JP5975426B2 - 固体酸化物型燃料電池装置 - Google Patents

固体酸化物型燃料電池装置 Download PDF

Info

Publication number
JP5975426B2
JP5975426B2 JP2012216702A JP2012216702A JP5975426B2 JP 5975426 B2 JP5975426 B2 JP 5975426B2 JP 2012216702 A JP2012216702 A JP 2012216702A JP 2012216702 A JP2012216702 A JP 2012216702A JP 5975426 B2 JP5975426 B2 JP 5975426B2
Authority
JP
Japan
Prior art keywords
fuel gas
fuel cell
fuel
unit
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012216702A
Other languages
English (en)
Other versions
JP2014072026A (ja
Inventor
佐藤 真樹
真樹 佐藤
直樹 渡邉
直樹 渡邉
暢夫 井坂
暢夫 井坂
安藤 茂
茂 安藤
大 籾山
大 籾山
潔 端山
潔 端山
正紀 古屋
正紀 古屋
岡本 修
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2012216702A priority Critical patent/JP5975426B2/ja
Publication of JP2014072026A publication Critical patent/JP2014072026A/ja
Application granted granted Critical
Publication of JP5975426B2 publication Critical patent/JP5975426B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物型燃料電池装置に関し、特に、炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置に関する。
固体酸化物型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤ガス(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。
特開2010−238600号公報(特許文献1)には、固体電解質型燃料電池が記載されている。この燃料電池においては、燃料電池セルスタックの上方に箱形の改質器が配置され、この改質器を、燃料電池セルスタックの各セルの上端から流出するオフガスを燃焼させた燃焼熱により加熱している。また、改質器には、原燃料ガス及び水蒸気改質用の水が供給され、原燃料ガスと水蒸気の混合気が、改質器内に充填された改質触媒に触れることにより、原燃料ガスが水蒸気改質される。
このようなタイプの改質器では、供給された原燃料ガスと水蒸気が十分に混合されるように、原燃料ガス及び水蒸気は比較的長い通路を流れた後、改質触媒の中に送り込まれる。また、原燃料ガスと水蒸気の混合気が十分に改質触媒に接触するように、混合気は、改質器内の比較的長い通路を流れながら改質される。
特開2010−238600号公報
しかしながら、特開2010−238600号公報記載の燃料電池における改質器では、原燃料ガスと水蒸気の混合気が長い流路を通って改質されるため、改質器における圧力損失が大きいという問題がある。このため、改質すべき原燃料ガスを、改質器を通過させるために、原燃料ガスを強く加圧して改質器に送り込む必要がある。
また、特開2010−238600号公報記載の燃料電池においては、改質器が燃料電池セルスタックの上方に配置され、各セルから流出したオフガスの燃焼熱により下方から直接加熱されているため、改質器の占有投影面積が大きくなるという問題がある。即ち、或る量の原燃料ガスを改質するためには、所定の体積の改質触媒が必要になるが、この所定体積の改質触媒をオフガスの燃焼熱により、均等に直接加熱するためには、改質触媒を、燃料電池セルスタックの上方に薄く広い面積に分布させる必要があるため、改質器の占有投影面積が大きくなる。
従って、本発明は、原燃料ガスを強く圧送することなく、原燃料ガスを改質部(改質器)に送り込むことができる固体酸化物型燃料電池装置を提供することを目的としている。
また、本発明は、改質部(改質器)の占有投影面積を小さくすることができる固体酸化物型燃料電池装置を提供することを目的としている。
上述した課題を解決するために、本発明は、炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置であって、原燃料ガスを供給する燃料供給装置と、この燃料供給装置により供給された原燃料ガスを水蒸気改質するための水を供給する水供給装置と、発電用の酸化剤ガスを供給する酸化剤ガス供給装置と、この酸化剤ガス供給装置により供給された発電用の酸化剤ガスと改質された燃料ガスを反応させることにより電力を生成する燃料電池セルスタックと、この燃料電池セルスタック上方に設けられ、燃料電池セルスタックにおいて発電に利用されずに残った燃料ガスを燃焼させる燃焼部と、燃料電池セルスタックの少なくとも一部を取り囲み、燃料電池セルスタック及び燃焼部から熱を受けるように配置された燃料ガス供給流路と、この燃料ガス供給流路の下部に設けられ、燃料供給装置から供給された原燃料ガスを燃料ガス供給流路に流入させる燃料ガス導入部と、燃料ガス供給流路内に、燃料ガス導入部よりも上方に配置され、水供給装置から供給された水を蒸発させる蒸発部と、燃料ガス供給流路内に設けられ、燃料ガス導入部から導入された原燃料ガスを蒸発部において生成された水蒸気により水蒸気改質する改質部と、を有し、改質部は、蒸発部よりも上方に、燃料電池セルスタックの上部を取り囲むように配置されていることを特徴としている。
このように構成された本発明においては、燃料供給装置により、燃料ガス導入部を介して原燃料ガスが、燃料電池セルスタックの少なくとも一部を取り囲むように配置された燃料ガス供給流路に流入される。一方、水供給装置により、水蒸気改質用の水が、燃料ガス供給流路内の、燃料ガス導入部よりも上方に配置された蒸発部に供給され、水蒸気が生成される。供給された原燃料ガス及び水蒸気は、燃料ガス供給流路内に設けられた改質部に流入し、水蒸気改質される。改質された燃料ガスは、燃料電池セルスタックにおいて、酸化剤ガス供給装置により供給された発電用の酸化剤ガスと反応し、電力が生成される。
このように構成された本発明によれば、燃料ガス供給流路が、燃料電池セルスタックの少なくとも一部を取り囲み、燃料電池セルスタック及び燃焼部から熱を受けるように配置されている。また、この燃料ガス供給流路内の、蒸発部よりも上方に、燃料電池セルスタックの上部を取り囲むように改質部が設けられている。このため、燃料ガス供給流路内上方の改質部の温度は、下方の燃料ガス導入部及び蒸発部よりも温度が高くなる。これにより、燃料ガス供給流路内において上昇気流が発生するので、この上昇気流により、燃料ガス導入部から導入された原燃料ガスを強く圧送することなく、蒸発部において生成された水蒸気と混合させながら上方の改質部に容易に送り込むことができる。また、燃料電池セルスタックの上部を取り囲むように改質部が設けられているので、改質触媒を燃料電池セルスタックの周囲に広く分布させることができ、改質部の占有投影面積を小さく抑制しながら、燃料電池セルスタック及び燃焼部の熱により、改質部を十分に加熱することができる。
本発明において、好ましくは、さらに、燃料ガス供給流路の少なくとも一部を取り囲むように、燃料ガス供給流路との間で熱交換可能に設けられ、燃焼部において燃焼された燃焼ガスを排出する排ガス排出流路を有し、この排ガス排出流路は、燃料電池セルスタックの上方から、燃料ガス導入部よりも上方、且つ蒸発部よりも下方に設けられた排ガス流出口へ燃焼ガスを導く。
このように構成された本発明においては、排ガス排出流路が燃料ガス供給流路の少なくとも一部を取り囲むように設けられ、燃焼部において燃焼された燃焼ガスが排出される。この排ガス排出流路の排ガス流出口は、蒸発部よりも下方に設けられているので、蒸発部を十分に加熱することができる。また、排ガス流出口は、燃料ガス導入部よりも上方に設けられているので、上方の蒸発部と燃料ガス導入部との間で温度勾配を作ることができ、燃料ガス導入部から導入された原燃料ガスを、上昇気流により効果的に上方に搬送することができる。
本発明において、好ましくは、さらに、排ガス排出流路の少なくとも一部を取り囲むように、排ガス排出流路との間で熱交換可能に設けられた酸化剤ガス供給流路を有し、この酸化剤ガス供給流路は、酸化剤ガス供給装置から供給された発電用の酸化剤ガスを、蒸発部よりも上方に設けられた酸化剤ガス流入口から燃料電池セルスタックの上方へ向けて導く。
このように構成された本発明においては、排ガス排出流路との間で熱交換可能に酸化剤ガス供給流路が設けられている。また、この酸化剤ガス供給流路の酸化剤ガス流入口は蒸発部よりも上方に設けられているので、蒸発部近傍において、排ガス排出流路の熱が、酸化剤ガス供給流路の酸化剤ガスに奪われるのを抑制することができ、蒸発部を排気ガスの熱により確実に加熱することができる。
本発明において、好ましくは、さらに、蒸発部と改質部の間に、燃料ガス供給流路内に設けられた混合部を有し、燃料ガス供給流路内に原燃料ガスを導入する燃料ガス導入部と、水供給装置から供給された水を蒸発部に導入する水導入部が近接して配置され、混合部において混合される。
このように構成された本発明においては、原燃料ガスを導入する燃料ガス導入部と水を導入する水導入部が近接して配置されているので、燃料ガス導入部から導入された原燃料ガスが、水導入部の近傍で生成された水蒸気と共に混合部に導入され、これにより、原燃料ガスと水蒸気を効果的に混合させることができる。
本発明において、好ましくは、さらに、蒸発部は燃料ガス供給流路の内壁面に取り付けられた傾斜板により構成され、水供給装置から供給された水は傾斜板の上面側に貯留されると共に、傾斜板よりも下方から燃料ガス供給流路内に供給された原燃料ガスは、傾斜板によって流路を絞られながら上方に流れる。
このように構成された本発明においては、傾斜板の下方から燃料ガス供給流路内に供給された原燃料ガスは、傾斜板によって流路を絞られながら上方に流れるので、原燃料ガスの流速が上昇され、傾斜板の上面側で生成された水蒸気がこの流れに巻き込まれ、原燃料ガスと水蒸気を効果的に混合することができる。
本発明の固体酸化物型燃料電池装置によれば、原燃料ガスを強く圧送することなく、原燃料ガスを改質部(改質器)に送り込むことができる。
また、本発明の固体酸化物型燃料電池装置によれば、改質部(改質器)の占有投影面積を小さくすることができる。
