JP2014072069A - 酸化物超電導線材の製造方法 - Google Patents

酸化物超電導線材の製造方法 Download PDF

Info

Publication number
JP2014072069A
JP2014072069A JP2012217813A JP2012217813A JP2014072069A JP 2014072069 A JP2014072069 A JP 2014072069A JP 2012217813 A JP2012217813 A JP 2012217813A JP 2012217813 A JP2012217813 A JP 2012217813A JP 2014072069 A JP2014072069 A JP 2014072069A
Authority
JP
Japan
Prior art keywords
base material
solution
distance
pulled
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012217813A
Other languages
English (en)
Inventor
Yasuo Takahashi
保夫 高橋
Masaaki Yoshizumi
正晃 吉積
Teruo Izumi
輝郎 和泉
Koichi Nakaoka
晃一 中岡
Kota Katayama
功多 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
SWCC Corp
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012217813A priority Critical patent/JP2014072069A/ja
Publication of JP2014072069A publication Critical patent/JP2014072069A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】基材上に厚膜で均一な超電導膜を形成すること。
【解決手段】超電導原料溶液50中に浸漬した基材10を径の異なる引き上げ口41、42によりそれぞれ規定される溶液の界面を交互に通して引き上げる。引き上げ口41の口径は、基材10を引き上げるときに基材10の端部10aと引き上げ口41の内壁面41aとの間で溶液50に引き上げられた基材の表面に溶液が凹形状に付着する第1距離となる長さである。引き上げ口42の口径は、引き上げられた基材の表面に溶液が凸形状に付着する第2距離となる長さである。これらを組み合わせて超電導原料溶液の塗布を行うことで、基材10の端部10aと中央部10bの膜厚を均一化させている。これにより、クラックの起点の発生がなくなり、厚膜超電導層を有する酸化物超電導線材を製作できる。
【選択図】図9

Description

本発明は、酸化物超電導線材の製造方法に関し、特に酸化物中間層が形成された配向金属基材上に、MOD(Metal-organic Deposition)法を用いて超電導層を形成する技術に関する。
従来、MOD法を用いて超電導層を形成することが提案されている(特許文献1,2参照)。MOD法は、先ず、酸化物中間層が形成されたテープ状の基材を、超電導原料溶液(有機金属塩を有機溶媒に溶解させたもの)に浸し、この基材を超電導原料溶液から引き上げること(いわゆるディップコート法)により、基材の表面に超電導膜を付着させる。次に、仮焼及び本焼を行うことにより、酸化物超電導層を形成する。
MOD法は、非真空中でも長尺の基材に連続的に酸化物超電導層を形成できるので、PLD(Pulse Laser Deposition)法やCVD(Chemical Vapor Deposition)法等の気相法よりも、プロセスが簡単で低コスト化が可能であることから、注目されている。
特開2004−335718号公報 特開2003−308746号公報 特開2004−161505号公報 特開2008−50190号公報
ところで、製造する超電導線材の超電導特性(臨界電流密度(Jc[MA/cm])・臨界電流(Ic[A/cm]))を向上させるためには、均一で膜厚の超電導層を形成することが望まれる。
本発明はかかる点に鑑みてなされたものであり、基材上に厚膜で均一な超電導膜を形成することができる酸化物超電導線材の製造方法を提供することを目的とする。
本発明の酸化物超電導線材の製造方法の一つの態様は、容器に収容された超電導原料溶液中にテープ状の基材を浸漬して引き上げて、該基材の表面に前記溶液を付着させる付着工程と、付着工程の後、前記基材に付着した前記溶液を仮焼成する仮焼成工程とを繰り返して、前記基材に本焼成前の超電導前駆体を形成する前駆体形成工程を有する酸化物超電導線材の製造方法であって、前記付着工程は、前記溶液中に浸漬された前記基材を、前記容器の引き上げ口により規定された溶液の界面を通して引き上げており、前記前駆体形成工程は、前記付着工程の際に、前記界面における、前記基材を引き上げるときの前記基材の幅方向の端部と、前記端部と対向する前記引き上げ口の内壁面との間の距離を、引き上げられた前記基材の表面に前記溶液が凹形状に付着する距離である第1距離と、引き上げられた前記基材の表面に前記溶液が凸形状に付着する距離である第2距離とに変更して、前記容器から前記基材を引き上げるようにした。
本発明によれば、基材上に厚膜で均一な超電導膜を形成することができる。
本発明の一実施の形態に係る酸化物超電導線材の製造方法の概略を示した模式図 第1口径とした引き上げ口から基材を引き上げる様子を示す図 図2における基材端部と引き上げ口の内壁面との関係を示す断面図 図2に示す引き上げ口から引き上げた基材を示す図である。 第2口径とした引き上げ口から基材を引き上げる様子を示す図 図5における基材端部と引き上げ口の内壁面との関係を示す断面図 図5に示す引き上げ口から引き上げた基材を示す図 前駆体形成工程を行う装置の一例を示す図 図8の塗布装置の説明に供する拡大図 基材の構成例を示す図
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
<MOD法による酸化物超電導線材の製造方法の概要>
図1は、本発明の一実施の形態に係る酸化物超電導線材の製造方法の概略を示した模式図である。
まず、基板に酸化物中間層が成膜されたテープ状の基材10を形成する。基材10は、例えば、Ni合金基板等の基板上に、IBAD(Ion Beam Assisted Deposition)法によりMgOから成る第1中間層、スパッタリング法によりLaMnOから成る第2中間層、スパッタリング法或いはPLD法によりCeOからなる第3中間層を順に成膜することで形成される。なお、各中間層は、MOD法で形成しても良い。
この基材10上に、塗布工程Aで超電導原料溶液を塗布して塗布膜を形成する。ここでは、基材10を、超電導原料溶液(有機金属塩を有機溶媒に溶解させたもの)に浸し、この基材を超電導原料溶液から引き上げること(いわゆるディップコート法)により、基材の表面に超電導膜を付着させる。これにより、基材10に超電導原料溶液を塗布する。この超電導原料溶液は、例えば、Y―TFA塩(トリフルオロ酢酸塩)、Ba―TFA塩およびCu―ナフテン酸塩を有機溶媒中にY:Ba:Cu=1:1.5:3の比率で溶解した混合溶液である。なお、この超電導原料溶液には、磁束ピンニング点を形成するためのZr等の添加元素Mが添加されていてもよい。また、この原料溶液の粘度は、2〜150mPa・sである。
この超電導原料溶液を塗布した後、仮焼成熱処理工程Bで仮焼成する。なお、塗布工程Aにおいて、ディップコートで1回に塗布する膜厚は0.01〜2.0[μm]、好ましくは0.05〜1.5[μm]である。これにより、生成される超電導層17の厚み(膜厚)は、0.5μm以上であり、例えば、1.5μmに形成される。なお、基材10において、基材上に形成される中間層は、MgO中間層上に、CeOからなる中間層を成膜して形成したものでもよい。
