산형 적외선 가스센서 및 이를 이용한 가스농도 측정방법
CN110146460A (zh) 一种带恒温控制功能的高灵敏多气体浓度检测系统及控制方法
BR112012000661B1 (pt) aparelho de detecção de chama
JP2017026545A (ja) 粒子検出センサ
JP6057254B2 (ja) 赤外線受光ユニット、赤外線式ガスセンサ
JP2015152438A (ja) 非分散型赤外線分析式ガス検知器および非分散型赤外線分析式ガス検知装置
JPS6146768B2 (ja)
Hodgkinson et al. A low cost, optically efficient carbon dioxide sensor based on nondispersive infra-red (NDIR) measurement at 4.2 μm
JP4766697B2 (ja) 小型ガス検知装置
JP2015137862A (ja) 赤外線検出器
JP5175654B2 (ja) 気体サンプル室、及び、この気体サンプル室を備える濃度測定装置
JP2000019108A (ja) 赤外線ガス分析計
CN210834659U (zh) 具有双通道的气体浓度检测装置及报警装置
US20150268158A1 (en) Gas Sensor and Method for Sensing Presence of Ethanol Vapor in a Cabin
JPH10339698A (ja) 赤外線式ガス検出装置
JP2014142319A (ja) 赤外線応用装置
CN210376127U (zh) 具有安装座的气体浓度检测装置及可燃气体报警装置
KR100929343B1 (ko) 벽걸이형 실내환경모니터장치 및 이를 이용한 빌딩공조기 제어시스템
JP2005337875A (ja) ガスセンサ
JP2005337879A (ja) ガスセンサ
JP6202440B2 (ja) 赤外線式ガスセンサ
TWI558988B (zh) 一種偵測熱源方位的設備及方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R151 Written notification of patent or utility model registration

Ref document number: 5999353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees