JP2014051899A - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
JP2014051899A
JP2014051899A JP2012195478A JP2012195478A JP2014051899A JP 2014051899 A JP2014051899 A JP 2014051899A JP 2012195478 A JP2012195478 A JP 2012195478A JP 2012195478 A JP2012195478 A JP 2012195478A JP 2014051899 A JP2014051899 A JP 2014051899A
Authority
JP
Japan
Prior art keywords
torque
motor
motor shaft
balance
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012195478A
Other languages
English (en)
Other versions
JP5907008B2 (ja
Inventor
Tsuyoshi Kanda
剛志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012195478A priority Critical patent/JP5907008B2/ja
Publication of JP2014051899A publication Critical patent/JP2014051899A/ja
Application granted granted Critical
Publication of JP5907008B2 publication Critical patent/JP5907008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】モータ性能と環境性能とを両立させた上で機関始動性の確保を図る。
【解決手段】内燃機関ENGの停止後、各上段スイッチング素子FU,FV,FW及び各下段スイッチング素子GU,GV,GWのオンオフ制御により、電動モータ4のモータ軸102に発生させるモータトルクを、電動モータ4の磁気保持トルク及びカム軸2から伝達のカムトルクとバランスさせてから消失させる。さらにモータトルクの消失後、モータ軸102にてトルクバランスの崩れが予測される場合、オンする対象を、三列アームAU,AV,AWの下段スイッチング素子GU,GV,GWのうち特定の二素子に限定する。特定の二素子とは、モータ軸102の実回転位置θmrに対応して通電時には上段スイッチング素子FU,FV,FW又は下段スイッチング素子GU,GV,GWがオンされる二つの選択アームの下段スイッチング素子である。
【選択図】図11

Description

本発明は、車両に搭載されて内燃機関のバルブタイミングを調整するバルブタイミング調整装置に、関する。
従来、電動モータのモータ軸に通電によって発生するモータトルクを位相調整機構に与えることで、内燃機関のクランク軸及びカム軸間の相対位相(以下、「機関位相」という)を調整するバルブタイミング調整装置が、知られている。こうした装置の一種として特許文献1には、内燃機関の停止状態にて次の始動を許容する始動位相に機関位相を保持しておくことで、機関始動性を確保するようにしたものが、開示されている。
具体的に特許文献1の開示装置では、内燃機関の停止後、当該停止状態の内燃機関からモータ軸に伝達されるカムトルクと、通電の有無に拘らずモータ軸に発生する磁気保持トルクとに、モータトルクをバランスさせる。さらに特許文献1の開示装置では、このトルクバランス状態からモータトルクを消失させることで、磁気保持トルクとカムトルクとをバランスさせて所望の始動位相に機関位相を保持することを、可能にしている。
特開2009−13975号公報
さて、内燃機関が停止している場合にあっても、車両が走行状態となることは想定され得る。例えば、ハイブリッド車がモータジェネレータにより駆動される場合や、コンベ車でも重力によって坂道を下る場合等である。そうした場合に特許文献1の開示装置では、車両走行時の振動に起因する外力がモータ軸に作用することで、磁気保持トルクとカムトルクとのバランスが崩れると、機関位相が始動位相から外れてしまうおそれがある。
そこで、機関位相の保持力を高めるために磁気保持トルクを増大する方策が考えられる。しかし、この方策では、モータトルクと磁気保持トルクとの合成トルクに、回転位置に応じた大きな変動を惹起することになるので、通電時のモータ性能を確保する点で望ましくない。
また一方、機関位相を変化させない微小なモータトルクにより磁気保持トルクを補って、機関位相の保持力を高める方策も考えられる。しかし、この方策では、電動モータへの通電の継続を必要とする分、消費電力が増大することになるので、環境性能の点で望ましくない。
本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、モータ性能と環境性能とを両立させた上で機関始動性の確保を図ることにある。
本発明は、車両(3)に搭載されて内燃機関(ENG)のバルブタイミングを調整するバルブタイミング調整装置であって、モータ軸(102)を有し、磁気保持トルク及び通電によるモータトルクをモータ軸に発生する電動モータ(4)と、電動モータを制御することにより、モータトルクを調整する通電制御系(6)と、内燃機関からのカムトルクをモータ軸へ伝達しつつ、モータ軸でのトルクバランスに応じて内燃機関のクランク軸及びカム軸間の機関位相を調整する位相調整機構(8)とを、備え、通電制御系は、複数列のアーム(AU,AV,AW)において電源(B)側の上段スイッチング素子(FU,FV,FW)及びアース側の下段スイッチング素子(GU,GV,GW)間が電動モータに接続されてなり、各上段スイッチング素子及び各下段スイッチング素子のオンオフにより電動モータを通電するブリッジ回路(136)と、内燃機関の停止後、各上段スイッチング素子及び各下段スイッチング素子のオンオフを制御することにより、モータトルクを、磁気保持トルク及びカムトルクとバランスさせてから消失させるバランス制御手段(120,138,S101〜S112)と、バランス制御手段によるモータトルクの消失後、モータ軸にてトルクバランスの崩れが予測される場合に、オンする対象を、少なくとも二つの下段スイッチング素子に限定するバランス維持手段(120,138,S113〜S118)とを、有することを特徴とする。
このような本発明では、各上段スイッチング素子及び各下段スイッチング素子のオンオフ制御により、内燃機関の停止後に電動モータが通電されることでモータ軸に発生するモータトルクは、磁気保持トルク及びカムトルクとバランスしてから消失することになる。これによれば、磁気保持トルクとカムトルクとをバランスさせて所望の始動位相に機関位相を保持することが、可能である。