本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)を示す全体構成図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の外観を示す斜視図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の断面図である。 図3のIV−IV線に沿う平面断面図である。 本発明の一実施形態による固体酸化物型燃料電池装置に備えられた燃料電池セル収容容器の上部を拡大して示す概略断面図である。 本発明の一実施形態による固体酸化物型燃料電池装置を示すブロック図である。 本発明の一実施形態による固体酸化物型燃料電池の起動時の動作を示すタイムチャートである。 図8は、各位置における、燃料ガス供給流路内の温度、及び排ガス排出流路内の温度を示すグラフであり、(a)起動10分後、(b)起動20分後、(c)起動30分後の温度を夫々示す。 本発明の一実施形態による固体酸化物型燃料電池の内側円筒部材と外側円筒部材との間に形成される燃料ガス供給流路内の構造を示す斜視図である。 本発明の一実施形態による固体酸化物型燃料電池の内側円筒部材と外側円筒部材との間に形成される燃料ガス供給流路について、内側円筒部材の外周方向に沿って展開した概略図である。
次に、添付図面を参照して、本発明の実施形態による固体酸化物型燃料電池装置(SOFC)を説明する。
図1は、本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体酸化物型燃料電池装置(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材7を介して燃料電池セル収容容器8が配置されている。この燃料電池セル収容容器8内の下部には発電室10が構成され、この発電室10の中には、燃料ガスと酸化剤ガスである空気により発電反応を行う燃料電池セルスタック14が収容されている。この燃料電池セルスタック14は、同心円状に配置された100本の燃料電池セルユニット16から構成されている。
燃料電池セル収容容器8内の発電室10の上方(燃料電池セルスタック14の上方)には、燃焼部である燃焼室18が形成され、この燃焼室18で、発電反応に使用されずに残った残余の燃料(オフガス)と残余の空気とが燃焼し、排気ガスを生成するようになっている。
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この純水タンクから供給される水の流量を調整する水供給装置である水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された炭化水素系の原燃料ガスの流量を調整する燃料供給装置である燃料ブロア38(モータで駆動される「燃料ポンプ」等)と、この燃料ブロア38から送られた原燃料ガスを分配する比例弁32を備えている。
なお、比例弁32を通過した原燃料ガスは、燃料電池モジュール2内に配置された脱硫器36と、熱交換器34、電磁弁35を介して燃料電池セル収容容器8の内部に導入される。脱硫器36は、燃料電池セル収容容器8の周囲を取り囲むように環状に形成されており、原燃料ガスから硫黄を除去するようになっている。また、熱交換器34は、脱硫器36において温度上昇した高温の原燃料ガスが直接電磁弁35に流入し、電磁弁35が劣化されるのを防止するために設けられている。電磁弁35は、燃料電池セル収容容器8内への原燃料ガスの供給を停止するために設けられている。
補機ユニット4は、空気供給源40から供給される空気の流量を調整する酸化剤ガス供給装置である空気流量調整ユニット45(モータで駆動される「空気ブロア」等)を備えている。
さらに、補機ユニット4には、燃料電池モジュール2からの排気ガスの熱を回収するための温水製造装置50が備えられている。この温水製造装置50には、水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
さらに、燃料電池モジュール2には、燃料電池モジュール2により発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、燃料電池セルユニット16について説明する。
本発明の実施形態による固体酸化物型燃料電池装置1においては、燃料電池セルユニット16として、固体酸化物を用いた円筒横縞型セルが採用されている。
燃料電池セルユニット16は、円筒形の内側電極層(図示せず)と、内側電極層の周囲に設けられた電解質層(図示せず)と、この電解質層の周囲に設けられた外側電極層(図示せず)と、を備えている。内側電極層(図示せず)は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層(図示せず)は、空気と接触する空気極であり、(+)極となっている。これら内側電極層(図示せず)、電解質層(図示せず)、外側電極層(図示せず)から構成された円筒状の部材に、各種電極端子(図示せず)を取り付けることにより燃料電池セルユニット16が構成される。実使用時においては、円筒形の内側電極層(図示せず)の内側の通路(図示せず)に燃料ガスが流され、外側電極層(図示せず)の周囲に発電用の酸化剤ガスとして空気が流される。
内側電極層(図示せず)は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
電解質層(図示せず)は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
外側電極層(図示せず)は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
燃料電池セルスタック14は、燃料電池セル収容容器8の発電室10内に同心円上に配列された100本の燃料電池セルユニット16から構成されている。各燃料電池セルユニット16に取り付けられた各種電極端子(図示せず)、集電体(図示せず)を導電体(図示せず)により相互に電気的に接続することにより、燃料電池セルスタック14が構成される。各燃料電池セルユニット16を接続した導電体(図示せず)は、バスバー80(図3)に接続され、燃料電池セル収容容器8から引き出される。
次に、図2及び図3により、本発明の実施形態による固体酸化物型燃料電池装置(SOFC)の燃料電池モジュールに内蔵された燃料電池セル収容容器の内部構造を説明する。図2は、燃料電池セル収容容器の外観を示す斜視図であり、図3は燃料電池セル収容容器の断面図である。
図2及び図3に示すように、燃料電池セル収容容器8内の密閉空間には、複数の燃料電池セルユニット16が同心円状に配列された燃料電池セルスタック14が配置され、その周囲を取り囲むように燃料ガス供給流路20、排ガス排出流路21、酸化剤ガス供給流路22が順に同心円状に形成されている。
まず、図2に示すように、燃料電池セル収容容器8は、概ね円筒状の密閉容器であり、その下部の外径が太くなっている。また、燃料電池セル収容容器8の下部側面には、発電用の空気を供給する酸化剤ガス流入口である酸化剤ガス導入パイプ56、及び排気ガスを排出する排ガス排出パイプ58が接続されている。さらに、燃料電池セル収容容器8の上端面には、内蔵された燃焼バーナーに原燃料ガスを供給するためのバーナー用ガス供給パイプ60が接続され、また、上端面からは、燃焼バーナーに点火するための点火プラグ62が突出している。
図3に示すように、燃料電池セル収容容器8の内部には、燃料電池セルスタック14の周囲を取り囲むように、内側から順に、内側円筒部材64、外側円筒部材66、内側円筒容器68、外側円筒容器70が配置されている。上述した燃料ガス供給流路20、排ガス排出流路21、及び酸化剤ガス供給流路22は、これらの円筒部材及び円筒容器の間に夫々構成される流路であり、隣り合う流路の間で熱交換が行われる。即ち、排ガス排出流路21は燃料ガス供給流路20を取り囲むように配置され、酸化剤ガス供給流路22は排ガス排出流路21を取り囲むように配置されている。また、燃料電池セル収容容器8の底面は、概ね円形のベース部材72により密閉されている。
内側円筒部材64は、上部の小径部と、下部の大径部と、それらを接続するテーパー部からなる概ね円筒状の管である。
外側円筒部材66は、内側円筒部材64の周囲に配置される円筒状の管であり、内側円筒部材64との間にほぼ一定幅の円環状の流路が形成されるように、内側円筒部材64と概ね相似形に形成されている。内側円筒部材64の外周面と、外側円筒部材66の内周面の間の円環状の空間は、燃料ガス供給流路20として機能する。このため、燃料ガス供給流路20は、取り囲んでいる燃料電池セルスタック14及び燃焼室18から熱を受ける。また、内側円筒部材64の上端部と外側円筒部材66の上端部は接合されており、燃料ガス供給流路20の上端は閉鎖されている。
内側円筒容器68は、外側円筒部材66の周囲に配置される円形断面のカップ状の部材であり、外側円筒部材66との間にほぼ一定幅の円環状の流路が形成されるように、側面が外側円筒部材66と概ね相似形に形成されている。外側円筒部材66の外周面と、内側円筒容器68の内周面の間の円環状の空間は、排ガス排出流路21として機能する。この排ガス排出流路21は、外側円筒部材66の上端部で、内側円筒部材64の内側の空間と連通する。また、内側円筒容器68の下部側面には、排ガス流出口である排ガス排出パイプ58が接続されており、排ガス排出流路21が排ガス排出パイプ58に連通される。
外側円筒容器70は、内側円筒容器68の周囲に配置される円形断面のカップ状の部材であり、内側円筒容器68との間にほぼ一定幅の円環状の流路が形成されるように、側面が内側円筒容器68と概ね相似形に形成されている。内側円筒容器68の外周面と、外側円筒容器70の内周面の間の円環状の空間は、酸化剤ガス供給流路22として機能する。また、外側円筒容器70の下部側面には、酸化剤ガス導入パイプ56が接続されており、酸化剤ガス供給流路22が酸化剤ガス導入パイプ56に連通される。
ベース部材72は、概ね円板状の部材であり、内側円筒容器68の下端に設けられたフランジに、パッキンを介して固定されることにより、密封された燃料電池セル収容容器8を構成している。また、内側円筒部材64及び外側円筒部材66の下端も、ベース部材72まで延びている。
内側円筒容器68の天井面から垂下するように、発電用の空気を噴射するための、円形断面の酸化剤ガス噴射用パイプ74が取り付けられている。この酸化剤ガス噴射用パイプ74は、内側円筒容器68の中心軸線上を鉛直方向に延び、その周囲の同心円上に各燃料電池セルユニット16が配置される。酸化剤ガス噴射用パイプ74の上端が内側円筒容器68の天井面に取り付けられることにより、内側円筒容器68と外側円筒容器70の間に形成されている酸化剤ガス供給流路22と酸化剤ガス噴射用パイプ74が連通される。一方、酸化剤ガス噴射用パイプ74の下端面は閉鎖されると共に、下端部側面には複数の噴射口74aが設けられている。酸化剤ガス供給流路22から供給された空気は、酸化剤ガス噴射用パイプ74に流入し、下端部側面に設けられた複数の噴射口74aから周囲の各燃料電池セルユニット16に向けて放射状に噴射される。
ベース部材72の上面には、ドーナツ形断面の燃料ガス分散室76が設けられている。燃料ガス分散室76は、ベース部材72と同心円を為すように、ベース部材72上に設けられた気密性のあるチャンバであり、その上面に各燃料電池セルユニット16が林立されている。燃料ガス分散室76の上面に取り付けられた各燃料電池セルユニット16は、その内側の燃料極が、燃料ガス分散室76の内部と連通されている。
一方、内側円筒部材64と、燃料ガス分散室76の上面とを接続するように、改質ガス移送パイプ78が設けられている。改質ガス移送パイプ78は、内側円筒部材64の内側上部から、燃料ガス分散室76の上面へ、概ね鉛直方向に延びる管である。改質ガス移送パイプ78の上端は、内側円筒部材64と外側円筒部材66の間の燃料ガス供給流路20と連通され、下端は、燃料ガス分散室76の上面を貫通して、燃料ガス分散室76の内部まで延びている。これにより、燃料ガス供給流路20内を上昇した燃料ガスは、改質ガス移送パイプ78を通って下方に下り、燃料ガス分散室76の中に流入する。燃料ガス分散室76に流入した燃料ガスは、各燃料電池セルユニット16の燃料極に分配される。
さらに、ベース部材72の中央には、ベース部材72を貫通するようにバスバー80が取り付けられている。バスバー80は、燃料電池セルスタック14により生成された電力を、燃料電池セル収容容器8の外部へ取り出すための細長い金属プレート導体であり、ベース部材72には絶縁体を介して取り付けられている。バスバー80は、燃料電池セル収容容器8の内部において、後述する各燃料電池セルユニット16に取り付けられた集電体と電気的に接続されている。また、バスバー80は、燃料電池セル収容容器8の外部において、インバータ54(図1)に接続される。
また、ベース部材72の上面には、燃料ガス分散室76を取り囲むように、円筒状のセルスタック保温用断熱材82が取り付けられている。セルスタック保温用断熱材82は、燃料ガス分散室76全体、及び燃料電池セルスタック14の下部約2/3程度の周囲を取り囲むように構成された円筒形の断熱材である。また、セルスタック保温用断熱材82の上部約1/3の部分は、上端に向けて断熱材の厚さが次第に薄くなるように、テーパが付けられている。この構成により、燃料電池セルスタック14と、その周囲の内側円筒部材64との間の断熱性は、セルスタック保温用断熱材82の上端に向けて少しずつ低下する。
次に、図4、図5を新たに参照して、燃焼バーナーの構成を説明する。
図4は、図3のIV−IV線に沿う平面断面図である。図5は、燃料電池セル収容容器の上部を拡大して示す概略断面図である。
図3乃至図5に示すように、燃焼バーナー84は、燃料電池セル収容容器8内の上端部に配置された概ねドーナツ形のバーナーであり、その中心軸線上に酸化剤ガス噴射用パイプ74が貫通されている。燃焼バーナー84の外周部には、複数のガス噴射口84aが設けられており、図4に示すように、燃焼バーナー84から概ね水平方向に放射状に炎が形成される。また、燃焼バーナー84の上面には、エジェクター84bが設けられている。エジェクター84bは、燃焼バーナー84内に燃料ガスを導入する導入口として形成されており、この導入口に向けてバーナー用ガス供給パイプ60の先端から燃料ガスが噴射される。バーナー用ガス供給パイプ60の先端から噴射された燃料ガスは、周囲の空気や排気ガスを引き込みながら、燃焼バーナー84の内部に導入される。燃焼バーナー84内に流入した燃料ガス及び空気は内部で混合され、各ガス噴射口84aから噴射される。
また、点火プラグ62(図3)は、その先端部がガス噴射口84aの近傍に位置するように配置されており、点火プラグ62の先端部で火花を発生させることにより、ガス噴射口84aから噴射された燃料ガス及び空気の混合気に点火される。燃焼バーナー84の炎は、ガス噴射口84aと向かい合う内側円筒部材64の上端部を加熱する。この燃焼バーナー84により加熱される内側円筒部材64の上端部は、加熱部64a(図5)として機能する。
次に、図3を参照して、燃料供給源30から供給される原燃料ガスを改質するための構成について説明する。
まず、内側円筒部材64と外側円筒部材66の間の空間で構成されている燃料ガス供給流路20の下部には、水蒸気改質用の水を蒸発させるための蒸発部86が設けられている。蒸発部86は、外側円筒部材66の下部内周に取り付けられたリング状の傾斜板86a及び水供給パイプ88から構成されている。また、蒸発部86は、発電用の空気を導入するための酸化剤ガス導入パイプ56よりも下方で、排気ガスを排出する排ガス排出パイプ58よりも上方に配置されている。傾斜板86aは、リング状に形成された金属の薄板であり、その外周縁が外側円筒部材66の内壁面に取り付けられる。一方、傾斜板86aの内周縁は外周縁よりも上方に位置し、傾斜板86aの内周縁と、内側円筒部材64の外壁面との間には隙間が設けられている。
水供給パイプ88はベース部材72を貫通して鉛直方向に延びるパイプであり、水流量調整ユニット28から供給された水蒸気改質用の水が、水供給パイプ88を介して蒸発部86に供給される。水供給パイプ88の上端は、傾斜板86aを貫通して傾斜板86aの上面側まで延び、傾斜板86aの上面側に供給された水は、傾斜板86aの上面と外側円筒部材66の内壁面の間に留まる。傾斜板86aの上面側に供給された水は、そこで蒸発され水蒸気が生成される。このように、水供給パイプ88の上端部は、水導入部88aとして機能する。
また、蒸発部86の下方には、原燃料ガスを燃料ガス供給流路20内に導入するための燃料ガス導入部が設けられている。燃料ブロア38から送られた原燃料ガスは、燃料ガス供給パイプ90を介して燃料ガス供給流路20に導入される。燃料ガス供給パイプ90はベース部材72を貫通して鉛直方向に延びるパイプであり、水供給パイプ88の近傍に配置されている。また、燃料ガス供給パイプ90の上端は、傾斜板86aよりも下方に位置している。従って、燃料ガス供給パイプ90の上端部は、燃料ガス導入部90aとして機能する。燃料ブロア38から送られた原燃料ガスは、傾斜板86aの下側に導入され、傾斜板86aの傾斜により流路を絞られながら傾斜板86aの上側へ上昇する。傾斜板86aの上側へ上昇した原燃料ガスは、蒸発部86で生成された水蒸気と共に上昇する。
燃料ガス供給流路20内の蒸発部86上方には、混合部92が設けられている。混合部92は、内側円筒部材64の外壁面に取り付けられた3つの螺旋羽根92aにより構成されている。各螺旋羽根92aは、内側円筒部材64の周りを概ね1周するC形の薄板から構成されており、この板が螺旋を描くように内側円筒部材64の外壁面に取り付けられている。また、各螺旋羽根92aの外周縁は、外側円筒部材66の内壁面近傍まで延びているため、燃料ガス供給流路20内には、各螺旋羽根92aにより、概ね螺旋を描く流路が形成される。この螺旋状の流路を通過することにより、燃料ガス導入部90aから導入された原燃料ガスと、蒸発部86で生成された水蒸気が十分に混合される。
さらに、燃料ガス供給流路20内の混合部92上方、且つ燃料ガス供給流路20上端の加熱部64a(図5)の下方には、改質部94が設けられている。改質部94は、燃料電池セルスタック14の上部と、その上方の燃焼室18の周囲を取り囲むように配置されている。改質部94は、内側円筒部材64の外壁面に取り付けられた6つの触媒保持螺旋板94aと、触媒保持螺旋板94aの上部および下部で内側円筒部材64の外壁面に取り付けられた2つの触媒保持通気板94bと、これらにより保持された改質触媒96によって構成されている。各触媒保持螺旋板94aは、内側円筒部材64の周りを概ね1周するC形の薄板から構成されており、この板が螺旋を描くように内側円筒部材64の外壁面に取り付けられている。また、各触媒保持螺旋板94aの外周縁は、外側円筒部材66の内壁面近傍まで延びているため、燃料ガス供給流路20内には、各触媒保持螺旋板94aにより、概ね螺旋を描く流路が形成される。各触媒保持通気板94bには、多数の細孔が設けられ通気性が確保される。その細孔の大きさは、改質触媒64を通過させないように保持しかつ原燃料ガスと水蒸気が改質部94へ流入させ、そして流出させることのできる通気性が確保される程度である。改質触媒96は、上述の各触媒保持螺旋板94a、各触媒保持通気板94bの内部に充填される。
このように、改質部94内に充填された改質触媒96に、混合部92において混合された原燃料ガス及び水蒸気が接触すると、改質部94内においては、式(1)に示す水蒸気改質反応SRが進行する。
mn+xH2O → aCO2+bCO+cH2 (1)
改質部94において改質された燃料ガスは、改質ガス移送パイプ78を通って下方に流れ、燃料ガス分散室76に流入して、各燃料電池セルユニット16に供給される。なお、水蒸気改質反応SRは吸熱反応であるが、反応に要する熱は、燃焼バーナー84により加熱された加熱部64a(図5)から伝導する熱、燃焼室18において生成される燃焼熱、及び燃料電池セルスタック14において発生する発電熱により供給される。
次に図6により本実施形態による固体酸化物型燃料電池装置(SOFC)に備えられているセンサ類等について説明する。図6は、本発明の一実施形態による固体酸化物型燃料電池装置1(SOFC)を示すブロック図である。
図6に示すように、固体酸化物型燃料電池装置1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。また、制御部110には、マイクロコンピュータ、メモリ、及びこれらを作動させるプログラム(以上、図示せず)が内蔵されており、これらにより、制御部110に接続された各機器が制御される。
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
水流量センサ134は、改質器20に供給される純水の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質部94の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
発電室温度センサ142は、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排ガス排出流路21内を流れる排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質部94の温度を検出するためのものであり、改質部94の入口温度と出口温度から改質部94の温度を算出する。
外気温度センサ150は、固体酸化物型燃料電池装置1(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料ブロア38、空気流量調整ユニット45に制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
次に図7により本実施形態による固体酸化物型燃料電池装置1(SOFC)の起動時の動作を説明する。図7は、本発明の一実施形態による固体酸化物型燃料電池(SOFC)の起動時の動作を示すタイムチャートであり、燃料電池セルスタック14の温度が反映される発電室10の温度、及び改質部94の温度の推移を示している。また、図7には、これらの温度と併せて、発電用の空気の供給流量、燃焼バーナー84への燃料ガスの供給流量、改質部94への燃料ガスの供給流量、及び蒸発部86への水の供給流量が示されているが、これらは各供給流量の増減の傾向を模式的に表すものであり、具体的な供給量を表すものではない。
固体酸化物型燃料電池装置1の起動時においては、燃料電池モジュール2内の燃料電池セルスタック14を発電可能な温度まで昇温させるために起動工程を実行する。この起動工程においては、燃料電池モジュール2からインバータ54へ電力が取り出されることはない。従って、起動工程においては、燃料電池モジュール2は発電を行わない。
先ず、図7の時刻t1において、制御部110により空気流量調整ユニット45が起動され、燃料電池モジュール2への空気の供給が開始される。供給された空気は、酸化剤ガス導入パイプ56から酸化剤ガス供給流路22に流入し、酸化剤ガス供給流路22内を上方に向かって流れた後、酸化剤ガス噴射用パイプ74に流入する。酸化剤ガス噴射用パイプ74に流入した空気は下降し、酸化剤ガス噴射用パイプ74下端の噴射口74aから、酸化剤ガス噴射用パイプ74を取り囲むように配置された各燃料電池セルユニット16の下部に吹き付けられる。各燃料電池セルユニット16の下部(燃料電池セルスタック14の下部)に吹き付けられた空気は、発電室10内を上昇して燃焼室18内に流入し、燃焼バーナー84と内側円筒部材64の内壁面の間の環状の空間を通って、内側円筒容器68の天井面に到達する。内側円筒容器68の天井面に到達した空気は、放射方向に流れて、内側円筒容器68と外側円筒部材66の間に形成された排ガス排出流路21に流入する。排ガス排出流路21に流入した空気は、下降して、排ガス排出パイプ58から燃料電池モジュール2の外へ排出される。これにより、燃料電池モジュール2の発電室10内、燃焼室18内に滞留していた気体も燃料電池モジュール2の外へ排出される。
次に、時刻t1において、制御部110により燃料ブロア38が起動される。燃料ブロア38が起動されることにより、燃料供給源30から供給された原燃料ガスは、比例弁32に送り込まれる。時刻t1においては、比例弁32は、供給された全ての原燃料ガスが、燃焼バーナー84へ送り込まれる状態に設定されている。従って、比例弁32から流出した原燃料ガスは、バーナー用ガス供給パイプ60に流入する。バーナー用ガス供給パイプ60に流入した原燃料ガスは、その下端から燃焼バーナー84のエジェクター84bに向けて噴射される。エジェクター84bに噴射された原燃料ガスは、周囲の空気を巻き込みながら、空気と共に燃焼バーナー84の内部に流入する。燃焼バーナー84に流入した原燃料ガスは、その各ガス噴射口84aから概ね水平方向に、放射状に噴射される。
さらに、時刻t2において、制御部110により点火プラグ62に信号が送られ、ガス噴射口84aから噴射されている原燃料ガスに点火される。これにより、燃焼バーナー84の燃焼熱により燃料電池モジュール2内の温度を上昇させる燃焼運転が開始される。燃焼バーナー84の炎は、燃焼バーナー84の外周面と対向するように配置されている内側円筒部材64の上端部である加熱部64aを加熱する。加熱部64aが加熱されると、熱伝導により内側円筒部材64全体の温度が上昇すると共に、内側円筒部材64と接合されている外側円筒部材66の温度も上昇する。これにより、内側円筒部材64と外側円筒部材66の間に配置されている改質部94内の改質触媒96も加熱され温度上昇する。
また、内側円筒部材64に取り囲まれている発電室10内、燃焼室18内の温度も上昇する。さらに、燃焼バーナー84により生成された高温の燃焼ガスは、燃焼バーナー84と加熱部64aの間の空間を通って排ガス排出流路21に流入する。即ち、燃焼により生じた排気ガスは、外側円筒部材66と内側円筒容器68の間の排ガス排出流路21を通って排出される。この際、外側円筒部材66の内側に設けられた改質部94を周囲から加熱すると共に、内側円筒容器68の外側に設けられている酸化剤ガス供給流路22内を流れる空気を加熱する。これにより、酸化剤ガス噴射用パイプ74を通って発電室10内に流入する空気の温度も上昇し、発電室10内の温度も上昇する。これらの作用により、時刻t2以降、発電室10内の温度、及び改質部94の温度が上昇する。
改質部94の温度が十分に上昇すると、制御部110は、時刻t3において、改質部94への燃料及び水蒸気の供給を開始する。これにより、燃焼バーナー84の燃焼熱で燃料電池モジュール2内を加熱しながら、改質部94内においては水蒸気改質反応SRを発生させるSR1工程が開始される。具体的には、制御部110により比例弁32の設定が変更され、流入した原燃料ガスが燃焼バーナー84及び改質部94へ供給されるようになる。また、制御部110により、水流量調整ユニット28が起動され、蒸発部86への水の供給が開始される。
比例弁32の設定が変更されることにより、比例弁32へ流入した原燃料ガスは、燃焼バーナー84の他に、脱硫器36へも供給されるようになる。脱硫器36へ流入した原燃料ガスは、そこで硫黄分が除去される。なお、時刻t3においては、燃料電池セル収容容器8を取り囲むように配置されている脱硫器36内の触媒(図示せず)の温度も、脱硫が可能な温度まで上昇されており、十分に硫黄分を除去することができる。脱硫器36から流出した原燃料ガスは、熱交換器34により温度が低下され、電磁弁35を通って燃料電池セル収容容器8内に流入する。なお、脱硫器36から流出した原燃料ガスの温度を熱交換器34で低下させることにより、後続の電磁弁35の劣化が防止される。
電磁弁35を通過した原燃料ガスは、燃料ガス供給パイプ90の先端の燃料ガス導入部90aから、燃料ガス供給流路20に流入する。燃料ガス供給流路20の内部は、その上端の加熱部64aが加熱されているため、上方の温度が高い状態にある。また、排ガス排出流路21の排ガス排出パイプ58は、燃料ガス導入部90aよりも上方に設けられているため、燃料ガス導入部90aの上方の部分までが排気ガスの熱により加熱されるので、燃料ガス導入部90aの上方の温度が高くなる。このため、燃料ガス供給流路20内には上昇気流が存在するので、燃料ガス導入部90aから流入した原燃料ガスは、上昇気流と共に上昇する。この際、燃料ガス導入部90aの上方に取り付けられた傾斜板86aにより、原燃料ガスの流路は上方が狭くなるように絞られるため、ここで原燃料ガスの流速が上昇する。
一方、水流量調整ユニット28により送り出された改質用の水は、水供給パイプ88先端の水導入部88aから流出し、傾斜板86aの上側の面に流入する。ここで、傾斜板86aが取り付けられている外側円筒部材66の外側は、排ガス排出流路21であり、上方で改質部94を加熱した高温の排気ガスが、傾斜板86aの周囲まで流下している。この高温の排気ガスの流れにより、蒸発部86を構成する傾斜板86a及びその近傍の外側円筒部材66の温度も上昇しているため、水導入部88aから蒸発部86に流入した水は蒸発され、水蒸気が生成される。なお、排ガス排出流路21内を流下する排気ガスは、上方で改質部94を加熱することにより温度が低下しているが、蒸発部86は、改質部94ほど高温まで加熱する必要はないため、改質部94を加熱した後の排気ガスによっても十分に加熱することができる。また、蒸発部86は、燃料電池セルスタック14の側からも熱を受けるが、燃料電池セルスタック14と蒸発部86の間には、セルスタック保温用断熱材82が配置されているので、蒸発部86は主に排ガス排出流路21からの熱により加熱される。
また、排気ガスを排出する排ガス排出パイプ58は、蒸発部86よりも下方に配置されているため、排気ガスは蒸発部86を加熱した後、排ガス排出パイプ58から排出される。これにより、蒸発部86は、排ガス排出流路21内を流れる排気ガスの熱により十分に加熱される。また、蒸発部86は、発電用の空気を導入するための酸化剤ガス導入パイプ56よりも下方に配置されている。このため、排ガス排出流路21の、蒸発部86を取り囲んでいる部分は、酸化剤ガス供給流路22内を流れる空気により熱を奪われにくく、蒸発部86は排気ガスの熱により確実に加熱される。
ここで、燃料ガス導入部90aと水導入部88aは近傍に配置されている。このため、燃料ガス導入部90aから流入し、傾斜板86aの内周縁と内側円筒部材64の外壁面の間から上昇した原燃料ガスは、水導入部88aから導入され、傾斜板86aの上面の水導入部88a近傍で蒸発された水蒸気と即座に混ざり合いながら、上昇気流と共に燃料ガス供給流路20内を上昇する。原燃料ガス及び水蒸気は、蒸発部86の上方に配置された混合部92に到達し、ここで、各螺旋羽根92aによって形成されている螺旋状の流路に沿って、内側円筒部材64の周囲を回りながら上昇する。螺旋状の流路を旋回しながら上昇することにより、原燃料ガスと水蒸気は十分に混合される。
混合部92において十分に混合された原燃料ガス及び水蒸気は更に上昇し、混合部92の上方に配置されている改質部94に到達する。改質部94においては、原燃料ガス及び水蒸気は、螺旋を為すように配置された触媒保持螺旋板94aに沿って螺旋状に流れ、ここで、改質触媒96に接触する。これにより、上記式(1)に示した水蒸気改質反応SRが発生し、原燃料ガスは、水素を豊富に含む燃料ガスに改質される。
改質部94において改質された燃料ガスは、改質ガス移送パイプ78を通って下方に流れ、燃料ガス分散室76に流入する。燃料ガス分散室76に流入した燃料ガスは、燃料ガス分散室76の上面に配置された各燃料電池セルユニット16内側の燃料極に流入する。燃料極に流入した燃料ガスは、各燃料電池セルユニット16内を上昇し、各燃料電池セルユニット16の上端から流出する。時刻t3においては、発電室10内の温度は十分に上昇しているため、各燃料電池セルユニット16の上端から流出した燃料ガスは燃焼され、各燃料電池セルユニット16の上端には炎が形成される。この各燃料電池セルユニット16上方の燃焼室18内における燃料ガスの燃焼熱によっても、燃焼室18を取り囲むように配置されている改質部94が加熱される。
上述したように、改質部94内で発生する水蒸気改質反応SRは、吸熱反応であるが、この反応に要する熱は、燃焼バーナー84による加熱部64aへの加熱、燃焼室18内における燃焼熱、及び燃焼室18から改質部94周囲の排ガス排出流路21を通って流れる排気の熱によって賄われる。
燃料電池モジュール2内の温度が所定の温度まで上昇すると、制御部110は、時刻t4において、SR2工程を開始させる。SR2工程においては、制御部110により比例弁32の設定が変更され、燃焼バーナー84への燃料ガス供給量が減少される一方、改質部94への燃料ガス供給量が増加される。また、水流量調整ユニット28により蒸発部86へ供給される水の流量も増加される。これにより、燃焼バーナー84による加熱が減少し、各燃料電池セルユニット16の上端から流出する燃料ガスの燃焼熱による加熱が増加する。
燃料電池モジュール2内の温度が更に上昇して、所定の温度に到達すると、制御部110は、時刻t5において、SR3工程を開始させる。SR3工程においては、制御部110により比例弁32の設定が変更され、燃焼バーナー84への燃料ガスの供給が停止される一方、改質部94への燃料ガス供給量が増加される。また、水流量調整ユニット28により蒸発部86へ供給される水の流量も増加される。これにより、燃焼バーナー84による加熱が停止され、専ら各燃料電池セルユニット16の上端から流出する燃料ガスの燃焼熱により加熱されるようになる。
さらに、燃料電池セルスタック14の温度が、発電可能な温度に到達すると、制御部110は、時刻t6において、起動工程を終了し、発電工程を開始する。具体的には、制御部110により、燃料電池モジュール2がインバータ54に接続され、バスバー80を介してインバータ54に電流が取り出される。これにより、各燃料電池セルユニット16の燃料極側(内側)を流れる燃料ガスと、空気極側(外側)を流れる空気の間で発電反応が発生し、電力が生成される。なお、発電工程においては、燃料ガス供給流量、水供給流量、及び発電用の空気流量は、要求される発電量に応じて決定される。本実施形態の固体酸化物型燃料電池装置1においては、SR3工程における燃料ガス供給流量、水供給流量、及び発電用の空気流量は、最大定格電力を生成するために必要な各流量よりも多く設定されている。従って、SR3工程から発電工程に移行すると、燃料ガス供給流量、水供給流量、及び空気流量は低下される。
発電工程では、各燃料電池セルユニット16において、発電熱が発生する。従って、燃料電池モジュール2の内部は、各燃料電池セルユニット16の発電熱によっても加熱される。特に、燃料電池セルスタック14の上部の周囲を取り囲むように配置されている改質部94は、発電熱により加熱される。このため、発電工程中においても、燃料ガス供給流路20は、上部の温度が高く、下部の温度が低くなり、その内部において上昇気流が発生し、供給された原燃料ガスが容易に上方へ送られる。
また、発電室10内の温度は、その上部が燃焼室18における燃焼熱により加熱されるため、上部において温度が高く、下部において温度が低くなる傾向があり、これにより、各燃料電池セルユニット16においても、その上部と下部の間で温度ムラが発生しやすい。
しかしながら、本実施形態の固体酸化物型燃料電池装置1においては、燃料電池セルスタック14の下部がセルスタック保温用断熱材82によって包囲されているため、各燃料電池セルユニット16の下部で発生した発電熱が、周囲の内側円筒部材64(燃料ガス供給流路20)へ移りにくく、各燃料電池セルユニット16の下部が保温される。一方、温度が上昇しやすい各燃料電池セルユニット16の上部は、内部で吸熱反応が発生している改質部94と直接対向しているため、周囲に発電熱が奪われやすくなっている。これにより、各燃料電池セルユニット16における上部と下部の間での温度ムラが抑制される。
さらに、燃料電池セルスタック14を取り囲むセルスタック保温用断熱材82は、上端に向かって次第に薄くなるように形成されている。これにより、各燃料電池セルユニット16において、セルスタック保温用断熱材82に囲まれている部分と、囲まれていない部分で急激に断熱性が変化することによる温度ムラの発生が抑制される。また、本実施形態の固体酸化物型燃料電池装置1においては、内側円筒部材64の下部の内径が大きく、上部の内径が小さく形成されている。このため、燃料電池セルスタック14の下部においては、燃料電池セルスタック14から周囲の内側円筒部材64までの距離が離れており、上部においては内側円筒部材64までの距離が近接し、下方ほど燃料電池セルスタックから内側円筒部材64までの距離が離れている。これにより、燃料ガス供給流路20は、燃料電池セルスタック14の下部からは、燃料電池セルスタック14の上部からよりも、燃料電池セルスタック14の熱を受けにくくなる。換言すれば、燃料電池セルスタック14の下部においては、発電熱が奪われにくくなり、各燃料電池セルユニット16における上部と下部の間での温度ムラが抑制される。
また、本実施形態の固体酸化物型燃料電池装置1においては、発電用の空気は、燃料電池セルスタック14の中央に配置された酸化剤ガス噴射用パイプ74から放射状に噴射され、発電室10内を上昇した後、内側円筒部材64の上端縁から、環状の排ガス排出流路21に流入する。このため、発電室10内及び燃焼室18内の空気の流れは、ほぼ完全に軸対称の流れとなり、燃料電池セルスタック14を構成する各燃料電池セルユニット16の周囲には、ムラなく空気が流れる。これにより、各燃料電池セルユニット16間の温度差が抑制され、各燃料電池セルユニット16で均等な起電力を発生することができる。
次に、図8を参照して、起動工程における燃料電池セル収容容器8内の温度分布を説明する。図8(a)乃至(c)は、図3に示す位置A、B、C、Dにおける、燃料ガス供給流路20内の温度、及び排ガス排出流路21内の温度を示すグラフであり、燃料ガス供給流路20内の温度を実線で、排ガス排出流路21内の温度を破線で示している。図8(a)は起動10分後の温度分布を示し、(b)は20分後、(c)は30分後を示している。図3に示すように、位置Aは、燃料電池セル収容容器8の上端部近傍であり、燃料ガス供給流路20内の位置Aは加熱部64a近傍であり、排ガス排出流路21内の位置Aは排ガス排出流路21の入り口近傍である。位置Bは、燃料ガス供給流路20内において改質部94が形成された部分に該当する。位置Cは、混合部92と改質部94の間の部分に該当する。位置Dは、燃料ガス供給流路20内において蒸発部86が形成された部分に該当する。
まず、図8(a)に示すように、起動10分後においては、燃焼バーナー84で加熱されている加熱部64a近傍の位置Aにおける温度は上昇しているが、下方の位置B乃至Dにおける温度は、あまり上昇していない。また、破線で示す排ガス排出流路21内の温度の方が、実線で示す燃料ガス供給流路20内の温度よりも高くなっている。
次に、図8(b)に示すように、起動20分後においては、加熱部64a近傍の位置Aにおける熱が、下方の位置B、Cに伝導され、温度が上昇しており、改質部94の温度が上昇し始めている。これに対して、位置Dにおける温度は、まだあまり上昇していない。また、図8(b)から明らかなように、排ガス排出流路21内の温度は、燃料ガス供給流路20内の温度よりも高く、排ガス排出流路21内を流れる排気ガスにより、燃料ガス供給流路20内の燃料ガス、水、改質触媒96が加熱される。また、図8(b)において、燃料ガス供給流路20内の位置Dの温度が100℃程度まで上昇しており、蒸発部86内における水蒸気の生成が可能になる。
さらに、図8(c)に示すように、起動30分後においては、位置Bにおける温度が位置Aに接近し、改質触媒96が十分に加熱されていることが分かる。また、図8(b)(c)から明らかなように、燃料ガス供給流路20内の温度は、上方ほど高くなっており、これにより生じる上昇気流により、燃料ガスは、ブロア等によりあまり加圧されていなくとも、燃料ガス供給流路20内で上昇し改質部94へ送り込まれる。また、蒸発部86において発生した水蒸気も上昇気流により、燃料ガスと混合されながら、改質部94へ送り込まれる。このように、燃料ガス供給流路20内においては、大きな温度勾配が発生している一方、燃料ガス供給流路20により取り囲まれている燃料電池セルスタック14の上部と下部の間の温度ムラは、上述したように抑制される。
次に、図3、図9及び図10を参照して、本発明の一実施形態による固体酸化物型燃料電池の内側円筒部材と外側円筒部材との間に形成される燃料ガス供給流路内の構造について、さらに詳細に説明する。
図9は、本発明の一実施形態による固体酸化物型燃料電池の内側円筒部材の外壁面と外側円筒部材の内壁面との間に形成される燃料ガス供給流路内の構造を示す斜視図であり、図10は、本発明の一実施形態による固体酸化物型燃料電池の内側円筒部材と外側円筒部材との間に形成される燃料ガス供給流路について、内側円筒部材の外周方向に沿って展開した概略図である。
ここで、図10は、図9に示す内側円筒部材64の外壁面152について、上下方向に延びる所定の切り取り線L1に沿って切断し、内側円筒部材64の外周方向に展開した図である。また、図10は、図9に示す内側円筒部材64の中心軸線C1を中心に、切り取り線L1から図9の上方から見て反時計回りに展開したときの角度(すなわち、内側円筒部材64の外壁面152の円周角に相当)をθ(度)とし、内側円筒部材64の外壁面152を周方向に一周分、すなわち、角度θを0度から360度まで展開した様子を示している。
図3、図9及び図10に示すように、内側円筒部材64の外壁面152と外側円筒部材66の内壁面154との間に形成される燃料ガス供給流路20内において、蒸発部86と改質部94との間には、旋回流路部156が設けられており、この旋回流路部156は、燃料ガス供給パイプ90の燃料ガス導入部90aから燃料ガス供給流路20内に導入されて上昇した原燃料ガスFと、水供給パイプ88の水導入部88aから導入され、蒸発部86で生成されて上昇した水蒸気Sとを燃料ガス供給流路20の周方向に沿って旋回させ、混合された原燃料ガスと水蒸気を改質部94の全周に亘って均一に供給する流れ(混合気流)Mを形成することができるようになっている。
より具体的に説明すると、旋回流路部156は、燃料ガス導入部90aから燃料ガス供給流路20内に導入されて上昇した原燃料ガスFと蒸発部86で生成されて上昇した水蒸気Sとを燃料ガス供給流路20の周方向に沿って旋回させる螺旋状の流路を形成する螺旋流路部158を備えている。この螺旋流路部158は、実質的には、上述した混合部92に相当し、内側円筒部材64の周りを概ね1周するC形の薄板からなる3つの螺旋羽根92aを備えている。
また、図9及び図10に示すように、これら3つの螺旋羽根92aは、第1螺旋羽根160、第2螺旋羽根162及び第3螺旋羽根164から構成され、第1螺旋羽根160の下縁の位置P1は、3つの螺旋羽根160,162,164のうちで線L1に最も近接しており、第1螺旋羽根160の上縁の位置Q1は、第1螺旋羽根160の下縁の位置P1のほぼ真上に位置している。
さらに、第2螺旋羽根162の下縁の位置P2は、第1螺旋羽根160の下縁の位置P1に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを120度ずらした位置となっており、第2螺旋羽根162の上縁の位置Q2は、第2螺旋羽根162の下縁の位置P2のほぼ真上に位置している。
同様に、第3螺旋羽根164の下縁の位置P3は、第1螺旋羽根160の下縁の位置P1に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを240度ずらした位置となっており、第2螺旋羽根162の下縁の位置P2に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θをさらに120度ずらした位置となっており、第3螺旋羽根164の上縁の位置Q3は、第3螺旋羽根164の下縁の位置P3のほぼ真上に位置している。
また、旋回流路部156の螺旋流路部158は、これら3つの螺旋羽根160,162,164、内側円筒部材64の外壁面152、及び外側円筒部材66の内壁面154により螺旋状に形成される3つの第1螺旋流路166、第2螺旋流路168、及び第3螺旋流路170を備えている。ここで、第1螺旋流路166は、第1螺旋羽根160、第2螺旋羽根162、内側円筒部材64の外壁面152、及び外側円筒部材66の内壁面154により形成されている。同様に、第2螺旋流路168は、第2螺旋羽根162、第3螺旋羽根164、内側円筒部材64の外壁面152、及び外側円筒部材66の内壁面154により形成されており、第3螺旋流路170は、第1螺旋羽根160、第3螺旋羽根164、内側円筒部材64の外壁面152、及び外側円筒部材66の内壁面154により形成されている。
なお、本実施形態においては、螺旋羽根160,162,164の外周縁が外側円筒部材66の内壁面154近傍まで延びており、外側円筒部材66の内壁面154との間に僅かな隙間が形成されているため、各螺旋流路166,168,170の流路断面が完全に閉じた流路断面とはなっていないが、各螺旋流路166,168,170の流路断面については、螺旋羽根160,162,164の外周縁と外側円筒部材66の内壁面154との隙間が形成されていない完全に閉じた流路断面に設定してもよい。
また、螺旋流路166,168,170についても、2つ又は4つ以上の複数の螺旋流路に設定してもよい。
さらに、螺旋流路部158の3つの螺旋流路166,168,170のそれぞれは、下端に位置する入口166a,168a,170aと、各入口166a,168a,170aの位置に対してほぼ真上に位置する出口166b,168b,170bをそれぞれ備えている。各螺旋流路166,168,170の各入口166a,168a,170aから各螺旋流路166,168,170に沿って各出口166b,168b,170bに至る流路長さは、内側円筒部材64の外壁面152の外周の長さとほぼ等しく設定されている。
また、図9及び図10に示すように、第2螺旋流路168の入口168aの位置は、第1螺旋流路166の入口166aの位置に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを120度ずらした位置となっており、第3螺旋流路170の入口170aの位置は、第2螺旋流路168の入口168aの位置に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを120度ずらした位置となっている。
同様に、第2螺旋流路168の出口168bの位置は、第1螺旋流路166の出口166bの位置に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを120度ずらした位置となっており、第3螺旋流路170の出口170bの位置は、第2螺旋流路168の出口168bの位置に対して中心軸線Cを中心に内側円筒部材64の外壁面152の周方向に角度θを120度ずらした位置となっている。
次に、旋回流路部156は、蒸発部86と螺旋流路部158との間に形成され、燃料ガス導入部90aから燃料ガス供給流路20内に導入されて上昇した原燃料ガスFと蒸発部86で生成されて上昇した水蒸気Sとを螺旋流路部158に分散させる単一の下側分散室172を備えている。
また、旋回流路部156は、螺旋流路部158と改質部94との間に形成され、螺旋流路部158で混合された原燃料ガスと水蒸気との混合割合を均一化させて改質部94の全周に亘って分散させる単一の上側分散室174を備えている。
ここで、下側分散室172の容積V1は、上側分散室174の容積V2よりも小さく設定されており、螺旋流路部158と蒸発部86とを近接させることができるようになっている。これにより、螺旋通路部158の各螺旋流路166,168,170内の熱について、螺旋羽根160,162,164を伝熱媒体として下方の蒸発部86へ伝えることができ、この蒸発部86に伝わった熱によって発生する上昇気流と共に、原燃料ガスと水蒸気を螺旋通路部158に確実に導くことができるようになっている。
さらに、上側分散室174内には、螺旋流路部158の螺旋羽根160,162,164のような螺旋羽根は設けられていないが、この上側分散室174内においては、各螺旋流路部158の各螺旋流路166,168,170内を旋回して混合された原燃料ガスと水蒸気の混合気流Mが各出口166b,168b,170bから上側分散室174内に流入した際に、これらの混合気流Mを各螺旋流路166,168,170よりも容積が大きい上側分散室174内で分散させると共に、さらに螺旋状に上昇させることができるようになっている。これにより、上側分散室174内において、各螺旋流路166,168,170の各出口166b,168b,170bのそれぞれから流出した時点で混合気流Mの混合割合がそれぞれ異なっていたとしても、各混合気流Mを上側分散室174内でさらに螺旋状に上昇させて混合し、均一化された混合割合の混合気流Mが、改質部94の底面に多数形成された流入口176を経て改質部94に供給されるようになっている。
本発明の実施形態の固体酸化物型燃料電池装置1によれば、燃料ガス供給流路20が、燃料電池セルスタック14を取り囲み、燃料電池セルスタック14及び燃焼部18から熱を受けるように配置されている(図3)。また、この燃料ガス供給流路20内の、蒸発部86よりも上方に、燃料電池セルスタック14の上部を取り囲むように改質部94が設けられている。このため、燃料ガス供給流路20内上方の改質部94の温度は、下方の燃料ガス導入部90a及び蒸発部86よりも温度が高くなる(図8)。これにより、燃料ガス供給流路20内において上昇気流が発生するので、この上昇気流により、燃料ガス導入部90aから導入された原燃料ガスを強く圧送することなく、蒸発部86において生成された水蒸気と混合させながら上方の改質部94に容易に送り込むことができる。また、燃料電池セルスタック14の上部を取り囲むように改質部94が設けられているので、改質触媒を燃料電池セルスタック14の周囲に広く分布させることができ、改質部94の占有投影面積を小さく抑制しながら、燃料電池セルスタック14及び燃焼部18の熱により、改質部94を十分に加熱することができる。
また、本実施形態の固体酸化物型燃料電池装置1によれば、排ガス排出流路21が燃料ガス供給流路20を取り囲むように設けられ(図3)、燃焼部18において燃焼された燃焼ガスが排出される。この排ガス排出流路21の排ガス排出パイプ58は、蒸発部86よりも下方に設けられているので、蒸発部86を十分に加熱することができる。また、排ガス排出パイプ58は、燃料ガス導入部90aよりも上方に設けられているので、上方の蒸発部86と燃料ガス導入部90aとの間で温度勾配を作ることができ、燃料ガス導入部90aから導入された原燃料ガスを、上昇気流により効果的に上方に搬送することができる。
さらに、本実施形態の固体酸化物型燃料電池装置1によれば、排ガス排出流路21との間で熱交換可能に酸化剤ガス供給流路22が設けられている。また、この酸化剤ガス供給流路22の酸化剤ガス流入口は蒸発部よりも上方に設けられている(図3)ので、蒸発部86近傍において、排ガス排出流路21の熱が、酸化剤ガス供給流路22の空気に奪われるのを抑制することができ、蒸発部86を排気ガスの熱により確実に加熱することができる。
また、本実施形態の固体酸化物型燃料電池装置1によれば、原燃料ガスを導入する燃料ガス導入部90aと水を導入する水導入部88aが近接して配置されている(図3)ので、燃料ガス導入部90aから導入された原燃料ガスが、水導入部88aの近傍で生成された水蒸気と共に混合部に導入され、これにより、原燃料ガスと水蒸気を効果的に混合させることができる。
さらに、本実施形態の固体酸化物型燃料電池装置1によれば、傾斜板86aの下方から燃料ガス供給流路20内に供給された原燃料ガスは、傾斜板86aによって流路を絞られながら上方に流れる(図3)ので、原燃料ガスの流速が上昇され、傾斜板86aの上面側で生成された水蒸気がこの流れに巻き込まれ、原燃料ガスと水蒸気を効果的に混合することができる。
以上、本発明の好ましい実施形態を説明したが、上述した実施形態に種々の変更を加えることができる。特に、上述した実施形態においては、燃料ガス供給流路は、燃料電池セルスタックの全周を取り囲むように設けられていたが、燃料ガス供給流路は燃料電池セルスタックの一部を取り囲むだけでもよい。同様に、排ガス排出流路は燃料ガス供給流路の全周を取り囲み、酸化剤ガス供給流路は排ガス排出流路の全周を取り囲んでいたが、これらも一部を取り囲んでいるだけでよい。
1 固体酸化物型燃料電池装置
2 燃料電池モジュール
4 補機ユニット
7 断熱材
8 燃料電池セル収容容器
10 発電室
14 燃料電池セルスタック
16 燃料電池セルユニット
18 燃焼室(燃焼部)
20 燃料ガス供給流路
21 排ガス排出流路
22 酸化剤ガス供給流路
24 水供給源
26 純水タンク
28 水流量調整ユニット(水供給装置)
30 燃料供給源
32 比例弁
34 熱交換器
35 電磁弁
36 脱硫器
38 燃料ブロア(燃料供給装置)
40 空気供給源
45 空気流量調整ユニット(酸化剤ガス供給装置)
50 温水製造装置
54 インバータ
56 酸化剤ガス導入パイプ(酸化剤ガス流入口)
58 排ガス排出パイプ(排ガス流出口)
60 バーナー用ガス供給パイプ
62 点火プラグ
64 内側円筒部材
64a 加熱部
66 外側円筒部材
68 内側円筒容器
70 外側円筒容器
72 ベース部材
74 酸化剤ガス噴射用パイプ
74a 噴射口
76 燃料ガス分散室
78 改質ガス移送パイプ
80 バスバー
82 セルスタック保温用断熱材
84 燃焼バーナー
84a ガス噴射口
84b エジェクター
86 蒸発部
86a 傾斜板
88 水供給パイプ
88a 水導入部
90 燃料ガス供給パイプ
90a 燃料ガス導入部
92 混合部
92a 螺旋羽根
94 改質部
94a 触媒保持板
96 改質触媒
110 制御部(制御手段)
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ(出力電圧検出手段)
132 燃料流量センサ(燃料供給量検出手段)
138 圧力センサ(改質器圧力センサ)
140 排気温度センサ
142 発電室温度センサ(温度検出手段)
148 改質器温度センサ(温度検出手段)
150 外気温度センサ
152 内側円筒部材の外壁面
154 外側円筒部材の内壁面
156 旋回流路部
158 螺旋流路部
160 第1螺旋羽根
162 第2螺旋羽根
164 第3螺旋羽根
166 第1螺旋流路
166a 第1螺旋流路の入口
166b 第1螺旋流路の出口
168 第2螺旋流路
168a 第2螺旋流路の入口
168b 第2螺旋流路の出口
170 第3螺旋流路
170a 第3螺旋流路の入口
170b 第3螺旋流路の出口
172 下側分散室(第2分散室)
174 上側分散室(第1分散室)
176 改質部の流入口

Claims (5)

  1. 炭化水素系の原燃料ガスを改質し、改質された燃料ガスにより発電する固体酸化物型燃料電池装置であって、
    原燃料ガスを供給する燃料供給装置と、
    この燃料供給装置により供給された原燃料ガスを水蒸気改質するための水を供給する水供給装置と、
    発電用の酸化剤ガスを供給する酸化剤ガス供給装置と、
    この酸化剤ガス供給装置により供給された発電用の酸化剤ガスと改質された燃料ガスを反応させることにより電力を生成する燃料電池セルスタックと、
    この燃料電池セルスタック上方に設けられ、上記燃料電池セルスタックにおいて発電に利用されずに残った燃料ガスを燃焼させる燃焼部と、
    上記燃料電池セルスタックの少なくとも一部を取り囲み、上記燃料電池セルスタック及び上記燃焼部から熱を受けるように配置された燃料ガス供給流路と、
    この燃料ガス供給流路の下部に設けられ、上記燃料供給装置から供給された原燃料ガスを上記燃料ガス供給流路に流入させる燃料ガス導入部と、
    上記燃料ガス供給流路内に、上記燃料ガス導入部よりも上方に配置され、上記水供給装置から供給された水を蒸発させる蒸発部と、
    上記燃料ガス供給流路内に設けられ、上記燃料ガス導入部から導入された原燃料ガスを上記蒸発部において生成された水蒸気により水蒸気改質する改質部と、を有し、
    上記改質部は、上記蒸発部よりも上方に、上記燃料電池セルスタックの上部を取り囲むように配置されていることを特徴とする固体酸化物型燃料電池装置。
  2. さらに、上記燃料ガス供給流路の少なくとも一部を取り囲むように、上記燃料ガス供給流路との間で熱交換可能に設けられ、上記燃焼部において燃焼された燃焼ガスを排出する排ガス排出流路を有し、この排ガス排出流路は、上記燃料電池セルスタックの上方から、上記燃料ガス導入部よりも上方、且つ上記蒸発部よりも下方に設けられた排ガス流出口へ燃焼ガスを導く請求項1記載の固体酸化物型燃料電池装置。
  3. さらに、上記排ガス排出流路の少なくとも一部を取り囲むように、上記排ガス排出流路との間で熱交換可能に設けられた酸化剤ガス供給流路を有し、この酸化剤ガス供給流路は、上記酸化剤ガス供給装置から供給された発電用の酸化剤ガスを、上記蒸発部よりも上方に設けられた酸化剤ガス流入口から上記燃料電池セルスタックの上方へ向けて導く請求項2記載の固体酸化物型燃料電池装置。
  4. さらに、上記蒸発部と上記改質部の間に、上記燃料ガス供給流路内に設けられた混合部を有し、上記燃料ガス供給流路内に原燃料ガスを導入する上記燃料ガス導入部と、上記水供給装置から供給された水を上記蒸発部に導入する水導入部が近接して配置され、上記混合部において混合される請求項3記載の固体酸化物型燃料電池装置。
  5. 上記蒸発部は上記燃料ガス供給流路の内壁面に取り付けられた傾斜板により構成され、上記水供給装置から供給された水は上記傾斜板の上面側に貯留されると共に、上記傾斜板よりも下方から上記燃料ガス供給流路内に供給された原燃料ガスは、上記傾斜板によって流路を絞られながら上方に流れる請求項3記載の固体酸化物型燃料電池装置。
JP2012216702A 2012-09-28 2012-09-28 固体酸化物型燃料電池装置 Expired - Fee Related JP5975426B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012216702A JP5975426B2 (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216702A JP5975426B2 (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Publications (2)

Publication Number Publication Date
JP2014072026A JP2014072026A (ja) 2014-04-21
JP5975426B2 true JP5975426B2 (ja) 2016-08-23

Family

ID=50747059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216702A Expired - Fee Related JP5975426B2 (ja) 2012-09-28 2012-09-28 固体酸化物型燃料電池装置

Country Status (1)

Country Link
JP (1) JP5975426B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246088B2 (ja) * 2014-07-16 2017-12-13 東京瓦斯株式会社 燃料電池モジュール
JP6259736B2 (ja) * 2014-08-29 2018-01-10 東京瓦斯株式会社 燃料電池モジュール
JP2018120653A (ja) * 2017-01-23 2018-08-02 株式会社デンソー 燃料電池装置
JP7388154B2 (ja) * 2019-11-27 2023-11-29 株式会社デンソー 燃料電池モジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316381A1 (en) * 1997-10-01 1999-04-08 Waikatolink Limited Integrated solid oxide fuel cell and reformer
JP2006269419A (ja) * 2005-02-22 2006-10-05 Mitsubishi Materials Corp 固体酸化物形燃料電池および運転方法
JP5166723B2 (ja) * 2006-11-29 2013-03-21 東京瓦斯株式会社 発電装置
JP2008287959A (ja) * 2007-05-16 2008-11-27 Nippon Oil Corp 間接内部改質型高温型燃料電池
JP5348614B2 (ja) * 2009-03-31 2013-11-20 Toto株式会社 固体電解質型燃料電池
JP5065367B2 (ja) * 2009-12-15 2012-10-31 トヨタ自動車株式会社 燃料電池モジュール
JP5641182B2 (ja) * 2009-12-22 2014-12-17 株式会社ノーリツ 蒸発装置及びこれを用いた燃料電池システム
JP5575535B2 (ja) * 2010-05-06 2014-08-20 川崎重工業株式会社 燃料電池

Also Published As

Publication number Publication date
JP2014072026A (ja) 2014-04-21

Similar Documents

Publication Publication Date Title
US9070920B2 (en) Solid oxide fuel cell device
JP5412960B2 (ja) 燃料電池装置
US8927162B2 (en) Solid oxide fuel cell system performing different restart operations depending on operation temperature
EP2256849B1 (en) Solid oxide fuel cell device
US20100304243A1 (en) Solid oxide fuel cell device
JP4707023B2 (ja) 固体電解質型燃料電池
US9236625B2 (en) Solid oxide fuel cell system
US8974978B2 (en) Solid oxide fuel cell device
US9331348B2 (en) Solid oxide fuel cell device
US11050067B2 (en) Fuel cell system
JP5975426B2 (ja) 固体酸化物型燃料電池装置
JP2014072052A (ja) 固体酸化物型燃料電池装置
JP2014072028A (ja) 固体酸化物型燃料電池装置
JP5783501B2 (ja) 固体酸化物形燃料電池装置
JP2014022230A (ja) 固体酸化物形燃料電池装置
JP2014072054A (ja) 固体酸化物型燃料電池装置
US9385386B2 (en) Solid oxide fuel cell system
JP2014072027A (ja) 固体酸化物型燃料電池装置
JP2013073898A (ja) 燃料電池装置
JP2014053315A (ja) 固体酸化物形燃料電池装置
JP6628084B2 (ja) 固体酸化物形燃料電池装置
JP6202469B2 (ja) 固体酸化物型燃料電池
JP6080103B2 (ja) 固体酸化物型燃料電池装置
JP2010257823A (ja) 燃料電池システムの燃焼装置
JP6311867B2 (ja) 燃料電池装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5975426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160710

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees