JP2014034284A - ハイブリッド自動車用駆動システム及びその制御方法 - Google Patents

ハイブリッド自動車用駆動システム及びその制御方法 Download PDF

Info

Publication number
JP2014034284A
JP2014034284A JP2012176301A JP2012176301A JP2014034284A JP 2014034284 A JP2014034284 A JP 2014034284A JP 2012176301 A JP2012176301 A JP 2012176301A JP 2012176301 A JP2012176301 A JP 2012176301A JP 2014034284 A JP2014034284 A JP 2014034284A
Authority
JP
Japan
Prior art keywords
power
motor generator
disconnecting
clutch
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176301A
Other languages
English (en)
Inventor
Takahiro Kasahara
崇宏 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012176301A priority Critical patent/JP2014034284A/ja
Publication of JP2014034284A publication Critical patent/JP2014034284A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】モータジェネレータによる回生を行う場合に、エンジンが連れ回らないようにして、回生効率を向上させるハイブリッド自動車駆動システムと、制御方法。
【解決手段】エンジンENGの出力軸1と変速機TMの入力部材3とを結合/結合解除する第1クラッチCL1と、エンジンENGの出力軸1とモータジェネレータMGのロータ2とを結合/結合解除する第2クラッチCL2と、モータジェネレータMGのロータ2と伝達機構GSの入力部材26とを結合/結合解除する第3クラッチCL3を備える。互いに並列の関係で設けられた第1の動力伝達経路11上に第1クラッチCL1、変速機TMが配置され、第2の動力伝達経路12上に第2クラッチCL2、モータジェネレータMG、第3クラッチCL3、伝達機構GSが配置され、制御手段60は、回生を行う際に、第1クラッチCL1及び第2クラッチCL2をOFFにすると共に第3クラッチCL3をONにする。
【選択図】図1

Description

本発明は、走行用の動力源として、エンジンとモータジェネレータを備えたハイブリッド自動車用駆動システム、及び、その制御方法に関するものである。
特許文献1にエンジンとモータジェネレータの2つの動力源を備えたハイブリッド自動車用駆動システムの例が記載されている。図15は特許文献1に記載された駆動システムの1つの例を示している。
この駆動システムは、出力軸111から回転動力を出力するエンジン110と、ロータ122から回転動力を出力するモータジェネレータ120と、入力部材151に入力された回転動力を任意に設定された変速比で変速して出力部材152から出力する変速機150と、この変速機150に対して並列に設けられた遊星歯車機構170及び第1、第2の伝動歯車列142、143と、ON/OFF制御されることでエンジン110の出力軸111と変速機150の入力部材151とを結合/結合解除する第1クラッチCL11と、ON/OFF制御されることでモータジェネレータ170のロータ122と変速機150の入力部材151とを結合/結合解除する第2クラッチCL12と、エンジン110の出力軸111と第1の伝動歯車列142の入力歯車とを結合/結合解除する第3クラッチCL13と、第1の伝動歯車列142の出力歯車と第2の伝動歯車列143の入力歯車とを結合/結合解除する第4クラッチCL14と、モータジェネレータ120に給電すると共にモータジェネレータ120により充電される蓄電手段BTと、を備えている。
変速機150の出力部材152及び第2の伝動歯車列143の出力歯車は共に、第3の伝動歯車列141及びディファレンシャル装置130を介して駆動車軸に接続されている。また、遊星歯車機構170のリングギヤ171はモータジェネレータ120のロータ122に接続され、キャリア172は第1の伝動歯車列142の入力歯車に接続され、サンギヤ173はエンジン110の出力軸111に接続されている。また、第1の伝動歯車列142の入力歯車及び遊星歯車機構170のキャリア172は、ブレーキB1を介して固定部材に結合/結合解除されるようになっている。
そして、この駆動システムでは、エンジン110の回転動力を変速機150を介して駆動車軸に伝達する第1の動力伝達経路201と、エンジン110の回転動力を変速機150を介さずに第1、第2伝動歯車列142、143を介して駆動車軸に伝達する第2の動力伝達経路202とが並列な関係で設けられており、第1〜第4クラッチCL11〜CL14のON/OFF制御により、いずれかの動力伝達経路201、202を通して動力が伝達されるように構成されている。
特許4483819号公報
ところで、図15に示した駆動システムでは、モータジェネレータ120による回生を行う際、伝達損失の低減のために変速機150を介さない第2の動力伝達経路202を通してモータジェネレータ120で回生を行った場合に、エンジン110が連れ回ってしまい、その分だけ回生効率が低下してしまうという問題がある。
即ち、この場合は、第1クラッチCL11、第2クラッチCL12、第3クラッチCL13をOFFにし、第4クラッチCL14をONにする。そうすると、車輪から駆動車軸を通してディファレンシャル装置130に逆方向に入力されるトルクが、第2伝動歯車列143、第1伝動歯車列142を介して遊星歯車機構170のキャリア172に伝達され、キャリア172に伝達されたトルクがリングギヤ171を介してモータジェネレータ120のロータ122に入力され、モータジェネレータ120で回生が行われる。
ところが、この際、遊星歯車機構170のサンギヤ173がエンジン110の出力軸111に接続されているため、サンギヤ173がエンジン110と共に連れ回る可能性があり、サンギヤ173が連れ回ることでキャリア172からリングギヤ171への動力の伝達効率が低下し、回生効率が低下してしまう可能性がある。
本発明は、上述した事情に鑑みてなされたものであり、その目的は、変速機を介さない動力伝達経路を通してモータジェネレータによる回生を行う場合に、エンジンが連れ回らないようにして、回生効率を向上させることができるハイブリッド自動車用駆動システム、及び、その制御方法を提供することにある。
上記目的を達成するために、請求項1の発明のハイブリッド自動車用駆動システム(例えば、後述の実施形態における駆動システムSM)は、
出力軸(例えば、後述の実施形態における出力軸1)から回転動力を出力するエンジン(例えば、後述の実施形態におけるエンジンENG)と、
ロータ(例えば、後述の実施形態におけるロータ2)から回転動力を出力するモータジェネレータ(例えば、後述の実施形態におけるモータジェネレータMG)と、
入力部材(例えば、後述の実施形態における入力部材3)に入力された回転動力を任意に設定された変速比で変速して出力部材(例えば、後述の実施形態における出力部材4)から出力する変速機(例えば、後述の実施形態における変速機TM)と、
入力部材(例えば、後述の実施形態における入力歯車26)に入力された回転動力を出力部材(例えば、後述の実施形態における出力歯車28)から出力する伝達機構(例えば、後述の実施形態における伝達機構GS)と、
ON/OFF制御されることで前記エンジンの出力軸と前記変速機の入力部材とを結合/結合解除する第1断接手段(例えば、後述の実施形態における第1クラッチCL1)と、
ON/OFF制御されることで前記エンジンの出力軸と前記モータジェネレータのロータとを結合/結合解除する第2断接手段(例えば、後述の実施形態における第2クラッチCL2)と、
ON/OFF制御されることで前記モータジェネレータのロータと前記伝達機構の入力部材とを結合/結合解除する第3断接手段(例えば、後述の実施形態における第3クラッチCL3)と、
前記モータジェネレータに給電すると共にモータジェネレータにより充電される蓄電手段(例えば、後述の実施形態におけるバッテリ50)と、
少なくとも前記第1〜第3断接手段のON/OFF制御を行う制御手段(例えば、後述の実施形態における制御手段60)と、
を備え、
互いに並列の関係で設けられ、選択的に駆動車軸(例えば、後述の実施形態における駆動車軸31L、31R)に前記エンジンの動力を伝達することが可能な第1の動力伝達経路(例えば、後述の実施形態における第1の動力伝達経路11)と第2の動力伝達経路(例えば、後述の実施形態における第2の動力伝達経路12)が設けられ、前記第1の動力伝達経路上には、上流側から下流側に向けて順に前記第1断接手段及び変速機が配置され、前記第2の動力伝達経路上には、上流側から下流側に向けて順に前記第2断接手段、モータジェネレータ、第3断接手段、及び伝達機構が配置され、
前記制御手段は、前記モータジェネレータによる回生を行う際に、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにすることを特徴とする。
請求項2の発明は、請求項1に記載のハイブリッド自動車用駆動システムにおいて、
前記制御手段は、モータジェネレータによる回生を行う際、前記駆動車軸の回転速度が所定値以下のときに、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにし、前記駆動車軸の回転速度が所定値を超えるときに、前記第1断接手段及び第2断接手段をONにすると共に前記第3断接手段をOFFにすることを特徴とする。
請求項3の発明は、請求項1または請求項2に記載のハイブリッド自動車用駆動システムにおいて、
前記制御手段は、モータジェネレータによる回生を行う際、前記蓄電手段の蓄電残量が所定値未満のときに、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにし、前記蓄電手段の蓄電残量が所定値以上のときに、前記第1断接手段及び第2断接手段をONにすると共に前記第3断接手段をOFFにすることを特徴とする。
請求項4の発明は、請求項1〜3のいずれか1項に記載のハイブリッド自動車用駆動システムにおいて、
前記第3断接手段がドグクラッチであることを特徴とする。
請求項5の発明のハイブリッド自動車用駆動システムの制御方法は、
エンジンの動力を第1断接手段を介して変速機に入力し該変速機で変速した上で駆動車軸へ伝達する第1の動力伝達経路と、
エンジンの動力を第2断接手段及び第3断接手段を順に介して前記変速機と並列に設けられた伝達機構に入力し該伝達機構を経由して駆動車軸へ伝達する第2の動力伝達経路と、
前記第2の動力伝達経路上の前記第2断接手段と第3断接手段との間に接続されたモータジェネレータと、
を備えるハイブリッド自動車用駆動システムの制御方法であって、
前記モータジェネレータによる回生を行う際に、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにすることで、前記第2の動力伝達経路を通してモータジェネレータによる回生を行うことを特徴とする。
請求項1の発明及び請求項5の発明によれば、モータジェネレータで回生を行う際には、第3断接手段をONにし、第1断接手段及び第2断接手段をOFFにするので、エンジンを第1の動力伝達経路及び第2の動力伝達経路から切り離すことができ、エンジンを連れ回すことなく、モータジェネレータによる回生を行うことができて、回生効率を高めることができる。
請求項2の発明によれば、駆動車軸の回転速度が所定値以下のときには、第1断接手段及び第2断接手段をOFFにすると共に第3断接手段をONにすることで、変速機を介さずにモータジェネレータによる回生を行う一方、駆動車軸の回転速度が所定値を超えるときには、第1断接手段及び第2断接手段をONにすると共に第3断接手段をOFFにすることで、変速機を介してモータジェネレータによる回生を行う。従って、高回転時に、そのまま回転動力がモータジェネレータに入力されることでモータジェネレータが過回転になってしまうことを防止しながら回生を行うことができる。
請求項3の発明によれば、蓄電手段の蓄電残量が所定値未満のときには、第1断接手段及び第2断接手段をOFFにすると共に第3断接手段をONにすることで、変速機を介さずにモータジェネレータによる回生を行うことができる。従って、変速機を介さずに高い伝達効率で回生が行われることにより、充電効率を高めることができる。一方、蓄電手段の蓄電残量が所定値以上のとき(蓄電残量が満タンに近い状態)には、第1断接手段及び第2断接手段をONにすると共に第3断接手段をOFFにすることで、変速機を介してモータジェネレータによる回生を行う。従って、変速機を介することにより伝達効率が低下するため、蓄電手段の過充電を抑制することができる。
請求項4の発明によれば、第3断接手段がドグクラッチであるので、EV走行時や回生走行時に、第3断接手段に係合保持力を与えるための油圧や電磁力等の動力が必要ではなく、その分のエネルギーロスを減らすことができる。
