JP2014080508A - エポキシ樹脂組成物 - Google Patents

エポキシ樹脂組成物 Download PDF

Info

Publication number
JP2014080508A
JP2014080508A JP2012229193A JP2012229193A JP2014080508A JP 2014080508 A JP2014080508 A JP 2014080508A JP 2012229193 A JP2012229193 A JP 2012229193A JP 2012229193 A JP2012229193 A JP 2012229193A JP 2014080508 A JP2014080508 A JP 2014080508A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
resin composition
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229193A
Other languages
English (en)
Inventor
Yusuke Iwata
佑介 岩田
Hisanao Yamamoto
久尚 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2012229193A priority Critical patent/JP2014080508A/ja
Publication of JP2014080508A publication Critical patent/JP2014080508A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

【課題】本発明は、短時間硬化性及び貯蔵安定性に優れるエポキシ樹脂組成物を提供することを目的とする。
【解決手段】本発明のエポキシ樹脂組成物は、下記式(1)で表される化合物を含むエポキシ樹脂用硬化剤(A)と、エポキシ基を1以上有するエポキシ樹脂(B)と、を含有する。

(式(1)中、Zは3級アミンを有する有機基であり、nは2以上の整数であり、Wはn価の有機基である。)
【選択図】なし

Description

本発明は、エポキシ樹脂組成物に関する。
エポキシ樹脂は、その硬化物が、機械的特性、電気的特性、熱的特性、耐薬品性、接着性等の点で優れた性能を有することから、塗料、電気電子用絶縁材料、接着剤等の幅広い用途に利用されている。現在、エポキシ樹脂組成物としては、使用時にエポキシ樹脂と硬化剤との二液を混合する、いわゆる二液性のタイプ(二液性エポキシ樹脂組成物)が一般的に使用されている。
二液性エポキシ樹脂組成物は、室温で硬化し得る反面、エポキシ樹脂と硬化剤とを別々に保管し、必要に応じて両者を計量、混合した後、使用する必要があるため、保管や取り扱いが煩雑である。その上、使用可能時間が限られているため、予め大量にエポキシ樹脂と硬化剤とを混合しておくことができず、エポキシ樹脂と硬化剤との配合頻度が多くなり、作業能率の低下を免れない。
こうした二液性エポキシ樹脂組成物の問題を解決する目的で、これまでいくつかの一液性エポキシ樹脂組成物が提案されてきている。例えば、ジシアンジアミド、BF3−アミン錯体、アミン塩、変性イミダゾール化合物等の潜在性硬化剤をエポキシ樹脂に配合した一液性エポキシ樹脂組成物がある。
このような一液性エポキシ樹脂組成物として、例えば、特許文献1には、モノイソシアネート化合物の反応物よりなる潜在性硬化剤をエポキシ樹脂に配合した一液性エポキシ樹脂組成物が開示されている。
特公平6−51783号公報
しかしながら、上記従来の潜在性硬化剤を用いたエポキシ樹脂組成物は、潜在性硬化剤としてエポキシ基との反応性の高いアミンを用いた場合、貯蔵安定性の点でさらなる課題がある。従って、高い硬化性と優れた貯蔵安定性とを両立し得るエポキシ樹脂組成物が強く求められている。
上記事情に鑑み、本発明は、短時間硬化性及び貯蔵安定性に優れるエポキシ樹脂組成物を提供することを主な目的とする。
本発明者らは、上記課題を解決すべく鋭意検討し、実験を重ねた結果、本発明を成すに至った。
即ち、本発明は、以下の通りである。
[1]
下記式(1)で表される化合物を含むエポキシ樹脂用硬化剤(A)と、
エポキシ基を1以上有するエポキシ樹脂(B)と、を含有するエポキシ樹脂組成物。
(式(1)中、Zは3級アミンを有する有機基であり、nは2以上の整数であり、Wはn価の有機基である。)
[2]
前記式(1)において、前記Zが下記式(2)で表される構造を有する、[1]に記載のエポキシ樹脂組成物。
(式(2)中、Xは3価の電子供与性原子もしくは電子供与性基であり、Rはそれぞれ独立して2価もしくは3価の有機基であり、Yは単結合もしくは2価の有機基である。)
[3]
前記式(2)において、前記XがCH基である、[1]または[2]に記載のエポキシ樹脂組成物。
[4]
前記式(1)において、
前記nが2であり、かつ、前記Wが下記式(3−1−1)〜(3−1−25)で表される群から選ばれるいずれか1つの構造であるか、または、
前記nが3であり、かつ、前記Wが下記式(3−2−1)〜(3−2−4)で表される群から選ばれるいずれか1つの構造である、[1]〜[3]のいずれかに記載のエポキシ樹脂組成物。
(式(3−1−1)〜(3−1−25)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、pは1以上8以下の整数である。)
(式(3−2−1)〜(3−2−4)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、bは0以上6以下の整数であり、qは1以上12以下の整数であり、R1はそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基である。)
[5]
前記エポキシ樹脂用硬化剤(A)が、下記式(4−1)〜(4−8)で表される群から選ばれる少なくとも1つの化合物を含有する、[1]〜[4]のいずれかに記載のエポキシ樹脂組成物。