この塗布工程Aおよび仮焼成熱処理工程Bを所定回数繰り返すことによって、基材10における中間層上で塗布膜をマルチコートする。これにより、基材10における中間層上に、YBCO超電導層17(以下、「超電導層」とも称し、図1では「YBCO」で示す)となるアモルファス超電導前駆体としての膜体(図では「前駆体」で示す)を形成する。なお、塗布工程A及び仮焼成熱処理工程Bを繰り返して基材10に前駆体を形成する工程は、前駆体形成工程と称する。
このようにフッ素(F)を含有した膜体を中間層上に成膜した後、本焼成熱処理工程Cで、基材10における膜体の結晶化熱処理、即ち、YBCO超電導層生成のための熱処理を、水蒸気ガス中において施す。この本焼成熱処理工程Cは、図示しない熱処理装置を用いて行われる。なお、このYBCO超電導層17の生成に伴いHFが発生する。
更に、この本焼成熱処理工程Cの後、生成されたYBCO超電導体上に、スパッタ法で安定化層(例えば、Ag安定化層)を成膜し、後熱処理を施す。これにより、磁束ピンニング点が分散され、磁場印加特性に優れたYBCO層を有する超電導線材(YBCO超電導線材)を製造する。
このようなMOD法の塗布工程Aにおいて、ディップコート法で超電導膜を付着させる場合、つまり、基材を、超電導原料溶液中に浸漬した後で、超電導原料溶液を収容する容器から単に引き上げる場合、超電導膜の膜厚が不均一になることが見受けられる。
この原因の1つとしては、超電導原料溶液の濃度が経時的に変化することが考えられている。MOD法で用いられる超電導原料溶液は、一般に、有機溶媒として、メタノールやトルエン等の揮発性が高いものが用いられるので、超電導原料溶液の粘度は経時的に変化する。また、基材は一般に長尺なので、基材は長い時間をかけて超電導原料溶液から引き上げられることになる。これらの結果、最初の方に引き上げられた基材部分と、最後の方に引き上げられた基材部分とでは、超電導原料溶液の経時的な粘度変化に起因して、付着される超電導膜の膜厚が異なってしまう。このように、超電導原料溶液の粘度変化に起因する超電導膜の不均一は、特に基材の長手方向に亘って発生する。
このような不均一の原因の対処として、超電導溶液から基材が引き上げられる位置に、基材の引き上げ口を設けることが考えられている。すなわち、超電導溶液から基材を引き上げるときに、空気に晒される溶液の面積(つまり溶液界面の面積)をこの引き上げ口によって小さくする(つまり規定する)ことにより、超電導原料溶液の溶媒の揮発を抑制する。これにより、超電導原料溶液の粘度変化を抑制できるので、基材の長手方向における超電導膜の膜厚を均一化できる。
この引き上げ口の設け方として、超電導溶液を収容する容器自体をチューブとすることが好ましい。また、別の引き上げ口の設け方としては、容器に別個に引き上げ口を設けてもよい。要は、引き上げ口は、基材が引き上げられる溶液の界面の面積を規定するものであればよい。
また、引き上げ口によって、超電導原料溶液から基材を引き上げる際に通る界面の面積を規定する場合、引き上げ口と基材の端部との位置関係によっては、基材の幅方向における超電導膜の膜厚が不均一になることを見出した。
具体的には、容器中の超電導原料溶液に浸漬した基材を取り出す引き上げ口の口径を異なる口径にした場合、引き上げ口の内壁面に基材の端部が近づくほど、基材に付着する溶液は、中央部が厚くなり、端部が薄くなる。
これは、引き上げ口の内壁面を、基材の端部に極端に近づけるために、引き上げ口の口径を細径にする場合に、内壁面と基材の端部との間で毛細管現象が生じることに起因すると考えられる。
このように引き上げ口の口径(大きさ)を変更することで、引き上げられる基材に付着する超電導原料溶液の不均一な厚膜形状は異なる形状となる点に着目して、本実施の形態の酸化物超電導線材の製造方法では、基材に超電導原料溶液を塗布している。
すなわち、本実施の形態に係る酸化物超電導線材の製造方法は、塗布工程A及び仮焼成熱工程Bによりマルチコートする際に、塗布工程Aにおいて、超電導原料溶液中から基材を引き上げる際に通過する溶液の界面を規定する引き上げ口を変更する。ここでは、塗布工程Aの度に、基材を引き上げるときに基材の端部と引き上げ口の内壁面との間の距離を、基材に溶液が凹形状に付着する距離と、基材に溶液が凸形状に付着する距離とに少なくとも一度ずつ変更されるように、引き上げ口の大きさを変更する。
引き上げ口の大きさを変更して基材に超電導原料溶液を塗布する場合の引き上げ口の内壁面と基材の端部との位置関係について具体的に説明する。
図2〜図7を用いて引き上げ口の内壁面と基材の端部との位置関係を説明する。
図2は、第1口径とした引き上げ口41から基材を引き上げる様子を示す図であり、図3は、図2における基材端部と引き上げ口の内壁面との関係を示す断面図である。
図2に示す引き上げ口41は、超電導原料溶液50を収容する容器に設けられる。引き上げ口41の大きさは、図3に示すように、超電導原料溶液50の界面51において引き上げ口41の内壁面41aと基材10の端部10aとの間の距離(第1距離)L1を規定する大きさ(第1口径)である。
なお、引き上げ口41の内壁面41aは、引き上げ口41の内壁面において、基材10の幅方向で基材10の端部10aと対向する部位である。ここでは、便宜上、この部位を内壁面41aとして説明する。この第1距離は、引き上げ口(大径口)41から基材10を引き上げた際に、引き上げられた基材10の表面に溶液が凹形状に付着する(図4参照)距離である。
また、第1距離L1は基材10の幅方向で延在し、且つ、端部10aと内壁面41aとの間の長さである。第1口径とした引き上げ口41は、基材10の幅方向の端部10aから引き上げ口の内壁面41aまでの距離L1を3mm以上とする。このような第1口径とした引き上げ口41を介して溶液の界面から引き上げた基材10を図4に示す。
図4は、図2に示す引き上げ口41から引き上げた基材を示す図である。
図4に示す基材10では、付着した超電導原料溶液は、基材10に対して中央部10bよりも両端部10aでの付着量が多くなっており、断面凹形状をなす。これは基材10の長手方向に延在する。塗布直後に基材10に付着した溶液55は、両端部10a、10aから乾燥が始まり、中央部10bに付着した溶液が乾燥するまでの間に、中央部10bに付着している粘性の低い溶液が落下する。これにより、結果的に、基材10の両端部10a、10aに付着する溶液よりも、基材の中央部10bに付着する溶液の付着量が少なくなると考えられる。
図5は、第2口径とした引き上げ口42から基材を引き上げる様子を示す図であり、図6は、図5における基材端部と引き上げ口の内壁面との関係を示す断面図である。
図5に示す引き上げ口42は、超電導原料溶液(以下、単に「溶液」ともいう)50を収容する容器に設けられる。引き上げ口42の大きさは、図6に示すように、溶液50の界面52において引き上げ口42の内壁面42aと基材10の端部10aとの間の距離(第2距離)L2を規定する大きさ(第2口径)である。
なお、引き上げ口42の内壁面42aは、引き上げ口42の内壁面において、基材10の幅方向で、基材10の端部10aと対向する部位である。ここでは、便宜上、この部位を内壁面42aとして説明する。この第2距離L2は、引き上げ口(細径口)42から基材10を引き上げた際に、引き上げられた基材10の表面に溶液が凸形状に付着する(図7参照)距離である。また、第2距離L2は、第1距離L1よりも短い。
第2距離L2は基材10の幅方向で延在し、且つ、端部10aと内壁面42aとの間の長さである。第2口径とした引き上げ口42は、基材10の幅方向の端部10aから引き上げ口の内壁面42aまでの第2距離L2を0.1〜2.2mmとする。
このような第2口径とした引き上げ口42を介して、溶液の界面から引き上げた基材10を図7に示す。
図7は、図5に示す引き上げ口42から引き上げた基材を示す図である。
図7に示す基材10では、付着した超電導原料溶液50は、基材10に対して両端部10aよりも中央部10bでの付着量が多くなっており、断面凸形状をなす。これは、基材10の長手方向に延在する。
これは、図6に示すように、基材10が溶液50の界面52を通して溶液50から引き上げる際に、基材10の中央部10bは、端部10aよりも界面の位置が低くなった状態(界面51で示す高さレベル)で、引き上げられる。よって、基材10の中央部10bに付着した超電導原料溶液50は、基材10の両端部10a、10aよりも先に溶液50から引き上げられる(このとき両端部10a、10aは、溶液50の一部54で接している)こととなり、この中央部10bに付着した超電導原料溶液50から乾燥する。次いで、基材10の端部10aが乾燥する際には、両端部10aが乾燥する間に、両端部10aに付着する溶液50は、その自重により落下する。これにより、基材10に付着した溶液56(図7参照)は、両端部10aよりも中央部10bでの付着量が多くなる。
このように、本実施の形態によれば、塗布工程Aにおいて、基材10を引き上げる際の引き上げ口の口径を、第1口径、第2口径の大小の口径にすることで、基材10の表面に付着する超電導原料溶液55、56の形状を、凹形状、凸形状にする。
例えば、前駆体形成工程において、塗布工程Aの度に、第1口径の引き上げ口41(図2参照)と、第2口径の引き上げ口42(図5参照)とを交互に変更する。つまり、引き上げ口41により規定された溶液の界面を通して基材10を引き上げて、仮焼成を行い、その後、再び塗布工程Aで溶液を付着させる際に、引き上げ口42により規定された溶液の界面を通して基材10を引き上げて、仮焼成を行う。これら塗布工程A及び仮焼成熱処理工程Bを適宜繰り返して超電導前駆体を形成する。このように超電導前駆体を形成する前駆体形成工程において、基材10の表面に、凹形状、凸形状の溶液を付着して多層化することで、厚膜化し、基材10に超電導前駆体を均一膜厚で成膜する。
ディップコート法では、超電導原料溶液を付着させる(塗布する)基材10の幅と、超電導原料溶液の塗布(付着)を行う引き上げ口41、42の口径により基材10の幅方向の膜厚が変化する。基材10の幅と引き上げ口41、42の口径差が大きい場合には、基材10の端部10aにおける超電導原料溶液の膜厚は厚くなる。また、基材10の幅と引き上げ口41、42の口径差が小さい場合には、端部10aにおける超電導原料溶液の膜厚は薄くなる。これらのことから、本実施の形態では、端部10aの膜厚を均一化するため基材10と引き上げ口41、42といった口径との差の大小を組み合わせて、超電導原料溶液の塗布を行い基材10の端部10aと中央部10bの膜厚を均一化させている。これにより、クラックの起点の発生がなくなり、厚膜超電導層を有する酸化物超電導線材を製作できる。
[実施例]
図8に、本発明を実現するための製造装置の一例を示す。図8に示す装置30を用いて塗布工程A及び仮焼成熱工程Bを繰り返して超電導前駆体を形成する前駆体形成工程を行う。
図8の装置30では、超電導原料溶液50を収容する容器として、U型チューブ(以下チューブという)401、402を用いている。チューブ401、402は、例えば、樹脂又は金属からなる。基材10は、チューブ401、402の一方の開口(導入口)から導入されて浸漬され、他方の開口(引き上げ口)から排出される。なお、基材10の引き上げは、図示しない引き上げ機構によって行われる。また、引き上げ口41、42は、容器であるチューブ401、402の一部に形成され、引き上げ時の界面51、52は、チューブ401、402の径によって規定される。
図8に示す装置30では、繰り出しリール32から繰り出された基材10は、塗布装置40で超電導原料溶液が塗布された後、ガイド34を介して仮焼成炉36に搬送され、仮焼成炉36内を通過させて塗布膜の乾燥及び仮焼成が行われる。これらが複数回(図では4回)繰り返された(マルチコート)後で、各ガイド34、38によって巻取りリール37に搬送され、これにより、超電導前駆体が形成された基材10が巻き取りリール37で巻き取られる。その後、本焼熱処理により仮焼膜の結晶化が行われ、酸化物超電導薄膜線材が作製される。
図9は、図8の塗布装置の説明に供する拡大図である。
図9に示すように、塗布装置40は、第1口径の引き上げ口41(図2参照)を有する大径チューブ401と、第2口径の引き上げ口42(図5参照)を有する細径チューブ402とを備える。ここでは、塗布装置40は、大径チューブ401、細径チューブ402をそれぞれ複数本、ここでは、2本ずつ備えている。塗布装置40では、大径チューブ401、細径チューブ402は、それぞれの引き上げ口41、42が交互に一列に並ぶように配置されている。
塗布装置40は、酸化物超電導線材を製造する際に、本焼成熱処理工程C(図1参照)前に超電導前駆体を形成する超電導前駆体形成工程で使用する。
塗布装置40は、超電導前駆体形成工程において、仮焼成熱処理B(図1参照)を行う仮焼成炉36に搬送する前の塗布工程Aの度に、基材10を、チューブ401、402に交互に通す。これにより、塗布工程Aの度に、大径チューブ401、細径チューブ402から引き上げられる基材10は、大径チューブ401における第1口径の引き上げ口41(図2参照)と、細径チューブ402における第2口径の引き上げ口42とから交互に引き上げられる。
すなわち、塗布工程(付着工程)Aでは、基材10は、基材の端部10aと内壁面41aとの距離が第1距離L1となる第1口径の引き上げ口41により規定された溶液の界面51を通して引き上げられる。これにより、引き上げられた基材10の表面に、溶液50が、基材10の両端部10aが膨出した凹形状をなして付着する。その後、仮焼成を行った後、再び、塗布工程Aで溶液を基材10に付着させる。このとき、基材10は、基材10の端部10aと内壁面42aとの距離が第2距離L2となる第2口径引き上げ口42により規定された溶液を通して引き上げる。これにより、引き上げられた基材10の表面に、溶液50が、基材10の中央部10bで膨出した凸形状をなして付着する。このように、基材10は、前駆体形成工程において、径の異なる大径口と、細径口とに交互に変更した引き上げ口41、42により規定された溶液の界面51、52を通して引き上げられる。このように基材10の表面に、凹形状、凸形状に付着してなる溶液の層を多層化することで厚膜化して、均一膜厚の超電導前駆体が基材10に成膜される。
なお、引き上げ口41、42の形状(つまり界面の形状)は、円形に限らず、例えば方形であってもよい。要は、界面における位置関係が、上述した関係を満たすようにすればよい。
上記装置30を用いた酸化物超電導線材の製造方法により酸化物超電導線材を製造した。本実施例では、基材10として、図10に示すように、基板11と、第1中間層12と、第2中間層13と、第3中間層14と、第4中間層(キャップ層)15とから構成されるものを用いた。基板11は、例えば、ニッケル(Ni)、ニッケル合金、ステンレス鋼又は銀(Ag)であり、ここでは、ハステロイ(登録商標)テープを用いている。第1中間層12は、基板11上に、スパッタリング法により成膜したGdZrである。また、第2中間層13は、第1中間層12上にIBAD法により成膜したMgOである。また、第3中間層14は、第2中間層13上に、スパッタリング法により成膜したLaMnOである。第4中間層15は、第3中間層14上に、PLD方により成膜したCeOである。
基板11の厚さは、例えば、50〜200[μm]である。第1中間層12、第2中間層13、第3中間層14及び第4中間層15の厚さは、例えば、1[μm]である。本実施例では、厚さが100[μm]の基材10を用いた。
基材10の幅方向の長さは、特に限定されるものではないが、本実施例では、幅が5[mm]のものを用いた。一般に、基材10の幅は、2〜30[mm]である。また、基材10の長手方向の長さは、500[m]のものを用いた。
また、本実施例では、超電導原料溶液50として、イットリウム(Y)のトリフルオロ酢酸塩(Y-TFA)、バリウム(Ba)のトリフルオロ酢酸塩(Ba-TFA)及び銅(Cu)のナフテン酸塩を、Y:Ba:Cuのモル比が1:b:3(但し、b<2)で混合したものを用いた。このような超電導原料溶液の詳細については、例えば特許文献3及び特許文献4で開示されている。
また、本実施例では、超電導原料溶液50からの基材10の引き上げ速度を20[m/h]に設定した。なお、引き上げ速度は、これに限定されるものではなく、一般に、引き上げ速度は5〜100[m/h]である。
また、本実施例では、引き上げ口41、42をそれぞれ有する大径チューブ401,細径チューブ402として、口径18[mmφ]の大径チューブ401と、口径9[mmφ]の細径チューブ402とを用意した。
そして、ディップコート法による塗布工程では、大径チューブ401、細径チューブ402の口径の取り出し口41、42から交互に基材10を引き上げて、超電導原料溶液50を基材10に付着させた。ここでは、塗布工程→仮焼成熱処理工程を18回行うことで、基材10に、所定の膜厚の超電導前駆体を形成した。その後、本焼成熱処理を行った結果、基材の幅方向の膜厚が均一で、かつクラックの無い2.8[μm]厚の超電導膜を得ることが出来た。なお、超電導膜の膜厚は2.8[μm]であり、クラック発生を懸念して2[μm]程度の膜厚で成膜していた従来と比較して、厚膜化が図られている。また、この超電導膜は、77K自己磁場のIcが590[A]、3TのIc最小値が37.5[A]であった。
[比較例1]
実施例1と同様の基材10、超電導原料溶液と、細径チューブ402を、口径18[mmφ]の大径チューブ401に変えて、大径チューブ401のみ備える塗布装置40を含む装置30により、実施例1と同様の成膜方法で超電導原料溶液を基材に塗布した。
これにより、基材10における超電導膜の膜厚は均一にならなかった。この結果、膜厚2.3[μm]でクラックが発生した。
[比較例2]
実施例1と同様の基材10、超電導原料溶液と、大径チューブ401を、口径9[mmφ]の細径チューブ402に変えて、細径チューブ402のみとした塗布装置40を含む装置30により、実施例1と同様の成膜方法で超電導原料溶液を基材に塗布した。これにより、基材における超電導膜の膜厚は均一にならなかった。
これにより、塗布工程において、超電導原料溶液を収容する容器から基材10を引き上げて基材10の表面に超電導原料溶液を塗布する際に、基材が引き上げられる容器の取り出し口の口径を、交互に変更することで、実用上問題のない均一性を有する膜厚の超電導層を得ることができる。
なお、本実施の形態では、引き上げられる基材が通る界面を規定する取り出し口の口径を大径(第1口径)、小径(第2口径)、大径(第1口径)、小径(第2口径)と交互に変えた構成としたが、大径、小径の順番は、どのような順でもよい。つまり、大径、小径の引き上げ口から基材を引き上げることを繰り返して、基材10に付着させる超電導原料溶液による膜厚は、それぞれ不均一な凹形状、凸形状となる。これらを基材10の表面に積層してマルチコートことで、平滑化された均一の膜厚となればよい。例えば、大径、大径、小径、小径の順、大径、小径、小径の順など、大径,小径の取り出し口の双方から適宜、基材を引き上げることで、基材に付着する超電導原料溶液の膜厚が均一となればよい。すなわち、第1距離L1を規定する引き上げ口、第2距離L2を規定する引き上げ口の組み合わせ方、組み合わせ回数は、その都度、基材10の表面に形成される溶液の付着形状(凹形状、凸形状)を多層化することで厚膜が均一になれば、どのような組み合わせ方、回数であってもよい。
なお、上述の実施例では、超電導原料溶液50として、イットリウム(Y)のトリフルオロ酢酸塩(Y-TFA)、バリウム(Ba)のトリフルオロ酢酸塩(Ba-TFA)及び銅(Cu)のナフテン酸塩を、Y:Ba:Cuのモル比が1:b:3(但し、b<2)で混合したものを用いた場合について述べたが、本発明はこれ以外の超電導原料溶液を用いた場合にも有効である。例えば、Re:Ba:Cuのモル比が1:2:3となるように調整された超電導原料溶液を用いた場合にも有効である。ここで、Reは、イットリウム(Y)、ホルミウム(Ho)、ネオジム(Nd)、イッテルビウム(Yb)、サマリウム(Sm)からなる群から選ばれた金属を示す。
また、基材10及び超電導原料溶液50は、当然、上述したもの以外のものを用いてもよい。本発明で重要なのは、界面51、52における、引き上げ口41、42と基材10の端部10aとの位置関係を規定する引き上げ口41、42の大きさである。
以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
本発明に係る酸化物超電導線材の製造方法は、基材上に厚膜で均一な超電導膜を形成することができる効果を有し、超電導マグネット、超電導ケーブル、電力機器などに使用されるものとして有用である。
10 基材
10a 端部
10b 中央部
11 基板
12 第1中間層
13 第2中間層
14 第3中間層
15 第4中間層
17 超電導層
30 装置
32 繰り出しリール
36 仮焼成炉
37 巻き取りリール
40 塗布装置
41、42 引き上げ口
41a、42a 内壁面
50 超電導原料溶液
51、52 界面
55、56 溶液
401 大径チューブ
402 細径チューブ
L1、L2 距離

Claims (7)

  1. 容器に収容された超電導原料溶液中にテープ状の基材を浸漬して引き上げて、該基材の表面に前記溶液を付着させる付着工程と、付着工程の後、前記基材に付着した前記溶液を仮焼成する仮焼成工程とを繰り返して、前記基材に本焼成前の超電導前駆体を形成する前駆体形成工程を有する酸化物超電導線材の製造方法であって、
    前記付着工程は、前記溶液中に浸漬された前記基材を、前記容器の引き上げ口により規定された溶液の界面を通して引き上げており、
    前記前駆体形成工程は、前記付着工程の際に、前記界面における、前記基材を引き上げるときの前記基材の幅方向の端部と、前記端部と対向する前記引き上げ口の内壁面との間の距離を、引き上げられた前記基材の表面に前記溶液が凹形状に付着する距離である第1距離と、引き上げられた前記基材の表面に前記溶液が凸形状に付着する距離である第2距離とに変更して、前記容器から前記基材を引き上げる、
    酸化物超電導線材の製造方法。
  2. 前記付着工程は、前記基材を引き上げる度に、前記基材の端部と前記引き上げ口の内壁面との間の距離を、前記第1距離と前記第2距離とに交互に変更した前記引き上げ口により規定された溶液の界面を通して引き上げられる、
    請求項1記載の酸化物超電導線材の製造方法。
  3. 前記第2距離は前記第1距離よりも短い、
    請求項1または2記載の酸化物超電導線材の製造方法。
  4. 前記前駆体形成工程では、前記付着工程の度に、前記第1距離と前記第2距離とをそれぞれ複数回変更して、前記引き上げ口から引き上げる、
    請求項1記載の酸化物超電導線材の製造方法。
  5. 前記付着工程では、前記基材は、前記第1距離を3mm以上、前記第2距離を0.1〜2.2mmとして、これら第1距離及び第2距離を交互に変更した前記引き上げ口により規定された溶液の界面を通して引き上げられる、
    請求項1から4のいずれか一項に記載の酸化物超電導線材の製造方法。
  6. 前記超電導原料溶液は、有機溶媒に溶解した有機酸塩である、
    請求項1から4のいずれか一項に記載の酸化物超電導線材の製造方法。
  7. 前記容器は、前記引き上げ口を円形としたU型チューブを含む、
    請求項1から4のいずれか一項に記載の酸化物超電導線材の製造方法。
JP2012217813A 2012-09-28 2012-09-28 酸化物超電導線材の製造方法 Pending JP2014072069A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217813A JP2014072069A (ja) 2012-09-28 2012-09-28 酸化物超電導線材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217813A JP2014072069A (ja) 2012-09-28 2012-09-28 酸化物超電導線材の製造方法

Publications (1)

Publication Number Publication Date
JP2014072069A true JP2014072069A (ja) 2014-04-21

Family

ID=50747093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217813A Pending JP2014072069A (ja) 2012-09-28 2012-09-28 酸化物超電導線材の製造方法

Country Status (1)

Country Link
JP (1) JP2014072069A (ja)

Similar Documents

Publication Publication Date Title
JP4690246B2 (ja) 超電導薄膜材料およびその製造方法
US8062028B2 (en) Heat treatment apparatus for oxide superconducting wire
JP5513154B2 (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
JP2007188756A (ja) 希土類系テープ状酸化物超電導体
CN104885165A (zh) 超导线的制造方法以及通过其制作的超导线
JP4876044B2 (ja) 酸化物超電導線材の熱処理装置及びその製造方法
JP2014072069A (ja) 酸化物超電導線材の製造方法
WO2012105244A1 (ja) テープ状酸化物超電導線材の製造方法及び熱処理装置
JP5736522B2 (ja) Re123系超電導線材およびその製造方法
JP5615616B2 (ja) テープ状酸化物超電導体及びその製造方法
JP5881953B2 (ja) テープ状酸化物超電導線材の製造方法
JP6009309B2 (ja) テープ状酸化物超電導線材の製造方法
JP5591558B2 (ja) 酸化物超電導線材の製造方法
JPWO2012111678A1 (ja) 超電導線材及び超電導線材の製造方法
JP5591557B2 (ja) 酸化物超電導線材の製造方法及び製造装置
JP2015141830A (ja) テープ状酸化物超電導線材の製造方法
Cai Solution Fabrication for Multifilamentary tapes of the Second Generation High-Temperature Superconductor
JP2015032362A (ja) 酸化物超電導線材の製造方法
JP2015032363A (ja) 超電導ケーブル
JP5690509B2 (ja) テープ状酸化物超電導線材の製造方法及び熱処理装置
JP2014026858A (ja) テープ状re系酸化物超電導線材の製造方法
JP2013134954A (ja) 超電導線の製造方法
JP2013012354A (ja) 超電導線の製造方法
JP2015225726A (ja) 酸化物超電導線材用基材および酸化物超電導線材
JP2015141831A (ja) 酸化物超電導線材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621