(a)は本発明の実施形態のハイブリッド自動車用駆動システムのスケルトン図、(b)はそれを簡略化して示すブロック図である。 同駆動システムにおいて、EV走行を行っているときの動力伝達経路を説明するためのスケルトン図である。 図2のEV走行を行っている状態で、エンジンENGを押し掛けするときの動力伝達経路を説明するためのスケルトン図である。 図2のEV走行を行っている状態で、エンジンENGを押し掛けするときの、図3と別の動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、エンジン走行を行っているときに、第3クラッチCL3をONすることで、モータジェネレータMGのロータを予備的に回転させているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、クルーズ走行(一定高速走行)を行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、急坂登坂を行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、モータジェネレータMGによる回生を行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、リバース走行を行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、エンジン走行時にモータジェネレータMGによる動力アシストを行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、エンジン走行時にモータジェネレータMGによる動力アシストを行っているときの図10と別の動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、エンジン走行時にエンジンの余剰動力を用いてモータジェネレータによる発電を行っているときの動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、エンジン走行時にエンジンの余剰動力を用いてモータジェネレータによる発電を行っているときの図12と別の動力伝達経路を説明するためのスケルトン図である。 同駆動システムにおいて、非走行時のエンジンのアイドル回転によりバッテリに充電を行っているときの動力伝達経路を説明するためのスケルトン図である。 従来のハイブリッド自動車用駆動システムのスケルトン図である。
以下、本発明の一実施形態を図面に基づいて説明する。
図1(a)は実施形態のハイブリッド自動車用駆動システムのスケルトン図、(b)はそれを簡略化して示すブロック図である。
この駆動システムSMは、出力軸1から回転動力を出力する第1の動力源としてのエンジン(内燃機関)ENGと、給電によりロータ2から回転動力を出力すると共に発電が可能な第2の動力源としてのモータジェネレータMGと、入力部材(入力軸)3に入力された回転動力を任意に設定された変速比で変速して出力部材(出力軸)4から出力するCVT(ベルト式無段変速機)等の変速機TMと、入力部材(入力歯車26)に入力された回転動力を出力部材(出力歯車28)から出力する歯車列等よりなる固定減速比の伝達機構GSと、ON/OFF制御されることでエンジンENGの出力軸1と変速機TMの入力部材3とを結合/結合解除する第1断接手段としての第1クラッチCL1と、ON/OFF制御されることでエンジンENGの出力軸1とモータジェネレータMGのロータ2とを結合/結合解除する第2断接手段としての第2クラッチCL2と、ON/OFF制御されることでモータジェネレータMGのロータ2と伝達機構GSの入力部材(入力歯車26)とを結合/結合解除する第3断接手段としての第3クラッチCL3と、モータジェネレータMGに給電すると共にモータジェネレータMGにより充電されるバッテリ(蓄電手段)50と、第1〜第3クラッチCL1〜CL3のON/OFF制御及びエンジンENG、モータジェネレータMG、変速機TMの制御を行う制御手段60と、を備えている。
この駆動システムSMには、互いに並列の関係で設けられ、選択的にディファレンシャル装置30を介して駆動車軸31L、31RにエンジンENGの動力を伝達することが可能な第1の動力伝達経路11と第2の動力伝達経路12とが設けられており、これら動力伝達経路11、12のうち、第1の動力伝達経路11上には、上流側から下流側に向けて順に前記第1クラッチCL1及び変速機TMが配置され、第2の動力伝達経路12上には、上流側から下流側に向けて順に前記第2クラッチCL2、モータジェネレータMG、第3クラッチCL3、及び伝達機構GSが配置されている。ここで、第2の動力伝達経路12上に配置された第3クラッチCL3は、ドグクラッチより構成されている。
第1の動力伝達経路11上にはその他に、第1クラッチCL1と変速機TMの入力部材3との間に動力伝達のための歯車21、22が配置され、変速機TMの出力部材4とディファレンシャル装置30のデフケースのギヤ24との間に動力伝達のための歯車23が配置されている。また、第2の動力伝達経路12上にはその他に、第3クラッチCL3とディファレンシャル装置30のデフケースのギヤ24との間に、入力歯車(入力部材)26、中間歯車27、出力歯車(出力部材)28が配置されている。
ディファレンシャル装置30のデフケースに入力された回転動力は、左右の駆動車軸(アクスルシャフト)31L、31Rを介して左右の駆動車輪32に伝達される。ディファレンシャル装置30のデフケースには、図示しないデフピニオンやサイドギヤが取り付けられており、左右のサイドギヤに左右の駆動車軸31L、31Rが連結され、左右の駆動車軸31L、31Rは差動回転する。
また、モータジェネレータMGがモータとして機能するときは、モータジェネレータMGから駆動車軸31L、31Rに駆動力が伝達され、モータジェネレータMGが発電機として機能するときは、駆動車軸31L、31RからモータジェネレータMGに逆向きに動力が入力され、それにより機械エネルギーが電気エネルギーに変換される。同時にモータジェネレータMGから駆動車軸31L、31Rを介して駆動車輪32に回生制動力が作用する。
