JP2014077825A - 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス - Google Patents

光インターコネクトデバイスの製造方法及び光インターコネクトデバイス Download PDF

Info

Publication number
JP2014077825A
JP2014077825A JP2012223956A JP2012223956A JP2014077825A JP 2014077825 A JP2014077825 A JP 2014077825A JP 2012223956 A JP2012223956 A JP 2012223956A JP 2012223956 A JP2012223956 A JP 2012223956A JP 2014077825 A JP2014077825 A JP 2014077825A
Authority
JP
Japan
Prior art keywords
substrate
optical
optical waveguide
interconnect device
micromirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223956A
Other languages
English (en)
Other versions
JP5907035B2 (ja
Inventor
Mototoshi Nishizawa
元亨 西沢
Takeshi Aoki
剛 青木
Hideshi Muranaka
秀史 村中
Shigenori Aoki
重憲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012223956A priority Critical patent/JP5907035B2/ja
Publication of JP2014077825A publication Critical patent/JP2014077825A/ja
Application granted granted Critical
Publication of JP5907035B2 publication Critical patent/JP5907035B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract


【課題】 光導波路のコア断面寸法に応じて適切に光路変換あるいは光結合を行うことのできる光インターコネクトデバイスの製造方法を提供する。
【解決手段】 光インターコネクタデバイスの製造方法は、基板上に形成された樹脂層の所定の箇所に座グリ部を形成し、前記基板を第1の方向に傾斜させた状態で、前記座グリ部内に発泡性樹脂を配置し、前記基板の傾斜を維持したまま、減圧雰囲気下で前記発泡性樹脂を発泡、硬化させ、前記発泡、硬化後に常圧に戻して前記発泡性樹脂の大気と接する面を凹面に変形させ、前記凹面上に反射膜を形成して、前記基板に対して傾斜する凹面状の反射面を有するマイクロミラーを形成する。
【選択図】図2

Description

本発明は、光インターコネクトデバイスの製造方法と、光インターコネクトデバイスに関する。
近年、スーパーコンピュータ、ハイエンドサーバ、ルータなどの処理能力は飛躍的に向上している。装置内のボード間を接続するバックプレーンの伝送容量として1Tbpsを超える大容量化が求められている。このため、帯域の制約が厳しい電気配線によるインターコネクションに代わり、光インターコネクションの導入が検討されている。
特に、ラック内や機器内など、比較的伝送距離の短いボード間、またはボード内の光インターコネクションには、高集積化、軽量化が可能なポリマ光導波路を用いることが期待されている。
光インターコネクションには、レーザダイオードやフォトダイオードなどの発光素子や受光素子が用いられる。面発光型や面受光型の光素子は、光の出射方向や受光方向が基板に対して垂直であり二次元アレイ化が可能なため、広帯域用の光インターコネクションに好適である。
図1では、光導波路120が形成された基板110上に面型光素子140がフェイスアップあるいはフェイスダウン実装されている。面型光素子140と光導波路120との間で光結合を実現する場合、光導波路120から水平方向に出射されるビームを垂直方向に光路変換、または面型光素子140から垂直方向に出射されるビームを水平方向に光路変換する技術が用いられる。そのひとつの方法として、45度傾斜面に金属膜を形成した傾斜ミラー130がある。
しかし、クラッド122、123で挟まれた導波路コア121の端面から出射するビームや、面型光素子140から出射するビームは、10〜30度程度の発散角を有する発散ビームである。ビーム径は、導波路コア121から90度光路変換を経て面型光素子140へ入射する場合、あるいはその逆の場合も、距離に対して概ね比例して拡がる。そのため、傾斜ミラー130によって面型光素子140と導波路コア121との間を高効率で光結合することは困難である。
ビームの伝搬経路中にレンズを挿入してビーム径を絞ることも可能であるが、部品数増加によりコストアップとなるのに加えて、機器の小型化の妨げとなる。
傾斜ミラーの反射面を楕円の凹面にしてビームを集光させる方法が提案されている(例えば、特許文献1参照)。まず、水酸化カリウムをエッチャントに用いた異方性エッチングでシリコン基板上に傾斜面を形成する。その後、フォトレジストにより傾斜面の一部に開口部を設け、フッ酸・硝酸・酢酸の混合液を用いた等方性エッチングにより傾斜面に楕円球状の凹部を形成する。凹部にAlを蒸着して集光ミラーを作製する。
この方法では、エッチングにより形成される楕円球の長径は50μm、短径は25μmである。したがって、導波路コアの断面寸法が10μm×10μm程度の光導波路への適用が可能である。ボード内あるいはボード間光インターコネクションで標準的に適用されるマルチモード光導波路では、コア断面寸法は数十μm×数十μmであり、この場合はより大きな楕円球凹部の形成が必要になる。しかし、傾斜面に形成されるフォトレジストは長時間のエッチングに耐えられず、均一な楕円球を形成できないため、大径の集光ミラーの作製が困難である。
特開2001−141965 特開平9−40870
光導波路のコア断面寸法に応じて適切に光路変換あるいは光結合を行うことのできる光インターコネクトデバイスの製造方法を提供することを課題とする。
上記課題を解決すべく、光インターコネクトデバイスの製造方法は、
基板上に形成された樹脂層の所定の箇所に座グリ部を形成し、
前記基板を第1の方向に傾斜させた状態で、前記座グリ部内に発泡性樹脂を配置し、
前記基板の傾斜を維持したまま、減圧雰囲気下で前記発泡性樹脂を発泡、硬化させ、
前記発泡、硬化後に常圧に戻して前記発泡性樹脂の大気と接する面を凹面に変形させ、
前記凹面上に反射膜を形成し、
前記凹面上に反射膜を形成して、前記基板に対して傾斜する凹面状の反射面を有するマイクロミラーを形成する。
光導波路のコア断面寸法に応じて適切に光路変換あるいは光結合を行うことのできる光インターコネクトデバイスを製造することができる。
傾斜ミラーを用いた光路変換を説明する図である。 実施形態のマイクロミラーの概略断面図である。 実施形態のマイクロミラーの製造工程図である。 実施形態のマイクロミラーの製造工程図である。 実施形態のマイクロミラーの製造工程図である。 実施形態のマイクロミラーの製造工程図である。 実施形態のマイクロミラーの製造工程図である。 図8の工程を説明する図である。 実施形態のマイクロミラーを用いた光インターコネクトデバイスの一例を示す図である。 実施形態のマイクロミラー(光結合ミラー)が適用される光インターコネクションの一例を示す図である。
