JP2014097956A - 1,3−プロパンジオールの製造方法および製造装置 - Google Patents

1,3−プロパンジオールの製造方法および製造装置 Download PDF

Info

Publication number
JP2014097956A
JP2014097956A JP2012250515A JP2012250515A JP2014097956A JP 2014097956 A JP2014097956 A JP 2014097956A JP 2012250515 A JP2012250515 A JP 2012250515A JP 2012250515 A JP2012250515 A JP 2012250515A JP 2014097956 A JP2014097956 A JP 2014097956A
Authority
JP
Japan
Prior art keywords
reaction
reactor
pdo
temperature
hpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250515A
Other languages
English (en)
Inventor
Masayuki Kamikawa
将行 上川
Toshiaki Matsuo
俊明 松尾
Takeyuki Kondo
健之 近藤
Yasunari Sase
康成 佐世
Junji Tando
順志 丹藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012250515A priority Critical patent/JP2014097956A/ja
Priority to PCT/JP2013/080013 priority patent/WO2014077162A1/ja
Publication of JP2014097956A publication Critical patent/JP2014097956A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】3−HPAの水素添加反応を行う反応プロセスにおいて、副生成物の生成を抑制することで設備コストおよび運転コストの低減を可能とする技術を提供すること。
【解決手段】本発明は、3−ヒドロキシプロピオンアルデヒドを水素添加反応に供して1,3−プロパンジオールを連続的に製造する方法であって、水素添加反応を行う固定床触媒反応器の管長と口径の比(L/D比)を5〜100とすること、ならびに該反応器において空間速度を1〜6h−1、温度を50〜100℃、および圧力を10〜17MPaとすることを特徴とする方法が提供される。
【選択図】図1

Description

本発明は、3−ヒドロキシプロピオンアルデヒドに水素添加反応を行うことにより1,3−プロパンジオールを連続的に製造する方法およびそれに用いる装置に関する。
1,3−プロパンジオール(1,3−PDO)はポリトリメチレンテレフタレート(PTT)をはじめとする高品質なポリエステル繊維の原料であるため、近年需要が増大している。1,3−PDOの合成方法の一つにアクロレイン水和・水添法がある。これは、石油原料であるプロピレンを触媒存在下で空気酸化して合成したアクロレインを水和・水添反応して製造するもので、工業的製造方法として確立している。しかしながら、近年の原油価格の高騰から、バイオマスから1,3−PDOを合成することが試みられている。
例えばバイオディーゼル燃料を製造する際に副生するグリセリンからアクロレインを製造できることが知られている。バイオマスを用いた1,3−PDOの製造を実用化するためには、従来よりもさらに高い転化率でアクロレインから1,3−PDOを製造する技術が望まれている。
アクロレインから1,3−PDOを連続的に合成する方法の一例として、特許文献1の方法が挙げられる。この方法では、酸化チタンより成り、その上に白金が微粉末形で、担体に対して0.1〜5.0重量%の量で存在する担体触媒を用い、水溶液中のヒドロキシプロピオンアルデヒド(HPA、アクロレインを酸性触媒下において水和させることにより生成する)を水素添加することによって1,3−プロパンジオールを製造する。ここで水素添加は、溶液中のHPAの濃度が5〜100重量%、温度30〜180℃、水素圧5〜300バール、pH値2.5〜6.5の条件で実施される。空間速度に関しては0.85h−1とした実施例が記載されているが、その場合、反応器内での滞留時間が約70分間と長くなり、生成した1,3−PDOの一部が反応器内で脱水縮合して二量体を形成してしまうと考えられる。二量体は加水分解させることで1,3−PDOに戻すことができるが、そのために加水分解工程を設置するのは設備および運転コストの増大を招き好ましくない。
アクロレインから1,3−PDOを合成する他の例としては、特許文献2に記載の方法が挙げられる。この方法では、固定層または懸濁水素添加触媒の存在下で、水素圧5〜300バール、pH値2.5〜6.5および温度30〜180℃で3−ヒドロキシプロピオンアルデヒド(3−HPA)水溶液を流通させて水素添加させ、30〜80℃で反応させた後、100〜180℃でさらに反応させ、3−HPA転化率を向上させることを特徴としている。この方法によれば特許文献1の方法よりも3−HPA転化率は向上すると考えられる。しかし、反応温度が100℃以上の高温となるため、1,3−PDO二量体に加えてタールが発生し、これが配管や減圧弁等に付着して閉塞を起こす可能性がある。そのような配管などの閉塞の予防策として頻繁な洗浄が必要となり、運転コストの増大や生産効率の低下を招くため好ましくない。
特開平5−213800号 特開平6−040973号
本発明の目的は、3−HPAの水素添加反応を連続的に行う反応プロセスにおいて、副生成物の生成を抑制することにより設備コストおよび運転コストの低減を可能とする技術を提供することにある。
本発明者らは上述したような問題を検討した結果、3−HPAの連続的水素添加反応において、反応器の管長と口径の比(L/D比)、ならびに該反応器における空間速度および反応温度などを特定の範囲の値にすることにより、高効率で1,3−PDOを製造することができることを見出した。
本発明は、3−ヒドロキシプロピオンアルデヒドを水素添加反応に供して1,3−プロパンジオールを連続的に製造する方法であって、水素添加反応を行う固定床触媒反応器の管長と口径の比(L/D比)を5〜100とすること、ならびに該反応器において空間速度を1〜6h−1、温度を50〜100℃、および圧力を10〜17MPaとすることを特徴とする。
本発明によれば、3−HPAの水素添加反応を行う反応プロセスにおいて、副生成物の生成を抑制することができ、設備および運転コストを抑制することが可能となる。
本発明の3−HPAから1,3−PDOを製造する装置の一実施形態を示す概略図である。 本発明の応用例である、グリセリンから1,3−PDOを製造する装置の一実施形態を示す概略図である。
図1は、本発明に係る1,3−PDO製造装置の構成の一例を示す概略図である。以下、図1に基づいて本発明の1,3−PDO製造方法および製造装置を説明する。
まず、3−HPAに水を加えた後にポンプ1により加圧して水素を溶解させた反応液は、水素添加反応器2に流入され、触媒存在下における水素添加反応に供される。水素添加反応に供される反応液中の3−HPAの濃度は1〜20重量%、特に2〜10重量%、とりわけ3〜7重量%とすることが好ましい。
水素添加反応器2から排出された反応液は、気液分離装置5に流入され水素と反応液が分離される。分離された水素は、水素添加反応器2に還流される。一方、反応液は第一蒸留塔7に流入され、一部の水と分離される。分離された水は水素添加反応器2に還流される。
次いで反応液は第二蒸留塔9に流入されて蒸留により分離され、頂部から3−HPA等を含む廃液を排出し、底部から1,3−PDOおよび重質分を含む反応液を排出する。廃液は熱交換器13で冷却された後、一部は水素添加反応器2に還流してもよい。さらに反応液は、第三蒸留塔11に流入されて蒸留により分離され、頂部から1,3−PDOを排出し、底部から重質分を排出する。
水素添加反応器2の管長と口径の比(L/D比)は、小さすぎると、反応器中の反応液の流れの分布が不均一となり触媒との十分な接触時間が得られないため、3−HPA転化率、1,3−PDO収率および1,3−PDO選択率が低下するおそれがある。一方、L/D比が大きすぎると、反応液の流速が速くなり、圧力損失が増大して反応器下流側で圧力が低下し、溶解限界を超えた水素が気体となってキャビテーションが生じ、結果として反応が不安定となるおそれがある。また、L/D比が大きすぎると、触媒ペレットが破壊され、それに伴って反応管の閉塞が生じる可能性もある。本発明において、水素添加反応器2のL/D比は2〜100、特に3〜50、とりわけ5〜50とするのが好ましい。
反応器は、複数用いてもよく、複数の反応管をまとめた多管式反応器としてもよい。触媒は、不均一系とし、それ自体で、あるいは担体に担持して使用される。触媒は、固定床触媒とすることが好ましい。固定床触媒としては、白金、パラジウムおよびロジウムなど(特に白金が好ましい)の貴金属を、酸化チタン、アルミナ、シリカおよびゼオライト(特に酸化チタンが好ましい)の担体上に1〜5重量%、特に2〜4重量%の量で微分散させて担持させた触媒が好ましい。好ましい固定床触媒の具体例としては白金チタニア触媒が挙げられる。
水素添加反応器2における反応温度は、低すぎると反応が進まず1,3−PDO収率が低下する一方、高すぎると1,3−PDOが脱水縮合して二量体が生成してしまうか、あるいは反応液中の炭化水素が分解してタールが生成し配管の閉塞を起こすおそれが高まる。水素添加反応の温度は50〜100℃、特に50〜80℃、とりわけ55〜65℃とするのが好ましい。
水素添加反応器2における圧力は、2〜20MPa、特に5〜18MPa、とりわけ14〜16MPaとすることが好ましい。
水素添加反応器2における空間速度は、小さすぎると反応器内での滞留時間が長くなり、1,3−PDOが脱水縮合して二量体となる反応が進行し、1,3−PDO収率および1,3−PDO選択率が低下するおそれがある。一方、空間速度が大きすぎると、反応器内での滞留時間が短くなり、水素添加反応が十分に進行せず、3−HPA転化率および1,3−PDO収率が低下するおそれがある。水素添加反応器2における空間速度は1〜12h−1、特に2〜6h−1、とりわけ3〜6h−1とすることが好ましい。なお、水素添加反応器における滞留時間は、空間速度の逆数に相当し、5〜60分間、特に10〜30分間、とりわけ10〜20分間とすることが好ましい。
水素添加反応器2における反応液の流速は、0.000001〜1m/s、特に0.00001〜0.1m/s、とりわけ0.0001〜0.01m/sとすることが好ましい。
このように、本発明では3−HPAを短時間かつ低温で水素添加反応させる。これにより、1,3−PDO二量体およびタールの生成を抑制し、1,3−PDO二量体を加水分解する後工程を不要とし、タールによる配管等の閉塞を防止することで、プラントの設備コストおよび運転コストを低減することができる。
図2は、本発明に係る1,3−PDO合成装置の構成の応用例を示す図である。図2に示した装置は、超臨界水および酸を用いてグリセリンをアクロレインに変換し、さらにアクロレインを水和させて3−HPAとし、それを図1に示したものと同じ装置を用いて水素添加反応させて1,3−PDOを得る、という過程を連続的に行うものである。以下、図2の装置について説明する。
まず、原料水をポンプ16で22〜50MPaに加圧するとともにヒーター20で加熱して超臨界水とする。次いで、その超臨界水と、グリセリンと希硫酸とからなる原料とを混合して、アクロレイン合成反応を行う。その後、反応クエンチ用の冷却水を注入し、主反応が停止し、かつ反応液中に含まれるタールなどの高粘度成分の粘度が十分低下した状態を維持できる温度まで冷却する(第一の冷却)。これにより、副生成物として生じたカーボン粒子などの固形分が凝集するのを抑制し、配管の閉塞を防ぐことができる。また、固形物の分離除去操作の際にも手間がかからず、装置のメンテナンス頻度も減らすことができるため、運転コストの低減につながる。
第一の冷却後における反応液の粘度は0.1Pa・s以下とすることが好ましく、そのような程度の低粘度を実現するために、温度は100℃以上とすることが好ましい。一方、合成反応、熱分解反応を完全に停止させるには200℃以下の温度が望ましいことから、第一の冷却において反応液の温度を100〜200℃とすることが好ましい。
第一の冷却において、冷却水を反応液に直接混合して冷却することにより、ジャケットなどを用いた配管周辺からの熱交換と比べて高速に冷却することができる。これにより、熱分解反応を高速に停止することができ、生成したアクロレインがタールやカーボン粒子などの副生成物となるのを防ぎ、原料収率を向上させるとともに、配管などの閉塞およびエロージョン発生の抑制、ならびに精密な圧力制御が可能となる。
反応液から固形分を分離除去した後、反応液をさらに冷却して水の沸点以下かつ反応液中のタール分が機器に固着しない温度まで冷却器22を用いて冷却し(第二の冷却)、減圧弁23により減圧する。これにより、配管や弁における固形分による閉塞が回避でき、タール分の付着も低減できるため、減圧弁23における圧力制御の精度を向上させることができる。特に、減圧弁の間口は極めて狭いので、固形分だけでなくタール分の付着を抑制することで、弁の開閉操作が容易になることは有利である。また水の沸点以下の温度に冷却することにより、減圧後に反応液が気化して体積が急激に膨張するのを防ぎ、反応装置の安全性を向上させることができる。
第二の冷却後における反応液の粘度は10Pa・s以下とすることが好ましく、そのような低粘度を実現するために、温度は53℃以上、特に80℃以上とすることが好ましい。一方、減圧後における反応液の気化を抑制する観点から、反応液の温度は100℃以下とすることが望ましい。従って、第二の冷却後の温度は、少なくともアクロレインの沸点(53℃)以上となるよう考慮して、53〜100℃、特に80〜100℃とすることが好ましい。
減圧後の反応液は、冷却器24および25を用いてアクロレインの沸点付近まで冷却する(第三の冷却)。第三の冷却後の反応温度をアクロレインの沸点以上に維持すると、反応液から目的物質であるアクロレインが容易に気化し、後段の蒸留工程で再加熱する際のエネルギー効率を向上させることができ有利である。冷却された反応液は、減圧弁26で減圧された後、蒸留塔27に送られる。
反応から固形分の分離除去までを弁で仕切られた鉛直な配管内で実施すると、エロージョンの低減効果が得られるため有利である。水平な系の場合、発生した副生成物中の固形分が配管底部に堆積し、流れに伴う摩擦で、配管、減圧弁等の底部でエロージョンが発生する。一方、鉛直な系の場合、副生成物を含む反応液は、重力により配管の周方向に対して均一に流下し、配管内面における固形物粒子との接触が平均化され、エロージョンを低減させることができる。
また、ヒーター18からフィルタ21までの反応装置および固形分分離装置は、二系統以上用意すると、交互運転および副生成物粒子の交互排出が可能となり有利である。これにより、ある系統でメンテナンス作業を実施している際には少なくとも他の一つ以上の系統が運転している状態を維持できるので、プラント全体を停止する必要がなくなり、連続運転性が向上する。その際、反応装置前段のヒーター18は反応配管のヒーター20に比べて滞留時間が長く設備規模が大きい。また、ヒーター18には原料であるグリセリン等の有機物がないので副生成物の発生がない。このことは、ヒーター18では全体工程の中でエネルギー使用の割合が大きい一方、その下流側工程と比べて副生成物によるトラブルの心配が極めて小さいことがわかる。そこで、複数系統の方式を考える上で、ヒーター18を各系統共通で使用し、反応配管から複数系統に分岐することが好ましい。ヒーター18の下流側工程においてメンテナンス作業をしている系統があっても、ヒーター18は連続運転が可能となり、停止・再起動でのエネルギー損失が最小限にできるので、設備コスト、運転コストの両方を低減することができる。
蒸留塔27へ流入した反応液は蒸留により分離され、頂部からアクロレイン、水、アセトアルデヒド、ホルムアルデヒド、アリルアルコールなどを含む反応液を排出し、底部から水、硫酸、タール等を含む廃水を排出する。反応液は熱交換器28で冷却された後、蒸留塔29に流入する。蒸留塔29に流入した反応液は蒸留により分離され、頂部からアセトアルデヒドおよびホルムアルデヒド等を含む廃液を、底部からアクロレイン、水およびアリルアルコール等を含む反応液を排出する。蒸留塔29から排出された反応液はリボイラー30に流入し、アクロレインを水和反応させるため、水和反応の反応温度近傍の40〜110℃、好ましくは50〜70℃に昇温される。
水を加えられた後に水和反応器31に流入した反応液は、水和反応により3−ヒドロキシプロピオンアルデヒド(3−HPA)に転換される。水和反応は、1種または複数種の金属、例えば水銀、イリジウム、白金、パラジウム、ロジウム、ニッケル、コバルト、クロム、バナジウム、モリブデンを含む触媒、あるいはイオン交換樹脂を用い、反応温度30〜120℃および圧力0.1〜0.2MPaで、アクロレインと水の重量比1:2〜1:20の範囲で行うことができる。
水和反応器31から排出された反応液は蒸留塔32に流入して蒸留により分離され、頂部からアクロレイン、水、アリルアルコールなどを含む廃液を排出し、底部から3−HPA、水などを含む反応液を排出する。廃液は熱交換器40で冷却された後、一部は水和反応器31に還流される。一方、反応液は、3−HPAを水素添加反応させるため、熱交換器33で水素添加反応の反応温度近傍の30〜150℃、好ましくは50〜130℃に昇温される。必要に応じて水を加えられた後、ポンプ1により加圧され、水素を溶解させられた反応液は、水素添加反応器2に流入され、触媒により水素添加反応に供される。以降の工程は図1を用いて説明した方法および装置と同様である。
以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
図2に示した装置を用い、下記条件に従ってグリセリンからアクロレインおよび3−HPAを経由する1,3−PDOの製造を行った。
超臨界水を用いたアクロレイン合成反応:
反応温度:400℃
反応圧力:35MPa
原料グリセリン濃度:15重量%
反応時間:2秒
第一の冷却(冷却水注入によるクエンチ):200℃
第二の冷却およびその後の減圧(冷却器22および減圧弁23)
:125℃、0.35MPa
第三の冷却およびその後の減圧(冷却器24および25)
:95℃→60℃、大気圧
アクロレインの水和反応:55℃、0.1MPa、2h
3−HPAの水素添加反応:
触媒:白金2.5重量%担持チタニア触媒
反応器のL/D比:5.3
反応温度:60℃(均一)
反応圧力:15MPa
空間速度:3h−1
3−HPAの転化率は84%、1,3−PDOの収率は84%、選択率は100%であった。
(比較例1)
3−HPAの水素添加反応において、反応器の空間速度を0.85h−1とした以外は実施例1と同様に1,3−PDOの製造を行った。3−HPAの転化率は43%、1,3−PDOの収率は34%、選択率は80%であった。
(比較例2)
3−HPAの水素添加反応において、L/D比0.5である反応器を用いた以外は、実施例1と同様に1,3−PDOの製造を行った。3−HPAの転化率は51%、1,3−PDOの収率は46%、選択率は90%であった。
(比較例3)
3−HPAの水素添加反応において、反応器の空間速度を0.85−1とし、かつ反応器の温度を入口温度60℃、出口温度140℃として勾配をつけた以外は、実施例1と同様に1,3−PDOの製造を行った。3−HPAの転化率は87%、1,3−PDOの収率は30%、選択率は32%であった。また、100h運転後、減圧弁が固着し、運転継続が困難となった。
1:ポンプ、2:水素添加反応器、3:熱交換器、4:減圧弁、5:水素分離器、6:リボイラー、7:第一蒸留塔、8:リボイラー、9:第二蒸留塔、10:リボイラー、11:第三蒸留塔、12:熱交換器、13:熱交換器、14:熱交換器、15:リボイラー、16:ポンプ、17:ポンプ、18:ヒーター、19:ヒーター、20:ヒーター、21:フィルタ、22:冷却器、23:減圧弁、24:冷却器、25:冷却器、26:減圧弁、27:蒸留塔、28:熱交換器、29:蒸留塔、30:リボイラー、31:水和反応器、32:蒸留塔、33:リボイラー、34:リボイラー、35:固形分除去装置、36:有機分除去装置、37:イオン交換塔、38:水タンク

Claims (5)

  1. 3−ヒドロキシプロピオンアルデヒドを水素添加反応に供して1,3−プロパンジオールを連続的に製造する方法であって、水素添加反応を行う固定床触媒反応器の管長と口径の比(L/D比)を5〜100とすること、ならびに該反応器において空間速度を1〜6h−1、温度を50〜100℃、および圧力を10〜17MPaとすることを特徴とする前記方法。
  2. 前記反応器内における反応液の流速が0.000001〜1m/sである、請求項1に記載の方法。
  3. 水素添加反応の触媒として白金担持チタニア触媒を用いる、請求項1または2に記載の方法。
  4. 前記水素添加反応の前段に、グリセリンに超臨界水および酸を反応させてアクロレインを連続的に合成する工程、ならびにアクロレインを水和させて3−ヒドロキシプロピオンアルデヒドを連続的に合成する工程をさらに有する、請求項1または2に記載の方法。
  5. 3−ヒドロキシプロピオンアルデヒドを水素添加反応に供して1,3−プロパンジオールを連続的に製造するための装置であって、水素添加反応を行う固定床触媒反応器の管長と口径の比(L/D比)が5〜100であること、該反応器の空間速度が1〜6h−1、温度が50〜100℃、および圧力が10〜17MPaに設定されていることを特徴とする前記装置。
JP2012250515A 2012-11-14 2012-11-14 1,3−プロパンジオールの製造方法および製造装置 Pending JP2014097956A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012250515A JP2014097956A (ja) 2012-11-14 2012-11-14 1,3−プロパンジオールの製造方法および製造装置
PCT/JP2013/080013 WO2014077162A1 (ja) 2012-11-14 2013-11-06 1,3-プロパンジオールの製造方法および製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250515A JP2014097956A (ja) 2012-11-14 2012-11-14 1,3−プロパンジオールの製造方法および製造装置

Publications (1)

Publication Number Publication Date
JP2014097956A true JP2014097956A (ja) 2014-05-29

Family

ID=50731077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250515A Pending JP2014097956A (ja) 2012-11-14 2012-11-14 1,3−プロパンジオールの製造方法および製造装置

Country Status (2)

Country Link
JP (1) JP2014097956A (ja)
WO (1) WO2014077162A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109134224A (zh) * 2018-09-30 2019-01-04 浙江工业大学 一种丙烯醛水合制备3-羟基丙醛的方法
CN112920031B (zh) * 2021-01-27 2022-07-08 浙江恒逸石化研究院有限公司 一种制备1,3-丙二醇过程中丙烯醛分离回用的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132663C2 (de) * 1991-10-01 1993-10-14 Degussa Verfahren zum Herstellen von 1,3-Propandiol durch Hydrieren von Hydroxypropionaldehyd
DE4218282A1 (de) * 1992-06-03 1993-12-09 Degussa Verfahren zur Herstellung von 1,3-Propandiol
TWI266760B (en) * 2000-03-20 2006-11-21 Kvaerner Process Tech Ltd Process for the preparation of propane-1,3-diol
JP4687754B2 (ja) * 2008-07-01 2011-05-25 株式会社日立プラントテクノロジー 超臨界水を用いたアクロレインの製造方法
JP5755995B2 (ja) * 2011-10-26 2015-07-29 株式会社日立製作所 超臨界水を用いた反応プロセス

Also Published As

Publication number Publication date
WO2014077162A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
CN101410361B (zh) 由甘油产生低级醇的方法
JP5304299B2 (ja) 臨界水を用いた反応プロセス
CN109180428B (zh) 一种2,2-二甲基-1,3-丙二醇的生产工艺
CN104262152A (zh) 一种生产乙醇酸甲酯的方法
CN106854139B (zh) 一种用含酚焦油制备叔丁基苯酚的方法
CN102875500B (zh) 2-甲基四氢呋喃的连续化生产方法
TWI422568B (zh) 進行多相式醛醇縮合反應之連續製法
JP5587425B2 (ja) グリセリンの精製方法
WO2014077162A1 (ja) 1,3-プロパンジオールの製造方法および製造装置
JP5755995B2 (ja) 超臨界水を用いた反応プロセス
JP5433710B2 (ja) アクロレインの合成方法
CN103864587A (zh) 一种合成2-乙基-2-己烯醛的方法
JP5632787B2 (ja) 超臨界水を用いた反応プロセス
CN113906005B (zh) 一种通过雷尼tm钴催化由醛连续生产二醇的方法
TWI486325B (zh) 純化殘餘物中之三羥甲基丙烷的回收
US9611154B2 (en) Method for purifying water formed during hydrocarbon synthesis
JP2013159599A (ja) アクロレインの製造方法
KR101776405B1 (ko) 네오펜틸 글리콜 제조장치 및 제조방법
CN107106923A (zh) 改造用于生产环己酮的设备的方法
CN106831286B (zh) 氧化物制备低碳烯烃的方法
CN117820264A (zh) 一种顺酐液相加氢制备丁二酸酐的方法
WO2023196469A1 (en) Improved methods of producing lower alcohols from glycerol
CN114515549A (zh) 一种预加氢反应系统、预加氢反应方法和应用
CN111217689A (zh) 一种丙酮一步法合成甲基异丁基酮的反应器开车方法