なお、図1では変速機TMの一例として、ベルト式無段変速機(CVT)を示している。ベルト式無段変速機は、入力軸3に連結されたプライマリプーリ71と、出力軸4に連結されたセカンダリプーリ72と、プライマリプーリ71とセカンダリプーリ72とに巻き掛けられた無端ベルト73とを備えており、プライマリプーリ71及びセカンダリプーリ72への無端ベルト73の掛かり径を例えば油圧力により変化させることで変速比(入力軸3の回転速度/出力軸4の回転速度)を変更する。ただし、ここでの変速機TMの種類は特に限定されるものではなく、例えばトロイダル式無段変速機であってもよいし、多段式の自動変速機(AT)であってもよい。
次に各種運転パターンについて、図2〜図14のスケルトン図を参照しながら説明する。図2〜図14において、太実線矢印は伝達先に対してトルク伝達が実際になされている経路を示し、太点線矢印は伝達先が切り離されていることによりトルク伝達がなされずに空回転している経路を示す。
(1)EV走行:図2参照
モータジェネレータMGの動力だけを利用するEV走行時は、エンジンENGを停止し、第1クラッチCL1及び第2クラッチCL2をOFFにし、第3クラッチCL3をONにする。そうすることで、モータジェネレータMGの動力を、太実線矢印Aのように第3クラッチCL3を通して、変速機TMを介さない第2の動力伝達経路12を経由してディファレンシャル装置30に入力させることができ、モータジェネレータMGの動力により駆動車軸31L、31Rを回転させて走行することができる。
このとき、第1の動力伝達経路11では、第1クラッチCL1がOFFであることにより、ディファレンシャル装置30側から導入されるトルクは、太点線矢印Bのように、エンジンENGまでは伝達されない。従って、変速機TMなどは空回転する一方、エンジンENGの引きずりがない。
(2)エンジンENG押し掛け:図3参照
図2のようにEV走行を行っている状態で、第1クラッチCL1をONにすると、ディファレンシャル装置30から第1の動力伝達経路11に導入されるトルクを太実線矢印CのようにエンジンENGの出力軸1に入力させることができ、エンジンENGを押し掛けすることができる。なお、図4に示すように、第2クラッチCL2をONにすることで、第2の動力伝達経路12に導入されるトルクをエンジンENGの出力軸1に入力させ、エンジンENGを押し掛けするようにしてもよい。
(3)エンジンENG走行:図5参照
通常のエンジン走行を行う場合は、第1クラッチCL1をONにし、第2クラッチCL2をOFFにする。そうすることで、エンジンENGの動力を変速機TMを介する第1の動力伝達経路11を経由して、太実線矢印Aのように、ディファレンシャル装置30に入力させることができ、エンジンENGの動力により駆動車軸31L、31Rを回転させて走行することができる。
この際、第3クラッチCL3のON/OFF制御は任意であるが、第3クラッチCL3をONにすることで、ディファレンシャル装置30から第2の動力伝導経路12上に導入されているトルクでモータジェネレータMGのロータ2を予備的に回転させておくことができ、EV走行や回生走行への移行時の回転数合わせを必要としなくなる。
(4)エンジンENGクルーズ走行:図6参照
エンジンENGの動力により高速でクルーズ走行する場合は、図5の場合と同様に、第1クラッチCL1をONにし、第2クラッチCL2をOFFにする一方、第3クラッチCL3をOFFにする。そうすることで、モータジェネレータMGの引きずりを無くして、効率的な走行を実現することができる。
(5)急坂登坂:図7参照
急坂登坂を行う場合は、第2クラッチCL2及び第3クラッチCL3をONすることで、エンジンENGの動力を、変速機TMを含む第1の動力伝達経路11ではなく第2の動力伝達経路12に入力し、第2の動力伝達経路12を経由してディファレンシャル装置30に入力することで登坂走行する。この場合は、変速機TMの最低レシオよりも第2の動力伝達経路12を経由する方がローレシオとなるように伝達機構GSの固定変速比を設定しておくことにより、伝達効率を高めながら、登坂トルクを高めることができ、登坂時の燃費を向上させることができる。従って、変速機TMの取り得るレシオの範囲をローレシオ側に広く設定しておかなくても、ローレシオ側は第2の動力伝達経路12に含まれる単純な構成の伝達機構GSでカバーすることができるようになり、燃費向上に寄与することができる。
(6)回生:図8参照
モータジェネレータMGによる回生を行う場合は、基本的には、第1クラッチCL1及び第2クラッチCL2をOFFにすると共に、第3クラッチCL3をONにする。そうすることで、エンジンENGを第1の動力伝達経路11及び第2の動力伝達経路12から切り離すことができ、エンジンENGを連れ回すことなく、モータジェネレータMGによる回生を行うことができて、回生効率を高めることができる。
なお、駆動車軸31L、31Rの回転速度が所定値以下のときには、第1クラッチCL1及び第2クラッチCL2をOFFにすると共に第3クラッチCL3をONにするが、駆動車軸31L、31Rの回転速度が所定値を超えるときには、第1クラッチCL1及び第2クラッチCL2をONにすると共に第3クラッチCL3をOFFに制御することが望ましい。
これにより、駆動車軸31L、31Rの回転速度が速いときには、変速機TMを介してモータジェネレータMGによる回生を行うことになるので、高回転時にそのまま回転動力がモータジェネレータMGに入力されることでモータジェネレータMGが過回転になってしまうことを防止しながら回生を行うことができる。