しかも本発明では、モータトルク消失後のモータ軸にてトルクバランスの崩れが予測される場合にオンする対象は、アース側の下段スイッチング素子のうち少なくとも二つに限定される。これにより、オンされた下段スイッチング素子間に電動モータが介在してなる閉回路には、外力の作用によってモータ軸が回転しようとすると、回生電流が発生する。その結果、内燃機関の停止状態で車両走行時の振動に起因する外力がモータ軸に作用しても、回生電流に応じたブレーキトルクを、電動モータへの通電なしにモータ軸へ与え得る。このような回生ブレーキ作用によれば、磁気保持トルクの増大によるモータ性能の低下も、消費電力の増大による環境性能の低下も共に招くことなく、機関位相の保持力を高めることが、可能となる。
以上説明したことから本発明は、モータ性能と環境性能とを両立させた上で機関始動性の確保を図ることを、可能にするのである。
また、本発明のさらなる特徴としては、上段スイッチング素子及び下段スイッチング素子間が電動モータに接続されるアームは、三列以上設けられ、モータ軸にてトルクバランスの崩れが予測される場合にバランス維持手段は、モータ軸の実回転位置に対応して電動モータへの通電時には上段スイッチング素子又は下段スイッチング素子がオンされる二つのアームを選択し、それら選択アームの下段スイッチング素子に、オンする対象を限定する。
この特徴によると、三列以上のアームの下段スイッチング素子のうち、トルクバランスの崩れが予測される場合のオン対象は、特定の二素子に限定される。具体的に特定の二素子は、モータ軸の実回転位置に対応して通電時には上段又は下段スイッチング素子がオンされる二つの選択アームの下段スイッチング素子であるので、それら選択アームの下段スイッチング素子間の電動モータには、確実に回生電流を発生させ得る。即ち下段スイッチング素子のうち、モータトルク消失後の実回転位置にて電動モータに回生電流を発生させるのに有効な二素子のみ狙って、オンすることになるので、消費電力の低下による環境性能の向上を図ることができる。
本発明の一実施形態によるバルブタイミング調整装置が適用される車両を示す模式図である。 本発明の一実施形態によるバルブタイミング調整装置の全体構成を示す図であって、図4のII−II線断面図である。 図2のIII−III線断面図である。 図2のIV−IV線断面図である。 図2のV−V線断面図である。 図2の電動モータの特性を示す模式図である。 図2の通電制御系の詳細構成を示すブロック図である。 図7の通電処理回路の詳細構成を示すブロック図である。 図8の通電処理回路の作動を説明するための模式図である。 図8の通電処理回路の作動を説明するための模式図である。 図8の通電処理回路の作動を説明するための模式図である。 図2の通電制御系の通電制御処理のうちS101〜S112を示すフローチャートである。 図2の通電制御系の通電制御処理のうちS113〜S118を示すフローチャートである。 図12,13の通電制御処理を説明するための特性図である。 図8の変形例を示すブロック図である。
以下、本発明の一実施形態を図面に基づいて説明する。
図1に示すように、本発明の一実施形態によるバルブタイミング調整装置1は、車両3に搭載される。この搭載先の車両3は、駆動源として内燃機関ENG及びモータジェネレータMGを搭載したハイブリッド車(ハイブリッド電気自動車)であり、それら駆動源ENG,MGの一方乃至は双方が発生する機関トルクを利用して走行可能となっている。
そこで、図2に示すように装置1は、クランク軸(図示しない)からカム軸2へ機関トルクを伝達する伝達系に設置され、内燃機関ENGのバルブタイミングを調整する。尚、本実施形態のカム軸2は、内燃機関ENGの吸気弁(図示しない)を開閉するものであり、装置1は、当該吸気弁のバルブタイミングを調整する。
(基本構成)
以下、装置1の基本構成について説明する。装置1は、電動モータ4、通電制御系6及び位相調整機構8等を組み合わせてなる。
図2,3に示すように電動モータ4は、三相のSPMブラシレスモータであり、ハウジング100、軸受101、モータ軸102及びモータステータ103を備えている。ハウジング100は、ステー(図示しない)を介して内燃機関ENGに固定される。ハウジング100内には、二つの軸受101と共に、モータステータ103が収容固定されている。各軸受101は、モータ軸102の軸本体104を回転自在に支持している。モータ軸102において軸本体104から外周側へ突出するロータ部105の外周面には、複数の永久磁石106が回転方向に等間隔に並んで装着されている。回転方向にて隣り合う永久磁石106同士は、相反する極性の磁極をロータ部105の外周側に形成している。モータステータ103は、コア108及びコイル109を有し、ロータ部105の外周側に同軸上に配置されている。鉄片を積層してなるコア108は、モータ軸102の回転方向に等間隔に複数設けられている。各コア108には、金属線材からなるコイル109がそれぞれ個別に巻装されている。
図2に示す通電制御系6は、電動モータ4を制御するために、各コイル109に電気接続されている。この制御を受けて電動モータ4は、各永久磁石106へ作用する回転磁界を各コイル109の励磁により形成することで、当該形成磁界に応じた正又は負方向のモータトルクをモータ軸102に発生させる。尚、図3の反時計方向は、モータ軸102の正方向(+)に定義されており、また図3の時計方向は、モータ軸102の負方向(−)に定義されている。
図2に示すように位相調整機構8は、駆動回転体10、従動回転体20、遊星キャリア40及び遊星歯車50を備え、バルブタイミングを決めるクランク軸及びカム軸2間の機関位相を調整する。
駆動回転体10は、歯車部材12とスプロケット部材13とを同軸上に螺子止めしてなる。円筒状の歯車部材12は、歯底円の内周側に歯先円を有する駆動側内歯車部14を、周壁部に形成している。円筒状のスプロケット部材13は、周壁部から外周側へ突出する複数のスプロケット歯19を、周方向に等間隔に有している。スプロケット部材13は、それらスプロケット歯19とクランク軸の複数のスプロケット歯との間でタイミングチェーン(図示しない)が掛け渡されることで、クランク軸と連繋する。この連繋により、クランク軸の機関トルクがタイミングチェーンを通じてスプロケット部材13に伝達されるときには、クランク軸に対して駆動回転体10が相対位相を保って連動回転する。尚、本実施形態において駆動回転体10の回転方向は、図4,5の反時計方向となっている。
図2,5に示すように、有底円筒状の従動回転体20は、駆動回転体10の内周側に同軸上に配置されている。従動回転体20は、歯底円の内周側に歯先円を有する従動側内歯車部22を、周壁部に形成している。また、従動回転体20は、螺子止めによりカム軸2と同軸上に連繋する連繋部21を、底壁部に形成している。この連繋により従動回転体20は、カム軸2に対して相対位相を保って連動回転しつつ、駆動回転体10に対しては相対回転可能となっている。したがって、図5の時計方向は、駆動回転体10に対して従動回転体20が遅角する相対回転方向であり、また図5の反時計方向は、駆動回転体10に対して従動回転体20が進角する相対回転方向である。
図2,4,5に示すように円筒状の遊星キャリア40は、周壁部のうち回転体10,20及びモータ軸102と同軸上の内周面に、入力部41を形成している。入力部41には、継手43の嵌合する嵌合溝42が設けられ、当該継手43を介して軸本体104が遊星キャリア40と連繋している。この連繋により遊星キャリア40は、モータ軸102と連動回転しつつ、駆動側内歯車部14に対しては相対回転可能となっている。