以下で、図面を参照して発明の実施形態を説明する。
図2は、実施形態のマイクロミラー30を用いた光インターコネクトデバイス10の概略構成図である。光インターコネクトデバイス10は、基板11上に形成された光導波路20と、光導波路20を伝搬するビームの方向を90度変換して集光するマイクロミラー30を含む。
マイクロミラー30は、光導波路20が形成されている光導波路層26に設けられた座グリ部25内に配置されている。光導波路20は、下部クラッド22と上部クラッド23に挟まれた導波路コア21を含む。マイクロミラー30は、光導波路20の光伝搬方向に対して傾斜した凹面31aを有する傾斜体31と、傾斜体31の凹面31aに形成された反射膜32を有する。傾斜体31は減圧下で発泡硬化する発泡性樹脂で形成されている。
後述するように、傾斜体31の凹面31aは、減圧下での発泡性樹脂の発泡硬化と、常圧への復帰を利用して形成されているので、均一な凹曲面を有する。導波路コア21の断面寸法とビームの発散角度に応じた座グリ部25を形成することで、傾斜体31の表面に正確な凹面31aを形成することができる。したがって、マルチモードコアにもシングルモードコアにも適したマイクロミラー30を作製できる。
図2の例では、マイクロミラー30は、導波路コア21を伝搬し基板11と水平な方向に出射したビームを90度変換して垂直方向に集光するが、図2と逆の方向への光路変換または光結合も可能である。すなわち、図示しない光素子から基板11と垂直な方向に出射されるビームの方向を90度変換して、導波路コア21に集光する光路変換ミラーとして機能することもできる。
図3〜図8に、図2のマイクロミラー30の製造工程例を示す。図3(A)は上面図、図3(B)は、図3(A)のA−A'断面図である。
図3の工程で、基板11上に樹脂層26を形成し、樹脂層26の所定の箇所にマイクロミラー30を形成するための座グリ部25を形成する。基板11は、ガラス基板、樹脂基板、半導体基板など任意の基板である。実施形態では、マイクロミラー30自体の形成に異方性ドライエッチングを使用しないので、基板11はシリコン基板に限定されず、任意の基板を用いることができる。
樹脂層26は、この例では光導波路20が形成されている光導波路層26である。基板11上に、フォトプロセスなどにより、下部クラッド22、導波路コア21、上部クラッド23を有する埋め込み光導波路20を形成する。光導波路層26のうち、導波路コア21が形成されている箇所が光導波路回路となる。下部クラッド22、導波路コア21、上部クラッド23は、たとえばポリマ系の導波路フィルムで形成される。光導波路コア21の断面寸法は、マルチモード用のサイズでもシングルモード用のサイズでもよい。
光導波路層26の所定の箇所に座グリ部25を形成して、導波路コア21の断面を露出する。座グリ部25は、座グリカッター、エンドミル、炭酸ガスレーザなど、適切なツールを用いて形成する。座グリ部25の寸法は、導波路コア21の断面サイズと、導波路コア21から出射するビームの発散角度に応じて適切に設定される。
次に、図4の工程で、基板11を45度傾斜させた状態で,座グリ部25に発泡性樹脂51を供給する。この例では、導波路コア21の露出した断面が高い位置になるように、基板11を保持するステージ(不図示)を傾斜させる。インクジェット塗布機(不図示)を用いて、塗布ヘッド54から座グリ部25内に、マイクロミラー30の形成に必要な容量の光硬化型の発泡性樹脂51を滴下する。
光硬化型発泡性樹脂51としては、たとえば光硬化発泡性シロキサン組成物を使用する。光硬化発泡性シロキサン組成物は、樹脂状モノマに紫外線を照射すると室温で速やかに発泡、硬化し、一液化が可能な発泡性シロキサンである。たとえば、オルガノヒドロキシポロシロキサンと、オルガノハイドロジェンポリシロキサンと、光活性型白金錯体触媒とを少なくとも含む混合物などがある(特許文献2参照)。
発泡性樹脂51は、減圧下で発泡し、硬化することのできる材料であれば任意の材料を用いることができる。したがって、光硬化性樹脂に、アジド基やジアゾ基を有する化合物のような公知の発泡剤を添加した材料を用いてもよい。また、熱硬化型の発泡性樹脂を用いてもよい。
次に、図5の工程で、光硬化型発泡性樹脂51を座グリ部25に塗布した基板11を45度傾斜させたままの状態で、減圧容器41に収容する。減圧容器41には、大気開放弁42が設けられている。減圧容器41内を減圧し、光照射ヘッド55から光硬化型発泡性樹脂51に紫外線Lを照射することにより、光硬化型発泡性樹脂51を発泡・硬化させる。紫外線の照射を受けて、光硬化型発泡性樹脂51は微小な気泡を生成しながら膨張し、座グリ部25の底面25aや側面25bとの密着力を強めながら、徐々に硬化して発泡硬化樹脂53となる。