本発明のエポキシ樹脂組成物は、短時間硬化性及び貯蔵安定性に優れる。
合成例1で得られたエポキシ樹脂用硬化剤(A−1)の1H−NMRチャートである。 合成例2で得られたエポキシ樹脂用硬化剤(A−2)の1H−NMRチャートである。 合成例3で得られたエポキシ樹脂用硬化剤(A−3)の1H−NMRチャートである。 合成例4で得られたエポキシ樹脂用硬化剤(A−4)の1H−NMRチャートである。 合成例6で得られたエポキシ樹脂用硬化剤(A−6)の1H−NMRチャートである。 合成例9で得られたエポキシ樹脂用硬化剤(A−9)の1H−NMRチャートである。
以下、本発明を実施するための形態(以下、「本実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施形態のエポキシ樹脂組成物は、特定のエポキシ樹脂用硬化剤(A)及びエポキシ樹脂(B)を含有する。本実施形態のエポキシ樹脂組成物において、エポキシ樹脂用硬化剤(A)とエポキシ樹脂(B)との質量比は特に限定されないが、エポキシ樹脂(B)100質量部に対して、エポキシ樹脂用硬化剤(A)が0.1〜1000質量部であることが好ましく、1〜500質量部であることがより好ましく、10〜100質量部であることが更に好ましい。
以下、本実施形態のエポキシ樹脂組成物に用いられる各成分について説明する。
≪エポキシ樹脂用硬化剤(A)≫
本実施形態に用いるエポキシ樹脂用硬化剤(A)は、下記式(1)で表される化合物を含む。
式(1)中、Zは3級アミンを有する有機基であり、nは2以上の整数であり、Wはn価の有機基である。
<貯蔵安定性および短時間硬化性発現のメカニズム>
3級アミンを有する化合物は、高分子量化することでエポキシ基を含むエポキシ樹脂への溶解が抑制され、潜在性が付与されるため、貯蔵安定性を良好とすることができる。しかし、通常このように高分子量化された3級アミンを有する化合物は、エポキシ樹脂への溶解・拡散性が悪く短時間硬化性が低くなってしまう。一方、本実施形態に用いるエポキシ樹脂用硬化剤(A)は、エポキシ樹脂(B)と反応させると、例えば、下記式(5)のようにウレタン基が解裂し3級アミンを遊離する。そのため、本実施形態に用いるエポキシ樹脂用硬化剤(A)は、遊離した低分子の3級アミンが容易にエポキシ樹脂に溶解・拡散して短時間硬化性を発現すると推測される。したがって、本実施形態に用いるエポキシ樹脂用硬化剤(A)は、貯蔵安定性を良好とするために高分子量化されていてもその硬化性もほとんど損なわれない。
<3級アミンを有する有機基Zの構造について>
本実施形態に用いるエポキシ樹脂用硬化剤(A)は、上記式(1)で表される化合物を含む。上記式(1)で表される化合物は、3級アミンを有する有機基Zを有する。この3級アミンを有する有機基Zの構造としては、下記式(2)のような環状構造中に窒素原子がある構造が好ましい。特に、該有機基Zの構造としては、下記式(2)で表される環状構造の架橋点(橋頭位)に3級アミンが位置する構造がより好ましい。このような構造の有機基Zを有する化合物は、非共有電子対の立体障害が小さくなるため、求核性が高まり触媒能が高くなると推測される。この触媒能が高くなることで、上記式(5)で示すような、低分子の3級アミンの遊離がより促進され、短時間硬化性が良好となると推測される。さらに、下記式(2)のような構造において、Xが窒素原子等の電子供与性原子もしくはCH基等の電子供与性基であると、3級アミンの窒素原子の電子密度が高まる。その結果、このような構造の有機基Zを有する化合物は、触媒能がさらに高くなると推測される。
式(2)中、Xは3価の電子供与性原子もしくは電子供与性基であり、Rはそれぞれ独立して2価もしくは3価の有機基であり、Yは単結合もしくは2価の有機基である。
式(2)中、Xとしては、窒素原子、CH基であることが好ましく、CH基であることがより好ましい。Xがこのような原子もしくは基であると、エポキシ樹脂組成物の短時間硬化性が良好となる。
式(2)中、Rとしては、―(CH2o―の構造を有する基が好ましい。ここで、oは、1〜5の整数であることが好ましく、2〜5の整数であることがより好ましく、2であることが更に好ましい。
式(2)中、Yとしては、単結合もしくは炭素数1〜5の2価の炭化水素基であることが好ましく、単結合もしくは炭素数1〜3の2価の炭化水素基であることがより好ましく、単結合であることが更に好ましい。
<n価の有機基Wの構造について>
上記式(1)で表される化合物は、n価の有機基Wを有する。上記式(1)で表される化合物は、Wが剛直な構造であるほど、高融点もしくは高軟化点となるため高い潜在性を発現する。なお、ここでいう剛直な構造とは、構造単位を構成する各元素の相対位置を変化させるときに各原子が動き難い構造であることを意味する。剛直な構造としては、例えば、ベンゼン環構造、スピロ環構造、ヌレート環、環状脂肪族構造等の環状構造の含有比率の高い構造が挙げられる。
また、上記式(1)で表される化合物は、nが大きいほど分子内のウレタン基の数が増加し、高融点もしくは高軟化点となりより高い潜在性を発現する。nは2〜10の整数であることが好ましく、2〜5の整数であることがより好ましく、2〜3の整数であることが更に好ましい。
一方、上記式(1)で表される化合物は、有機基Wの構造が、直鎖脂肪族のような分子が自由に回転できる柔軟な骨格を有するほど、低融点もしくは低軟化点となり、短時間硬化性の点で好ましい。
具体的には、上記式(1)において、nが2であり、かつWが下記式(3−1−1)〜(3−1−25)で表される群から選ばれる1つの構造であるか、または、式(1)において、nが3であり、かつWが下記式(3−2−1)〜(3−2−4)で表される群から選ばれる1つの構造であることが、貯蔵安定性と短時間硬化性とのバランスの点で好ましい。
式(3−1−1)〜(3−1−25)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、pは1以上8以下の整数である。
式(3−2−1)〜(3−2−4)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、bは0以上6以下の整数であり、qは1以上12以下の整数であり、R1はそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基である。
式(3−2−3)および(3−2−4)中、R1としては、炭素数3〜8の飽和もしくは不飽和の炭化水素基であることが好ましく、炭素数6の飽和もしくは不飽和の炭化水素基であることがさらに好ましい。
本実施形態に用いるエポキシ樹脂用硬化剤(A)は、下記式(4−1)〜(4−8)で表される群から選ばれる少なくとも1つの化合物を含有することが好ましい。エポキシ樹脂用硬化剤(A)がこのような化合物を含有すると、エポキシ樹脂組成物は貯蔵安定性および短時間硬化性に優れる。
≪エポキシ樹脂用硬化剤(A)の製造方法≫
上記したエポキシ樹脂用硬化剤(A)の合成法は特に限定されず、公知の方法を採用することができる。以下に、エポキシ樹脂用硬化剤(A)の合成例を示す。なお、以下に示す合成法は例示であり、エポキシ樹脂用硬化剤(A)の合成法は以下の方法に限定されるものではない。
<エポキシ樹脂用硬化剤(A)の合成方法の一例>
エポキシ樹脂用硬化剤(A)の合成方法の一例としては、水酸基を有する3級アミンと、2つ以上のイソシアネート基を有する化合物とを反応させる方法が挙げられる。
より具体的な合成条件の一例を挙げると、トルエン等の有機溶媒中で、3−キヌクリジノールとキシリレンジイソシアネートとを、反応液温度30〜100℃の範囲内に保持して、1〜10時間反応させた後に溶媒を留去して反応物を得る方法が挙げられる。得られた反応物は、本実施形態の目的が損なわれない範囲内において、ウレア化合物やイソシアヌレート化合物等の副生成物を含有していてもよい。
<水酸基を有する3級アミン>
水酸基を有する3級アミンとしては、特に限定されないが、例えば、2−ジメチルアミノエタノール、1−メチル−2−ジメチルアミノエタノール、1−フェノキシメチル−2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、1−ブトキシメチル−2−ジメチルアミノエタノール、N−β−ヒドロキシエチルモルホリン等の、アミノアルコール類;2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール等の、アミノフェノール類;等が挙げられる。
<2つ以上のイソシアネート基を有する化合物>
2つ以上のイソシアネート基を有する化合物としては、特に限定されないが、例えば、1,4−テトラメチレンジイソシアネート、1,5−ペンタメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、2,2,4−トリメチル−1,6−ヘキサメチレンジイソシアネート、リジンジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)、1,3−ビス(イソシアネートメチル)−シクロヘキサン、4,4’−ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート、イソシアヌレート変性ポリイソシアネート、ビュレット変性ポリイソシアネート、ウレタン変性ポリイソシアネートやジイソシアネート、トリイソシアネート等が挙げられる。
≪エポキシ樹脂(B)≫
エポキシ樹脂(B)としては、エポキシ基を1以上有していれば特に限定されないが、例えば、モノエポキシ化合物、多価エポキシ化合物のいずれか又はそれらの混合物等が挙げられる。
モノエポキシ化合物としては、特に限定されないが、例えば、ブチルグリシジルエーテル、ヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、パラ−tert−ブチルフェニルグリシジルエーテル、エチレンオキシド、プロピレンオキシド、パラキシリルグリシジルエーテル、グリシジルアセテート、グリシジルブチレート、グリシジルヘキソエート、グリシジルベンゾエート等が挙げられる。
多価エポキシ化合物としては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂;ビフェノール、ジヒドロキシナフタレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化したエポキシ樹脂;1,1,1−トリス(4−ヒドロキシフェニル)メタン、4,4−(1−(4−(1−(4−ヒドロキシフェニル)−1−メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化したエポキシ樹脂;1,1,2,2,−テトラキス(4−ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化したエポキシ樹脂、グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p−オキシ安息香酸、β−オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;4,4−ジアミノジフェニルメタンやm−アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂と、3,4−エポキシシクロヘキシルメチル−3',4'−エポキシシクロヘキサンカルボキシレート等の脂環族エポキシ化合物等が挙げられる。
≪エポキシ樹脂用硬化剤(A)以外のエポキシ樹脂硬化剤≫
本実施形態のエポキシ樹脂組成物は、上記したエポキシ樹脂用硬化剤(A)以外の硬化剤として、エポキシ樹脂用硬化剤をさらに含んでもよい。エポキシ樹脂用硬化剤(A)以外のエポキシ樹脂用硬化剤としては、一般にエポキシ樹脂用硬化剤として使用されるあらゆるものが使用できるが、特に、酸無水物系硬化剤、フェノール系硬化剤、ヒドラジド系硬化剤およびグアニジン系硬化剤よりなる群から選ばれる少なくとも1種が好ましい。本実施形態のエポキシ樹脂組成物において、上記硬化剤の質量比は特に限定されないが、エポキシ樹脂100質量部に対して、本実施形態に用いるエポキシ樹脂硬化剤(A)を0.1〜200質量部含有し、酸無水物系硬化剤、フェノール系硬化剤、ヒドラジド系硬化剤、及びグアニジン系硬化剤よりなる群より選ばれる少なくとも1種の硬化剤を1〜200質量部を含有することが好ましい。
酸無水物系硬化剤としては、特に限定されないが、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸、無水−3−クロロフタル酸、無水−4−クロロフタル酸、無水ベンゾフェノンテトラカルボン酸、無水コハク酸、無水メチルコハク酸、無水ジメチルコハク酸、無水ジクロールコハク酸、メチルナジック酸、ドテシルコハク酸、無水マレイン酸等が挙げられる。
フェノール系硬化剤としては、特に限定されないが、例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック等が挙げられる。
ヒドラジド系硬化剤としては、特に限定されないが、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、p−オキシ安息香酸ヒドラジド、サリチル酸ヒドラジド、フェニルアミノプロピオン酸ヒドラジド、マレイン酸ジヒドラジド等が挙げられる。
グアニジン系硬化剤としては、特に限定されないが、例えば、ジシアンジアミド、メチルグアニジン、エチルグアニジン、プロピルグアニジン、ブチルグアニジン、ジメチルグアニジン、トリメチルグアニジン、フェニルグアニジン、ジフェニルグアニジン、トルイルグアニジン等が挙げられる。
≪その他の成分≫
本実施形態のエポキシ樹脂組成物は、その機能を低下させない範囲で、増量剤、補強剤、充填剤、顔料、有機溶剤等、その他の添加剤をさらに含有することができる。上記組成物中における添加剤の含有量の総量は、好ましくは30質量%未満である。
≪エポキシ樹脂組成物の用途≫
本実施形態のエポキシ樹脂組成物は、封止材、塗料組成物、プリプレグ、熱伝導性材料等に好適に使用できる。以下に、これら用途に用いる場合の好ましい態様について説明する。
本実施形態のエポキシ樹脂組成物を用いた封止材としては、特に限定されないが、例えば、固形封止材、液状封止材、及びフィルム状封止材等が挙げられる。液状封止材としては、特に限定されないが、例えば、アンダーフィル材、ポッティング材、ダム材等が挙げられる。封止材の製造方法としては、特に限定されないが、例えば、以下の方法が挙げられる。ビスフェノールA型エポキシ樹脂、硬化剤として、例えば酸無水物硬化剤である無水メチルヘキサヒドロフタル酸、さらに球状溶融シリカ粉末を加えて均一に混合し、得られた混合物に、さらに本実施形態のエポキシ樹脂組成物を加えて均一に混合することにより、封止材を得ることができる。
本実施形態のエポキシ樹脂組成物を用いた塗料組成物の製造方法としては、特に限定されず、公知の方法を採用できる。塗料組成物の製造方法としては、特に限定されないが、例えば、以下の方法が挙げられる。ビスフェノールA型エポキシ樹脂に、二酸化チタン、タルク等を配合し、混合溶剤としてメチルイブチルケトン(MIBK)/キシレンの1:1混合溶剤を添加、攪拌して主剤とする。該主剤に本実施形態のエポキシ樹脂組成物を添加し、均一に分散させることにより、塗料組成物を得ることができる。
本実施形態のエポキシ樹脂組成物を用いたプリプレグの製造方法としては、特に限定されず、公知の方法も採用できる。例えば、本実施形態のエポキシ樹脂組成物を補強基材に含浸し、加熱することによりプリプレグを得ることができる。含浸させるワニスの溶剤としては、特に限定されないが、例えば、メチルエチルケトン、アセトン、エチルセルソルブ、メタノール、エタノール、イソプロピルアルコール等が挙げられ、これらの溶剤はプリプレグ中に残存しないことが好ましい。なお、補強基材の種類としては、特に限定されないが、例えば、紙、ガラス布、ガラス不織布、アラミド布、液晶ポリマー等が挙げられる。エポキシ樹脂組成物と補強基材との割合も特に限定されないが、プリプレグ中の樹脂分の含有量は20〜80質量%であることが好ましい。
本実施形態のエポキシ樹脂組成物を用いた熱伝導性材料の製造方法としては、特に限定されず、公知の方法を採用できる。熱伝導性材料の製造方法としては、特に限定されないが、例えば、以下の方法が挙げられる。熱硬化性樹脂としてエポキシ樹脂、硬化剤としてフェノールノボラック硬化剤、さらに熱伝導フィラーとしてグラファイト粉末を配合して均一に混練する。得られた混練物に本実施形態のエポキシ樹脂組成物を配合することにより、熱伝導性材料を得ることができる。
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
各実施例のエポキシ樹脂組成物の物性は、下記に示す方法で評価した。
(1)短時間硬化性
示差走査熱量計(DSC;SII社製、「DSC220C」)のアルミニウム容器に、試料(実施例および比較例で得られたエポキシ樹脂組成物)10mgを秤取り、150℃のホットプレートで5秒間加熱した後に急冷した。当該加熱前後のDSC発熱量の変化から反応率を算出した。該反応率から以下の基準に基づき短時間硬化性を評価した。
〔評価基準〕
◎:反応率が80%以上の場合。
○:60%以上80%未満の場合。
△:40%以上60%未満の場合。
×:40%未満の場合。
(2)貯蔵安定性(粘度倍率)
実施例および比較例で得られたエポキシ樹脂組成物を25℃で1週間保存した。当該1週間保存前後のエポキシ樹脂組成物の粘度を測定し、その粘度上昇倍率(粘度倍率)を下記のように計算した。当該粘度倍率が低いほど、エポキシ樹脂組成物は貯蔵安定性に優れると評価した。なお、粘度は、25℃でE型粘度計を使用して測定した。1週間保存後のエポキシ樹脂組成物が、ゲル化して粘度の測定ができなかった場合は、評価結果を「ゲル化」と標記した。