また、遊星キャリア40は、周壁部のうち回転体10,20及びモータ軸102とは偏心する外周面に、偏心支持部44を形成している。偏心支持部44は、ベアリング45を介して遊星歯車50の中心孔51に同軸上に嵌合することで、遊星歯車50を遊星運動可能に軸受している。ここで遊星運動とは、遊星歯車50が偏心支持部44の偏心軸線周りに自転しつつ、遊星キャリア40の回転軸線周りに公転する運動をいう。
図4,5に示すように偏心支持部44には、回転体10,20に対する偏心支持部44の偏心側に偏って、一対の凹部46が開口している。各凹部46には、断面U字状の板ばねからなる弾性部材48が収容されており、それら各弾性部材48の復原力は、ベアリング45を介して中心孔51の内周面に作用する。ここで、駆動回転体10に対する遊星キャリア40の相対回転時には、各弾性部材48に弾性歪みが生じて発生する復原力により、遊星歯車50が内歯車部14,22へ押し付けられることになる。
図2,4,5に示すように段付円筒状の遊星歯車50は、歯底円の外周側に歯先円を有する駆動側外歯車部52及び従動側外歯車部54を、それぞれ周壁部の大径部分と小径部分とに形成している。駆動側外歯車部52は、駆動側内歯車部14の内周側に偏心して配置され、当該内歯車部14と噛合している。従動側外歯車部54は、駆動側外歯車部52から軸方向にずれて且つ従動側内歯車部22の内周側に偏心して配置され、当該内歯車部22と噛合している。
以上説明したように位相調整機構8は、回転体10,20間を歯車連繋してなる遊星歯車機構を構成している。こうした構成により位相調整機構8は、カム軸2の回転に応じて正負に交番するカムトルクをモータ軸102へ伝達しつつ、モータ軸102でのトルクバランスに応じて機関位相を調整する。
具体的には、モータ軸102でのトルクバランスが保持されることで、モータ軸102が駆動回転体10に対して相対回転しないときには、遊星歯車50が遊星運動せずに回転体10,20と一体に回転する。その結果、機関位相が保持されることになる。一方、モータトルクが正方向へ増大する等してトルクバランスが崩れることで、モータ軸102が駆動回転体10に対して正方向に相対回転するときには、遊星歯車50の遊星運動により従動回転体20が駆動回転体10に対して遅角する。その結果、機関位相がクランク軸に対するカム軸2の遅角側へと変化する。また一方、モータトルクが負方向へ増大する等してトルクバランスが崩れることで、モータ軸102が駆動回転体10に対して負方向へ相対回転するときには、遊星歯車50の遊星運動により従動回転体20が駆動回転体10に対して進角する。その結果、機関位相がクランク軸に対するカム軸2の進角側へと変化する。
(潤滑構造)
次に、位相調整機構8を潤滑する潤滑構造の詳細を説明する。
図2に示すように位相調整機構8は、連繋部21を貫通する導入孔80を、従動回転体20の底壁部に形成している。導入孔80は、カム軸2を貫通する導入通路2aに、連通している。ここで導入通路2aは、クランク軸の機関トルクによって駆動されるメカポンプ9の吐出口に、連通している。したがって、内燃機関ENGの運転中、潤滑液としてメカポンプ9から導入通路2aへと吐出されるエンジン潤滑油は、導入孔80を通じて位相調整機構8の内部に導入される。さらに、導入孔80から導入された潤滑油は、内歯車部14,52の噛合箇所や外歯車部22,54の噛合箇所等に供給されることで、当該供給先を潤滑することになる。
(電動モータ)
次に、電動モータ4の発生する磁気保持トルクの詳細を説明する。
図2,3に示すように各永久磁石106は、モータステータ103の内周側に配置されたロータ部105の外周壁110に、装着されている。各永久磁石106は、モータ軸102の径方向においてモータステータ103との間に磁気ギャップ112を形成している。故に、電動モータ4がモータトルクを発生させない通電停止状態にあっても、各永久磁石106の形成磁界が磁気ギャップ112を通じて各コア108に作用することで、それら各コア108が磁化される。その結果、図6に示すようにモータ軸102には、回転位置に応じて正方向(遅角側)と負方向(進角側)とに交番する磁気保持トルクが、発生するのである。
(通電制御系)
次に、通電制御系6の電気的構成の詳細を説明する。
図2に示すように通電制御系6は、制御ユニット120及び通電ドライバ130を備えている。尚、本実施形態では、制御ユニット120が電動モータ4の外部に、また通電ドライバ130が電動モータ4の内部に配置されているが、それら要素120,130の双方が電動モータ4の外部又は内部に配置されていてもよい。
制御ユニット120は、マイクロコンピュータを主体に構成され、図7に示すように通電ドライバ130と電気接続されている。制御ユニット120は、各駆動源ENG,MGを制御しつつ電動モータ4を制御する制御モードとして、フィードバック(FB)制御モード及びオープンループ(OR)制御モードを実行する。
具体的に、FB制御モードの制御ユニット120は、通電ドライバ130から与えられる電動モータ4の実回転方向Dmr及び実回転速度Vmr等に基づいて、機関位相の実位相を算出する。それと共に、FB制御モードの制御ユニット120は、車両3及び駆動源ENG,MGの各種センサから与えられる状態値等に基づいて、機関位相の目標位相を算出する。そして、FB制御モードの制御ユニット120は、算出した実位相及び目標位相間の位相差に基づいて、通電ドライバ130へ出力するFB制御値を設定する。これに対し、OR制御モードの制御ユニット120は、通電ドライバ130へ出力するOR制御値を、制御内容に応じた固定値に設定する。尚、以下の説明では、FB制御値とOR制御値とを纏めていう場合には、「FB/OR制御値」と表記する。
このような各制御モードのFB/OR制御値には、電動モータ4の目標回転方向Dmt、目標回転速度Vmt及び目標駆動方式Mmtが含まれている。また、目標駆動方式Mmtとしては、通常通電、通電ブレーキ及び非通電ブレーキの三方式が用意されている。ここで通常通電とは、電動モータ4への通電によりモータトルクを発生させることで、目標回転方向Dmtにモータ軸102を回転させる駆動方式である。一方、通電ブレーキとは、電動モータ4への通電によりモータトルクを発生させることで、目標回転方向Dmtのブレーキをモータ軸102にかける駆動方式である。また一方、非通電ブレーキとは、電動モータ4への通電が停止した状態でも、モータ軸102にブレーキをかける駆動方式である。
以上の制御ユニット120に対し、図7,8に示す通電ドライバ130には、ブリッジ回路136及び通電処理回路138が設けられている。
図8に示すようにブリッジ回路136は、三つのアームAU,AV,AWを有した三相インバータ回路である。各アームAU,AV,AWは、上段スイッチング素子FU,FV,FWと下段スイッチング素子GU,GV,GWとを、符号の末尾が同じもの同士で直列に電気接続してなる。ここで、各アームAU,AV,AWの上段スイッチング素子FU,FV,FW及び下段スイッチング素子GU,GV,GWは、いずれも電界効果トランジスタ(FET)であり、電圧レベルがハイの駆動信号によりオン且つ電圧レベルがローの駆動信号によりオフされる。