次に、図6の工程で、発泡硬化樹脂53から、凹面31aを有する傾斜体31を形成する。図6(C)は、図6(A)のB−B'断面図である。具体的には、発泡硬化樹脂53の硬化がほぼ完了した状態で、減圧容器41の大気開放弁42を開き、減圧容器41の内部を大気開放する。発泡硬化樹脂53内に生成された気泡は大気圧に比べて気圧が低いため、発泡硬化樹脂53は収縮する。このとき、発泡硬化樹脂53の大気と接していない面は、座グリ部25の底面25aや側面25bや、露出している光導波路20の端面に対して密着硬化しているため、大気と接する面が窪み、凹面(曲面)31aが形成される。
次に、図7の工程で、傾斜体31の凹面31aに反射膜32を形成する。
図8は、図7の反射膜32の工程をさらに説明する図である。まず、図8(A)に示すように、傾斜体31に凹面31aを形成した後に、基板11上の光導波路層26の表面にドライフィルムレジスト61をラミネートし、露光、現像によりパターニングして、座グリ部25に対応する領域に開口61aを形成する。
次に、図8(B)に示すように、無電解メッキならびに電解メッキ法により全面に金属膜62を形成する。これにより、傾斜体31の凹面31や光導波路20の露出面にも金属膜62が形成される。
次に、図8(C)に示すように、基板11を、光硬化型発泡性樹脂51の滴下とは逆の向きに45度傾斜させ、サンドブラスト装置のノズルヘッド63からブラスト粒子を照射して、凹面31aの金属膜62を残しつつ、光導波路20の露出面の金属膜62を除去する。サンドブラスト装置のノズルヘッド63から出射されるブラスト粒子は直進性が高いため、凹面31a上の金属膜62にほとんど影響を与えずに、光導波路20の露出面の金属膜62を除去することができる。
次に、図8(D)に示すように、光導波路20の露出面の金属膜62を除去した後に、はく離液を用いてドライフィルムレジスト61を除去する。これによって、光導波路20に対して傾斜した凹面31a上に反射膜32を有するマイクロミラー30が完成する。
この方法によると、光導波路20の導波路コア21の断面寸法が大きい場合でも、光導波路20と基板11に実装される面型光素子との間で、良好な光結合を実現するマイクロミラー30が作製される。
図9は、光導波路20とマイクロミラー30が形成された基板11上に、面型光素子71または73を実装した光インターコネクトデバイス70A、70Bの概略図である。
図9(A)では、面発光レーザなどの面発光素子71が、導電性接着剤または半田などにより基板11上に接合されている。マイクロミラー30の反射面(凹面31a上に形成された反射膜32)は、面発光素子71の発光面72と、光導波路20の導波路コア21の端面に対して傾斜する。面発光素子71の発光面72から出射するビームは一定の角度で発散するが、マイクロミラー30により、導波路コアの入射面に集光される。
図9(B)では、フォトダイオードアレイなどの面受光素子73が、導電性接着剤または半田などにより基板11上に接合されている。マイクロミラー30の反射面(凹面31a上に形成された反射膜32)は、面受光素子73の受光面74と、光導波路20の導波路コア21の端面に対して傾斜する。光導波路20の導波路コア21の端面から出射するビームは、一定の角度で発散するが、マイクロミラー30により、面受光素子73の受光面74に集光される。
図9(A),図9(B)の光インターコネクトデバイス70A、70Bでは、導波路コア21の断面寸法に応じた凹面31aを有するマイクロミラー30が形成されているので、ビームを適切に集光させることができる。
図10は、実施形態の光インターコネクトデバイスが適用される電子機器(サーバラック、ネットワークラックなど)1の一例を示す。バックプレーン2に対して複数のボード3が挿入されている。各ボード3上には、光配線4によってノード5が相互接続されている。ノード5は、たとえば、図9(A)、図9(B)に示す光素子71、73が、LSIチップ、メモリなどの電子デバイスとともに搭載された光電子モジュールである。実施形態の光インターコネクトデバイスは、各ノード5内での光インターコネクトのみならず、ノード5間での光インターコネクトにも適用できる。