また、バッテリ50の蓄電残量(SOC)が所定値未満のときに、第1クラッチCL1及び第2クラッチCL2をOFFにすると共に第3クラッチCL3をONにし、バッテリ50の蓄電残量が所定値以上のときに、第1クラッチCL1及び第2クラッチCL2をONにすると共に第3クラッチCL3をOFFに制御することが望ましい。
これにより、バッテリ50の蓄電残量が多いとき(蓄電残量が満タンに近い状態)には、変速機TMを介してモータジェネレータMGによる回生を行うことができ、伝達効率が低下するため、バッテリ50の過充電を抑制することができる。
(7)リバース(RVS)走行:図9参照
リバース走行時には、エンジンENGを停止し、第1クラッチCL1及び第2クラッチCL2をOFFにし、第3クラッチCL3をONにして、モータジェネレータMGの逆方向の回転動力を太実線矢印Aのように、第2の動力伝達経路12を経由してディファレンシャル装置30の入力することで、モータジェネレータMGの動力でリバース走行する。このようにモータジェネレータMGを逆転させてリバース走行を行うことにより、リバースのためのギア類を削減可能となる。
(8)モータアシスト(1):図10参照
第1クラッチCL1をONし、第3クラッチCL3をOFFにして、第1の動力伝達経路11を経由してエンジンENGの動力をディファレンシャル装置30に入力させてエンジン走行を行っている状態の時に、第2クラッチCL2をONにして、モータジェネレータMGの動力を太実線矢印DのようにエンジンENGの出力軸1に乗せることで、モータジェネレータMGによる動力アシストを行うことができる。この場合、動力伝達経路の伝達効率やモータジェネレータMGの駆動効率を考慮して、モータジェネレータMGのアシストトルクを変速機TMを介して駆動車軸31L、31Rに伝達することにより、高効率走行が可能になる。
(9)モータアシスト(2):図11参照
この場合は、第1クラッチCL1をONして、第1の動力伝達経路11を経由してエンジンENGの動力をディファレンシャル装置30に入力させてエンジン走行を行っている状態の時に、第2クラッチをOFFし、第3クラッチCL3をONにして、モータジェネレータMGの動力を太実線矢印Dのように第2の動力伝達経路12を経由してディファレンシャル装置30に合流させることで、モータジェネレータMGによる動力アシストを行うことができる。この場合も、動力伝達経路の伝達効率やモータジェネレータMGの駆動効率を考慮して、モータジェネレータMGのアシストトルクをディファレンシャル装置30を介して駆動車軸31L、31Rに伝達することにより、高効率走行が可能になる。
(10)余剰発電Hi:図12参照
第1クラッチCLをONにし、第3クラッチCL3をOFFにすることで、第1の動力伝達経路11を経由してエンジンENGの動力をディファレンシャル装置30に入力させてエンジン走行(低速〜高速走行:Hi)を行っている状態の時に、第2クラッチCL2をONすることで、太実線矢印EのようにエンジンENGの動力の一部をモータジェネレータMGに入力することができ、エンジンENGの余剰動力を用いてモータジェネレータMGに発電させることができる。
(11)余剰発電Lo:図13参照
第1クラッチCLをOFFにし、第2クラッチCL2及び第3クラッチCL3をONにすることで、第2の動力伝達経路12を経由してエンジンENGの動力をディファレンシャル装置30に入力させてエンジン走行(超低速走行:Lo)を行っている状態の時は、モータジェネレータMGのロータ2が回っているので、太実線矢印EのようにエンジンENGの動力の一部をモータジェネレータMGに入力することができ、エンジンENGの余剰動力を用いてモータジェネレータMGに発電させることができる。
(12)アイドル充電:図14参照
非走行時のエンジンENGのアイドル回転時には、第1クラッチCL1及び第3クラッチCL3をOFFにし、第2クラッチCL2をONにすることにより、エンジンENGの動力を全てモータジェネレータMGに入力することができ、バッテリを充電することができる。
上述の各種運転パターンにおいて、第3クラッチCL3をON状態に保持する必要がある場合が存在するが、第3クラッチCL3はドグクラッチであるので、EV走行時や回生走行時に、第3クラッチCL3の係合状態(ON状態)を保持する係合保持力を与えるための油圧や電磁力等の動力が必要ではなく、その分のエネルギーロスを減らすことができる。
また、上述の(10)〜(12)のようにエンジン走行中やアイドリング中のバッテリ充電時(モータジェネレータMGによる発電時)には、エンジンENGの動力がギヤ類を介さずにモータジェネレータMGに入力されるので、充電エネルギーの伝達ロスが少ない。
また、摩擦クラッチを使用するのは、第1クラッチCL1と第2クラッチCL2だけで済むので、クラッチフリクションを少なくすることができ、それだけエネルギーロスを減らせる。
なお、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
1 出力軸
2 ロータ
3 入力部材
4 出力部材
26 入力部材(入力歯車)
28 出力部材(出力歯車)
30 ディファレンシャル装置
31L,31R 駆動車軸
50 バッテリ(蓄電手段)
60 制御手段
CL1 第1クラッチ(第1断接手段)
CL2 第2クラッチ(第2断接手段)
CL3 第3クラッチ(第3断接手段)
ENG エンジン
GS 伝達機構
MG モータジェネレータ
SM 駆動システム
TM 変速機

Claims (5)

  1. 出力軸から回転動力を出力するエンジンと、
    ロータから回転動力を出力するモータジェネレータと、
    入力部材に入力された回転動力を任意に設定された変速比で変速して出力部材から出力する変速機と、
    入力部材に入力された回転動力を出力部材から出力する伝達機構と、
    ON/OFF制御されることで前記エンジンの出力軸と前記変速機の入力部材とを結合/結合解除する第1断接手段と、
    ON/OFF制御されることで前記エンジンの出力軸と前記モータジェネレータのロータとを結合/結合解除する第2断接手段と、
    ON/OFF制御されることで前記モータジェネレータのロータと前記伝達機構の入力部材とを結合/結合解除する第3断接手段と、
    前記モータジェネレータに給電すると共にモータジェネレータにより充電される蓄電手段と、
    少なくとも前記第1〜第3断接手段のON/OFF制御を行う制御手段と、
    を備え、
    互いに並列の関係で設けられ、選択的に駆動車軸に前記エンジンの動力を伝達することが可能な第1の動力伝達経路と第2の動力伝達経路が設けられ、前記第1の動力伝達経路上には、上流側から下流側に向けて順に前記第1断接手段及び変速機が配置され、前記第2の動力伝達経路上には、上流側から下流側に向けて順に前記第2断接手段、モータジェネレータ、第3断接手段、及び伝達機構が配置され、
    前記制御手段は、前記モータジェネレータによる回生を行う際に、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにすることを特徴とするハイブリッド自動車用駆動システム。
  2. 前記制御手段は、モータジェネレータによる回生を行う際、前記駆動車軸の回転速度が所定値以下のときに、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにし、前記駆動車軸の回転速度が所定値を超えるときに、前記第1断接手段及び第2断接手段をONにすると共に前記第3断接手段をOFFにすることを特徴とする請求項1に記載のハイブリッド自動車用駆動システム。
  3. 前記制御手段は、モータジェネレータによる回生を行う際、前記蓄電手段の蓄電残量が所定値未満のときに、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにし、前記蓄電手段の蓄電残量が所定値以上のときに、前記第1断接手段及び第2断接手段をONにすると共に前記第3断接手段をOFFにすることを特徴とする請求項1または請求項2に記載のハイブリッド自動車用駆動システム。
  4. 前記第3断接手段がドグクラッチであることを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド自動車用駆動システム。
  5. エンジンの動力を第1断接手段を介して変速機に入力し該変速機で変速した上で駆動車軸へ伝達する第1の動力伝達経路と、
    エンジンの動力を第2断接手段及び第3断接手段を順に介して前記変速機と並列に設けられた伝達機構に入力し該伝達機構を経由して駆動車軸へ伝達する第2の動力伝達経路と、
    前記第2の動力伝達経路上の前記第2断接手段と第3断接手段との間に接続されたモータジェネレータと、
    を備えるハイブリッド自動車用駆動システムの制御方法であって、
    前記モータジェネレータによる回生を行う際に、前記第1断接手段及び第2断接手段をOFFにすると共に前記第3断接手段をONにすることで、前記第2の動力伝達経路を通してモータジェネレータによる回生を行うことを特徴とするハイブリッド自動車用駆動システムの制御方法。
JP2012176301A 2012-08-08 2012-08-08 ハイブリッド自動車用駆動システム及びその制御方法 Pending JP2014034284A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176301A JP2014034284A (ja) 2012-08-08 2012-08-08 ハイブリッド自動車用駆動システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176301A JP2014034284A (ja) 2012-08-08 2012-08-08 ハイブリッド自動車用駆動システム及びその制御方法

Publications (1)

Publication Number Publication Date
JP2014034284A true JP2014034284A (ja) 2014-02-24

Family

ID=50283541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176301A Pending JP2014034284A (ja) 2012-08-08 2012-08-08 ハイブリッド自動車用駆動システム及びその制御方法

Country Status (1)

Country Link
JP (1) JP2014034284A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093327A1 (ja) * 2014-12-11 2016-06-16 株式会社エフ・シー・シー ハイブリッド車両の動力伝達装置
CN107054053A (zh) * 2017-01-21 2017-08-18 浙江钱江摩托股份有限公司 一种混合动力车辆三离合驱动装置及控制方法
JP2018114922A (ja) * 2017-01-20 2018-07-26 スズキ株式会社 動力伝達装置および動力伝達装置を備えた車両
JP2019123411A (ja) * 2018-01-18 2019-07-25 本田技研工業株式会社 ハイブリッド車両の動力装置
KR102114070B1 (ko) * 2018-12-11 2020-05-25 현대 파워텍 주식회사 차량용 변속기

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093327A1 (ja) * 2014-12-11 2016-06-16 株式会社エフ・シー・シー ハイブリッド車両の動力伝達装置
JP2016112943A (ja) * 2014-12-11 2016-06-23 株式会社エフ・シー・シー ハイブリッド車両の動力伝達装置
US10272906B2 (en) 2014-12-11 2019-04-30 Kabushiki Kaisha F.C.C. Power transmission device for hybrid vehicle
JP2018114922A (ja) * 2017-01-20 2018-07-26 スズキ株式会社 動力伝達装置および動力伝達装置を備えた車両
CN107054053A (zh) * 2017-01-21 2017-08-18 浙江钱江摩托股份有限公司 一种混合动力车辆三离合驱动装置及控制方法
CN107054053B (zh) * 2017-01-21 2023-06-20 浙江美可达摩托车有限公司 一种混合动力车辆三离合驱动装置及控制方法
JP2019123411A (ja) * 2018-01-18 2019-07-25 本田技研工業株式会社 ハイブリッド車両の動力装置
KR102114070B1 (ko) * 2018-12-11 2020-05-25 현대 파워텍 주식회사 차량용 변속기

Similar Documents

Publication Publication Date Title
CN101395024B (zh) 混合动力驱动设备及其控制方法
CN103221242B (zh) 混合动力驱动装置
JP5207913B2 (ja) ハイブリッド自動車の駆動装置
CN104728373B (zh) 用于车辆的动力传输装置
JP6104737B2 (ja) ハイブリッド自動車の動力伝達装置
JP6403471B2 (ja) ハイブリッド自動車の動力伝達装置
JP6227303B2 (ja) ハイブリッド自動車の動力伝達装置
CN104747661A (zh) 用于车辆的动力传输装置
KR101500357B1 (ko) 하이브리드 자동차의 동력전달장치
CN104648115A (zh) 集成式单驱动电机的插电式混合动力汽车的两挡变速驱动系统
CN102821990B (zh) 车辆用驱动装置
CN101450609A (zh) 混合动力驱动系统及其驱动方法
JP2010076680A (ja) ハイブリッド駆動装置
JP4770642B2 (ja) 動力伝達システム
CN104661846A (zh) 混合动力车辆用驱动装置
JP4961713B2 (ja) ハイブリッド駆動装置の制御装置
JP2014034284A (ja) ハイブリッド自動車用駆動システム及びその制御方法
CN110962577A (zh) 混合动力变速箱及混合动力变速传动系统
JP6243646B2 (ja) ハイブリッド自動車の動力伝達装置
JP4179211B2 (ja) ハイブリッド車の駆動装置
CN101985274A (zh) 一种基于五档自动变速器的混合动力汽车传动系统
JP6049123B2 (ja) ハイブリッド車両の駆動装置
JP5337744B2 (ja) 動力伝達装置及びハイブリッド駆動装置
CN210617838U (zh) 混合动力车辆用动力驱动系统
CN205044511U (zh) 无动力中断的混合动力系统