各アームAU,AV,AWにおいて上段スイッチング素子FU,FV,FW側の端部は、車両の電源Bと電気接続されている。一方、各アームAU,AV,AWにおいて下段スイッチング素子GU,GV,GW側の端部は、アースされている。さらに、各アームAU,AV,AWにおいて上段スイッチング素子FU,FV,FW及び下段スイッチング素子GU,GV,GW間の中点は、電動モータ4において互いにスター結線された複数のコイル109のうち、それぞれ対応するものに電気接続されている。これらの電気的構成により、各スイッチング素子FU,FV,FW,GU,GV,GWのオンオフが個別に制御されることで、電動モータ4への通電が可能となる。
通電処理回路138は、FET用のゲート駆動ICを主体に構成され、図7に示すように回転検出素子SU,SV,SWと電気接続されている。通電処理回路138は、各回転検出素子SU,SV,SWから与えられる実回転位置θmrに基づいて、制御ユニット120へ与える実回転方向Dmr及び実回転速度Vmrを算出する。ここで各回転検出素子SU,SV,SWは、例えばホール素子等であり、モータ軸102の回転方向に所定間隔ずつをあけて位置決めされている。各回転検出素子SU,SV,SWは、モータ軸102に装着されたセンサ磁石107(図2も参照)の形成磁界を感知することで、電圧レベルがハイの検出信号を出力する。一方で各回転検出素子SU,SV,SWは、センサ磁石107の形成磁界の非感知時には、電圧レベルがローの検出信号を出力する。したがって、各回転検出素子SU,SV,SWの検出信号は、モータ軸102の実回転位置θmrを与えることになる。
図8に示すように通電処理回路138は、制御ユニット120及び各スイッチング素子FU,FV,FW,GU,GV,GWにも電気接続されている。通電処理回路138は、制御ユニット120から与えられるFB/OR制御値と、上述の実回転位置θmr及び算出値Dmr,Vmrとに基づいて、各スイッチング素子FU,FV,FW,GU,GV,GWをオンオフ制御する。
ここで、図9〜11に示すように本実施形態のオンオフ制御では、各回転検出素子SU,SV,SWの検出信号の電圧レベルに応じて各スイッチング素子FU,FV,FW,GU,GV,GWへ与える駆動信号の電圧レベルを、パターンi〜vi(以下、「通電パターンi〜vi」という)のいずれかに切換える。尚、図9〜11は、検出信号の電圧レベルがハイとなる場合をH、検出信号の電圧レベルがローとなる場合をLとして、表記している。それと共に図9〜11は、駆動信号の電圧レベルをハイとする場合をH、駆動信号の電圧レベルをローとする場合をLとして、表記している。
まず、図9,10の通電パターンi〜viは、通電によりモータトルクを発生させるために採用される。具体的に、方向Dmt及び方式Mmtとしてそれぞれ正方向及び通常通電のFB/OR制御値が与えられる場合の通電処理回路138は、図9の通電パターンi〜viを順方向に切換えることで、モータ軸102に正方向のモータトルクを発生させる。これに対し、方向Dmt及び方式Mmtとしてそれぞれ負方向及び通常通電のFB/OR制御値が与えられる場合の通電処理回路138は、図10の通電パターンi〜viを順方向に切換えることで、モータ軸102に負方向のモータトルクを発生させる。
また、方向Dmt及び方式Mmtとして正方向及び通電ブレーキのFB/OR制御値が与えられる場合の通電処理回路138は、図9の通電パターンi〜viを逆方向に切換えることで、モータ軸102に正方向のブレーキをかけるモータトルクを発生させる。これに対し、方向Dmt及び方式Mmtとして負方向及び通電ブレーキのFB/OR制御値が与えられる場合の通電処理回路138は、図10の通電パターンi〜viを逆方向へ切換えることで、モータ軸102に負方向のブレーキをかけるモータトルクを発生させる。
そして、このような図9,10の通電パターンi〜viでは、下段スイッチング素子GU,GV,GWにハイレベルの駆動信号を与える際、当該駆動信号を通電処理回路138によりパルス幅変調させることで、電動モータ4への通電量(例えば電流値)を調整する。ここでパルス幅変調を実現するには、ハイレベルの駆動信号により下段スイッチング素子GU,GV,GWをオンするデューティ比Rp(図8)を、設定する。但し、FB制御値が与えられる場合のデューティ比Rpは、目標回転速度Vmt及び実回転速度Vmr間の差分に基づくPI又はPID制御演算により、設定される。一方、OR制御値が与えられる場合のデューティ比Rpは、目標回転速度Vmtに従う一定値に、設定される。
次に、図11の通電パターンi〜viは、通電の停止状態にあってもモータ軸102にブレーキをかけるために採用される。具体的には、方式Mmtとして非通電ブレーキのOR制御値が与えられる場合の通電処理回路138は、図11の通電パターンi〜viのうち各回転検出素子SU,SV,SWの検出信号の電圧レベルに対応したもの、即ち実回転位置θmrに応じたものへと切り換える。この切換え状態下、モータ軸102が実回転位置θmrから回転しようとすると、ブレーキトルクが当該軸102に与えられることになる。
そして、図11の通電パターンi〜viでは、下段スイッチング素子GU,GV,GWのうちオンする対象を、アームAU,AV,AWのうち実回転位置θmrに応じて選択される選択アームの下段スイッチング素子に、限定する。図11と図9,10との比較から明らかなように具体的には、実回転位置θmrに対応して電動モータ4への通電時であれば上段スイッチング素子FU,FV,FW又は下段スイッチング素子GU,GV,GWをオンする二つの選択アームの下段スイッチング素子に、オン対象を限定するのである。ここで、例えば実回転位置θmrに対応してハイレベルの検出信号が回転検出素子SVから出力される場合の通電パターンiを、図11と図9,10とで比較してみる。この場合、通電時の図9ではスイッチング素子GU,FVがオンされ且つ通電時の図10ではスイッチング素子FU,GVがオンされ且つる選択アームAU,AVにて、非通電時の図11では下段スイッチング素子GU,GVがオンされるのである。
(通電制御処理)
次に、通電制御系6の通電制御処理として、内燃機関ENGの停止に伴って実行される制御フローの詳細を、図12,13に従って説明する。
図12に示すように、S101にて制御ユニット120は、内燃機関ENGの停止に必須の停止条件が成立したか否かを、判定する。この停止条件としては、例えば内燃機関ENGのイグニッションスイッチのオフや、内燃機関ENGへの燃料噴射の停止、アイドルストップシステムによる内燃機関ENGの停止条件等のうち、少なくとも一つが採用される。したがって、S101にて停止条件の成立が確認された場合には、S102へ移行する一方、それ以外の場合には、S101を繰り返す。
S102にて制御ユニット120は、FB制御モードを実行することで、機関位相を最適始動位相Ph又はその近傍位相に調整する。この最適始動位相Phとしては、内燃機関ENGの始動を許容し且つ燃費を向上させる範囲の始動位相のうち、最適の機関位相に予設定される。
続くS103にて制御ユニット120は、S102のFB制御モードを継続しつつ、内燃機関ENGが完全に停止したか否かを判定する。その結果、内燃機関ENGの完全停止が確認された場合には、S104へ移行する一方、それ以外の場合には、S103を繰り返す。
