JP2014097501A - 水処理方法 - Google Patents

水処理方法 Download PDF

Info

Publication number
JP2014097501A
JP2014097501A JP2014017368A JP2014017368A JP2014097501A JP 2014097501 A JP2014097501 A JP 2014097501A JP 2014017368 A JP2014017368 A JP 2014017368A JP 2014017368 A JP2014017368 A JP 2014017368A JP 2014097501 A JP2014097501 A JP 2014097501A
Authority
JP
Japan
Prior art keywords
calcium
filter
solid
water
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014017368A
Other languages
English (en)
Other versions
JP5649749B2 (ja
Inventor
Taro Fukaya
太郎 深谷
Atsushi Yamazaki
厚 山崎
Kenji Tsutsumi
剣治 堤
Ichiro Yamanashi
伊知郎 山梨
Ryuko Kono
龍興 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014017368A priority Critical patent/JP5649749B2/ja
Publication of JP2014097501A publication Critical patent/JP2014097501A/ja
Application granted granted Critical
Publication of JP5649749B2 publication Critical patent/JP5649749B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

【課題】水中のフッ化物イオンを速やかに除去し、かつ生成したフッ素化合物の除去を容易に行うことのできる水処理方法を提供する。
【解決手段】フッ化物イオンを含有する水にカルシウム含有無機固体を接触させてフッ化カルシウムを析出させ、析出したフッ化カルシウムとカルシウム含有無機固体を、フィルターを備えた固液分離装置により固液分離を行う水処理方法において、前記フィルターの細孔径の最頻値をA,前記カルシウム含有無機固体の体積換算平均粒子径をBとした時に、B≦50μm、かつ0.2≦B/A≦10であることを特徴とする水処理方法。
【選択図】なし