粘度倍率=(一週間保存後の粘度)/(一週間保存前の粘度)
[合成例1]
攪拌装置、温度計、窒素ガス導入管及びジムロートを接続した4つ口フラスコに、3−キヌクリジノール5.80g(0.0457モル)およびメチルエチルケトン36.9g(0.517モル)を加え、該フラスコを40℃のオイルバスにつけた。前記フラスコ中の溶液を攪拌しながら、メチルエチルケトン4.25g(0.0590モル)に溶解させたキシリレンジイソシアネート4.25g(0.0226モル)を30分かけて前記フラスコに滴下して反応を行った。前記フラスコ中の溶液を2時間攪拌して反応液を得た。その後、反応液の赤外吸収分析(IR測定)からキシリレンジイソシアネートのイソシアネートの吸収の消失を確認するとともに、反応液のガスクロマトグラフィーの測定(GC測定)からイソシアネートのピークの消失を確認した後、反応を停止させた。そして、エバポレータを用いて反応液から溶剤を留去し、さらに残留分を真空乾燥機により20mmHg、140℃で5時間乾燥することで、25℃で固体のエポキシ樹脂用硬化剤(A−1)9.89gを得た。得られたエポキシ樹脂用硬化剤(A−1)を1H−NMRスペクトル(測定装置:日本電子株式会社製JNM−GSX400型 溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(6)で表される化合物であった。その1H−NMRチャートを図1に示す。
[合成例2]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりに1,6−ナフタレンジイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−2)9.98gを得た。得られたエポキシ樹脂用硬化剤(A−2)を1H−NMRスペクトル(溶媒:重クロロホルム)により分析したところ、下記式(7)で表される化合物であった。その1H−NMRチャートを図2に示す。
[合成例3]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにメタンジフェニルジイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−3)10.95gを得た。得られたエポキシ樹脂用硬化剤(A−3)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(8)で表される化合物であった。その1H−NMRチャートを図3に示す。
[合成例4]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにメタンジシクロヘキシルジイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−4)10.98gを得た。得られたエポキシ樹脂用硬化剤(A−4)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(9)で表される化合物であった。その1H−NMRチャートを図4に示す。
[合成例5]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりに1,3−ビス(イソシアナトメチル)シクロヘキサンを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−5)10.86gを得た。得られたエポキシ樹脂用硬化剤(A−5)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(10)で表される化合物であった。
[合成例6]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにデュラネート(登録商標)TPA−100(旭化成ケミカルズ株式会社)を用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−6)11.86gを得た。得られたエポキシ樹脂用硬化剤(A−6)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(6−1)で表される化合物であった。その1H−NMRチャートを図5に示す。
[合成例7]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにデュラネート(登録商標)24A−100(旭化成ケミカルズ株式会社)を用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−7)11.63gを得た。得られたエポキシ樹脂用硬化剤(A−7)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(6−2)で表される化合物であった。
[合成例8]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにブチルイソシアネートを用いて反応させることで、25℃で半固体のエポキシ樹脂用硬化剤(A−8)9.72gを得た。得られたエポキシ樹脂用硬化剤(A−8)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(11)で表される化合物であった。
[合成例9]
合成例1と同様の条件にてキシリレンジイソシアネートのかわりにフェニルイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−9)10.92gを得た。得られたエポキシ樹脂用硬化剤(A−9)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(12)で表される化合物であった。その1H−NMRチャートを図6に示す。
[合成例10]
合成例1と同様の条件にてキヌクリジノールのかわりに2,4,6−トリス(ジメチルアミノメチル)フェノールを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−10)15.9gを得た。得られたエポキシ樹脂用硬化剤(A−10)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(13)で表される化合物であった。
[合成例11]
合成例1と同様の条件にて、キヌクリジノールのかわりに2,4,6−トリス(ジメチルアミノメチル)フェノールを用い、キシリレンジイソシアネートのかわりにフェニルイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−11)16.9gを得た。得られたエポキシ樹脂用硬化剤(A−11)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(14)で表される化合物であった。
[合成例12]
合成例1と同様の条件にて、キヌクリジノールのかわりにアミノキヌクリジンを用い、キシリレンジイソシアネートのかわりにデュラネート(登録商標)TPA−100(旭化成ケミカルズ株式会社製)を用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−12)11.40gを得た。得られたエポキシ樹脂用硬化剤(A−12)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、ウレア基を有する下記式(15)で表される化合物であった。
[合成例13]
合成例1と同様の条件にて、キヌクリジノールのかわりに1−(2−ヒドロキシエチル)−2−メチル−4−ニトロ−1H−イミダゾールを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−13)11.51gを得た。得られたエポキシ樹脂用硬化剤(A−13)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(16)で表される化合物であった。
[合成例14]
合成例1と同様の条件にて、キヌクリジノールのかわりに1−(2−ヒドロキシエチル)−2−メチル−4−ニトロ−1H−イミダゾールを用い、キシリレンジイソシアネートのかわりにフェニルイソシアネートを用いて反応させることで、25℃で固体のエポキシ樹脂用硬化剤(A−14)12.7gを得た。得られたエポキシ樹脂用硬化剤(A−14)を1H−NMRスペクトル(溶媒:重ジメチルスルホキシド(重DMSO))により分析したところ、下記式(17)で表される化合物であった。
[実施例1]
エポキシ樹脂用硬化剤(A−1)をジェットミル(アイシン産業社製、「ナノジェットマイザーNJ−30型」)を用いて粉砕して平均粒径2.5μmの粉体を得た。ノンバブリングニーダー用プラスチック容器において、ビスフェノールA型エポキシ樹脂(エポキシ当量189g/eq、全塩素量1200ppm、ジオール末端不純物成分2.2質量%:以下「エポキシ樹脂E−1」という。)200質量部に、上記エポキシ樹脂用硬化剤(A−1)の粉体100質量部を添加して、ノンバブリングニーダーで均一に分散させることによりエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物について、短時間硬化性および貯蔵安定性を評価した。該評価結果を表1に示す。
なお、本実施例において、平均粒径は、以下の通り測定した。まず、測定する試料4mgを0.1質量%界面活性剤(三井サイテック社製、「エアロゾルOT−75」)のシクロヘキサン溶液32gに入れ、超音波洗浄器(本田電子社製、「MODEL W−211」)で5分間超音波照射することにより、溶液中に分散させた分散液を準備した。このときの超音波洗浄器内の水温は19±2℃に調整した。得られた分散液を一部取り、粒度分布測定装置(堀場製作所社製、粒度分布計「HORIBA LA−920」)にて粒度分布測定を行い、該測定結果に基づき平均粒径を求めた。
また、エポキシ当量は、JIS K−7236に従って求めた。
全塩素量は、以下の通り測定した。まず、試料を、キシレンを用いて、エポキシ樹脂が無くなるまで洗浄と濾過とを繰り返した。次に、ろ液を100℃以下で減圧留去し、エポキシ樹脂試料を得た。得られたエポキシ樹脂試料1〜10gを、滴定量が3〜7mLになるよう精秤し、25mLのエチレングリコールモノブチルエーテルに溶解して溶液を得た。得られた溶液に1規定KOHのプロピレングリコール溶液25mLを加えて20分間煮沸した。該煮沸後の溶液を硝酸銀水溶液で滴定した滴定量より全塩素量を計算した。
ジオール末端不純物成分は、エポキシ樹脂を無水媒質中で、四価の過ヨウ素酸アンモニウムと反応させ、未反応のHIO4(過ヨウ素酸)を、ヨウ化カリウムにより還元してI2(ヨウ素)を生成させて、生成したI2(ヨウ素)を定量することにより測定した。
[実施例2〜9]
エポキシ樹脂用硬化剤(A−1)に代えて表1に示すエポキシ樹脂用硬化剤を用いた以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物について、短時間硬化性および貯蔵安定性を評価した。該評価結果を表1に示す。
[比較例1]
200質量部のエポキシ樹脂E−1と100質量部の半液状のエポキシ樹脂用硬化剤(A−8)とをヘラで混合し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物について、短時間硬化性および貯蔵安定性を評価した。該評価結果を表1に示す。
[比較例2〜5]
エポキシ樹脂用硬化剤(A−1)に代えて表1に示すエポキシ樹脂用硬化剤を用いた以外は、実施例1と同様にしてエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物について、短時間硬化性および貯蔵安定性を評価した。該評価結果を表1に示す。
本発明のエポキシ樹脂組成物は、接着材料、導電材料、絶縁材料、封止材料、コーティング材料、塗料組成物、プリプレグ、構造用接着剤、熱伝導性材料等として好適に使用できる。

Claims (5)

  1. 下記式(1)で表される化合物を含むエポキシ樹脂用硬化剤(A)と、
    エポキシ基を1以上有するエポキシ樹脂(B)と、を含有するエポキシ樹脂組成物。
    (式(1)中、Zは3級アミンを有する有機基であり、nは2以上の整数であり、Wはn価の有機基である。)
  2. 前記式(1)において、前記Zが下記式(2)で表される構造を有する、請求項1に記載のエポキシ樹脂組成物。
    (式(2)中、Xは3価の電子供与性原子もしくは電子供与性基であり、Rはそれぞれ独立して2価もしくは3価の有機基であり、Yは単結合もしくは2価の有機基である。)
  3. 前記式(2)において、前記XがCH基である、請求項1または2に記載のエポキシ樹脂組成物。
  4. 前記式(1)において、
    前記nが2であり、かつ、前記Wが下記式(3−1−1)〜(3−1−25)で表される群から選ばれるいずれか1つの構造であるか、または、
    前記nが3であり、かつ、前記Wが下記式(3−2−1)〜(3−2−4)で表される群から選ばれるいずれか1つの構造である、請求項1〜3のいずれか一項に記載のエポキシ樹脂組成物。
    (式(3−1−1)〜(3−1−25)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、pは1以上8以下の整数である。)
    (式(3−2−1)〜(3−2−4)中、Aはそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基であり、aは0以上5以下の整数であり、bは0以上6以下の整数であり、qは1以上12以下の整数であり、R1はそれぞれ独立して炭素数1以上10以下の飽和もしくは不飽和の炭化水素基である。)
  5. 前記エポキシ樹脂用硬化剤(A)が、下記式(4−1)〜(4−8)で表される群から選ばれる少なくとも1つの化合物を含有する、請求項1〜4のいずれか一項に記載のエポキシ樹脂組成物。
JP2012229193A 2012-10-16 2012-10-16 エポキシ樹脂組成物 Pending JP2014080508A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012229193A JP2014080508A (ja) 2012-10-16 2012-10-16 エポキシ樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229193A JP2014080508A (ja) 2012-10-16 2012-10-16 エポキシ樹脂組成物

Publications (1)

Publication Number Publication Date
JP2014080508A true JP2014080508A (ja) 2014-05-08

Family

ID=50785010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229193A Pending JP2014080508A (ja) 2012-10-16 2012-10-16 エポキシ樹脂組成物

Country Status (1)

Country Link
JP (1) JP2014080508A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949952B2 (en) 2015-12-15 2024-04-02 Maxell, Ltd. Display apparatus, information terminal and information processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11949952B2 (en) 2015-12-15 2024-04-02 Maxell, Ltd. Display apparatus, information terminal and information processing method

Similar Documents

Publication Publication Date Title
JP4583373B2 (ja) エポキシ樹脂用硬化剤及びエポキシ樹脂組成物
JP4753934B2 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP4326524B2 (ja) カプセル型硬化剤及び組成物
TWI449723B (zh) A hardening agent for a microcapsule type epoxy resin, a hardener composition for a masterbatch type epoxy resin, a single-liquid epoxy resin composition, and a processed product
US8779036B2 (en) Catalysis of epoxy resin formulations
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
US9056942B2 (en) Curable resin compositions
EP2426159B1 (en) Low temperature curable epoxy compositions
TW201313770A (zh) 可硬化樹脂組成物
CN110072907A (zh) 使用取代的巴比妥酸实现环氧稳定化
JP5045896B2 (ja) エポキシ樹脂用潜在性硬化剤及びその製造方法
TWI680995B (zh) 環氧樹脂組成物
TW201319112A (zh) 環氧官能樹脂組成物
JP2014080508A (ja) エポキシ樹脂組成物
JP4567377B2 (ja) 潜在性硬化剤および組成物
JP2004027159A (ja) 熱硬化性液状樹脂組成物
WO2022014646A1 (ja) アミンイミド化合物、アミンイミド組成物、硬化剤、エポキシ樹脂組成物、アミンイミド化合物の製造方法、封止材、及び接着剤
WO2016103630A1 (ja) エポキシ樹脂組成物
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7465926B2 (ja) エポキシ樹脂、その製造方法、それを含むエポキシ組成物及びその用途
JP5936340B2 (ja) エポキシ樹脂用硬化剤
JP7270390B2 (ja) エポキシ樹脂組成物
JPH09296024A (ja) エポキシ樹脂組成物
JP2021161408A (ja) 1液硬化型エポキシ樹脂組成物
JP2013053230A (ja) エポキシ樹脂組成物、及びこれを用いたペースト状組成物、フィルム状組成物