S104にて制御ユニット120は、FB制御モードからOR制御モードに切換えて、OR制御値としての目標回転速度Vmtを零値に設定する。これを受けて通電処理回路138は、制御ユニット120からのOR制御値に従うように、デューティ比Rpを零値に設定する。その結果、電動モータ4への通電量が零値までステップ状に一旦減少し、モータトルクも零値まで一旦減少する(図14参照)。
こうしたS104が実行される内燃機関ENGの停止直後における各弾性部材48には、停止前の弾性歪みに起因して歪みエネルギーが蓄積されている。故に、モータトルクの一旦減少によりトルクバランスの崩れるモータ軸102は、各弾性部材48の蓄積エネルギーを解放しつつ、カムトルクの作用方向へと回転することになる。
そこで、S105にて制御ユニット120は、S104のOR制御モードを継続しつつ、現在の実回転位置θmrが変化したか否かを判定する。その結果、実回転位置θmrが設定角度以上変化した場合には、S106へ移行する一方、それ以外の場合には、S105を繰り返す。ここで設定角度は、後述のS112に至るまでのモータ軸102の回転によって歪みエネルギーを解放し得るが、機関位相が始動位相の範囲を超えない角度となるように、予設定される。
S106にて制御ユニット120は、S104のOR制御モードを継続しつつ、現在の実回転方向Dmrを実回転位置θmrの変化方向として判別する。
続くS107にて制御ユニット120は、S104のOR制御モードとは異なるOR制御モードに切換える。具体的にS107のOR制御モードは、S106での判別方向とは反対方向に目標回転方向Dmtを設定すると共に、目標回転速度Vmt及び目標駆動方式Mmtをそれぞれ所定値及び通電ブレーキに設定する。ここで、目標回転速度Vmtの設定値は、S106での判別方向と反対方向のブレーキをモータ軸102にかけて、モータトルクをカムトルク及び磁気保持トルクとバランスさせるための値である。
こうしたS107では、制御ユニット120からOR制御値を受けた通電処理回路138が、当該OR制御値に従うデューティ比Rpを設定する。その結果、S106での判別方向が正しい場合には、モータ軸102にブレーキをかける通電方向にて、電動モータ4への通電量がステップ状に増大する(図14参照)。故にモータトルクは、カムトルクと確実に対抗して実回転位置θmrの変化速度を低下させることになるので、カムトルク及び磁気保持トルクと容易にバランス可能となる。これに対し、S106での判別方向に誤りがあると、モータトルクがカムトルクと対抗し得ないので、実回転位置θmrの変化速度が増大してしまう。
そこで、S108にて制御ユニット120は、S107のOR制御モードを継続しつつ、判別方向の正誤を判定する。具体的には、通電量増大により現出する実回転位置θmrの変化速度(即ち、実回転速度Vmr)が判別方向に増大した場合には、当該判別方向に誤りがあるとして、S109へと移行する。
S109にて制御ユニット120は、S107により設定されたOR制御値のうち目標回転方向Dmtを変更するOR制御モードに切換えて、電動モータ4への通電方向を反転させる。その結果、判別方向が正しかった場合と同様にして、モータトルクがカムトルク及び磁気保持トルクとバランスする。故に、判別方向が誤っていたとしても、S109の実行により、モータ軸102の回転変化を僅かに抑えることができる。
以上により、S109の実行後と、S108にて判別方向を正しいとする判定が下された場合には、S110へと移行する。このS110にて制御ユニット120は、直前のS109又はS108によるOR制御モードを継続しつつ、モータ軸102が停止したか否かを判定する。その結果、実回転位置θmrが設定時間以上変化しない場合には、モータ軸102が停止したと判定してS111に移行する一方、それ以外の場合には、S110を繰り返す。
S111にて制御ユニット120は、S104に準じたOR制御モードに切換えて、電動モータ4への通電量を零値までステップ状に減少させる(図14参照)。その結果、全スイッチング素子FU,FV,FW,GU,GV,GWのオフにより、電動モータ4への通電が停止して、モータトルクが完全に消失することとなる。ここで、上述の如き通電ブレーキによりモータ軸102が停止させられる本実施形態では、モータトルクはその消失直前までに小さくなっているので、当該消失時点にてカムトルクと磁気保持トルクとをバランスさせることが容易となる。
そこで、電動モータ4への通電停止後のS112にて制御ユニット120は、現在の実回転位置θmrが変化したか否かを判定する。その結果、実回転位置θmrが設定時間内に変化した場合には、磁気保持トルクとカムトルクとのバランスが崩れてモータ軸102が再び回転状態にあるとして、S106に戻る。一方、実回転位置θmrが設定時間以上変化しない場合には、カムトルクと磁気保持トルクとが確実にバランスすることでモータ軸102が完全に停止したとして、S113へと移行する。以上より、S113への移行時の機関位相は、S102により実現された最適始動位相Ph又はその近傍位相に対して、始動位相の範囲内に収まることになる。
図13に示すように、モータ軸102が完全停止した後のS113にて制御ユニット120は、内燃機関ENGの始動に必須の始動条件が成立したか否かを、判定する。この始動条件としては、例えば内燃機関ENGのイグニッションスイッチのオンや、内燃機関ENGへの燃料噴射の開始、アイドルストップシステムによる内燃機関ENGの再始動条件等のうち、少なくとも一つが採用される。したがって、S113にて始動条件の成立が確認されない場合には、S114へ移行する一方、それ以外の場合には、本通電制御処理を終了する。
S114〜S117にて制御ユニット120は、モータ軸102でのトルクバランスを崩すと予測される崩し条件が成立したか否かを、判定する。この崩し条件としては、次の条件α〜δが採用される。
(条件α) 車両3の走行速度が所定の基準速度Cv以上となる。
(条件β) モータジェネレータMGの発生トルクが所定の基準トルクCtrq以上となる。
(条件γ) 車両3のアクセル開度が所定の基準開度Ca以上となる。
(条件δ) 内燃機関ENGの温度が所定の基準温度Ctmp以上となる。
ここで、S114による条件αの走行速度に関する判定には、例えば車両3の車速センサによる検出速度等が利用される。また、S115による条件βの発生トルクに関する判定には、例えば制御ユニット120からモータジェネレータMGに要求される制御トルク値、又はモータジェネレータMGからの実際の出力トルク値等が利用される。さらに、S116による条件γのアクセル開度に関する判定には、例えば車両3のアクセルペダルの踏込量等が利用される。またさらに、S117による条件δの温度に関する判定には、例えば車両3の油温センサ又は車両3の水温センサによる検出温度等が利用される。そして、これら各条件α〜δの判定に必要な基準速度Cv、基準トルクCtrq、基準開度Ca及び基準温度Ctmpは、その値を下回る場合にモータ軸102を再回転させない値となるように、予設定される。
したがって、以上の条件α〜δのうちいずれか一つが成立している場合には、S118へ移行する一方、いずれも成立していない場合には、S113〜S117を繰り返す。尚、S113〜S117を繰り返している間は、全スイッチング素子FU,FV,FW,GU,GV,GWのオフが継続されることで、電動モータ4への通電が停止状態に維持される。
いずれかの条件α〜δの成立により移行するS118にて制御ユニット120は、通電停止状態を維持したままでのOR制御モードを実行し、OR制御値としての目標駆動方式Mmtを非通電ブレーキに設定する(図14参照)。これを受けて通電処理回路138は、下段スイッチング素子GU,GV,GWのうち実回転位置θmrに対応した二素子をオンする。その結果、外力の作用によってモータ軸102が回転しようとすると、当該回転の方向が正負のいずれの方向であっても、オン状態の二素子間にコイル109が介在する閉回路では、逆起電力の発生によって回生電流が流れることになる。すると、モータ軸102には、回生電流に応じたブレーキトルクが回転に対抗して作用することになるので、実回転位置θmrの変化が規制され得る。また、ブレーキトルクの作用に拘らず、万が一、実回転位置θmrが変化しても、オンされる二素子は、下段スイッチング素子GU,GV,GWのうちから当該変化後の実回転位置θmrに対応して切換えられるので、ブレーキトルクの作用が継続されて当該変化が止められ得る。以上により、モータ軸102でのトルクバランスが維持された状態下、S113へと戻ることになる。
尚、ここまで説明の実施形態では、通電制御処理のうちS101〜S112を共同して実行する制御ユニット120及び通電処理回路138が「バランス制御手段」に相当し、通電制御処理のうちS113〜S118を共同して実行する制御ユニット120及び通電処理回路138が「バランス維持手段」に相当している。
(作用効果)
以上の如き装置1による作用効果を、以下に説明する。
装置1では、各上段スイッチング素子FU,FV,FW及び各下段スイッチング素子GU,GV,GWのオンオフ制御により、内燃機関ENGの停止後に電動モータ4が通電されることでモータ軸102に発生するモータトルクは、磁気保持トルク及びカムトルクとバランスしてから消失することになる。これによれば、磁気保持トルクとカムトルクとをバランスさせて所望の始動位相に機関位相を保持することが、可能である。
しかも装置1では、モータトルク消失後のモータ軸102にてトルクバランスの崩れがに予測される場合にオンする対象は、アース側である下段スイッチング素子GU,GV,GWのうちいずれか二つに限定される。これにより、オンされた下段スイッチング素子間に電動モータ4が介在してなる閉回路には、外力の作用によってモータ軸102が回転しようとすると、回生電流が発生する。その結果、内燃機関ENGの停止状態で車両3の走行時の振動に起因する外力がモータ軸102に作用しても、回生電流に応じたブレーキトルクを、電動モータ4への通電なしにモータ軸102へ与え得る。このような回生ブレーキ作用によれば、磁気保持トルクの増大によるモータ性能の低下も、消費電力の増大による環境性能の低下も共に招くことなく、機関位相の保持力を高めることが、可能となる。
以上説明したことから装置1は、モータ性能と環境性能とを両立させた上で機関始動性の確保を図ることを、可能にするのである。
ここで特に装置1では、三列アームAU,AV,AWの下段スイッチング素子GU,GV,GWのうち、モータ軸102にてトルクバランスの崩れが予測される場合のオン対象は、特定の二素子に限定される。具体的に特定の二素子は、モータ軸102の実回転位置θmrに対応して通電時には上段スイッチング素子FU,FV,FW又は下段スイッチング素子GU,GV,GWがオンされる二つの選択アームの下段スイッチング素子である。故に、それら選択アームの下段スイッチング素子間の電動モータ4には、確実に回生電流を発生させ得る。即ち、下段スイッチング素子GU,GV,GWのうち、モータトルク消失後の実回転位置にて電動モータ4に回生電流を発生させるのに有効な二素子のみ狙って、オンすることになるので、消費電力の低下による環境性能の向上を図ることができる。
ところで、モータジェネレータMGにより駆動される車両3又は駆動源ENG,MGの停止状態で坂道を下る車両3にて走行速度が増大する場合、振動起因の外力も増大するため、モータ軸102にてトルクバランスの崩れが予測される。しかし、装置1によると、車両3の走行速度が基準速度Cv以上となることで条件αが成立する場合には、下段スイッチング素子GU,GV,GWのうち上記特定の二素子にオン対象が限定されるので、回生ブレーキ作用が発揮されて機関位相の保持力が高められ得る。故に、機関始動性の確保に大きく貢献可能となるのである。
また、ハイブリッド車としての車両3に搭載されたモータジェネレータMGの発生トルクが増大する場合には、振動起因の外力も増大するため、モータ軸102にてトルクバランスの崩れが予測される。しかし、装置1によると、モータジェネレータMGの発生トルクが基準トルクCtrq以上となることで条件βが成立する場合には、下段スイッチング素子GU,GV,GWのうち上記特定の二素子にオン対象が限定されるので、回生ブレーキ作用が発揮されて機関位相の保持力が高められ得る。故に、機関始動性の確保に大きく貢献可能となるのである。
さらに、ハイブリッド車としての車両3にてモータジェネレータMGの発生トルクを決めるアクセル開度が増大する場合には、振動起因の外力も増大するため、モータ軸102にてトルクバランスの崩れが予測される。しかし、装置1によると、車両3のアクセル開度が基準開度Ca以上となることで条件γが成立する場合には、下段スイッチング素子GU,GV,GWのうち上記特定の二素子にオン対象が限定されるので、回生ブレーキ作用が発揮されて機関位相の保持力が高められ得る。故に、機関始動性の確保に大きく貢献可能となるのである。
またさらに、内燃機関ENGの温度が増大する場合、遊星歯車機構として内部に潤滑油が導入される位相調整機構8では、当該潤滑油が粘度低下して遊星歯車50が回転し易くなるため、トルクバランスの崩れによる機関位相のずれが懸念される。しかし、装置1によると、内燃機関ENGの温度が基準温度Ctmp以上となることで条件δが成立する場合には、下段スイッチング素子GU,GV,GWのうち上記特定の二素子にオン対象が限定されるので、回生ブレーキ作用が発揮されて機関位相の保持力が高められ得る。故に、機関始動性の確保に大きく貢献可能となるのである。
(他の実施形態)
以上、本発明の一実施形態について説明したが、本発明は、当該実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
具体的に変形例1としては、磁気保持トルク及び通電によるモータトルクを発生する電動モータ4であれば、上述したSPMブラシレスモータ以外のものも、適宜採用できる。例えば図15に示すように、ブラシ付DCモータを電動モータ4として採用してもよい。あるいはまた、五相等のブラシレスモータを電動モータ4として採用してもよい。あるいはさらに、モータ軸102のロータ部105内部に永久磁石106を埋設してなるIPMブラシレスモータを、電動モータ4として採用してもよい。
さらに、磁気保持トルクについては、モータ軸102及びモータステータ103の一方の永久磁石の形成磁界がモータ軸102及びモータステータ103の他方の磁性体に作用する構成によって、モータ軸102に発生するトルクであればよい。そこで、変形例2として、磁気保持トルクを発生させるための永久磁石は、上述の如き通電によりモータトルクを発生させる磁石106以外にも、各回転検出素子SU,SV,SWが感知する磁界を形成するセンサ磁石107であってもよいし、通電停止状態で磁気保持トルクを発生させる専用の磁石等であってもよい。また、変形例3として、磁気保持トルクを発生させる磁性体は、上述の如き通電によりモータトルクを発生させるコイル109が巻装されたコア108以外にも、通電停止状態で磁気保持トルクを発生させる専用のコア等であってもよい。
またさらに、変形例4として通電制御系6は、上述の如き構成の制御ユニット120及び通電ドライバ130を組み合わせたもの以外であっても、適宜採用され得る。例えば、制御ユニット120及び通電ドライバ130の双方の機能を果たす一つの電気回路により、通電制御系6を構成してもよい。あるいはまた、図15に示すように、通電制御系6をなす通電ドライバ130のブリッジ回路136を、電動モータ4の構成(図15の例ではブラシ付DCモータ)に応じた二列のアームAU,AVから、構成してもよい。あるいはさらに、図示はしないが、電動モータ4の構成に応じた五列等のアームから、ブリッジ回路136を構成してもよい。
加えて、変形例5としては、FET以外の例えばバイポーラトランジスタ乃至はIGBT等を、スイッチング素子FU,FV,FW,GU,GV,GWに採用してもよい。
また加えて、変形例6としては、カムトルクをモータ軸102へ伝達しつつ、モータ軸102でのトルクバランスに応じて機関位相を調整可能な位相調整機構8であれば、上述の如き潤滑油が導入される遊星歯車機構以外のものも、適宜採用できる。
さらに加えて、変形例7としては、本発明の作用効果を得られる通電制御処理であれば、上述の如きS101〜S118の全てを実行する以外の処理も、適宜採用できる。例えば、S114〜S117のうち一つ〜三つを実行しない通電制御処理を、採用してもよい。あるいはまた、S114〜S117のうち少なくとも二つが同時に成立した場合に限り、S118へと移行する通電制御処理を、採用してもよい。あるいはさらに、特許文献1に開示される各実施形態の処理を、S113〜S118に先立って実行してもよい。
またさらに加えて、変形例8としては、S118におけるオン対象を、下段スイッチング素子GU,GV,GWの全てに限定してもよい。
そして、変形例9として本発明は、上述した吸気弁のバルブタイミングを調整する装置1以外にも、排気弁のバルブタイミングを調整する装置や、吸気弁及び排気弁の双方のバルブタイミングを調整する装置に、適宜適用され得る。また、変形例10として本発明は、ハイブリッド車以外、例えば駆動源として内燃機関ENGのみを搭載したコンベ車等の車両3に、適宜適用され得るのである。
1 バルブタイミング調整装置、2 カム軸、2a 導入通路、3 車両、4 電動モータ、6 通電制御系、8 位相調整機構、10 駆動回転体、80 導入孔、102 モータ軸、109 コイル、120 制御ユニット、130 通電ドライバ、136 ブリッジ回路、138 通電処理回路、AU,AV,AW アーム、B 電源、Ca 基準開度、Ctmp 基準温度、Ctrq 基準トルク、Cv 基準速度、ENG 内燃機関、Mmt 目標駆動方式、FU,FV,FW 上段スイッチング素子、GU,GV,GW 下段スイッチング素子、i〜vi 通電パターン、MG モータジェネレータ、Ph 最適始動位相、SU,SV,SW 回転検出素子、θmr 実回転位置

Claims (6)

  1. 車両(3)に搭載されて内燃機関(ENG)のバルブタイミングを調整するバルブタイミング調整装置であって、
    モータ軸(102)を有し、磁気保持トルク及び通電によるモータトルクを前記モータ軸に発生する電動モータ(4)と、
    前記電動モータを制御することにより、前記モータトルクを調整する通電制御系(6)と、
    前記内燃機関からのカムトルクを前記モータ軸へ伝達しつつ、前記モータ軸でのトルクバランスに応じて前記内燃機関のクランク軸及びカム軸間の相対位相を調整する位相調整機構(8)とを、備え、
    前記通電制御系は、
    複数列のアーム(AU,AV,AW)において電源(B)側の上段スイッチング素子(FU,FV,FW)及びアース側の下段スイッチング素子(GU,GV,GW)間が前記電動モータに接続されてなり、各前記上段スイッチング素子及び各前記下段スイッチング素子のオンオフにより前記電動モータを通電するブリッジ回路(136)と、
    前記内燃機関の停止後、各前記上段スイッチング素子及び各前記下段スイッチング素子のオンオフを制御することにより、前記モータトルクを、前記磁気保持トルク及び前記カムトルクとバランスさせてから消失させるバランス制御手段(120,138,S101〜S112)と、
    前記バランス制御手段による前記モータトルクの消失後、前記モータ軸にてトルクバランスの崩れが予測される場合に、オンする対象を、少なくとも二つの前記下段スイッチング素子に限定するバランス維持手段(120,138,S113〜S118)とを、有することを特徴とするバルブタイミング調整装置。
  2. 前記上段スイッチング素子及び前記下段スイッチング素子間が前記電動モータに接続される前記アームは、三列以上設けられ、
    前記モータ軸にてトルクバランスの崩れが予測される場合に前記バランス維持手段は、前記モータ軸の実回転位置に対応して前記電動モータへの通電時には前記上段スイッチング素子又は前記下段スイッチング素子がオンされる二つの前記アームを選択し、それら選択アームの前記下段スイッチング素子に、オンする対象を限定することを特徴とする請求項1に記載のバルブタイミング調整装置。
  3. 前記モータ軸にてトルクバランスの崩れが予測される場合とは、前記車両の走行速度が所定の基準速度(Cv)以上となる場合(S114)であることを特徴とする請求項1又は2に記載のバルブタイミング調整装置。
  4. 前記車両は、モータジェネレータ(MG)及び前記内燃機関を駆動源として搭載するハイブリッド車であり、
    前記モータ軸にてトルクバランスの崩れが予測される場合とは、前記モータジェネレータの発生トルクが所定の基準トルク(Ctrq)以上となる場合(S115)であることを特徴とする請求項1〜3のいずれか一項に記載のバルブタイミング調整装置。
  5. 前記車両は、モータジェネレータ(MG)及び前記内燃機関を駆動源として搭載するハイブリッド車であり、
    前記モータ軸にてトルクバランスの崩れが予測される場合とは、前記モータジェネレータの発生トルクを決めるアクセル開度が所定の基準開度(Ca)以上となる場合(S116)であることを特徴とする請求項1〜4のいずれか一項に記載のバルブタイミング調整装置。
  6. 前記位相調整機構は、内部に潤滑液が導入される歯車機構であり、
    前記モータ軸にてトルクバランスの崩れが予測される場合とは、前記内燃機関の温度が所定の基準温度(Ctmp)以上となる場合(S117)であることを特徴とする請求項1〜5のいずれか一項に記載のバルブタイミング調整装置。
JP2012195478A 2012-09-05 2012-09-05 バルブタイミング調整装置 Active JP5907008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195478A JP5907008B2 (ja) 2012-09-05 2012-09-05 バルブタイミング調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195478A JP5907008B2 (ja) 2012-09-05 2012-09-05 バルブタイミング調整装置

Publications (2)

Publication Number Publication Date
JP2014051899A true JP2014051899A (ja) 2014-03-20
JP5907008B2 JP5907008B2 (ja) 2016-04-20

Family

ID=50610603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195478A Active JP5907008B2 (ja) 2012-09-05 2012-09-05 バルブタイミング調整装置

Country Status (1)

Country Link
JP (1) JP5907008B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136007A (ja) * 2015-01-23 2016-07-28 株式会社デンソー モータ制御装置
WO2019088250A1 (ja) * 2017-11-06 2019-05-09 株式会社デンソー バルブタイミング調整装置
US10344634B2 (en) 2015-06-05 2019-07-09 Denso Corporation Motor drive device for controlling valve timing of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107718A (ja) * 1997-10-07 1999-04-20 Mazda Motor Corp 回転位相制御装置
JP2008057442A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp エンジンシステム
JP2008095550A (ja) * 2006-10-06 2008-04-24 Denso Corp バルブタイミング調整装置
JP2009013975A (ja) * 2007-06-04 2009-01-22 Denso Corp バルブタイミング調整装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107718A (ja) * 1997-10-07 1999-04-20 Mazda Motor Corp 回転位相制御装置
JP2008057442A (ja) * 2006-08-31 2008-03-13 Toyota Motor Corp エンジンシステム
JP2008095550A (ja) * 2006-10-06 2008-04-24 Denso Corp バルブタイミング調整装置
JP2009013975A (ja) * 2007-06-04 2009-01-22 Denso Corp バルブタイミング調整装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136007A (ja) * 2015-01-23 2016-07-28 株式会社デンソー モータ制御装置
US10344634B2 (en) 2015-06-05 2019-07-09 Denso Corporation Motor drive device for controlling valve timing of internal combustion engine
WO2019088250A1 (ja) * 2017-11-06 2019-05-09 株式会社デンソー バルブタイミング調整装置
CN111279055A (zh) * 2017-11-06 2020-06-12 株式会社电装 气门正时调整装置
US20200263574A1 (en) * 2017-11-06 2020-08-20 Denso Corporation Valve timing adjustment device
US10975737B2 (en) 2017-11-06 2021-04-13 Denso Corporation Valve timing adjustment device
CN111279055B (zh) * 2017-11-06 2022-03-18 株式会社电装 气门正时调整装置

Also Published As

Publication number Publication date
JP5907008B2 (ja) 2016-04-20

Similar Documents

Publication Publication Date Title
JP4506817B2 (ja) バルブタイミング調整装置
US8220426B2 (en) Valve timing control device
JP4552902B2 (ja) バルブタイミング調整装置
US7252055B2 (en) Valve controller
JP4349454B2 (ja) バルブタイミング調整装置
JP5126028B2 (ja) バルブタイミング調整装置
JP5907008B2 (ja) バルブタイミング調整装置
JP6090178B2 (ja) バルブタイミング調整装置
JP2004316635A (ja) バルブタイミング調整装置
US9777605B2 (en) Motor control apparatus
JP5598444B2 (ja) 電動バルブタイミング可変装置
JP4811302B2 (ja) バルブタイミング調整装置
JP5104983B2 (ja) バルブタイミング調整装置
JP4797885B2 (ja) バルブタイミング調整装置
JP6436056B2 (ja) エンジン制御装置
JP2007244060A (ja) 電動機を具備する車両
WO2016125456A1 (ja) モータ制御装置
JP2010144596A (ja) 内燃機関の制御装置
JP2008286076A (ja) バルブタイミング調整装置のモータ駆動回路
JP2011007123A (ja) バルブタイミング調整装置
JP6520727B2 (ja) バルブタイミング制御装置
JP2004350447A (ja) モータ駆動回路
JP2009203869A (ja) バルブタイミング制御システム
JP2021032103A (ja) バルブタイミング調整装置
JP2009057847A (ja) ヒステリシスブレーキ装置及びこの装置を用いた内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5907008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250