Description

本発明の実施形態は、水処理方法に関する。
近時、工業の発達や人口の増加により水資源の有効利用が求められるようになってきている。水資源の有効利用を図るためには、工業排水や生活排水などのような各種の排水を浄化して再利用することが重要である。排水を浄化するためには、水中に含まれる水不溶物や不純物を分離除去する必要がある。排水を浄化する方法として、例えば膜分離法、遠心分離法、活性炭吸着法、オゾン処理法、凝集剤添加による浮遊物質の沈殿除去法がある。これらの水処理方法を用いて、排水に含まれるリンやフッ素などの環境に及ぼす影響の大きい化学物質を除去し、また水中に分散した油類やクレイなどを除去することができる。
従来、炭酸カルシウムを用いたフッ素含有排水の処理方法が知られている。この処理方法は、排水に含まれるフッ化物イオンを炭酸カルシウムと反応させてその表面にフッ化カルシウムを生成させ、そのフッ化カルシウムを削ることにより炭酸カルシウムを析出させ、再度反応を進行させてフッ化物イオンを除去する技術である。
特開2005−305279号公報
しかし、上述した従来方法では、炭酸カルシウムの表面に析出するフッ化カルシウムを除去するエネルギーが必要になるだけでなく、炭酸カルシウム表面から剥離した微細なフッ化カルシウムの除去が困難になるという問題があった。
実施形態の目的は、水中のフッ化物イオンを速やかに除去し、かつ生成したフッ素化合物の除去を容易に行うことのできる水処理方法を提供することである。
実施形態によれば、フッ化物イオンを含有する水にカルシウム含有無機固体を接触させてフッ化カルシウムを析出させ、析出したフッ化カルシウムとカルシウム含有無機固体を、フィルターを備えた固液分離装置により固液分離を行う水処理方法において、前記フィルターの細孔径の最頻値をA,前記カルシウム含有無機固体の体積換算平均粒子径をBとした時に、B≦50μm、かつ0.2≦B/A≦10であることを特徴とする水処理方法を提供できる。
第1の実施形態に係る水処理装置を示す構成ブロック図。 第2の実施形態に係る水処理装置を示す構成ブロック図。 第3の実施形態に係る水処理装置を示す構成ブロック図。 第4の実施形態に係る水処理装置を示す構成ブロック図。 第2の実施形態に係る水処理装置におけるフィルターによる細孔径と細孔体積との関係を示す特性図。 第2の実施形態に係る水処理装置における炭化カルシウムの粒子間の孔径と細孔体積との関係を示す特性図。
以下、実施形態に係る水処理方法ついて説明する。
(1)実施形態に関わるカルシウム含有無機固体は、カルシウムを含み、水に不溶なものであればよい。水に不溶とは、水への溶解度が、1000ml当たり10g以下(25℃)であることを意味する。カルシウム含有無機固体としては、天然鉱石や単一の精製したものでも構わない。天然鉱石としては、例えば、アラゴナイト、ウレキサイト、メリライト、オンファサイト、ウバロバイト、灰重石、ベロブスカイト、ヘデンバージャイト、ゾイサイト、魚眼石、ドロマイト、クリード石、ピーモンタイト、スパー石、二水石膏、チタナイト、チャロアイト、灰長石、透輝石、灰鉄輝石、ヨハンセン輝石、トレモライト、ロードナイト、ピジョン輝石、ホルンブレンド、オージャイト、ベクロタイト、ベスビアナイト、逸見石、カルサイト、霰石、モンモリロナイト、アクチノライト、エピドート、クリノゾイサイト、アパタイトが挙げられる。精製したものであれば、例えば、炭酸カルシウム、亜硫酸カルシウム、水酸化カルシウム、硫酸カルシウム、チタン酸カルシウム、タングステン酸カルシウムが挙げられる。この中でも水への溶解度が小さい炭酸カルシウムや、炭酸カルシウムを主成分とする鉱石(例えばアラゴナイト、ドロマイト)が好ましい。また、水和物や水酸基を有しない物質が好ましい。水和物や水酸基を有する物質であると他の物質に比べて柔らかい特徴を持ち、フィルターの孔に詰まってしまう場合があるからである。
上記の粒子を、任意の粉砕機を用いて細かく砕き、分級をして所定の粒子径を有するカルシウム含有無機固体を製造する。粉砕の方法としては、例えばボールミル、ヘンシェルミキサー、ロールが挙げられる。また、平均粒子径は、レーザー回折法により測定した結果に基づいて算出される。具体的には、レーザー回折法を利用した機器として株式会社島津製作所製の商品名:SALD−DS21型測定装置を用いることができる。なお、平均粒子径とは体積換算平均粒子径のことである。このようにして求められた平均粒子径Bが50μm以下になるようにし、かつ後述するフィルターの孔径の最頻値(分布図で頻度が最も大きくなるピーク値)Aに対し、B/Aが0.2〜10の値となるように調整する。ここで、B/Aが0.2より小さいと、生成フッ化カルシウムとカルシウム含有無機固体がフィルターで捕捉されないか、又は緻密に積層して固液分離が困難になる。B/Aが10より大きいと、生成フッ化カルシウムがフィルターを通過したり目詰まりを起こしたりして、適切な水処理を行うことが困難である。また、平均粒子径が50μmよりも大きい場合においても、生成フッ化カルシウムがフィルターを通過したり目詰まりを起こしたりする。
本実施形態においては、本出願人は、カルシウム含有無機固体表面に析出するフッ化カルシウムの析出径が概ね0.1〜2μmであることを実験的に確認している。即ち、このフッ化カルシウムがカルシウム含有無機固体の表面に析出したままか、または剥がれ落ちてフッ化カルシウムとカルシウム含有無機固体に分かれた場合においても、特定の孔径を有するフィルターで固液分離しやすいようにカルシウム含有無機固体の粒子径を制限している。即ち、このカルシウム含有無機固体と共にフッ化カルシウムを濾過することにより、カルシウム含有無機固体間の隙間にフッ化カルシウムがトラップされ、フッ素の除去が可能になる。
(2)本実施形態におけるフィルターの材質は特に制限されるものではなく、例えば、ろ布や金属メッシュ、多孔質セラミック、多孔質ポリマーが挙げられる。この中でも、ろ布が好ましく、例えばポリプロピレン、ナイロン、ポリエステルなどの材質で、二重織、綾織、平織、朱子織などで編んだものが用いられる。この中でも、柔らかいろ布や高分子からなる精密ろ過膜(MF膜)などを用いると、フッ化カルシウムなどを好適に捕獲することができる。上記フィルターによれば、後述するフィルター上に無機固体を積層する擬似膜を用いる場合、積層時に無機固体が水圧でフィルターに圧着され一部弾性変形を起こし、隣の粒子との距離が縮まり、粒子間孔径が小さくなるために性能が向上するからである。
フィルターの孔径は、例えば金属メッシュの篩のように予め既知のものであれば良いが、不明な場合は水銀圧入法により測定する。この水銀圧力法は、水銀の表面張力が大きいことを利用して粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から比表面積や細孔分布を求める方法である。フィルターの孔径は、例えば島津製作所製の自動ポロシメータオートポアIV9500シリーズを用いて求めることができる。この時のろ布の孔径は最頻径を用いる。これは、横軸を孔径、縦軸を圧入された積算水銀量の微分値をプロットした時に、孔径分布のピークの孔径を最頻径(最頻値)Aと定義する。
また、前記フィルター上に水に不溶の無機粒子を積層させて、擬似フィルターとし、この擬似フィルターでフッ化カルシウムとカルシウム含有無機固体を固液分離しても良い。前記擬似フィルターの孔径に相当するのが粒子間の孔径であり、例えば島津製作所製の自動ポロシメータオートポアIV9500シリーズを用いて求めることができる。この時に得られる細孔分布が粒子間の孔径と定義できる。但し、無機粒子がポーラス構造であると、ポーラス細孔径と粒子間の孔径の二つのピークが得られるが、この場合孔径の大きいピークが粒子間の孔径と定義できる。また、この擬似フィルターの代表孔径Cは、フィルターと同様に最頻値とする。この擬似フィルターの孔径の最頻値Cとフィルターの孔径の最頻値AはC<Aであることが好ましい。この値であると、フッ化カルシウムなどの細かい粒子がフィルターまで届かず、フィルターの寿命を延ばすことができるからである。また無機固体を積層しない時と同様に、0.2≦B/C≦10であることが好ましい。
(3)前記無機固体は磁性体であることが好ましい。磁性体であると、磁気分離により磁性体とフッ化カルシウム,カルシウム含有無機固体の混合スラリーから、磁性体だけを取り除き、再利用することができるからである。
磁性体としては強磁性物質を全般的に用いることができ、例えば鉄、鉄基合金、磁鉄鉱(マグネタイト)、チタン鉄鉱(イルメナイト)、磁硫鉄鉱(ピロータイト)、マグネシアフェライト、マンガンマグネシウムフェライト、マンガン亜鉛フェライト、コバルトフェライト、ニッケルフェライト、ニッケル亜鉛フェライト、バリウムフェライト、銅亜鉛フェライトなどを用いることができる。これらのうち水中での安定性に優れたマグネタイト、マグネシアフェライト、マンガンマグネシウムフェライトなどのフェライト系化合物を用いることが最も好ましい。マグネタイト(Fe)は、安価であるだけでなく、水中でも磁性体として安定した性質を示し、毒性のない安全な元素ばかりで構成されているため、水処理に使用するのに適している。
これらの磁性体は単体で用いても良いが、何らかの方法で凝集体として用いてもよい。また、必要により、樹脂を被覆したり、シランカップリング剤で表面処理をしても良い。特に好ましいのは、表面張力の低い樹脂または修飾を行うことである。前記樹脂としては、例えばシリコーン樹脂またはフッ素樹脂を用いることができる。シリコーン樹脂は、オルガノポリシロキサンからなる高分子化合物であり、一液型と二液型の2つがある。例えば信越化学工業株式会社の製品であるKEシリーズやKRシリーズが挙げられる。
前記フッ素樹脂は、樹脂中にフッ素を含む高分子の総称であり、例えばポリテトラフルオロエチレン(PTFE),テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP),テトラフルオロエチレン−エチレン共重合体(ETFE),ポリビニリデンフルオライド(PVDF),クロロトリフルオロエチレン−エチレン共重合体(ECTFE),ポリクロロトリフルオロエチレン(PCTFE),ポリビニルフルオライド(PVF)及びこれらの複合体を含むものである。必要に応じて、これらの樹脂とエポキシ樹脂やポリイミド、ポリアミドなどを共重合させたものを使用し、磁性体粒子との接着性を改善する。これらの樹脂を用いることにより、磁性体と固形物の分離が容易になり、磁性体の再生が容易になる。
(4)カルシウム含有無機固体を用いた場合、前述したフッ化物イオン含有排水に混合したカルシウム含有無機固体と同じものを用いることができる。このようなカルシウム含有無機固体を用いると、通水時に水中に残存しているフッ化物イオンとカルシウム含有無機固体の接触効率が高くなり、フッ素の除去効率が高まる効果がある。
また、このカルシウム含有無機固体は、フッ化物イオンを含有する排水にカルシウム含有無機固体を混合したフッ化カルシウム、カルシウム含有無機固体の混合スラリーを分級し、比較的大粒子を含有するスラリーと小粒子を含有するスラリーに分け、このうち大粒子を含有するスラリーをフィルター上に積層して擬似フィルターとしても良い。
前記混合スラリーを分級する方法は、例えば重力や遠心力を用いて行うことができる。重力を用いる方法によれば、沈降分離槽にスラリーを導入させ、一定の沈降時間の後、上部・下部からそれぞれ大粒子を含有するスラリー及び小粒子を含有するスラリーを引き抜くことで、異なる粒子径を有するスラリーを作ることができる。また、遠心力を用いる方法によれば、サイクロンを用いることができ、サイクロンに導入するスラリーを遠心力で分級して、大きい粒子をサイクロン下部から、小さい粒子をサイクロン上部から取り出すことにより分級して異なる粒子径を有するスラリーを作製することができる。
(5)これらの粒子の粒子間の孔径分布において、最頻値をD1,90%径をD2、10%径をD3とした時、logD2−logD1 < logD1−logD3であることが好ましい。換言すれば、これは、磁性体の粒子間の孔径の分布において、最頻値よりも小さい領域の分布幅が最頻値よりも大きい領域の分布幅より大きいことを意味する。従って、このような粒子間の孔径分布を持つものは、最頻値よりも小さい孔径を多く有する。このように小さい孔径を多く有すると、例えばフッ化カルシウムのような小さい粒子を捕捉することができ、さらに捕捉した小さい粒子が孔径を狭めるので、さらに小さい粒子を取り除くことができる。逆に最頻値よりも大きな粒子間の孔径を多く有すると、最初にフッ化カルシウムのような小さい粒子を捕捉する確率が低下し、小さな粒子の捕捉率が低下する場合がある。
(6)本実施形態に係る固液分離装置は特に任意の構造で構わないが、好ましくはフィルターが地面と水平なろ過器を用い、通水は下向流で行うことが好ましい。この時、通水方向は地面と垂直、即ち重力と同じ向きになり、フィルター上に積層した擬似フィルターの形を維持しやすいからである。
以下、添付の図面を参照して種々の実施の形態をそれぞれ説明する。
本実施形態の水処理用磁性体粒子を用いる水処理方法には、フッ化物イオンを含有する排水にカルシウムを含有する固体を混合した後に、フィルターで固液分離する第1の方法、カルシウムを含有する固体を積層した擬似フィルターで固液分離する第2の方法、混合物から大きな粒子を有するスラリーを分離し、これを積層した擬似フィルターで固液分離する第3の方法、磁性体を積層した擬似フィルターで固液分離し、磁性体を再生して再利用する第4の方法が挙げられる。
次に、本実施形態に係る水処理方法異用いられる水処理装置について説明する。
(第1の水処理装置)
図1は、第1の水処理装置を示す。
本実施形態の水処理装置1は、フッ化物イオンを含有する排水にカルシウムを含有するカルシウム含有無機固体を混合した後に、フィルターで固液分離する第1の水処理装置である。水処理装置1は、カルシウム含有無機固体貯留槽(以下、貯留槽と呼ぶ)2、混合槽3、固液分離装置4、図示しない原水供給源および排水貯留槽を有しており、これらの機器及び装置が複数の配管ラインにより互いに接続されている。
ポンプ5a、図示しない計測器及びセンサを介装した配管ライン6aは、貯留槽2と混合槽3を接続している。貯留槽2は、内部に攪拌スクリュウ7aを有し、図示しないカルシウム含有無機固体供給口からカルシウム含有無機固体を供給するとともに、図示しない水道水供給口から水道水を供給して、カルシウム含有無機固体のスラリー溶液を溜めておく機能を有する。また、原水の状態によっては、図示しないpH調整液タンクから薬液を注入し、pHを調整することができる。pH調整液としては、塩酸、硫酸、水酸化ナトリウムなどが用いられる。
ポンプ5b、図示しない計測器及びセンサを介装した配管ライン6bは、混合槽3と固液分離装置4を接続している。混合槽3は、被処理水を撹拌する撹拌スクリュウ7bを有し、図示しない原水供給源から配管ライン6cを介して被処理水となる排水が導入され、被処理水を一時的に貯留しておくようになっている。その間に、被処理水は配管ライン6aから供給されるカルシウム含有無機固体と混合され、被処理水中に含まれるフッ化物イオンと反応し、フッ化カルシウムを生成させ、フッ化カルシウムとカルシウム含有無機固体の混合スラリーを作製する。
前述した計測器及びセンサから図示しない制御器の入力部に検出信号が入り、当該制御器の出力部からポンプ5a,5bにそれぞれ制御信号が出され、それらの動作が制御されるようになっている。このように水処理装置1の全体は図示しない制御器によって統括的にコントロールされるようになっている。
固液分離装置4は、内部にフィルター8を有し、上下のスペースに分割されている。固液分離装置4の上部のスペースには、ポンプ5bと配管ライン6bより混合スラリーが送られ、フィルター8で固液分離される。前記フィルター8の孔径の最頻値Aは1μm以下であり、カルシウム含有無機固体の平均粒子径Bとの関係が2≦B/Aのときに好適に使用することができる。前記カルシウム含有無機固体としては、特に制限されることはなく、適宜選択すればよい。また、フィルター8は目の細かいものがよく、例えばMF膜などを用いると良い。
固液分離された液体は、固液分離装置4の下部のスペースから配管ライン6dにより排出され、図示しない処理水貯留槽へ送られる。また、上部には図示しない逆洗水タンクから配管ライン6eを介して洗浄水が送られ、配管ライン6fからフッ化カルシウムとカルシウム含有無機固体の濃縮水が排出される。
次に、図1を参照して上記の装置を用いた水処理方法を説明する。
まず、混合槽3内で被処理水とカルシウム含有無機固体を混合し、カルシウム含有無機固体粒子表面に水中のフッ化物イオンを取り込み、表面にフッ化カルシウムを析出させる。カルシウム含有無機固体粒子の添加量は特に問わないが、水中のフッ化物イオンのモル数の1/2以上を入れる必要があり、好ましくはフッ化物イオンのモル数と同量以上入れるのがよい。
次いで、このフッ化カルシウムとカルシウム含有無機固体を含むスラリーを、固液分離装置4へ移送する。固液分離装置内には、フィルター8の細孔径の最頻値をA,カルシウム含有無機固体の体積換算平均粒子径をBとした時に、0.2≦B/A≦10であるフィルター8を予めセットしておき、前記スラリーを濾過処理する。この時、フィルター8が地面と水平であると、フィルター上にフッ化物イオンとカルシウム含有無機固体が積層される。B/Aを0.2≦B/A≦10にした時には、生成したフッ化カルシウムが、カルシウム含有無機固体と共に積層し、好適に取ることができる。
固液分離装置4で固液分離して得られた液体は、固液分離装置4の下部から排出され、図示しない処理水槽に送られる。また、固液分離装置4の上側の側部から、逆洗水を通水し、フィルター8上に堆積したフッ化カルシウムとカルシウム含有無機固体を除去して、フィルター8を再生する。前記逆洗水は、水道水を用いても良いが、図示しない処理水タンクから供給しても構わない。
このように特定の大きさのカルシウム含有無機固体と特定の孔径を有するフィルター8を用いることにより、特別な処理を必要とせず、水中のフッ化物イオンを除去することができる。
(第2の水処理装置)
第2の水処理装置1Aについて図2を参照して説明する。但し、図1と同部材は同符号を付して説明を省略する。
図中の符号11は、ポンプ5aの下流側の配管6aに介装されたバルブを示す。前記ポンプ5bの下流側の配管ライン6bとバルブ11とは、配管ライン6gにより接続されている。第2の水処理装置1Aは、図1の水処理装置1と異なり、貯留槽2から送られる配管ライン6a,6gは、夫々混合槽3と固液分離装置4に繋がっている。前記配管ライン6a,6gは、夫々混合槽3でフッ化物イオンと反応させてフッ化カルシウムを得る工程と、フィルター8上にカルシウム含有無機固体を積層させ、プレコート層(擬似フィルター)を得る工程に使用される。
混合槽3で得られたフッ化カルシウムとカルシウム含有無機固体を含んだスラリーを固液分離装置8に通水する前に、バルブ11を切り替えて配管ライン6g,6bを介してカルシウム含有無機固体を含んだスラリーを固液分離装置4に供給し、フィルター8上にカルシウム含有無機固体を含んだスラリーによるプレコート層を形成する。この時のプレコート層の厚さは、圧力損失がかからない程度であれば特に問わないが、具体的には0.5〜10mm程度にする。この時に、このカルシウム含有無機固体の粒子間の孔径Cがフィルター8の孔径Aと比較して、C<Aであり、0.2≦B/C≦10(但し、B:カルシウム含有無機固体の体積換算平均粒子径)となるようにカルシウム含有無機固体とフィルター8を調整すると、好適にフッ化カルシウムおよびカルシウム含有無機固体を除去することができる。
(第3の水処理装置)
第3の水処理装置1Bについて図3を参照して説明する。但し、図1と同部材は同符号を付して説明を省略する。
図中の符号12はサイクロン(遠心分離装置)を示す。前記混合槽3の底部寄りの側部とサイクロン12の上部寄りの側部は、ポンプ5bを介装した配管ライン6hにより接続されている。サイクロン12の下部には、粒子径の大きい粒子を一時的に溜める下部ポット13が配置されている。下部ポット13の下部には、バルブ14を介装した配管ライン6iを介して大粒子含有スラリー貯留槽15が接続されている。この貯留槽15は攪拌スクリュウ7cを備えている。粒子径の大きい粒子を含む排水は、配管ライン6iによりサイクロン12から大粒子含有スラリー貯留槽16に送られる。
サイクロン12の上部には、配管ライン6jを介して小粒子含有スラリー貯留槽16が接続されている。この貯留槽16は攪拌スクリュウ7dを備えている。前記大粒子含有貯留槽15の底部寄りの側部と前記固液分離装置4の上部は、ポンプ5cを介装した配管ライン6kにより接続されている。小粒子含有スラリー貯留槽16の底部寄りの側部とポンプ5cの下流側の配管ライン6kは、ポンプ5dを介装した配管ライン61により接続されている。
第3の水処理装置1Bにおいては、大粒子径含有スラリー貯留槽15から先に固液分離装置3に通水され、大粒子径の粒子がフィルター8上に積層され、図示しないプレコート層を形成する。その後、このプレコート層(疑似フィルター)に小粒子径の粒子を有するスラリーを通水して水処理を行う。
(第4の水処理装置)
第4の水処理装置1Cについて図4を参照して説明する。但し、図1と同部材は同符号を付して説明を省略する。
図中の符号21は、固液分離装置4の上部側と配管ライン6fを介して接続する分離槽を示す。この分離槽21には、永久磁石22を内包する円筒部23及び攪拌スクリュウ7eが配置されている。永久磁石22は、図示しないエアシリンダーにより上下に駆動し、分離槽21の内部の磁場をON・OFFすることができるようになっている。
分離槽21の底部寄りの側部と攪拌スクリュウ7fを備えた磁性体貯留槽24の底部寄りの側部は、ポンプ5eを介装した配管ライン6mを介して接続されている。前記ポンプ5bの下流側の配管ライン6bと磁性体貯留槽24は、ポンプ5fを介装した配管ライン6nにより接続されている。
こうした構成の水処理装置1Cの動作は次の通りである。
まず、フッ化カルシウムとカルシウム含有無機固体の混合スラリーを固液分離装置4に通水する前に、固液分離装置4のフィルター8上に磁性体を積層したプレコート層(疑似フィルター)を形成する。次に、前記混合スラリーを固液分離装置4に通水して固液分離を行い、処理水を配管ライン6dにより排出する。つづいて、逆洗水を配管ライン6eから供給して、フィルター8上に堆積した磁性体と無機固体を洗い流し、配管ライン6fより分離槽21に移送する。
分離槽21に移送された磁性体と無機固体の混合物は、攪拌スクリュウ7eにより混合され、磁性体と無機固体がばらばらにされる。次に、エアシリダーを駆動して永久磁石22を円筒部23内に入れて磁場をONにし、円筒部23の外周に磁性体のみを回収する。その後、配管ライン6oから分離した無機固体を排出し、磁性体の洗浄を完了する。つづいて、図示しない水道水供給口から水道水を分離槽21に供給しつつ、エアシリンダーを駆動して永久磁石22を円筒部23の外部に引き抜き、磁場をOFFにする。その結果、円筒部23に回収されていた磁性体は、供給された水道水と混合してスラリー状になり、配管ライン6mを介して磁性体貯留槽24に送り、再利用する。
以下、具体的な実施例について詳細に説明する。
(実施例1)
図1の水処理装置を用いて、水処理の試験を行った。模擬排水として、1000mg/Lのフッ化水素酸を含有する水を用意した。また、フィルター8としては酢酸セルロースからなる精密ろ過(MF)膜を、カルシウム含有無機固体としてはカルサイトをボールミルで粉砕し、風力で選別した粉体を使用した。MF膜の孔径は1μm(カタログ値)であり、カルシウム含有無機固体の体積換算平均粒子径Bのフィルター8の細孔径の最頻値に対する比(B/A)は10であった。
混合槽3に、模擬排水と該模擬排水中のフッ化物イオンと同モル相当を有するカルサイトを添加し、10分攪拌したところ、混合槽内のpHが7.2まで上昇した。混合槽内の混合液を、ポンプ5bを用いて固液分離装置4に供給し、フィルター8で固液分離したところ、配管ライン6dからフッ素濃度が9mg/Lに低減された処理液を得た。
(実施例2)
図2の水処理装置を用いて、水処理の試験を行った。模擬排水として、1000mg/Lのフッ化水素酸を含有する水を用意した。また、フィルターはポリプロピレンのろ布を用意し、島津製作所製の商品名:オートポア9520(細孔分布測定装置)を用いて細孔分布測定を行ったところ、図5のような細孔分布を得た。この結果より、このフィルター8の孔径Aは6.4μm(最頻値)であることがわかった。また、カルシウム含有無機固体として、和光純薬製の炭酸カルシウムの試薬を準備し、ボールミルで粉砕して風力選別を行って粉体を得た。この炭酸カルシウムの粒子間の孔径を、島津製作所製の商品名:オートポア9520(細孔分布測定装置)を用いて測定したところ、図6の結果を得た。この結果より、粒子間の孔径Cは1.37μmであることを確認した。即ち、C<Aであり、粒子間の孔径Cに対する平均粒子径Bの比(B/C)は3.9であった。
混合槽3に、模擬排水と、模擬排水中のフッ化物イオンと同モル相当を有する炭酸カルシウムを添加し、10分攪拌したところ、混合槽内のpHが7.3まで上昇した。ここで、バルブ11を操作し、炭酸カルシウムを含有する水を固液分離装置4に通水し、フィルター上に積層させ厚さ約1mmのプレコート層(疑似フィルター)を作製した。この後、混合槽内の混合液を、ポンプ5bを用いて固液分離装置4に供給し、プレコート層で固液分離したところ、配管ライン6dからフッ素濃度が7mg/Lに低減された処理液を得た。
(実施例3)
実施例2と同じカルシウム含有無機固体とフィルターを用い、図3の水処理装置で試験を行った。混合槽3に模擬排水と、模擬排水中のフッ化物イオンと同モル相当を有する炭酸カルシウムを添加し、10分攪拌したところ、混合槽内のpHが7.3まで上昇した。ここで、混合槽内の混合液を、ポンプ5bを用いてサイクロン12に通水し、異なる平均粒子径を有するスラリーを、大粒子含有スラリー貯留槽15、小粒子含有スラリー貯留槽16に夫々供給した。このうち、大粒子含有スラリー貯留槽15の粒子の粒子間の孔径を調べたところ、4.0μmであり、C<Aであった。また小粒子の平均粒子径は0.8μmであり、B/Cは0.2であった。この後、大粒子含有スラリー貯留槽15の粒子を固液分離装置4に供給して積層させ、プレコート層(疑似フィルター)を形成した。このプレコート層で小粒子含有スラリーを固液分離したところ、配管ライン6dからフッ素濃度が7mg/Lに低減された処理液を得た。
(実施例4)
図4の水処理装置を用いて、水処理の試験を行った。模擬排水として、1000mg/Lのフッ化水素酸を含有する水を用意した。また、磁性体として平均粒子径14μmのマンガンマグネシウムフェライトを準備し、磁性体の粒子間の孔径を測定したところ4.7μmであった。フィルターは実施例2と同じものを用いた。またカルシウム含有無機固体としてのドロマイトをボールミルで粉砕し、風力で選別した粉体を使用した。ドロマイトの平均粒子径は10μmであり、粒子間孔径は2.3μmであった。C<Aであり、B/Cは4.3であった。
混合槽3に、模擬排水と、模擬排水中のフッ化物イオンと同モル相当を有するドロマイトを添加し、15分攪拌したところ、混合槽内のpHが7.0まで上昇した。また、フェライトのスラリーを予め固液分離装置4に通水し、厚さ1mmのプレコート層(疑似フィルター)を形成した。混合槽内の混合液を、ポンプ5bを用いて固液分離装置4に供給し、プレコート層で固液分離したところ、配管ライン6dからフッ素濃度が13mg/Lに低減された処理液を得た。
また、固液分離装置4の横の配管ライン6eから水道水を供給し、フィルター上にある磁性体と無機固体分を洗浄し、分離槽21に供給した。次に、攪拌スクリュウ7eを動かして磁性体と無機固形分を分離した後、永久磁石22で磁性体を回収し、無機固形分を配管ライン6oから排出した後、水道水を導入して磁性体を回収した。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,1A,1B,1C…水処理装置、2…カルシウム含有貯留槽、3…混合槽、4…固液分離装置、5a,5b,5c,5d,5e,5f…ポンプ、6a〜6n…配管ライン、7a〜7f…攪拌スクリュウ、8…フィルター、11…バルブ、12…サイクロン、13…下部ポット、15…大粒子径含有スラリー貯留槽、16…小粒子径含有スラリー貯留槽、21…分離槽、22…永久磁石、23…円筒部、24…磁性体槽。

Claims (5)

  1. フッ化物イオンを含有する水にカルシウム含有無機固体を接触させてフッ化カルシウムを析出させ、析出したフッ化カルシウムとカルシウム含有無機固体を、フィルターを備えた固液分離装置により固液分離を行う水処理方法において、
    前記フィルターの細孔径の最頻値をA,前記カルシウム含有無機固体の体積換算平均粒子径をBとした時に、B≦50μm、かつ0.2≦B/A≦10であり、
    前記フィルターの上に予め水に不溶の無機粒子を積層させて疑似フィルターを形成することを更に含み、
    前記無機粒子の粒子間の孔径の最頻値Cが、C<Aであり、かつ0.2≦B/C≦10を満たし、
    前記フィルターの上に積層する無機粒子が、磁性体を含んだ粒子であることを特徴とする水処理方法。
  2. 磁性体の粒子間の孔径の分布は、最頻値より小さい領域の分布幅が最頻値より大きい領域の分布幅よりも大きいことを特徴とする請求項1に記載の水処理方法。
  3. 前記フィルターが、布であることを特徴とする請求項1または2に記載の水処理方法。
  4. 前記フィルターが、精密ろ過膜であることを特徴とする請求項1乃至3いずれか1項に記載の水処理方法。
  5. 前記フィルターを有する固液分離装置が、地面と水平なろ過面をもつろ過器であることを特徴とする請求項1乃至4いずれか1項に記載の水処理方法。
JP2014017368A 2014-01-31 2014-01-31 水処理方法 Expired - Fee Related JP5649749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014017368A JP5649749B2 (ja) 2014-01-31 2014-01-31 水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017368A JP5649749B2 (ja) 2014-01-31 2014-01-31 水処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012080146A Division JP5502924B2 (ja) 2012-03-30 2012-03-30 水処理方法

Publications (2)

Publication Number Publication Date
JP2014097501A true JP2014097501A (ja) 2014-05-29
JP5649749B2 JP5649749B2 (ja) 2015-01-07

Family

ID=50939982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017368A Expired - Fee Related JP5649749B2 (ja) 2014-01-31 2014-01-31 水処理方法

Country Status (1)

Country Link
JP (1) JP5649749B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002110A1 (en) * 2014-07-02 2016-01-07 Kabushiki Kaisha Toshiba Water treatment system and water treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207990A (ja) * 1982-05-31 1983-12-03 Mitsubishi Heavy Ind Ltd フツ素含有廃水の処理方法
JPH0812389A (ja) * 1994-06-28 1996-01-16 Mitsubishi Heavy Ind Ltd 低品位石膏分離回収方法
JP2000070962A (ja) * 1998-08-27 2000-03-07 Japan Organo Co Ltd フッ素含有排水処理方法
JP2004074041A (ja) * 2002-08-20 2004-03-11 Cabot Supermetal Kk フッ素の回収方法
JP2004249251A (ja) * 2003-02-21 2004-09-09 Hitachi Plant Eng & Constr Co Ltd フッ素含有水の処理方法
JP2009207953A (ja) * 2008-02-29 2009-09-17 Sanyo Electric Co Ltd 排水処理装置および排水処理方法
JP2012055784A (ja) * 2010-09-03 2012-03-22 Toshiba Corp 排水処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207990A (ja) * 1982-05-31 1983-12-03 Mitsubishi Heavy Ind Ltd フツ素含有廃水の処理方法
JPH0812389A (ja) * 1994-06-28 1996-01-16 Mitsubishi Heavy Ind Ltd 低品位石膏分離回収方法
JP2000070962A (ja) * 1998-08-27 2000-03-07 Japan Organo Co Ltd フッ素含有排水処理方法
JP2004074041A (ja) * 2002-08-20 2004-03-11 Cabot Supermetal Kk フッ素の回収方法
JP2004249251A (ja) * 2003-02-21 2004-09-09 Hitachi Plant Eng & Constr Co Ltd フッ素含有水の処理方法
JP2009207953A (ja) * 2008-02-29 2009-09-17 Sanyo Electric Co Ltd 排水処理装置および排水処理方法
JP2012055784A (ja) * 2010-09-03 2012-03-22 Toshiba Corp 排水処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002110A1 (en) * 2014-07-02 2016-01-07 Kabushiki Kaisha Toshiba Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP5649749B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5319730B2 (ja) フッ素の回収装置及びフッ素の回収方法
JP5823221B2 (ja) ろ過助剤、水処理用ろ過助剤、水処理用プレコート材及び水処理方法
JP5277997B2 (ja) 浄水方法
JP5422525B2 (ja) 排水処理方法
JP5214424B2 (ja) 排水処理装置
JP5389196B2 (ja) 水処理方法及び水処理装置
JP2016013522A (ja) 水処理システムおよび水処理方法
JP2014057920A (ja) 水処理方法
JP5492243B2 (ja) 水処理方法及び水処理装置
JP5649749B2 (ja) 水処理方法
JP5502924B2 (ja) 水処理方法
EP2485981B1 (en) Use of a multi layered particulate filter for reducing the turbidity and sdi of water
JP2005111424A (ja) 流体内からの被除去物除去処理方法及び装置と汚泥分離回収装置
WO2014108941A1 (ja) 水処理方法及び水処理装置
JP5502920B2 (ja) フッ素の回収装置及びフッ素の回収方法
JP5452677B2 (ja) 浄水装置
WO2015182145A1 (ja) 水処理方法
JP2007252977A (ja) 懸濁物質及び色度成分を含んだ水の処理方法及び処理装置
JP2014140825A (ja) 廃水処理方法
JP6305215B2 (ja) フッ素含有廃水の処理方法及びフッ素含有廃水の処理装置
JP2010240625A (ja) リン回収方法
JP2014184413A (ja) 水処理方法
JP2014087768A (ja) 廃水処理装置及び方法
JP2014113530A (ja) 水処理装置及び水処理方法
JP2013146731A (ja) 排水処理装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R151 Written notification of patent or utility model registration

Ref document number: 5649749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees