JP2014072054A - 固体酸化物型燃料電池装置 - Google Patents

固体酸化物型燃料電池装置 Download PDF

Info

Publication number
JP2014072054A
JP2014072054A JP2012217488A JP2012217488A JP2014072054A JP 2014072054 A JP2014072054 A JP 2014072054A JP 2012217488 A JP2012217488 A JP 2012217488A JP 2012217488 A JP2012217488 A JP 2012217488A JP 2014072054 A JP2014072054 A JP 2014072054A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel gas
fuel
cell stack
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012217488A
Other languages
English (en)
Inventor
Naoki Watanabe
直樹 渡邉
Nobuo Isaka
暢夫 井坂
Maki Sato
真樹 佐藤
Shigeru Ando
茂 安藤
Kiyoshi Hayama
潔 端山
Masanori Furuya
正紀 古屋
Dai Momiyama
大 籾山
Osamu Okamoto
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2012217488A priority Critical patent/JP2014072054A/ja
Publication of JP2014072054A publication Critical patent/JP2014072054A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】組立性を向上させることができる固体酸化物型燃料電池装置を提供する。
【解決手段】本発明の固体酸化物型燃料電池装置1は、燃料ガス供給管90と、水供給管88と、改質部94と、容器本体8,64,66,68,70と、この容器本体の底面に取り付けられるベース部材72と、燃料電池セルスタックを接続する集電部材176と電気的に接続される電力取出し端子80と、を有し、ベース部材には、燃料ガス供給管、水供給管及び電力取出し端子がそれぞれ組み付けられ、ベース部材の上面には、改質部で改質された燃料ガスを燃料電池セルスタックに分散させる分散室が形成され、この分散室の上面には、燃料電池セルスタックの下部が組み付けられ、容器本体は、燃料ガス供給管、水供給管、燃料電池セルスタック、及び電力取出し端子が組み付けられた状態の上記ベース部材に上方から取り付けられる。
【選択図】図10

Description

本発明は、固体酸化物型燃料電池装置に関し、特に、炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置に関する。
固体酸化物型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤ガス(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。
従来の燃料電池装置では、例えば、特許文献1に記載されているように、同心状に配置された5個の筒状体からなる、いわゆる、円筒状のモジュールを備えたものが知られている。これらの筒状体は、内側から外側に向って、第1の筒状体から第5の筒状体とし、第1の筒状体内には発電・燃焼室が配置されている。また、第1の筒状体と第2の筒状体との間には燃焼ガス排出路が配置され、第2の筒状体と第3の筒状体との間には酸化剤ガス導入路が配置されている。さらに、第3の筒状体と第4の筒状体との間には外側燃焼ガス排出路が配置され、第4の筒状体と第5の筒状体との間には水流路が配置され、発電・燃焼室の周囲を熱交換のために有効に利用し、装置全体の嵩を抑制すると共に、発電・燃焼室から大気への直接的な放熱を抑制している。
また、このような円筒状のモジュールを備えた他の形態の燃料電池装置として、例えば、特許文献2に記載されているように、円筒状のモジュール内に配列されている複数の燃料電池セルに対して下方から電力の取り出しを行うものも知られている。
特開2005−63806号公報 特表2001−518688号公報
しかしながら、特許文献1及び2に記載されている従来の燃料電池装置においては、燃料電池セルから電力を取り出すための端子、改質器に通ずる燃料ガス供給流路に原燃料ガス及び水をそれぞれ供給する燃料ガス供給管及び水供給管等の部材や、改質部で改質された燃料ガスを燃料電池セルスタックに分散させる分散室等の構造が、複数の燃料電池セルが取り付けられているベース部材に集約して組み付けられておらず、燃料電池装置の組み立てが容易ではないという問題がある。
また、これらの部材や構造が1つのベース部材に集約されて組み付けられていないため、燃料ガス供給管、水供給管、燃料電池セルスタック、及び電力取出し端子を精度良く位置決めすることもできず、燃料電池セルスタックに供給される燃料ガスの温度の均一性や気流の均一性を高めることも難しいという問題がある。
そこで、本発明は、上述した課題を解決するためになされたものであり、組立性を向上させることができる固体酸化物型燃料電池装置を提供することを目的としている。
上述した課題を解決するために、本発明は、炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置であって、原燃料ガスを供給する燃料供給装置と、この燃料供給装置により供給された原燃料ガスを水蒸気改質するための水を供給する水供給装置と、発電用の酸化剤ガスを供給する酸化剤ガス供給装置と、この酸化剤ガス供給装置により供給された発電用の酸化剤ガスと改質された燃料ガスを反応させることにより電力を生成する燃料電池セルスタックと、この燃料電池セルスタック上方に設けられ、上記燃料電池セルスタックにおいて発電に利用されずに残った燃料ガスを燃焼させる燃焼部と、上記燃料電池セルスタックの少なくとも一部を取り囲み、上記燃料電池セルスタック及び上記燃焼部から熱を受けるように配置された燃料ガス供給流路と、上記燃料供給装置から供給された原燃料ガスを上記燃料ガス供給流路に供給する燃料ガス供給管と、上記水供給装置から供給された水を上記燃料ガス供給流路に供給する水供給管と、この水供給管から供給された水を蒸発させる蒸発部と、上記燃料電池セルスタックの上部を取り囲むように配置され、上記燃料ガス供給管から供給された原燃料ガスを上記蒸発部において生成された水蒸気により水蒸気改質する改質部と、上記燃料電池セルスタックを取り囲むように配置された容器本体と、この容器本体の底面に取り付けられるベース部材と、上記燃料電池セルスタックを接続する集電部材と電気的に接続される電力取出し端子と、を有し、上記ベース部材には、上記燃料ガス供給管、上記水供給管及び上記電力取出し端子がそれぞれ組み付けられ、上記ベース部材の上面には、上記改質部で改質された燃料ガスを上記燃料電池セルスタックに分散させる分散室が形成され、この分散室の上面には、上記燃料電池セルスタックの下部が組み付けられ、上記容器本体は、上記燃料ガス供給管、上記水供給管、上記燃料電池セルスタック、及び上記電力取出し端子が組み付けられた状態の上記ベース部材に上方から取り付けられることを特徴としている。
このように構成された本発明においては、固体酸化物型燃料電池装置を組み立てる際、燃料ガス供給管、水供給管、燃料電池セルスタック、及び電力取出し端子のすべてを予めベース部材に組み付けた後、この組み付けた状態のベース部材に容器本体を上方から取り付けることができるため、組み立てが容易となり、組立性を向上させることができる。また、燃料ガス供給管、水供給管、燃料電池セルスタック、及び電力取出し端子を精度良く位置決めすることもできるため、燃料電池セルスタックに供給される燃料ガスの温度の均一性や気流の均一性を高めることができるため、機能的に優れた固体酸化物型燃料電池装置を提供することが可能となる。
本発明において、好ましくは、上記容器本体は、上記燃料電池セルスタックの周囲を取り囲むようにほぼ円筒状に形成された内側円筒部材と、この内側円筒部材の周囲を取り囲むようにほぼ円筒状に形成された外側円筒部材と、を備え、上記内側円筒部材の外壁面と上記外側円筒部材の内壁面との間には、上記燃料ガス供給流路が形成され、この燃料ガス供給流路内には、上記改質部が配置され、上記燃料ガス供給管から供給された原燃料ガスと、上記水供給管から供給されて上記蒸発部で生成された水蒸気とが上記改質部に供給される。
このように構成された本発明においては、容器本体が、内側円筒部材と外側円筒部材とを備え、これらの内側円筒部材の外壁面と外側円筒部材の内壁面との間に燃料ガス供給流路が形成され、この燃料ガス供給流路内に改質部が配置されているため、固体酸化物型燃料電池装置を組み立てる際、容器本体をベース部材に組み付けることによって、燃料ガス供給流路や改質部も容易に組み付けることができるため、組立性を向上させることができる。
本発明において、好ましくは、上記容器本体は、更に、その天井面のほぼ中央から垂下するように設けられ、上記酸化剤ガス供給装置から供給された発電用の酸化剤ガスを上記燃料電池セルスタックに供給するための酸化剤ガス供給管を備えている。
このように構成された本発明においては、容器本体がその天井面のほぼ中央から垂下するように設けられ、酸化剤ガス供給装置から供給された発電用の酸化剤ガスを燃料電池セルスタックに供給するための酸化剤ガス供給管を備えており、この酸化剤ガス供給管から燃料電池セルスタックに向けて酸化剤ガスが放出されるため、固体酸化物型燃料電池装置を組み立てる際、容器本体をベース部材に組み付けることによって、酸化剤ガス供給管も容易に組み付けることができるため、組立性を向上させることができる。
本発明において、好ましくは、上記容器本体の内側円筒部材の外壁面と外側円筒部材の内壁面との間には、上記燃料ガス供給管から上記燃料ガス供給流路に原燃料ガスを流入させる燃料ガス導入部、上記水導入管から上記燃料ガス供給流路に水を流入させる水導入部及び上記蒸発部がそれぞれ配置され、上記蒸発部は、上記燃料ガス導入部よりも上方且つ上記改質部よりも下方に配置されている。
このように構成された本発明においては、燃料ガス導入部、水導入部及び蒸発部のそれぞれが、容器本体の内側円筒部材の外壁面と外側円筒部材の内壁面との間の燃料ガス供給流路に配置され、蒸発部が燃料ガス導入部よりも上方且つ改質部よりも下方に配置されているため、容器本体をベース部材に組み付けることによって、燃料ガス導入部、水導入部、蒸発部及び改質部を確実に位置決めすることができる。したがって、組立性を向上させることができるばかりではなく、改質部に供給される燃料ガスや水蒸気の温度の均一性や気流の均一性を高めることができる。
本発明において、好ましくは、上記燃料電池セルスタックは、上記ベース部材の分散室の上面にほぼ円筒状に配列されており、上記容器本体の内側円筒部材の内周面は、上記容器本体を上記ベース部材に組み付けることによって、上記燃料電池セルスタックをその周囲から所定距離を置いて取り囲む。
このように構成された本発明においては、燃料電池セルスタックがベース部材の分散室の上面にほぼ円筒状に配列されており、容器本体の内側円筒部材の内周面が、容器本体をベース部材に組み付けることによって、燃料電池セルスタックをその周囲から所定距離を置いて取り囲むため、容器本体の内側円筒部材と外側円筒部材との間の燃料ガス供給流路を燃料電池セルスタックに対して確実に位置決めすることができる。したがって、組立性を向上させることができるばかりではなく、燃料ガス供給流路から燃料電池セルスタックに供給される燃料ガスの温度の均一性や気流の均一性を高めることができる。
本発明において、好ましくは、上記電力取出し端子は、上記ベース部材にほぼ円筒状に配列された上記燃料電池セルスタックの中央空間の下方に上記ベース部材を貫くように配置されている。
このように構成された本発明においては、電力取出し端子が、ベース部材にほぼ円筒状に配列された燃料電池セルスタックの中央空間の下方にベース部材を貫くように配置されているため、容器本体をベース部材に組み付ける際に、電力取出し端子を気にすることなく、組み付け作業を行うことができ、組み立てが容易となる。
本発明の固体酸化物型燃料電池装置によれば、組立性を向上させることができる。
本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)を示す全体構成図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の外観を示す斜視図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の断面図である。 図3のIV−IV線に沿う平面断面図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の上部を拡大して示す概略断面図である。 本発明の一実施形態による固体酸化物型燃料電池装置を示すブロック図である。 本発明の一実施形態による固体酸化物型燃料電池の起動時の動作を示すタイムチャートである。 図8は、各位置における、燃料ガス供給流路内の温度、及び排ガス排出流路内の温度を示すグラフであり、(a)起動10分後、(b)起動20分後、(c)起動30分後の温度を夫々示す。 本発明の一実施形態による固体酸化物型燃料電池の燃料電池セル収容容器とその内部構造を分解した分解斜視断面図である。 本発明の一実施形態による固体酸化物型燃料電池のベース部材とその周辺部分を示す部分斜視断面図である。
次に、添付図面を参照して、本発明の実施形態による固体酸化物型燃料電池装置(SOFC)を説明する。
図1は、本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材7を介して燃料電池セル収容容器8が配置されている。この燃料電池セル収容容器8内の下部には発電室10が構成され、この発電室10の中には、燃料ガスと酸化剤ガスである空気により発電反応を行う燃料電池セルスタック14が収容されている。この燃料電池セルスタック14は、同心円状に配置された100本の燃料電池セルユニット16から構成されている。
燃料電池セル収容容器8内の発電室10の上方(燃料電池セルスタック14の上方)には、燃焼部である燃焼室18が形成され、この燃焼室18で、発電反応に使用されずに残った残余の燃料(オフガス)と残余の空気とが燃焼し、排気ガスを生成するようになっている。
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この純水タンクから供給される水の流量を調整する水供給装置である水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された炭化水素系の原燃料ガスの流量を調整する燃料供給装置である燃料ブロア38(モータで駆動される「燃料ポンプ」等)と、この燃料ブロア38から送られた原燃料ガスを分配する比例弁32を備えている。
なお、比例弁32を通過した原燃料ガスは、燃料電池モジュール2内に配置された脱硫器36と、熱交換器34、電磁弁35を介して燃料電池セル収容容器8の内部に導入される。脱硫器36は、燃料電池セル収容容器8の周囲を取り囲むように環状に形成されており、原燃料ガスから硫黄を除去するようになっている。また、熱交換器34は、脱硫器36において温度上昇した高温の原燃料ガスが直接電磁弁35に流入し、電磁弁35が劣化されるのを防止するために設けられている。電磁弁35は、燃料電池セル収容容器8内への原燃料ガスの供給を停止するために設けられている。
補機ユニット4は、空気供給源40から供給される空気の流量を調整する酸化剤ガス供給装置である空気流量調整ユニット45(モータで駆動される「空気ブロア」等)を備えている。
さらに、補機ユニット4には、燃料電池モジュール2からの排気ガスの熱を回収するための温水製造装置50が備えられている。この温水製造装置50には、水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
さらに、燃料電池モジュール2には、燃料電池モジュール2により発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、燃料電池セルユニット16について説明する。
本発明の実施形態による固体酸化物型燃料電池装置1においては、燃料電池セルユニット16として、固体酸化物を用いた円筒横縞型セルが採用されている。
燃料電池セルユニット16は、円筒形の内側電極層(図示せず)と、内側電極層の周囲に設けられた電解質層(図示せず)と、この電解質層の周囲に設けられた外側電極層(図示せず)と、を備えている。内側電極層(図示せず)は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層(図示せず)は、空気と接触する空気極であり、(+)極となっている。これら内側電極層(図示せず)、電解質層(図示せず)、外側電極層(図示せず)から構成された円筒状の部材に、各種電極端子(図示せず)を取り付けることにより燃料電池セルユニット16が構成される。実使用時においては、円筒形の内側電極層(図示せず)の内側の通路(図示せず)に燃料ガスが流され、外側電極層(図示せず)の周囲に発電用の酸化剤ガスとして空気が流される。
内側電極層(図示せず)は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
電解質層(図示せず)は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
外側電極層(図示せず)は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
燃料電池セルスタック14は、燃料電池セル収容容器8の発電室10内に同心円上に配列された100本の燃料電池セルユニット16から構成されている。各燃料電池セルユニット16に取り付けられた各種電極端子(図示せず)、集電体(図示せず)を導電体(図示せず)により相互に電気的に接続することにより、燃料電池セルスタック14が構成される。各燃料電池セルユニット16を接続した導電体(図示せず)は、バスバー80(図3)に接続され、燃料電池セル収容容器8から引き出される。
次に、図2及び図3により、本発明の実施形態による固体酸化物型燃料電池装置(SOFC)の燃料電池モジュールに内蔵された燃料電池セル収容容器の内部構造を説明する。図2は、燃料電池セル収容容器の外観を示す斜視図であり、図3は燃料電池セル収容容器の断面図である。
図2及び図3に示すように、燃料電池セル収容容器8内の密閉空間には、複数の燃料電池セルユニット16が同心円状に配列された燃料電池セルスタック14が配置され、その周囲を取り囲むように燃料ガス供給流路20、排ガス排出流路21、酸化剤ガス供給流路22が順に同心円状に形成されている。
まず、図2に示すように、燃料電池セル収容容器8は、概ね円筒状の密閉容器であり、その下部の外径が太くなっている。また、燃料電池セル収容容器8の下部側面には、発電用の空気を供給する酸化剤ガス流入口である酸化剤ガス導入パイプ56、及び排気ガスを排出する排ガス排出パイプ58が接続されている。さらに、燃料電池セル収容容器8の上端面には、内蔵された燃焼バーナーに原燃料ガスを供給するためのバーナー用ガス供給パイプ60が接続され、また、上端面からは、燃焼バーナーに点火するための点火プラグ62が突出している。
図3に示すように、燃料電池セル収容容器8の内部には、燃料電池セルスタック14の周囲を取り囲むように、内側から順に、内側円筒部材64、外側円筒部材66、内側円筒容器68、外側円筒容器70が配置されている。上述した燃料ガス供給流路20、排ガス排出流路21、及び酸化剤ガス供給流路22は、これらの円筒部材及び円筒容器の間に夫々構成される流路であり、隣り合う流路の間で熱交換が行われる。即ち、排ガス排出流路21は燃料ガス供給流路20を取り囲むように配置され、酸化剤ガス供給流路22は排ガス排出流路21を取り囲むように配置されている。また、燃料電池セル収容容器8の底面は、概ね円形のベース部材72により密閉されている。
内側円筒部材64は、上部の小径部と、下部の大径部と、それらを接続するテーパー部からなる概ね円筒状の管である。
外側円筒部材66は、内側円筒部材64の周囲に配置される円筒状の管であり、内側円筒部材64との間にほぼ一定幅の円環状の流路が形成されるように、内側円筒部材64と概ね相似形に形成されている。内側円筒部材64の外周面と、外側円筒部材66の内周面の間の円環状の空間は、燃料ガス供給流路20として機能する。このため、燃料ガス供給流路20は、取り囲んでいる燃料電池セルスタック14及び燃焼室18から熱を受ける。また、内側円筒部材64の上端部と外側円筒部材66の上端部は接合されており、燃料ガス供給流路20の上端は閉鎖されている。
内側円筒容器68は、外側円筒部材66の周囲に配置される円形断面のカップ状の部材であり、外側円筒部材66との間にほぼ一定幅の円環状の流路が形成されるように、側面が外側円筒部材66と概ね相似形に形成されている。外側円筒部材66の外周面と、内側円筒容器68の内周面の間の円環状の空間は、排ガス排出流路21として機能する。この排ガス排出流路21は、外側円筒部材66の上端部で、内側円筒部材64の内側の空間と連通する。また、内側円筒容器68の下部側面には、排ガス流出口である排ガス排出パイプ58が接続されており、排ガス排出流路21が排ガス排出パイプ58に連通される。
外側円筒容器70は、内側円筒容器68の周囲に配置される円形断面のカップ状の部材であり、内側円筒容器68との間にほぼ一定幅の円環状の流路が形成されるように、側面が内側円筒容器68と概ね相似形に形成されている。内側円筒容器68の外周面と、外側円筒容器70の内周面の間の円環状の空間は、酸化剤ガス供給流路22として機能する。また、外側円筒容器70の下部側面には、酸化剤ガス導入パイプ56が接続されており、酸化剤ガス供給流路22が酸化剤ガス導入パイプ56に連通される。
ベース部材72は、概ね円板状の部材であり、内側円筒容器68の下端に設けられたフランジに、パッキンを介して固定されることにより、密封された燃料電池セル収容容器8を構成している。また、内側円筒部材64及び外側円筒部材66の下端も、ベース部材72まで延びている。
内側円筒容器68の天井面から垂下するように、発電用の空気を噴射するための、円形断面の酸化剤ガス噴射用パイプ74が取り付けられている。この酸化剤ガス噴射用パイプ74は、内側円筒容器68の中心軸線上を鉛直方向に延び、その周囲の同心円上に各燃料電池セルユニット16が配置される。酸化剤ガス噴射用パイプ74の上端が内側円筒容器68の天井面に取り付けられることにより、内側円筒容器68と外側円筒容器70の間に形成されている酸化剤ガス供給流路22と酸化剤ガス噴射用パイプ74が連通される。一方、酸化剤ガス噴射用パイプ74の下端面は閉鎖されると共に、下端部側面には複数の噴射口74aが設けられている。酸化剤ガス供給流路22から供給された空気は、酸化剤ガス噴射用パイプ74に流入し、下端部側面に設けられた複数の噴射口74aから周囲の各燃料電池セルユニット16に向けて放射状に噴射される。
ベース部材72の上面には、ドーナツ形断面の燃料ガス分散室76が設けられている。燃料ガス分散室76は、ベース部材72と同心円を為すように、ベース部材72上に設けられた気密性のあるチャンバであり、その上面に各燃料電池セルユニット16が林立されている。燃料ガス分散室76の上面に取り付けられた各燃料電池セルユニット16は、その内側の燃料極が、燃料ガス分散室76の内部と連通されている。
一方、内側円筒部材64と、燃料ガス分散室76の上面とを接続するように、改質ガス移送パイプ78が設けられている。改質ガス移送パイプ78は、内側円筒部材64の内側上部から、燃料ガス分散室76の上面へ、概ね鉛直方向に延びる管である。改質ガス移送パイプ78の上端は、内側円筒部材64と外側円筒部材66の間の燃料ガス供給流路20と連通され、下端は、燃料ガス分散室76の上面を貫通して、燃料ガス分散室76の内部まで延びている。これにより、燃料ガス供給流路20内を上昇した燃料ガスは、改質ガス移送パイプ78を通って下方に下り、燃料ガス分散室76の中に流入する。燃料ガス分散室76に流入した燃料ガスは、各燃料電池セルユニット16の燃料極に分配される。
さらに、ベース部材72の中央には、ベース部材72を貫通するようにバスバー80が取り付けられている。バスバー80は、燃料電池セルスタック14により生成された電力を、燃料電池セル収容容器8の外部へ取り出すための細長い金属プレート導体であり、ベース部材72には絶縁体を介して取り付けられている。バスバー80は、燃料電池セル収容容器8の内部において、後述する各燃料電池セルユニット16に取り付けられた集電体と電気的に接続されている。また、バスバー80は、燃料電池セル収容容器8の外部において、インバータ54(図1)に接続される。
また、ベース部材72の上面には、燃料ガス分散室76を取り囲むように、円筒状のセルスタック保温用断熱材82が取り付けられている。セルスタック保温用断熱材82は、燃料ガス分散室76全体、及び燃料電池セルスタック14の下部約2/3程度の周囲を取り囲むように構成された円筒形の断熱材である。また、セルスタック保温用断熱材82の上部約1/3の部分は、上端に向けて断熱材の厚さが次第に薄くなるように、テーパが付けられている。この構成により、燃料電池セルスタック14と、その周囲の内側円筒部材64との間の断熱性は、セルスタック保温用断熱材82の上端に向けて少しずつ低下する。
次に、図4、図5を新たに参照して、燃焼バーナーの構成を説明する。
図4は、図3のIV−IV線に沿う平面断面図である。図5は、燃料電池セル収容容器の上部を拡大して示す概略断面図である。
図3乃至図5に示すように、燃焼バーナー84は、燃料電池セル収容容器8内の上端部に配置された概ねドーナツ形のバーナーであり、その中心軸線上に酸化剤ガス噴射用パイプ74が貫通されている。燃焼バーナー84の外周部には、複数のガス噴射口84aが設けられており、図4に示すように、燃焼バーナー84から概ね水平方向に放射状に炎が形成される。また、燃焼バーナー84の上面には、エジェクター84bが設けられている。エジェクター84bは、燃焼バーナー84内に燃料ガスを導入する導入口として形成されており、この導入口に向けてバーナー用ガス供給パイプ60の先端から燃料ガスが噴射される。バーナー用ガス供給パイプ60の先端から噴射された燃料ガスは、周囲の空気や排気ガスを引き込みながら、燃焼バーナー84の内部に導入される。燃焼バーナー84内に流入した燃料ガス及び空気は内部で混合され、各ガス噴射口84aから噴射される。
また、点火プラグ62(図3)は、その先端部がガス噴射口84aの近傍に位置するように配置されており、点火プラグ62の先端部で火花を発生させることにより、ガス噴射口84aから噴射された燃料ガス及び空気の混合気に点火される。燃焼バーナー84の炎は、ガス噴射口84aと向かい合う内側円筒部材64の上端部を加熱する。この燃焼バーナー84により加熱される内側円筒部材64の上端部は、加熱部64a(図5)として機能する。
次に、図3を参照して、燃料供給源30から供給される原燃料ガスを改質するための構成について説明する。
まず、内側円筒部材64と外側円筒部材66の間の空間で構成されている燃料ガス供給流路20の下部には、水蒸気改質用の水を蒸発させるための蒸発部86が設けられている。蒸発部86は、外側円筒部材66の下部内周に取り付けられたリング状の傾斜板86a及び水供給パイプ88から構成されている。また、蒸発部86は、発電用の空気を導入するための酸化剤ガス導入パイプ56よりも下方で、排気ガスを排出する排ガス排出パイプ58よりも上方に配置されている。傾斜板86aは、リング状に形成された金属の薄板であり、その外周縁が外側円筒部材66の内壁面に取り付けられる。一方、傾斜板86aの内周縁は外周縁よりも上方に位置し、傾斜板86aの内周縁と、内側円筒部材64の外壁面との間には隙間が設けられている。
水供給パイプ88はベース部材72を貫通して鉛直方向に延びるパイプであり、水流量調整ユニット28から供給された水蒸気改質用の水が、水供給パイプ88を介して蒸発部86に供給される。水供給パイプ88の上端は、傾斜板86aを貫通して傾斜板86aの上面側まで延び、傾斜板86aの上面側に供給された水は、傾斜板86aの上面と外側円筒部材66の内壁面の間に留まる。傾斜板86aの上面側に供給された水は、そこで蒸発され水蒸気が生成される。このように、水供給パイプ88の上端部は、水導入部88aとして機能する。
また、蒸発部86の下方には、原燃料ガスを燃料ガス供給流路20内に導入するための燃料ガス導入部が設けられている。燃料ブロア38から送られた原燃料ガスは、燃料ガス供給パイプ90を介して燃料ガス供給流路20に導入される。燃料ガス供給パイプ90はベース部材72を貫通して鉛直方向に延びるパイプであり、水供給パイプ88の近傍に配置されている。また、燃料ガス供給パイプ90の上端は、傾斜板86aよりも下方に位置している。従って、燃料ガス供給パイプ90の上端部は、燃料ガス導入部90aとして機能する。燃料ブロア38から送られた原燃料ガスは、傾斜板86aの下側に導入され、傾斜板86aの傾斜により流路を絞られながら傾斜板86aの上側へ上昇する。傾斜板86aの上側へ上昇した原燃料ガスは、蒸発部86で生成された水蒸気と共に上昇する。
燃料ガス供給流路20内の蒸発部86上方には、混合部92が設けられている。混合部92は、内側円筒部材64の外壁面に取り付けられた3つの螺旋羽根92aにより構成されている。各螺旋羽根92aは、内側円筒部材64の周りを概ね1周するC形の薄板から構成されており、この板が螺旋を描くように内側円筒部材64の外壁面に取り付けられている。また、各螺旋羽根92aの外周縁は、外側円筒部材66の内壁面近傍まで延びているため、燃料ガス供給流路20内には、各螺旋羽根92aにより、概ね螺旋を描く流路が形成される。この螺旋状の流路を通過することにより、燃料ガス導入部90aから導入された原燃料ガスと、蒸発部86で生成された水蒸気が十分に混合される。
さらに、燃料ガス供給流路20内の混合部92上方、且つ燃料ガス供給流路20上端の加熱部64a(図5)の下方には、改質部94が設けられている。改質部94は、燃料電池セルスタック14の上部と、その上方の燃焼室18の周囲を取り囲むように配置されている。改質部94は、内側円筒部材64の外壁面に取り付けられた6つの触媒保持螺旋板94aと、触媒保持螺旋板94aの上部および下部で内側円筒部材64の外壁面に取り付けられた2つの触媒保持通気板94bと、これらにより保持された改質触媒96によって構成されている。各触媒保持螺旋板94aは、内側円筒部材64の周りを概ね1周するC形の薄板から構成されており、この板が螺旋を描くように内側円筒部材64の外壁面に取り付けられている。また、各触媒保持螺旋板94aの外周縁は、外側円筒部材66の内壁面近傍まで延びているため、燃料ガス供給流路20内には、各触媒保持螺旋板94aにより、概ね螺旋を描く流路が形成される。各触媒保持通気板94bには、多数の細孔が設けられ通気性が確保される。その細孔の大きさは、改質触媒64を通過させないように保持しかつ原燃料ガスと水蒸気が改質部94へ流入させ、そして流出させることのできる通気性が確保される程度である。改質触媒96は、上述の各触媒保持螺旋板94a、各触媒保持通気板94bの内部に充填される。
このように、改質部94内に充填された改質触媒96に、混合部92において混合された原燃料ガス及び水蒸気が接触すると、改質部94内においては、式(1)に示す水蒸気改質反応SRが進行する。
mn+xH2O → aCO2+bCO+cH2 (1)
改質部94において改質された燃料ガスは、改質ガス移送パイプ78を通って下方に流れ、燃料ガス分散室76に流入して、各燃料電池セルユニット16に供給される。なお、水蒸気改質反応SRは吸熱反応であるが、反応に要する熱は、燃焼バーナー84により加熱された加熱部64a(図5)から伝導する熱、燃焼室18において生成される燃焼熱、及び燃料電池セルスタック14において発生する発電熱により供給される。
次に図6により本実施形態による固体酸化物型燃料電池装置(SOFC)に備えられているセンサ類等について説明する。図6は、本発明の一実施形態による固体酸化物型燃料電池装置1(SOFC)を示すブロック図である。
図6に示すように、固体酸化物型燃料電池装置1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。また、制御部110には、マイクロコンピュータ、メモリ、及びこれらを作動させるプログラム(以上、図示せず)が内蔵されており、これらにより、制御部110に接続された各機器が制御される。
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
水流量センサ134は、改質器20に供給される純水の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質部94の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
発電室温度センサ142は、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排ガス排出流路21内を流れる排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質部94の温度を検出するためのものであり、改質部94の入口温度と出口温度から改質部94の温度を算出する。
外気温度センサ150は、固体酸化物型燃料電池装置1(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料ブロア38、空気流量調整ユニット45に制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
次に図7により本実施形態による固体酸化物型燃料電池装置1(SOFC)の起動時の動作を説明する。図7は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の起動時の動作を示すタイムチャートであり、燃料電池セルスタック14の温度が反映される発電室10の温度、及び改質部94の温度の推移を示している。また、図7には、これらの温度と併せて、発電用の空気の供給流量、燃焼バーナー84への燃料ガスの供給流量、改質部94への燃料ガスの供給流量、及び蒸発部86への水の供給流量が示されているが、これらは各供給流量の増減の傾向を模式的に表すものであり、具体的な供給量を表すものではない。
固体酸化物型燃料電池装置1の起動時においては、燃料電池モジュール2内の燃料電池セルスタック14を発電可能な温度まで昇温させるために起動工程を実行する。この起動工程においては、燃料電池モジュール2からインバータ54へ電力が取り出されることはない。従って、起動工程においては、燃料電池モジュール2は発電を行わない。
先ず、図7の時刻t1において、制御部110により空気流量調整ユニット45が起動され、燃料電池モジュール2への空気の供給が開始される。供給された空気は、酸化剤ガス導入パイプ56から酸化剤ガス供給流路22に流入し、酸化剤ガス供給流路22内を上方に向かって流れた後、酸化剤ガス噴射用パイプ74に流入する。酸化剤ガス噴射用パイプ74に流入した空気は下降し、酸化剤ガス噴射用パイプ74下端の噴射口74aから、酸化剤ガス噴射用パイプ74を取り囲むように配置された各燃料電池セルユニット16の下部に吹き付けられる。各燃料電池セルユニット16の下部(燃料電池セルスタック14の下部)に吹き付けられた空気は、発電室10内を上昇して燃焼室18内に流入し、燃焼バーナー84と内側円筒部材64の内壁面の間の環状の空間を通って、内側円筒容器68の天井面に到達する。内側円筒容器68の天井面に到達した空気は、放射方向に流れて、内側円筒容器68と外側円筒部材66の間に形成された排ガス排出流路21に流入する。排ガス排出流路21に流入した空気は、下降して、排ガス排出パイプ58から燃料電池モジュール2の外へ排出される。これにより、燃料電池モジュール2の発電室10内、燃焼室18内に滞留していた気体も燃料電池モジュール2の外へ排出される。
次に、時刻t1において、制御部110により燃料ブロア38が起動される。燃料ブロア38が起動されることにより、燃料供給源30から供給された原燃料ガスは、比例弁32に送り込まれる。時刻t1においては、比例弁32は、供給された全ての原燃料ガスが、燃焼バーナー84へ送り込まれる状態に設定されている。従って、比例弁32から流出した原燃料ガスは、バーナー用ガス供給パイプ60に流入する。バーナー用ガス供給パイプ60に流入した原燃料ガスは、その下端から燃焼バーナー84のエジェクター84bに向けて噴射される。エジェクター84bに噴射された原燃料ガスは、周囲の空気を巻き込みながら、空気と共に燃焼バーナー84の内部に流入する。燃焼バーナー84に流入した原燃料ガスは、その各ガス噴射口84aから概ね水平方向に、放射状に噴射される。
さらに、時刻t2において、制御部110により点火プラグ62に信号が送られ、ガス噴射口84aから噴射されている原燃料ガスに点火される。これにより、燃焼バーナー84の燃焼熱により燃料電池モジュール2内の温度を上昇させる燃焼運転が開始される。燃焼バーナー84の炎は、燃焼バーナー84の外周面と対向するように配置されている内側円筒部材64の上端部である加熱部64aを加熱する。加熱部64aが加熱されると、熱伝導により内側円筒部材64全体の温度が上昇すると共に、内側円筒部材64と接合されている外側円筒部材66の温度も上昇する。これにより、内側円筒部材64と外側円筒部材66の間に配置されている改質部94内の改質触媒96も加熱され温度上昇する。
また、内側円筒部材64に取り囲まれている発電室10内、燃焼室18内の温度も上昇する。さらに、燃焼バーナー84により生成された高温の燃焼ガスは、燃焼バーナー84と加熱部64aの間の空間を通って排ガス排出流路21に流入する。即ち、燃焼により生じた排気ガスは、外側円筒部材66と内側円筒容器68の間の排ガス排出流路21を通って排出される。この際、外側円筒部材66の内側に設けられた改質部94を周囲から加熱すると共に、内側円筒容器68の外側に設けられている酸化剤ガス供給流路22内を流れる空気を加熱する。これにより、酸化剤ガス噴射用パイプ74を通って発電室10内に流入する空気の温度も上昇し、発電室10内の温度も上昇する。これらの作用により、時刻t2以降、発電室10内の温度、及び改質部94の温度が上昇する。
改質部94の温度が十分に上昇すると、制御部110は、時刻t3において、改質部94への燃料及び水蒸気の供給を開始する。これにより、燃焼バーナー84の燃焼熱で燃料電池モジュール2内を加熱しながら、改質部94内においては水蒸気改質反応SRを発生させるSR1工程が開始される。具体的には、制御部110により比例弁32の設定が変更され、流入した原燃料ガスが燃焼バーナー84及び改質部94へ供給されるようになる。また、制御部110により、水流量調整ユニット28が起動され、蒸発部86への水の供給が開始される。
比例弁32の設定が変更されることにより、比例弁32へ流入した原燃料ガスは、燃焼バーナー84の他に、脱硫器36へも供給されるようになる。脱硫器36へ流入した原燃料ガスは、そこで硫黄分が除去される。なお、時刻t3においては、燃料電池セル収容容器8を取り囲むように配置されている脱硫器36内の触媒(図示せず)の温度も、脱硫が可能な温度まで上昇されており、十分に硫黄分を除去することができる。脱硫器36から流出した原燃料ガスは、熱交換器34により温度が低下され、電磁弁35を通って燃料電池セル収容容器8内に流入する。なお、脱硫器36から流出した原燃料ガスの温度を熱交換器34で低下させることにより、後続の電磁弁35の劣化が防止される。
電磁弁35を通過した原燃料ガスは、燃料ガス供給パイプ90の先端の燃料ガス導入部90aから、燃料ガス供給流路20に流入する。燃料ガス供給流路20の内部は、その上端の加熱部64aが加熱されているため、上方の温度が高い状態にある。また、排ガス排出流路21の排ガス排出パイプ58は、燃料ガス導入部90aよりも上方に設けられているため、燃料ガス導入部90aの上方の部分までが排気ガスの熱により加熱されるので、燃料ガス導入部90aの上方の温度が高くなる。このため、燃料ガス供給流路20内には上昇気流が存在するので、燃料ガス導入部90aから流入した原燃料ガスは、上昇気流と共に上昇する。この際、燃料ガス導入部90aの上方に取り付けられた傾斜板86aにより、原燃料ガスの流路は上方が狭くなるように絞られるため、ここで原燃料ガスの流速が上昇する。
一方、水流量調整ユニット28により送り出された改質用の水は、水供給パイプ88先端の水導入部88aから流出し、傾斜板86aの上側の面に流入する。ここで、傾斜板86aが取り付けられている外側円筒部材66の外側は、排ガス排出流路21であり、上方で改質部94を加熱した高温の排気ガスが、傾斜板86aの周囲まで流下している。この高温の排気ガスの流れにより、蒸発部86を構成する傾斜板86a及びその近傍の外側円筒部材66の温度も上昇しているため、水導入部88aから蒸発部86に流入した水は蒸発され、水蒸気が生成される。なお、排ガス排出流路21内を流下する排気ガスは、上方で改質部94を加熱することにより温度が低下しているが、蒸発部86は、改質部94ほど高温まで加熱する必要はないため、改質部94を加熱した後の排気ガスによっても十分に加熱することができる。また、蒸発部86は、燃料電池セルスタック14の側からも熱を受けるが、燃料電池セルスタック14と蒸発部86の間には、セルスタック保温用断熱材82が配置されているので、蒸発部86は主に排ガス排出流路21からの熱により加熱される。
また、排気ガスを排出する排ガス排出パイプ58は、蒸発部86よりも下方に配置されているため、排気ガスは蒸発部86を加熱した後、排ガス排出パイプ58から排出される。これにより、蒸発部86は、排ガス排出流路21内を流れる排気ガスの熱により十分に加熱される。また、蒸発部86は、発電用の空気を導入するための酸化剤ガス導入パイプ56よりも下方に配置されている。このため、排ガス排出流路21の、蒸発部86を取り囲んでいる部分は、酸化剤ガス供給流路22内を流れる空気により熱を奪われにくく、蒸発部86は排気ガスの熱により確実に加熱される。
ここで、燃料ガス導入部90aと水導入部88aは近傍に配置されている。このため、燃料ガス導入部90aから流入し、傾斜板86aの内周縁と内側円筒部材64の外壁面の間から上昇した原燃料ガスは、水導入部88aから導入され、傾斜板86aの上面の水導入部88a近傍で蒸発された水蒸気と即座に混ざり合いながら、上昇気流と共に燃料ガス供給流路20内を上昇する。原燃料ガス及び水蒸気は、蒸発部86の上方に配置された混合部92に到達し、ここで、各螺旋羽根92aによって形成されている螺旋状の流路に沿って、内側円筒部材64の周囲を回りながら上昇する。螺旋状の流路を旋回しながら上昇することにより、原燃料ガスと水蒸気は十分に混合される。
混合部92において十分に混合された原燃料ガス及び水蒸気は更に上昇し、混合部92の上方に配置されている改質部94に到達する。改質部94においては、原燃料ガス及び水蒸気は、螺旋を為すように配置された触媒保持螺旋板94aに沿って螺旋状に流れ、ここで、改質触媒96に接触する。これにより、上記式(1)に示した水蒸気改質反応SRが発生し、原燃料ガスは、水素を豊富に含む燃料ガスに改質される。
改質部94において改質された燃料ガスは、改質ガス移送パイプ78を通って下方に流れ、燃料ガス分散室76に流入する。燃料ガス分散室76に流入した燃料ガスは、燃料ガス分散室76の上面に配置された各燃料電池セルユニット16内側の燃料極に流入する。燃料極に流入した燃料ガスは、各燃料電池セルユニット16内を上昇し、各燃料電池セルユニット16の上端から流出する。時刻t3においては、発電室10内の温度は十分に上昇しているため、各燃料電池セルユニット16の上端から流出した燃料ガスは燃焼され、各燃料電池セルユニット16の上端には炎が形成される。この各燃料電池セルユニット16上方の燃焼室18内における燃料ガスの燃焼熱によっても、燃焼室18を取り囲むように配置されている改質部94が加熱される。
上述したように、改質部94内で発生する水蒸気改質反応SRは、吸熱反応であるが、この反応に要する熱は、燃焼バーナー84による加熱部64aへの加熱、燃焼室18内における燃焼熱、及び燃焼室18から改質部94周囲の排ガス排出流路21を通って流れる排気の熱によって賄われる。
燃料電池モジュール2内の温度が所定の温度まで上昇すると、制御部110は、時刻t4において、SR2工程を開始させる。SR2工程においては、制御部110により比例弁32の設定が変更され、燃焼バーナー84への燃料ガス供給量が減少される一方、改質部94への燃料ガス供給量が増加される。また、水流量調整ユニット28により蒸発部86へ供給される水の流量も増加される。これにより、燃焼バーナー84による加熱が減少し、各燃料電池セルユニット16の上端から流出する燃料ガスの燃焼熱による加熱が増加する。
燃料電池モジュール2内の温度が更に上昇して、所定の温度に到達すると、制御部110は、時刻t5において、SR3工程を開始させる。SR3工程においては、制御部110により比例弁32の設定が変更され、燃焼バーナー84への燃料ガスの供給が停止される一方、改質部94への燃料ガス供給量が増加される。また、水流量調整ユニット28により蒸発部86へ供給される水の流量も増加される。これにより、燃焼バーナー84による加熱が停止され、専ら各燃料電池セルユニット16の上端から流出する燃料ガスの燃焼熱により加熱されるようになる。
さらに、燃料電池セルスタック14の温度が、発電可能な温度に到達すると、制御部110は、時刻t6において、起動工程を終了し、発電工程を開始する。具体的には、制御部110により、燃料電池モジュール2がインバータ54に接続され、バスバー80を介してインバータ54に電流が取り出される。これにより、各燃料電池セルユニット16の燃料極側(内側)を流れる燃料ガスと、空気極側(外側)を流れる空気の間で発電反応が発生し、電力が生成される。なお、発電工程においては、燃料ガス供給流量、水供給流量、及び発電用の空気流量は、要求される発電量に応じて決定される。本実施形態の固体酸化物型燃料電池装置1においては、SR3工程における燃料ガス供給流量、水供給流量、及び発電用の空気流量は、最大定格電力を生成するために必要な各流量よりも多く設定されている。従って、SR3工程から発電工程に移行すると、燃料ガス供給流量、水供給流量、及び空気流量は低下される。
発電工程では、各燃料電池セルユニット16において、発電熱が発生する。従って、燃料電池モジュール2の内部は、各燃料電池セルユニット16の発電熱によっても加熱される。特に、燃料電池セルスタック14の上部の周囲を取り囲むように配置されている改質部94は、発電熱により加熱される。このため、発電工程中においても、燃料ガス供給流路20は、上部の温度が高く、下部の温度が低くなり、その内部において上昇気流が発生し、供給された原燃料ガスが容易に上方へ送られる。
また、発電室10内の温度は、その上部が燃焼室18における燃焼熱により加熱されるため、上部において温度が高く、下部において温度が低くなる傾向があり、これにより、各燃料電池セルユニット16においても、その上部と下部の間で温度ムラが発生しやすい。
しかしながら、本実施形態の固体酸化物型燃料電池装置1においては、燃料電池セルスタック14の下部がセルスタック保温用断熱材82によって包囲されているため、各燃料電池セルユニット16の下部で発生した発電熱が、周囲の内側円筒部材64(燃料ガス供給流路20)へ移りにくく、各燃料電池セルユニット16の下部が保温される。一方、温度が上昇しやすい各燃料電池セルユニット16の上部は、内部で吸熱反応が発生している改質部94と直接対向しているため、周囲に発電熱が奪われやすくなっている。これにより、各燃料電池セルユニット16における上部と下部の間での温度ムラが抑制される。
さらに、燃料電池セルスタック14を取り囲むセルスタック保温用断熱材82は、上端に向かって次第に薄くなるように形成されている。これにより、各燃料電池セルユニット16において、セルスタック保温用断熱材82に囲まれている部分と、囲まれていない部分で急激に断熱性が変化することによる温度ムラの発生が抑制される。また、本実施形態の固体酸化物型燃料電池装置1においては、内側円筒部材64の下部の内径が大きく、上部の内径が小さく形成されている。このため、燃料電池セルスタック14の下部においては、燃料電池セルスタック14から周囲の内側円筒部材64までの距離が離れており、上部においては内側円筒部材64までの距離が近接し、下方ほど燃料電池セルスタックから内側円筒部材64までの距離が離れている。これにより、燃料ガス供給流路20は、燃料電池セルスタック14の下部からは、燃料電池セルスタック14の上部からよりも、燃料電池セルスタック14の熱を受けにくくなる。換言すれば、燃料電池セルスタック14の下部においては、発電熱が奪われにくくなり、各燃料電池セルユニット16における上部と下部の間での温度ムラが抑制される。
また、本実施形態の固体酸化物型燃料電池装置1においては、発電用の空気は、燃料電池セルスタック14の中央に配置された酸化剤ガス噴射用パイプ74から放射状に噴射され、発電室10内を上昇した後、内側円筒部材64の上端縁から、環状の排ガス排出流路21に流入する。このため、発電室10内及び燃焼室18内の空気の流れは、ほぼ完全に軸対称の流れとなり、燃料電池セルスタック14を構成する各燃料電池セルユニット16の周囲には、ムラなく空気が流れる。これにより、各燃料電池セルユニット16間の温度差が抑制され、各燃料電池セルユニット16で均等な起電力を発生することができる。
次に、図8を参照して、起動工程における燃料電池セル収容容器8内の温度分布を説明する。図8(a)乃至(c)は、図3に示す位置A、B、C、Dにおける、燃料ガス供給流路20内の温度、及び排ガス排出流路21内の温度を示すグラフであり、燃料ガス供給流路20内の温度を実線で、排ガス排出流路21内の温度を破線で示している。図8(a)は起動10分後の温度分布を示し、(b)は20分後、(c)は30分後を示している。図3に示すように、位置Aは、燃料電池セル収容容器8の上端部近傍であり、燃料ガス供給流路20内の位置Aは加熱部64a近傍であり、排ガス排出流路21内の位置Aは排ガス排出流路21の入り口近傍である。位置Bは、燃料ガス供給流路20内において改質部94が形成された部分に該当する。位置Cは、混合部92と改質部94の間の部分に該当する。位置Dは、燃料ガス供給流路20内において蒸発部86が形成された部分に該当する。
まず、図8(a)に示すように、起動10分後においては、燃焼バーナー84で加熱されている加熱部64a近傍の位置Aにおける温度は上昇しているが、下方の位置B乃至Dにおける温度は、あまり上昇していない。また、破線で示す排ガス排出流路21内の温度の方が、実線で示す燃料ガス供給流路20内の温度よりも高くなっている。
次に、図8(b)に示すように、起動20分後においては、加熱部64a近傍の位置Aにおける熱が、下方の位置B、Cに伝導され、温度が上昇しており、改質部94の温度が上昇し始めている。これに対して、位置Dにおける温度は、まだあまり上昇していない。また、図8(b)から明らかなように、排ガス排出流路21内の温度は、燃料ガス供給流路20内の温度よりも高く、排ガス排出流路21内を流れる排気ガスにより、燃料ガス供給流路20内の燃料ガス、水、改質触媒96が加熱される。また、図8(b)において、燃料ガス供給流路20内の位置Dの温度が100℃程度まで上昇しており、蒸発部86内における水蒸気の生成が可能になる。
さらに、図8(c)に示すように、起動30分後においては、位置Bにおける温度が位置Aに接近し、改質触媒96が十分に加熱されていることが分かる。また、図8(b)(c)から明らかなように、燃料ガス供給流路20内の温度は、上方ほど高くなっており、これにより生じる上昇気流により、燃料ガスは、ブロア等によりあまり加圧されていなくとも、燃料ガス供給流路20内で上昇し改質部94へ送り込まれる。また、蒸発部86において発生した水蒸気も上昇気流により、燃料ガスと混合されながら、改質部94へ送り込まれる。このように、燃料ガス供給流路20内においては、大きな温度勾配が発生している一方、燃料ガス供給流路20により取り囲まれている燃料電池セルスタック14の上部と下部の間の温度ムラは、上述したように抑制される。
次に、図3、図9及び図10を参照して、本発明の一実施形態による固体酸化物型燃料電池のベース部材とその周辺部分の構造について、さらに詳細に説明する。
図9は、本発明の一実施形態による固体酸化物型燃料電池の燃料電池セル収容容器とその内部構造を分解した分解斜視断面図である。図10は、本発明の一実施形態による固体酸化物型燃料電池のベース部材とその周辺部分を示す部分斜視断面図である。
図3、図9及び図10に示すように、本実施形態の固体酸化物型燃料電池装置1を組み立てる際、まず、燃料電池セル収容容器8の底面がベース部材72の上面152に取り付けられる前に、より具体的には、内側円筒部材64及び外側円筒部材66の下端から半径方向外側に放射状に延びるフランジ部154の底面154aがベース部材72の上面152に取り付けられる前に、ベース部材72には、燃料電池セルスタック14、改質ガス移送パイプ78、バスバー80、セルスタック保温用断熱材82、水供給パイプ88、及び燃料ガス供給パイプ90が予め組み付けられるようになっている。
そして、このようにベース部材72に組み付けられた燃料電池セルスタック14及びセルスタック保温用断熱材82が、内側円筒部材64の下方から内側円筒部材64の内部空間156内に挿入されるように、内側円筒部材64及び外側円筒部材66のフランジ部154の底面154aがベース部材72の上面154に上方から取り付けられるようになっている。
さらに、このように取り付けられた状態の内側円筒部材64及び外側円筒部材66が、内側円筒容器68の内部空間158内に挿入されるように、内側円筒容器68の下端から半径方向外側に放射状に延びるフランジ部160の底面160aが内側円筒部材64及び外側円筒部材66のフランジ部154の上面154bに対して上方から取り付けられる。そして、ベース部材72、内側円筒部材64及び外側円筒部材66のフランジ部154、並びに、内側円筒容器68のフランジ部160の互いの接触面同士が、ビス等の固定部材(図示せず)により固定されるようになっている。
また、ベース部材72に取り付けられる前の状態の内側円筒部材64及び外側円筒部材66においては、内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に形成される燃料ガス供給流路20内に改質部94が予め配置されている。
さらに、ベース部材72に取り付けられる前の状態の内側円筒容器68及び外側円筒容器70においては、内側円筒容器68の外周面168と外側円筒容器70の内周面170との間に酸化剤ガス供給流路22が形成されるように、互いに固定されており、内側円筒容器68の天井面170のほぼ中央部には、酸化剤ガス供給流路22と上端で連通するように上下方向に垂下する酸化剤ガス噴射用パイプ74が一体に設けられている。これにより、内側円筒容器68をベース部材72に組み付けた状態で、酸化剤ガス噴射用パイプ74の周囲の同心円上に各燃料電池セルユニット16が配置されるようになっている。
また、内側円筒部材64及び外側円筒部材66をベース部材72に組み付けた状態では、内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に形成される燃料ガス供給流路20内に、燃料ガス供給パイプ90の燃料ガス導入部90a、水供給パイプ88の水導入部88a、及び蒸発部86のそれぞれが配置され、この蒸発部86が燃料ガス導入部90aよりも上方且つ改質部94よりも下方に配置されている。
さらに、内側円筒部材64及び外側円筒部材66をベース部材72に組み付けた状態では、燃料電池セルスタック14は、ベース部材72の分散室76の上面172にほぼ円筒状に配列されており、内側円筒部材64の内周面174は、燃料電池セルスタック14の周囲から所定距離を置いて取り囲んでいる。これにより、内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に形成される燃料ガス供給流路20を燃料電池セルスタック14の周囲を取り囲むようにして確実に位置決めすることができるようになっている。
つぎに、図9及び図10に示すように、燃料電池セルスタック14により生成された電力を燃料電池セル収容容器8の外部へ取り出すための電力取出し端子であるバスバー80は、各燃料電池セルユニット16が電気的に直列に接続されるように各燃料電池セルユニット16に取り付けられた集電部材176と電気的に接続されている。
また、バスバー80の細長い金属プレートの一対の導体部178は、絶縁部材180を介してベース部材72を上下方向に貫くように取り付けられている。すなわち、ベース部材72に取り付けられた状態のバスバー80においては、各導体部178の上端が、ベース部材72にほぼ円筒状に配列された燃料電池セルスタック14の中央空間内の下方の位置で集電部材176に接続されている。
さらに、バスバー80の導体部178においては、絶縁部材180が取り付けられている中間部分で且つベース部材72の上面152よりも上方部分は、ドーナツ状の燃料ガス分散室76の中央側の外部にほぼ円筒状に形成された円筒空間182内に位置している。この円筒空間182の下方は、ベース部材72の上面152に塞がれている。
また、各導体部178の下端は、バスバー80がベース部材72に取り付けられた状態でベース部材72の底面よりも下方に位置し、インバータ54と接続されている。
このようなバスバー80の各部の構成や配置により、燃料電池セル収容容器8を上方からベース部材72に組み付ける際に、バスバー80を気にすることなく、組み付け作業を行うことができるようになっている。
上述した本発明の一実施形態による固体酸化物型燃料電池装置1によれば、この装置1を組み立てる際、燃料電池セルスタック14、改質ガス移送パイプ78、バスバー80、セルスタック保温用断熱材82、水供給パイプ88、及び燃料ガス供給パイプ90のすべてをベース部材72に予め組み付けた後、この組み付けた状態のベース部材72に燃料電池セル収容容器8を上方から取り付けることができるため、組み立てが容易となり、組立性を向上させることができる。また、燃料電池セルスタック14、改質ガス移送パイプ78、バスバー80、セルスタック保温用断熱材82、水供給パイプ88、及び燃料ガス供給パイプ90を精度良く位置決めすることもできるため、燃料電池セルスタック14に供給される燃料ガスの温度の均一性や気流の均一性を高めることができるため、機能的に優れた固体酸化物型燃料電池装置1を提供することが可能となる。
また、本実施形態による固体酸化物型燃料電池装置1によれば、燃料電池セル収容容器8が、内側円筒部材64と外側円筒部材66とを備え、これらの内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に燃料ガス供給流路20が形成され、この燃料ガス供給流路20内に改質部94が配置されているため、固体酸化物型燃料電池装置1を組み立てる際、内側円筒部材64及び外側円筒部材66をベース部材72に上方から組み付けることによって、燃料ガス供給流路20や改質部94も容易に組み付けることができるため、組立性を向上させることができる。
さらに、本実施形態による固体酸化物型燃料電池装置1によれば、内側円筒容器68の天井面170のほぼ中央部に垂下するように設けられ、空気流量調整ユニット45から供給された発電用の酸化剤ガスを燃料電池セルスタック14に供給するための酸化剤ガス噴射用パイプ74を備えており、この酸化剤ガス噴射用パイプ74から燃料電池セルスタック14に向けて酸化剤ガスが放出されるため、固体酸化物型燃料電池装置1を組み立てる際、内側円筒部材64及び外側円筒部材66をベース部材72に組み付けることによって、酸化剤ガス噴射用パイプ74も容易に組み付けることができるため、組立性を向上させることができる。
また、本実施形態による固体酸化物型燃料電池装置1によれば、燃料ガス導入部90a、水導入部88a及び蒸発部86のそれぞれが、内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に形成される燃料ガス供給流路20内に配置され、蒸発部86が燃料ガス導入部90aよりも上方且つ改質部94よりも下方に配置されている蒸発部が燃料ガス導入部よりも上方且つ改質部よりも下方に配置されている。したがって、内側円筒部材64及び外側円筒部材66をベース部材72に組み付けることによって、燃料ガス導入部90a、水導入部88a、蒸発部86及び改質部94を確実に位置決めすることができる。したがって、組立性を向上させることができるばかりではなく、改質部94に供給される燃料ガスや水蒸気の温度の均一性や気流の均一性を高めることができる。
さらに、本実施形態による固体酸化物型燃料電池装置1によれば、燃料電池セルスタック14がベース部材72の燃料ガス分散室76の上面174にほぼ円筒状に配列されており、内側円筒部材64及び外側円筒部材66をベース部材72にベース部材72に組み付けることによって、内側円筒部材64の内周面174が、燃料電池セルスタック14の周囲から所定距離を置いて取り囲んでいるため、内側円筒部材64の外壁面162と外側円筒部材66の内壁面164との間に形成される燃料ガス供給流路20を燃料電池セルスタック14の外周側を取り囲むようにして確実に位置決めすることができ、組立性を向上させることができるばかりではなく、燃料ガス供給流路20から改質部94、改質ガス移送パイプ78、及び燃料ガス分散室76を経て燃料電池セルスタック14に供給される燃料ガスの温度の均一性や気流の均一性を高めることができる。
また、本実施形態による固体酸化物型燃料電池装置1によれば、バスバー80が、ベース部材72にほぼ円筒状に配列された燃料電池セルスタック14の中央空間の下方にベース部材72を貫くように配置されているため、燃料電池セル収容容器8を上方からベース部材72に組み付ける際に、バスバー80を気にすることなく、組み付け作業を行うことができ、組み立てが容易となる。
1 固体酸化物型燃料電池装置
2 燃料電池モジュール
4 補機ユニット
7 断熱材
8 燃料電池セル収容容器(容器本体)
10 発電室
14 燃料電池セルスタック
16 燃料電池セルユニット
18 燃焼室(燃焼部)
20 燃料ガス供給流路
21 排ガス排出流路
22 酸化剤ガス供給流路
24 水供給源
26 純水タンク
28 水流量調整ユニット(水供給装置)
30 燃料供給源
32 比例弁
34 熱交換器
35 電磁弁
36 脱硫器
38 燃料ブロア(燃料供給装置)
40 空気供給源
45 空気流量調整ユニット(酸化剤ガス供給装置)
50 温水製造装置
54 インバータ
56 酸化剤ガス導入パイプ
58 排ガス排出パイプ
60 バーナー用ガス供給パイプ
62 点火プラグ
64 内側円筒部材(容器本体)
64a 加熱部
66 外側円筒部材(容器本体)
68 内側円筒容器(容器本体)
70 外側円筒容器(容器本体)
72 ベース部材
74 酸化剤ガス噴射用パイプ(酸化剤ガス供給管)
74a 噴射口
76 燃料ガス分散室(分散室)
78 改質ガス移送パイプ
80 バスバー(電力取出し端子)
82 セルスタック保温用断熱材
84 燃焼バーナー
84a ガス噴射口
84b エジェクター
86 蒸発部
86a 傾斜板
88 水供給パイプ(水供給管)
88a 水導入部
90 燃料ガス供給パイプ(燃料ガス供給管)
90a 燃料ガス導入部
92 混合部
92a 螺旋羽根
94 改質部
94a 触媒保持螺旋板
94b 触媒保持通気板
96 改質触媒
110 制御部
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ
132 燃料流量センサ
138 圧力センサ
140 排気温度センサ
142 発電室温度センサ
148 改質器温度センサ
150 外気温度センサ
152 ベース部材の上面
154 内側円筒部材及び外側円筒部材のフランジ部
154a 内側円筒部材及び外側円筒部材のフランジ部の底面
154b 内側円筒部材及び外側円筒部材のフランジ部の上面
156 内側円筒部材の内部空間
158 内側円筒容器の内部空間
160 内側円筒容器のフランジ部
160a 内側円筒容器のフランジ部の底面
162 内側円筒部材の外壁面
164 外側円筒部材の内壁面
166 内側円筒容器の外周面
168 外側円筒容器の内周面
170 内側円筒容器の天井面
172 燃料ガス分散室の上面
174 内側円筒部材の内周面
176 集電部材
178 バスバーの導体部
180 絶縁部材
182 円筒空間

Claims (6)

  1. 炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置であって、
    原燃料ガスを供給する燃料供給装置と、
    この燃料供給装置により供給された原燃料ガスを水蒸気改質するための水を供給する水供給装置と、
    発電用の酸化剤ガスを供給する酸化剤ガス供給装置と、
    この酸化剤ガス供給装置により供給された発電用の酸化剤ガスと改質された燃料ガスを反応させることにより電力を生成する燃料電池セルスタックと、
    この燃料電池セルスタック上方に設けられ、上記燃料電池セルスタックにおいて発電に利用されずに残った燃料ガスを燃焼させる燃焼部と、
    上記燃料電池セルスタックの少なくとも一部を取り囲み、上記燃料電池セルスタック及び上記燃焼部から熱を受けるように配置された燃料ガス供給流路と、
    上記燃料供給装置から供給された原燃料ガスを上記燃料ガス供給流路に供給する燃料ガス供給管と、
    上記水供給装置から供給された水を上記燃料ガス供給流路に供給する水供給管と、
    この水供給管から供給された水を蒸発させる蒸発部と、
    上記燃料電池セルスタックの上部を取り囲むように配置され、上記燃料ガス供給管から供給された原燃料ガスを上記蒸発部において生成された水蒸気により水蒸気改質する改質部と、
    上記燃料電池セルスタックを取り囲むように配置された容器本体と、
    この容器本体の底面に取り付けられるベース部材と、
    上記燃料電池セルスタックを接続する集電部材と電気的に接続される電力取出し端子と、を有し、
    上記ベース部材には、上記燃料ガス供給管、上記水供給管及び上記電力取出し端子がそれぞれ組み付けられ、上記ベース部材の上面には、上記改質部で改質された燃料ガスを上記燃料電池セルスタックに分散させる分散室が形成され、この分散室の上面には、上記燃料電池セルスタックの下部が組み付けられ、上記容器本体は、上記燃料ガス供給管、上記水供給管、上記燃料電池セルスタック、及び上記電力取出し端子が組み付けられた状態の上記ベース部材に上方から取り付けられることを特徴とする固体酸化物型燃料電池装置。
  2. 上記容器本体は、上記燃料電池セルスタックの周囲を取り囲むようにほぼ円筒状に形成された内側円筒部材と、この内側円筒部材の周囲を取り囲むようにほぼ円筒状に形成された外側円筒部材と、を備え、上記内側円筒部材の外壁面と上記外側円筒部材の内壁面との間には、上記燃料ガス供給流路が形成され、この燃料ガス供給流路内には、上記改質部が配置され、上記燃料ガス供給管から供給された原燃料ガスと、上記水供給管から供給されて上記蒸発部で生成された水蒸気とが上記改質部に供給される請求項1記載の固体酸化物型燃料電池装置。
  3. 上記容器本体は、更に、その天井面のほぼ中央から垂下するように設けられ、上記酸化剤ガス供給装置から供給された発電用の酸化剤ガスを上記燃料電池セルスタックに供給するための酸化剤ガス供給管を備えている請求項2記載の固体酸化物型燃料電池装置。
  4. 上記容器本体の内側円筒部材の外壁面と外側円筒部材の内壁面との間には、上記燃料ガス供給管から上記燃料ガス供給流路に原燃料ガスを流入させる燃料ガス導入部、上記水導入管から上記燃料ガス供給流路に水を流入させる水導入部及び上記蒸発部がそれぞれ配置され、上記蒸発部は、上記燃料ガス導入部よりも上方且つ上記改質部よりも下方に配置されている請求項3記載の固体酸化物型燃料電池装置。
  5. 上記燃料電池セルスタックは、上記ベース部材の分散室の上面にほぼ円筒状に配列されており、上記容器本体の内側円筒部材の内周面は、上記容器本体を上記ベース部材に組み付けることによって、上記燃料電池セルスタックをその周囲から所定距離を置いて取り囲む請求項4記載の固体酸化物型燃料電池装置。
  6. 上記電力取出し端子は、上記ベース部材にほぼ円筒状に配列された上記燃料電池セルスタックの中央空間の下方に上記ベース部材を貫くように配置されている請求項5記載の固体酸化物型燃料電池装置。
JP2012217488A 2012-09-28 2012-09-28 固体酸化物型燃料電池装置 Pending JP2014072054A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012217488A JP2014072054A (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012217488A JP2014072054A (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Publications (1)

Publication Number Publication Date
JP2014072054A true JP2014072054A (ja) 2014-04-21

Family

ID=50747080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012217488A Pending JP2014072054A (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Country Status (1)

Country Link
JP (1) JP2014072054A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072054A (ja) * 2014-09-30 2016-05-09 アイシン精機株式会社 燃料電池モジュールおよび燃料電池システム
JP2020194757A (ja) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 固体酸化物形燃料電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072054A (ja) * 2014-09-30 2016-05-09 アイシン精機株式会社 燃料電池モジュールおよび燃料電池システム
JP2020194757A (ja) * 2019-05-30 2020-12-03 大阪瓦斯株式会社 固体酸化物形燃料電池システム
JP7285698B2 (ja) 2019-05-30 2023-06-02 大阪瓦斯株式会社 固体酸化物形燃料電池システム

Similar Documents

Publication Publication Date Title
JP2014072053A (ja) 固体酸化物型燃料電池装置
JP5412960B2 (ja) 燃料電池装置
JP2013225484A (ja) 固体酸化物型燃料電池
US20100304235A1 (en) Solid oxide fuel cell device
US8974978B2 (en) Solid oxide fuel cell device
JP2011096635A (ja) 固体電解質型燃料電池
JP5975426B2 (ja) 固体酸化物型燃料電池装置
JP2014072052A (ja) 固体酸化物型燃料電池装置
JP2014072028A (ja) 固体酸化物型燃料電池装置
JP5783501B2 (ja) 固体酸化物形燃料電池装置
JP2013218861A (ja) 固体酸化物型燃料電池
JP2016181376A (ja) 固体酸化物形燃料電池システム
JP2014072054A (ja) 固体酸化物型燃料電池装置
JP2014022230A (ja) 固体酸化物形燃料電池装置
WO2012043646A1 (ja) 固体酸化物型燃料電池
JP2014072027A (ja) 固体酸化物型燃料電池装置
JP2014071959A (ja) 固体酸化物形燃料電池装置
JP6183777B2 (ja) 固体酸化物型燃料電池装置
JP2014053315A (ja) 固体酸化物形燃料電池装置
JP6628084B2 (ja) 固体酸化物形燃料電池装置
JP6989674B2 (ja) 固体酸化物形燃料電池システム
JP2015128001A (ja) 固体酸化物型燃料電池
JP6218114B2 (ja) 固体酸化物型燃料電池
JP6202469B2 (ja) 固体酸化物型燃料電池
JP6172616B2 (ja) 固体酸化物型燃料電池システム