厚みが1.6mmの日立化成製のガラスエポキシプリント基板(型名:MCL-E-75G)の表面に、日立化成製のフィルム型光導波路材料を用いて、下部クラッド22を厚み100μm、導波路コア21を厚み50μm、上部クラッド23を厚み100μmで形成して光導波路層26を形成する。導波路コア21は矩形コアであり、一般的なフォトリソグラフィ法で、コアフィルムを幅50μm、高さ50μmの導波路に加工する。下部クラッド22と導波路コア21の上に上部クラッド23を積層し、埋込み光導波路20を有する光導波路層26形成する(図3参照)。
光導波路層26に、幅200μm、長さ250μm、上部クラッド23の上面からの深さが250μmの座グリ部25を形成する(図3参照)。
基板11を45度傾斜させた状態で、25℃における粘度が3500センチストークスのα,ω−ジヒドロキシポリシロキサン100重量部と、25℃における粘度が2〜5センチストークスのα,ω−メチルハイドロジェンポリシロキサン5重量部、アセチルアセトネート白金触媒0.05重量部を混合した光硬化型発泡性樹脂51を、市販のインクジェット塗布機を用いて座グリ部25内に5.0nL滴下する(図4参照)。
基板11を傾けた状態のまま、減圧容器41に収容し、5Torrになるまで容器内を減圧する。減圧容器41に設けた100mW/cm2、365nmの紫外線照射ヘッド55から90秒間紫外線を照射し、光硬化型発泡性樹脂51を発泡、硬化させる。光硬化型発泡性樹脂51は、気泡を発生しながら、傾斜させた座グリ部25の底面25aならびに側面25bをせり上がるように膨張する。その際の発泡倍率は約2倍、膨張後の発泡硬化樹脂53の体積は約10nLである。この状態では、発生した気泡内のガスの気圧は、減圧容器41内の気圧と等しい(図5参照)。
次に、減圧容器41の大気開放弁42を開き、減圧容器41内の気圧を大気圧に戻す。発泡硬化樹脂53の内部に発生していた気泡は、大気圧に押し戻されて収縮し、発泡硬化樹脂53全体の体積は5.5nLに減少する。発泡硬化樹脂53は、座グリ部25の底面25aや側面25bによって拘束されているため、体積収縮により大気と接触する面が凹面31aに変化する。表面の曲率半径は約250μmとなる(図5参照)。
次に、凹面31aに反射膜32を形成する(図7参照)。初めに,光導波路層26の上面にメッキレジスト61(日立化成工業製:RY-3625)をラミネートし、露光、現像により座グリ部25に対応する箇所に開口61aを設ける(図8(A)参照)。
次に、無電解メッキ法によりCuを0.1μm形成し、電解メッキ法によりNiを1.0μm、Auを0.1μm形成してCu/Ni/Au膜62を形成する(図8(B)参照)。
その後、基板11を光硬化型発泡性樹脂51の滴下時とは逆の向きに45度傾斜させ、サンドブラスト装置(Elfo-tec製)を用いてブラスト加工する。これにより、凹面31a上のCu/Ni/Au膜62を残したまま、光導波路20の露出面のCu/Ni/Au膜62を除去する。上述のように、サンドブラスト装置のノズルヘッド63から出射されるブラスト粒子64は直進性が高いため、凹面31a上にメッキ形成されたCu/Ni/Au膜62はほとんど影響を受けない。また、光導波路20は樹脂フィルムで形成されており、セラミックのブラスト粒子64に比べて弾性率が100倍程度小さいため、ブラスト処理後にも端面にはほとんど傷がつかない(図8(C)参照)。
その後、メッキレジスト61をはく離する(図8(D)参照)。メッキレジスト61の表面に残っていたCu/Ni/Au膜62も除去される。これによりマイクロミラー30が完成する。
この状態で、光導波路20のもう一方の端面から波長850nmのレーザ光を入射させたところ、ビームはマイクロミラー30で反射して垂直方向に光路変換され、上部クラッド23の上面から約100μmの高さに集光する。集光したビームのビーム径は約50μmであることが確認された。
本発明は、上記実施例に限定されない。マイクロミラー30の凹面331aに形成する反射膜32は、Cu/Ni/Au膜に限定されず、Al,Ni,Ti,Cu,Cr,Sn,Ag,Au,Pt,Ru,Pd,Rh,Os,Ir,あるいはこれらの合金を少なくとも含む単層または積層の金属膜とすることができる。
マイクロミラー30の凹面31a上への反射膜32の形成はメッキ法に限定されず、真空蒸着法、スパッタリング法、レーザーアブレーション法、エアロゾルデポジション法など、任意の方法を用いることができる。
マイクロミラー30の傾斜体31を構成する発泡性樹脂として熱硬化型の発泡性樹脂を用いる場合は、たとえば熱硬化性樹脂に加熱発泡剤を添加した材料を用いる。減圧容器41内でハロゲンランプ(不図示)等により発泡性樹脂51を加熱して発泡、硬化させる。発泡、硬化が進んだ状態で加熱を停止し、大気解放すると、発泡硬化樹脂53の気泡が収縮し、大気と接する面に均一な凹面が形成される。
実施例では、基板11上に樹脂材料で光導波路20を有する光導波路層26を形成した後に座グリ部25を形成し、座グリ部25内にマイクロミラー30を形成しているが、この順番に限定されない。
たとえば、基板上11に任意の樹脂層を形成し、樹脂層の所定の箇所に座グリ部25を形成し、座グリ部25の内部に上述した方法でマイクロミラー30を形成する。その後、樹脂層の一部又は全部を除去し、マイクロミラー30の反射面42に光結合するように光導波路20を形成してもよい。この場合は、サンドブラスト法を用いなくても、マイクロミラー30の凹面31a上にのみ金属膜62を残し、それ以外の金属膜62をはく離、除去することができる。
実施形態の光インターコネクトデバイスは、サーバやハイエンドコンピュータシステムの高速光伝送だけではなく、産業用、公共用等、任意の光伝送システムに利用可能である。また、光路変換を必要とする光学機器、医療機器、情報機器への利用も可能である。
以上の説明に対し、以下の付記を提示する。
(付記1)
基板上に形成された樹脂層(26)の所定の箇所に座グリ部を形成し、
前記基板を第1の方向に傾斜させた状態で、前記座グリ部内に発泡性樹脂を配置し、
前記基板の傾斜を維持したまま、減圧雰囲気下で前記発泡性樹脂を発泡、硬化させ、
前記発泡、硬化後に常圧に戻して前記発泡性樹脂の大気と接する面を凹面に変形させ、
前記凹面上に反射膜を形成し、
前記凹面上に反射膜を形成して、前記基板に対して傾斜する凹面状の反射面を有するマイクロミラーを形成する
ことを特徴とする光インターコネクトデバイスの製造方法。
(付記2)
前記樹脂層は、光導波路を含む光導波路層であり、
前記座グリ部は、前記光導波路の導波路コアの端面が露出するように前記光導波路層に形成されることを特徴とする付記1に記載の光インターコネクトデバイスの製造方法。
(付記3)
前記基板を傾斜させる前記第1の方向は、前記座グリ部において前記導波路コアの前記露出した端面が高い位置となる傾斜方向であることを特徴とする付記2に記載の光インターコネクトデバイスの製造方法。
(付記4)
前記反射膜の形成は、前記凹面の形成の後に、前記基板の全面に金属膜を形成し、
前記基板を、前記第1の方向と逆の第2の方向に傾斜させ、前記導波路コアの前記露出面に形成された前記金属膜をサンドブラスト法で除去する工程、
を含むことを特徴とする付記3に記載の光インターコネクトデバイスの製造方法。
(付記5)
前記発泡性樹脂として、光硬化型発泡性樹脂を用い、
前記減圧雰囲気下で紫外線を照射して、前記光硬化型発泡性樹脂を発泡、硬化させることを特徴とする付記1〜4のいずれかに記載の光インターコネクトデバイスの製造方法。
(付記6)
前記発泡性樹脂として、熱硬化型発泡性樹脂を用い、
前記減圧雰囲気下で加熱して前記熱硬化型発泡性樹脂を発泡、硬化させることを特徴とする付記1〜4のいずれか1項記載の光インターコネクトデバイスの製造方法。
(付記7)
前記座グリ部内にインクジェット法により前記発泡性樹脂を滴下することを特徴とする付記1〜6のいずれか1に記載の光インターコネクトデバイスの製造方法。
(付記8)
前記座グリ部内に前記発泡性樹脂を配置した後に、前記基板の傾斜を維持したまま前記基板を減圧容器内に配置し、
前記減圧雰囲気下での発泡、硬化の後に、前記減圧容器を大気解放する、
ことを特徴とする付記1〜7のいずれか1に記載の光インターコネクトデバイスの製造方法。
(付記9)
基板上の樹脂層と、
前記樹脂層に形成された座グリ部と、
前記座グリ部内に配置されるマイクロミラーと、
前記マイクロミラーに光結合する光導波路と、
を含み、前記マイクロミラーは、
減圧下で発泡する発泡性硬化樹脂で構成され、前記光導波路の導波路コアの端面に対して傾斜する凹面を有する傾斜体と、
前記凹面に形成された反射膜と、
を有することを特徴とする光インターコネクトデバイス。
(付記10)
前記光導波路はマルチモード光導波路であることを特徴とする付記9に記載の光インターコネクトデバイス。
(付記11)
前記マイクロミラーに光結合する面型光素子、
をさらに有し、
前記マイクロミラーは、前記面型光素子の入出力光の方向と、前記光導波路の出入力光との方向を90度変換することを特徴とする付記9又は10に記載の光インターコネクトデバイス。
10、70A、70B 光インターコネクトデバイス
11 基板
20 光導波路
21 導波路コア
22、23 クラッド
25 座グリ部
26 光導波路層(樹脂層)
30 マイクロミラー
31 傾斜体
31a 凹面
32 反射膜
53 発泡硬化樹脂
71、73 面型光素子

Claims (6)

  1. 基板上に形成された樹脂層の所定の箇所に座グリ部を形成し、
    前記基板を第1の方向に傾斜させた状態で、前記座グリ部内に発泡性樹脂を配置し、
    前記基板の傾斜を維持したまま、減圧雰囲気下で前記発泡性樹脂を発泡、硬化させ、
    前記発泡、硬化後に常圧に戻して前記発泡性樹脂の大気と接する面を凹面に変形させ、
    前記凹面上に反射膜を形成して、前記基板に対して傾斜する凹面状の反射面を有するマイクロミラーを形成する
    ことを特徴とする光インターコネクトデバイスの製造方法。
  2. 前記樹脂層は、光導波路を含む光導波路層であり、
    前記座グリ部は、前記光導波路の導波路コアの端面が露出するように前記光導波路層に形成されることを特徴とする請求項1に記載の光インターコネクトデバイスの製造方法。
  3. 前記基板を傾斜させる前記第1の方向は、前記座グリ部において前記導波路コアの前記露出した端面が高い位置となる傾斜方向であることを特徴とする請求項2に記載の光インターコネクトデバイスの製造方法。
  4. 前記反射膜の形成は、前記凹面の形成の後に、前記基板の全面に金属膜を形成し、
    前記基板を、前記第1の方向と逆の第2の方向に傾斜させ、前記導波路コアの前記露出面に形成された前記金属膜をサンドブラスト法で除去する工程、
    を含むことを特徴とする請求項3に記載の光インターコネクトデバイスの製造方法。
  5. 基板上の樹脂層と、
    前記樹脂層に形成された座グリ部と、
    前記座グリ部内に配置されるマイクロミラーと、
    前記マイクロミラーに光結合する光導波路と、
    を含み、前記マイクロミラーは、
    減圧下で発泡する発泡性硬化樹脂で構成され、前記光導波路の導波路コアの端面に対して傾斜する凹面を有する傾斜体と、
    前記凹面に形成された反射膜と、
    を有することを特徴とする光インターコネクトデバイス。
  6. 前記光導波路はマルチモード光導波路であることを特徴とする請求項5に記載の光インターコネクトデバイス。
JP2012223956A 2012-10-09 2012-10-09 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス Expired - Fee Related JP5907035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223956A JP5907035B2 (ja) 2012-10-09 2012-10-09 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223956A JP5907035B2 (ja) 2012-10-09 2012-10-09 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス

Publications (2)

Publication Number Publication Date
JP2014077825A true JP2014077825A (ja) 2014-05-01
JP5907035B2 JP5907035B2 (ja) 2016-04-20

Family

ID=50783187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223956A Expired - Fee Related JP5907035B2 (ja) 2012-10-09 2012-10-09 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス

Country Status (1)

Country Link
JP (1) JP5907035B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206510A (ja) * 2015-04-27 2016-12-08 富士通株式会社 光モジュール
CN107037536A (zh) * 2017-02-15 2017-08-11 上海大学 一种基于激光阶梯刻蚀法在光波导侧面加工凹反射面的方法
WO2018004676A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Isotropic etched lens for vertical coupling of photonics circuits
CN110196474A (zh) * 2018-02-27 2019-09-03 三星电子株式会社 光子集成电路封装及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018103452A1 (de) * 2018-02-15 2019-08-22 Airbus Defence and Space GmbH Verfahren zur Implementierung und Anbindung strukturintegrierter Lichtwellenleiter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975153A (ja) * 1972-11-20 1974-07-19
JPS5231753A (en) * 1976-09-16 1977-03-10 Sony Corp Method of manufacturing reflector
JPH0526515A (ja) * 1991-07-19 1993-02-02 Mitsubishi Electric Corp 電気温水器
JPH0940870A (ja) * 1995-07-28 1997-02-10 Three Bond Co Ltd 光硬化型発泡性シロキサン組成物
JP2007121380A (ja) * 2005-10-25 2007-05-17 Ntt Electornics Corp 光導波回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975153A (ja) * 1972-11-20 1974-07-19
JPS5231753A (en) * 1976-09-16 1977-03-10 Sony Corp Method of manufacturing reflector
JPH0526515A (ja) * 1991-07-19 1993-02-02 Mitsubishi Electric Corp 電気温水器
JPH0940870A (ja) * 1995-07-28 1997-02-10 Three Bond Co Ltd 光硬化型発泡性シロキサン組成物
JP2007121380A (ja) * 2005-10-25 2007-05-17 Ntt Electornics Corp 光導波回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206510A (ja) * 2015-04-27 2016-12-08 富士通株式会社 光モジュール
WO2018004676A1 (en) * 2016-07-01 2018-01-04 Intel Corporation Isotropic etched lens for vertical coupling of photonics circuits
CN107037536A (zh) * 2017-02-15 2017-08-11 上海大学 一种基于激光阶梯刻蚀法在光波导侧面加工凹反射面的方法
CN110196474A (zh) * 2018-02-27 2019-09-03 三星电子株式会社 光子集成电路封装及其制造方法

Also Published As

Publication number Publication date
JP5907035B2 (ja) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5907035B2 (ja) 光インターコネクトデバイスの製造方法及び光インターコネクトデバイス
KR100702978B1 (ko) 레이저 가공에 의해 형성된 경면을 구비한 광도파로
JP5431145B2 (ja) 光電子素子デバイス及び光導波路を有するプリント回路基板素子
JP5089643B2 (ja) 光接続要素の製造方法、光伝送基板、光接続部品、接続方法および光伝送システム
US7330612B2 (en) Material for substrate mounting optical circuit-electric circuit mixedly and substrate mounting optical circuit-electric circuit mixedly
TWI432806B (zh) 具有鏡面之光波導的製造方法
US20130177277A1 (en) Optical waveguide, method for producing optical waveguide, optical waveguide module, method for producing optical waveguide module, and electronic apparatus
JP4153007B2 (ja) 光配線基板および光電気混載基板
WO2001001176A1 (fr) Panneau de cablage photoelectrique, panneau d'emballage, et procede de production dudit panneau de cablage photoelectrique
JP2006126568A (ja) 高分子光導波路デバイスの製造方法
CN102246071B (zh) 用于在光学配线板中形成镜面反射膜的方法和光学配线板
JP2010152111A (ja) 光導波路、光モジュール、光モジュールの製造方法、および光導波路の製造方法
JP2004054003A (ja) 光電子基板
Bakir et al. Sea of polymer pillars: compliant wafer-level electrical-optical chip I/O interconnections
Hendrickx et al. Embedded micromirror inserts for optical printed circuit boards
JP4131222B2 (ja) 光回路板の製造方法
JP2006267346A (ja) 光学部材の製造方法
JP4962265B2 (ja) 光導波路製造方法
JP2005266119A (ja) 光電配線基板の製造方法
JP2008046333A (ja) 光送受信モジュール
JP6044174B2 (ja) 光導波路の製造方法及び光導波路
JP6044175B2 (ja) 光導波路の製造方法及び光導波路
JP5966568B2 (ja) 光導波路コネクタの製造方法、光導波路の作製方法及び光導波路コネクタ
JP2008083197A (ja) 光導波路の製造方法
JP2002082244A (ja) 光学的平面回路とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5907035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees