JP2014017440A - Photoelectric conversion element and image sensor - Google Patents

Photoelectric conversion element and image sensor Download PDF

Info

Publication number
JP2014017440A
JP2014017440A JP2012155401A JP2012155401A JP2014017440A JP 2014017440 A JP2014017440 A JP 2014017440A JP 2012155401 A JP2012155401 A JP 2012155401A JP 2012155401 A JP2012155401 A JP 2012155401A JP 2014017440 A JP2014017440 A JP 2014017440A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
conversion element
electrode
injection blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155401A
Other languages
Japanese (ja)
Inventor
Kenji Kikuchi
健司 菊地
Shigeaki Tamemura
成亨 為村
Kazunori Miyakawa
和典 宮川
Setsu Kubota
節 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012155401A priority Critical patent/JP2014017440A/en
Publication of JP2014017440A publication Critical patent/JP2014017440A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element capable of obtaining a high S/N ratio by reducing a dark current, and an image sensor.SOLUTION: The photoelectric conversion element includes a first electrode layer, a photoelectric conversion layer laminated on the first electrode layer, a hole injection blocking layer constituted of gallium oxide and laminated on the photoelectric conversion layer, and a second electrode layer laminated on the hole injection blocking layer and constituted of a translucent electrode material.

Description

本発明は、低電圧動作、高S/N比の光電変換素子及びイメージセンサに関する。   The present invention relates to a photoelectric conversion element and an image sensor having a low voltage operation and a high S / N ratio.

従来から、カルコパイライト型半導体であるCuIn1-XGaXSe2(Se系CIGS膜)あるいはCuIn1-XGaXS2(S系CIGS膜)を光電変換層に用いた光電変換素子は、主に太陽電池として利用されており、高い光吸収係数、高い量子効率およびエネルギー変換効率、光照射による劣化が少ないといった利点を有している(例えば、特許文献1、非特許文献1、2参照)。 Conventionally, a photoelectric conversion element that uses a chalcopyrite semiconductor CuIn 1-X Ga X Se 2 (Se-based CIGS film) or CuIn 1-X Ga X S 2 (S-based CIGS film) as a photoelectric conversion layer, It is mainly used as a solar cell, and has advantages such as a high light absorption coefficient, high quantum efficiency and energy conversion efficiency, and little deterioration due to light irradiation (for example, see Patent Document 1, Non-Patent Documents 1 and 2). ).

また、従来から、光電変換層にセレン系非晶質半導体を用いた光電変換素子は、高い光吸収係数と低い暗電流特性を有することから、主に高感度撮像素子として利用されてきたが、長波長光に対する低い感度特性や、経時的な結晶化に起因した白キズ発生が問題とされてきた。   In addition, conventionally, a photoelectric conversion element using a selenium-based amorphous semiconductor in a photoelectric conversion layer has a high light absorption coefficient and a low dark current characteristic, and thus has been mainly used as a high-sensitivity imaging element. The low sensitivity characteristic with respect to long wavelength light and the generation | occurrence | production of the white crack resulting from crystallization with time have been a problem.

一方、セレン系非晶質半導体を、成膜後加熱により一様に結晶化を行ったセレン系結晶質半導体(結晶セレン(六方晶セレン))は、セレン系非晶質半導体における長波長光に対する感度特性や白キズ発生等の問題点を克服し、可視光全域での高い感度特性と素子の熱的な安定性を有する(例えば、非特許文献3、特許文献2参照)。   On the other hand, a selenium-based crystalline semiconductor (crystalline selenium (hexagonal selenium)) obtained by uniformly crystallizing a selenium-based amorphous semiconductor by heating after film formation is used for long wavelength light in a selenium-based amorphous semiconductor. It overcomes problems such as sensitivity characteristics and white scratches, and has high sensitivity characteristics in the entire visible light range and thermal stability of the element (see, for example, Non-Patent Document 3 and Patent Document 2).

また、結晶セレン(六方晶セレン)は、バンドギャップ1.85eV程度であり、可視光域での光吸収係数は10cm−1と高く、イメージセンサや太陽電池として有用であると考えられる(例えば、非特許文献4、5)。 Crystalline selenium (hexagonal selenium) has a band gap of about 1.85 eV, and has a high light absorption coefficient of 10 5 cm −1 in the visible light region, which is considered useful as an image sensor or a solar cell ( For example, Non-Patent Documents 4 and 5).

特開2007−123720号公報JP 2007-123720 A 特開昭61−67279号公報JP 61-67279 A

Photoconductive Imaging Using CuInSe2 Film, Jpn.J.Appl.Phys. vol.32, Suppl.32-3, pp.113-115 (1993)Photoconductive Imaging Using CuInSe2 Film, Jpn.J.Appl.Phys.vol.32, Suppl.32-3, pp.113-115 (1993) 東京農工大学 博士論文「三元化合物半導体の光デバイスへの応用」田中 克、平成八年Tokyo University of Agriculture and Technology Doctoral Dissertation "Application of ternary compound semiconductors to optical devices" Katsushi Tanaka, 1996 Efficient ITO/Se Heterojunction Solar Cells, Jpn.J.Appl.Phys. vol.23, No.8, pp.L587-L589 (1984)Efficient ITO / Se Heterojunction Solar Cells, Jpn.J.Appl.Phys.vol.23, No.8, pp.L587-L589 (1984) V.Prosser et al. The Optical Constants of Single Crystals of Hexagonal Selenium, Czech.J.Phys.B 10,p306 (1960)V.Prosser et al. The Optical Constants of Single Crystals of Hexagonal Selenium, Czech.J.Phys.B 10, p306 (1960) T.Nakada et al. Polycrystalline Thin-Film TiO2/Se Solar Cells, J.J.App.Phys vol.24, No.7, pp.L536 (1985)T. Nakada et al. Polycrystalline Thin-Film TiO2 / Se Solar Cells, J.J.App.Phys vol.24, No.7, pp.L536 (1985)

しかしながら、カルコパイライト型半導体を光電変換層に用いた光電変換素子では、電界印加時における暗電流が大きく、充分なS/N比は得られていない。また、結晶セレン(Se)もそのまま(単層)では暗電流が大きい。   However, a photoelectric conversion element using a chalcopyrite semiconductor for a photoelectric conversion layer has a large dark current when an electric field is applied, and a sufficient S / N ratio cannot be obtained. Further, if the crystalline selenium (Se) is also as it is (single layer), the dark current is large.

暗電流の要因の一つとして、電極からのカルコパイライト型半導体への電荷の注入が十分に抑制されていないことが考えられる。   As one of the causes of dark current, it is conceivable that the injection of charge from the electrode to the chalcopyrite semiconductor is not sufficiently suppressed.

また、上述のように結晶化を行ったセレン系結晶質半導体(結晶セレン(六方晶セレン))を光電変換層に用いた光電変換素子では、電界印加時の暗電流が大きく、十分なS/N比は得られていない。   Further, in the photoelectric conversion element using the selenium-based crystalline semiconductor (crystal selenium (hexagonal selenium)) crystallized as described above for the photoelectric conversion layer, the dark current at the time of applying an electric field is large, and sufficient S / N ratio is not obtained.

そこで、本発明は、カルコパイライト型半導体、又は、セレン系結晶質半導体(結晶セレン(六方晶セレン))を光電変換層に用い、暗電流を大幅に低減した光電変換素子、及び、イメージセンサを提供することを目的とする。   Therefore, the present invention provides a photoelectric conversion element and an image sensor that use a chalcopyrite type semiconductor or a selenium-based crystalline semiconductor (crystalline selenium (hexagonal selenium)) for a photoelectric conversion layer and greatly reduce dark current. The purpose is to provide.

本発明の一局面の光電変換素子は、第1電極層と、前記第1電極層に積層される光電変換層と、酸化ガリウムで構成され、前記光電変換層に積層される正孔注入阻止層と、前記正孔注入阻止層に積層され、透光性電極材料で構成される第2電極層とを具える。   The photoelectric conversion element of one aspect of the present invention includes a first electrode layer, a photoelectric conversion layer stacked on the first electrode layer, a hole injection blocking layer formed of gallium oxide and stacked on the photoelectric conversion layer. And a second electrode layer laminated on the hole injection blocking layer and made of a translucent electrode material.

暗電流を低減し、高いS/N比が得られる光電変換素子、及び、イメージセンサを提供できるという特有の効果が得られる。   The photoelectric conversion element and the image sensor that can reduce the dark current and obtain a high S / N ratio can be provided.

実施の形態1の光電変換素子の断面を示す図である。3 is a diagram showing a cross section of the photoelectric conversion element of Embodiment 1. FIG. 実施の形態1の光電変換素子のバンド構造の分析結果を示す図である。6 is a diagram illustrating an analysis result of a band structure of the photoelectric conversion element of Embodiment 1. FIG. 実施の形態1との比較用に正孔注入阻止層4を含まない光電変換素子で測定した暗電流の特性を示す図である。It is a figure which shows the characteristic of the dark current measured with the photoelectric conversion element which does not contain the positive hole injection blocking layer 4 for the comparison with Embodiment 1. FIG. 実施の形態1の光電変換素子10で測定した暗電流の特性を示す図である。FIG. 3 is a diagram illustrating characteristics of dark current measured by the photoelectric conversion element 10 according to the first embodiment. 実施の形態1の光電変換素子10を用いたイメージセンサの断面構造を示す図である。1 is a diagram illustrating a cross-sectional structure of an image sensor using a photoelectric conversion element 10 according to Embodiment 1. FIG. 実施の形態2の光電変換素子の断面を示す図である。6 is a diagram illustrating a cross section of a photoelectric conversion element according to Embodiment 2. FIG. 実施の形態2との比較用に正孔注入阻止層4を含まない光電変換素子で測定した暗電流の特性を示す図である。It is a figure which shows the characteristic of the dark current measured with the photoelectric conversion element which does not contain the positive hole injection blocking layer 4 for the comparison with Embodiment 2. FIG. 実施の形態2の光電変換素子20で測定した暗電流の特性を示す図である。It is a figure which shows the characteristic of the dark current measured with the photoelectric conversion element 20 of Embodiment 2. FIG. 実施の形態3の光電変換素子の断面を示す図である。6 is a diagram illustrating a cross section of a photoelectric conversion element of Embodiment 3. FIG. 実施の形態3の光電変換素子30の暗電流の特性を示す図である。It is a figure which shows the characteristic of the dark current of the photoelectric conversion element 30 of Embodiment 3. 実施の形態1乃至3の変形例の光電変換素子の断面を示す図である。It is a figure which shows the cross section of the photoelectric conversion element of the modification of Embodiment 1 thru | or 3.

以下、本発明の光電変換素子、及び、イメージセンサを適用した実施の形態について説明する。   Hereinafter, embodiments in which the photoelectric conversion element and the image sensor of the present invention are applied will be described.

<実施の形態1>
図1は、実施の形態1の光電変換素子の断面を示す図である。
<Embodiment 1>
FIG. 1 is a diagram illustrating a cross section of the photoelectric conversion element of the first embodiment.

実施の形態1の光電変換素子10は、基板1、電極2、光電変換層3、正孔注入阻止層4、及び電極5を含む。   The photoelectric conversion element 10 of Embodiment 1 includes a substrate 1, an electrode 2, a photoelectric conversion layer 3, a hole injection blocking layer 4, and an electrode 5.

基板1は、例えば、ガラス基板を用いることができる。光電変換素子10は、図1における上側又は下側のどちらから光を入射させてもよい。例えば、上側から光を入射させる場合は、電極5には透光性のある電極であることが要求されるが、基板1は透明でなくてもよい。この場合には、基板1として、例えば、シリコン基板等を用いてもよい。   As the substrate 1, for example, a glass substrate can be used. The photoelectric conversion element 10 may receive light from either the upper side or the lower side in FIG. For example, when light is incident from above, the electrode 5 is required to be a light-transmitting electrode, but the substrate 1 may not be transparent. In this case, for example, a silicon substrate or the like may be used as the substrate 1.

また、下側から光を入射させる場合は、基板1及び電極2は透光性のある基板及び電極であることが要求されるが、電極5は透明でなくてもよい。なお、基板1、電極2、及び電極5がすべて透光性を有するように構成されてもよい。   When light is incident from the lower side, the substrate 1 and the electrode 2 are required to be light-transmitting substrates and electrodes, but the electrode 5 may not be transparent. In addition, you may be comprised so that all the board | substrate 1, electrode 2, and electrode 5 may have translucency.

電極2は、例えば、金、又は、窒化チタン製の薄膜電極を用いることができる。電極2は、負極性電極として用いられる。電極2は、第1電極層の一例である。   As the electrode 2, for example, a thin film electrode made of gold or titanium nitride can be used. The electrode 2 is used as a negative electrode. The electrode 2 is an example of a first electrode layer.

例えば、金薄膜は、蒸着法で基板1の表面に作製すればよく、窒化チタン薄膜は、スパッタ法等で基板1の表面に作製すればよい。金薄膜や窒化チタン薄膜に透光性を持たせたい場合は、透光性を確保できる程度に薄い膜厚にすればよい。また、電極2として、蒸着法等によって形成されるITO(Indium Tin Oxide)膜を用いてもよい。なお、電極2は、導電膜で構成されていればよいため、ここに記載する材料のものに限定されない。   For example, the gold thin film may be formed on the surface of the substrate 1 by a vapor deposition method, and the titanium nitride thin film may be formed on the surface of the substrate 1 by a sputtering method or the like. When it is desired to provide a light-transmitting property to the gold thin film or the titanium nitride thin film, the film thickness should be thin enough to ensure the light-transmitting property. Further, as the electrode 2, an ITO (Indium Tin Oxide) film formed by vapor deposition or the like may be used. In addition, since the electrode 2 should just be comprised with the electrically conductive film, it is not limited to the thing of the material described here.

光電変換層3は、カルコパイライト型半導体(例えば、CuIn1−XGaSe(Se系CIGS膜)、又は、CuIn1−XGa(S系CIGS膜)等)で構成される。ここで、CuIn1−XGaSe(Se系CIGS膜)とCuIn1−XGa(S系CIGS膜)におけるxは0〜1(0≦x≦1)である。 The photoelectric conversion layer 3 is composed of chalcopyrite semiconductor (e.g., CuIn 1-X Ga X Se 2 (Se -based CIGS film), or, CuIn 1-X Ga X S 2 (S based CIGS film), etc.) . Here, CuIn 1-X Ga X Se 2 (Se -based CIGS film) and CuIn 1-X Ga X S x in 2 (S based CIGS film) is 0~1 (0 ≦ x ≦ 1) .

カルコパイライト型半導体による光電変換層3は、例えば、多元蒸着法、三段階法、スパッタリング法等で電極2の上に形成することができ、膜厚は、例えば、0.5μm〜3μm程度である。   The photoelectric conversion layer 3 made of a chalcopyrite semiconductor can be formed on the electrode 2 by, for example, a multi-source deposition method, a three-stage method, a sputtering method, or the like, and the film thickness is, for example, about 0.5 μm to 3 μm. .

光電変換層3には、電極2と電極5との間で直流電圧が印加される。直流電圧は、電極2を負極性電極とし、電極5を正極性電極とする向きに、電極2と電極5との間に直流電源を接続することによって印加することができる。   A DC voltage is applied between the electrode 2 and the electrode 5 to the photoelectric conversion layer 3. The DC voltage can be applied by connecting a DC power source between the electrode 2 and the electrode 5 in a direction in which the electrode 2 is a negative electrode and the electrode 5 is a positive electrode.

カルコパイライト型半導体による光電変換層3は、所定の電圧(例えば、7V程度)を印加することにより、アバランシェ増倍が生じることが確認されている。   It has been confirmed that an avalanche multiplication occurs in the photoelectric conversion layer 3 made of a chalcopyrite semiconductor by applying a predetermined voltage (for example, about 7 V).

正孔注入阻止層4は、電極5から光電変換層3への正孔の注入を阻止する(抑制する)層であり、酸化ガリウム(Ga)層で構成される。正孔注入阻止層4として用いる酸化ガリウム(Ga)層は、例えば、真空蒸着法、スパッタリング法、パルスレーザー蒸着法等で光電変換層3の上に形成することができる。正孔注入阻止層4の膜厚は、例えば、0.01μm〜1μm程度である。 The hole injection blocking layer 4 is a layer that blocks (suppresses) injection of holes from the electrode 5 to the photoelectric conversion layer 3, and includes a gallium oxide (Ga 2 O 3 ) layer. The gallium oxide (Ga 2 O 3 ) layer used as the hole injection blocking layer 4 can be formed on the photoelectric conversion layer 3 by, for example, a vacuum deposition method, a sputtering method, a pulse laser deposition method, or the like. The film thickness of the hole injection blocking layer 4 is, for example, about 0.01 μm to 1 μm.

電極5は、例えば、ITO膜で構成される。ITO膜は、蒸着法等によって光電変換層3の上に形成される。電極5は、正極性電極として用いられる。電極5は、第2電極層の一例である。   The electrode 5 is made of an ITO film, for example. The ITO film is formed on the photoelectric conversion layer 3 by vapor deposition or the like. The electrode 5 is used as a positive electrode. The electrode 5 is an example of a second electrode layer.

また、電極5としては、電極2と同様に、金薄膜や窒化チタン薄膜を用いてもよい。なお、電極2は、導電膜で構成されていればよいため、ここに記載する材料のものに限定されない。   As the electrode 5, a gold thin film or a titanium nitride thin film may be used as in the case of the electrode 2. In addition, since the electrode 2 should just be comprised with the electrically conductive film, it is not limited to the thing of the material described here.

図2は、実施の形態1の光電変換素子のバンド構造の分析結果を示す図である。この分析結果は、XPS(X-ray photoemission spectroscopy :光電子分光装置)でフェルミ準位(EF)および価電子帯(EV)の位置を測定したものである。また、バンドギャップ(Eg)は、光学吸収測定より算出したものである。 FIG. 2 is a diagram showing the analysis result of the band structure of the photoelectric conversion element of the first embodiment. This analysis result is obtained by measuring the positions of the Fermi level (E F ) and the valence band (E V ) with XPS (X-ray photoemission spectroscopy). The band gap (Eg) is calculated from optical absorption measurement.

図2の分析結果は、電極2として金薄膜を用い、光電変換層3としてCuIn1−XGaSeにおいてx=1としたCuGaSeを用い、電極5としてITO膜を用いて作製した光電変換素子10で得た。 Analysis of Figure 2, a gold thin film used as an electrode 2, using a CuGaSe 2 in which the x = 1 in CuIn 1-X Ga X Se 2 as a photoelectric conversion layer 3, photoelectric manufactured using the ITO film as the electrode 5 Obtained with the conversion element 10.

図2では、右から左に向けて、電極2(Au)、光電変換層3(CuGaSe)、正孔注入阻止層4(Ga)、電極5(ITO)を示す。 In FIG. 2, the electrode 2 (Au), the photoelectric conversion layer 3 (CuGaSe 2 ), the hole injection blocking layer 4 (Ga 2 O 3 ), and the electrode 5 (ITO) are shown from right to left.

図2に示すように、正孔注入阻止層4と電極5との間には、約3.4eV程度の高い正孔注入障壁が得られていることが分かった。このように高い正孔注入障壁が得られれば、電極5から正孔注入阻止層4への正孔の注入は、阻止(抑制)されることと考えられる。   As shown in FIG. 2, it was found that a high hole injection barrier of about 3.4 eV was obtained between the hole injection blocking layer 4 and the electrode 5. If such a high hole injection barrier is obtained, injection of holes from the electrode 5 into the hole injection blocking layer 4 is considered to be blocked (suppressed).

図3は、比較用に、正孔注入阻止層4を含まない光電変換素子で測定した暗電流の特性を示す図である。図4は、実施の形態1の光電変換素子10で測定した暗電流の特性を示す図である。図3に示す暗電流の特性を測定した比較用の光電変換素子は、図1に示す光電変換素子10から正孔注入阻止層4を除いた構成を有する。暗電流の特性は、電極2(負極性電圧)と電極5(正極性電圧)の間に電圧を印加して測定した。   FIG. 3 is a diagram showing characteristics of dark current measured by a photoelectric conversion element not including the hole injection blocking layer 4 for comparison. FIG. 4 is a diagram illustrating the characteristics of dark current measured by the photoelectric conversion element 10 of the first embodiment. The comparative photoelectric conversion element in which the dark current characteristics shown in FIG. 3 are measured has a configuration in which the hole injection blocking layer 4 is removed from the photoelectric conversion element 10 shown in FIG. The characteristics of dark current were measured by applying a voltage between the electrode 2 (negative voltage) and the electrode 5 (positive voltage).

図3に示すように、比較用の光電変換素子では、例えば、2Vの直流電圧を印加した時に、暗電流は40μA/cmと非常に高い値であった。 As shown in FIG. 3, in the comparative photoelectric conversion element, for example, when a DC voltage of 2 V was applied, the dark current was a very high value of 40 μA / cm 2 .

これに対して、実施の形態1の光電変換素子10では、図4に示すように、例えば、2Vの直流電圧を印加した時に、暗電流は1nA/cmであった。すなわち、実施の形態1の光電変換素子10は、比較用の光電変換素子に比べて、暗電流が約1/10000であり、大きく(4桁以上)低減できた。 On the other hand, in the photoelectric conversion element 10 of Embodiment 1, as shown in FIG. 4, for example, when a DC voltage of 2 V was applied, the dark current was 1 nA / cm 2 . That is, the photoelectric conversion element 10 of Embodiment 1 has a dark current of about 1/10000 compared with the photoelectric conversion element for comparison, which can be greatly reduced (4 digits or more).

また、このように暗電流を低減できることにより、光電変換素子10のS/N比を改善することができる。   In addition, since the dark current can be reduced in this manner, the S / N ratio of the photoelectric conversion element 10 can be improved.

図5は、実施の形態1の光電変換素子10を用いたイメージセンサの断面構造を示す図である。   FIG. 5 is a diagram illustrating a cross-sectional structure of an image sensor using the photoelectric conversion element 10 according to the first embodiment.

図5に示すイメージセンサ100は、図1に示す基板1の代わりに、信号読み取り部101を含む。信号読み取り部101は、光電変換層3で光電変換によって得られた信号を電極2を介して取り出すとともに、基板として機能する。   An image sensor 100 shown in FIG. 5 includes a signal reading unit 101 instead of the substrate 1 shown in FIG. The signal reading unit 101 extracts a signal obtained by photoelectric conversion in the photoelectric conversion layer 3 through the electrode 2 and functions as a substrate.

図5では、信号読み取り部100を簡略化して示すが、信号読み取り部100としては、例えば、CCD(Charge Coupled Device)を用いた信号読み取り部を用いればよい。信号読み取り部100は、イメージセンサ100の画素毎に設ければよい。   In FIG. 5, the signal reading unit 100 is shown in a simplified manner, but as the signal reading unit 100, for example, a signal reading unit using a CCD (Charge Coupled Device) may be used. The signal reading unit 100 may be provided for each pixel of the image sensor 100.

以上、実施の形態1によれば、光電変換層3と電極5(正極性電極)との間に、酸化ガリウム(Ga)製の正孔注入阻止層4を設けることにより、電極5と光電変換層3との間に正孔注入障壁を形成することができる。 As described above, according to Embodiment 1, the electrode 5 is provided by providing the hole injection blocking layer 4 made of gallium oxide (Ga 2 O 3 ) between the photoelectric conversion layer 3 and the electrode 5 (positive electrode). And a photoelectric conversion layer 3 can form a hole injection barrier.

この結果、実施の形態1によれば、暗電流を低減し、高いS/N比が得られる光電変換素子、及び、イメージセンサを提供できる
なお、以上では、光電変換素子10をイメージセンサ100に用いる形態について説明したが、実施の形態1の光電変換素子10は、例えば、太陽電池に用いてもよい。
As a result, according to Embodiment 1, it is possible to provide a photoelectric conversion element and an image sensor that can reduce dark current and obtain a high S / N ratio. Although the form to use was demonstrated, you may use the photoelectric conversion element 10 of Embodiment 1 for a solar cell, for example.

<実施の形態2>
図6は、実施の形態2の光電変換素子の断面を示す図である。以下では、実施の形態1の光電変換素子10と同様の構成要素には同一符号を付し、その説明を省略又は簡略化する。
<Embodiment 2>
FIG. 6 is a cross-sectional view of the photoelectric conversion element of the second embodiment. Below, the same code | symbol is attached | subjected to the component similar to the photoelectric conversion element 10 of Embodiment 1, and the description is abbreviate | omitted or simplified.

実施の形態2の光電変換素子20は、基板1、電極2、光電変換層23、正孔注入阻止層4、及び電極5を含む。   The photoelectric conversion element 20 of Embodiment 2 includes a substrate 1, an electrode 2, a photoelectric conversion layer 23, a hole injection blocking layer 4, and an electrode 5.

光電変換層23は、結晶化セレン(六方晶セレン(Se))で構成される。光電変換層23は、電極2の上に真空蒸着法等により、例えば、膜厚が0.5μm〜4μmのアモルファスセレン(a−Se)を形成し、その後100℃〜220℃の温度で1分〜30分間熱処理を行うことで形成される。   The photoelectric conversion layer 23 is composed of crystallized selenium (hexagonal selenium (Se)). The photoelectric conversion layer 23 forms, for example, amorphous selenium (a-Se) having a film thickness of 0.5 μm to 4 μm on the electrode 2 by a vacuum deposition method, and then at a temperature of 100 ° C. to 220 ° C. for 1 minute. It is formed by performing heat treatment for ˜30 minutes.

実施の形態2では、正孔注入阻止層4を構成する酸化ガリウム(Ga)は、光電変換層23の上に、真空蒸着法、スパッタリング法、パルスレーザー蒸着法等で形成される。正孔注入阻止層4の膜厚は、例えば、0.01μm〜1μmである。 In the second embodiment, gallium oxide (Ga 2 O 3 ) constituting the hole injection blocking layer 4 is formed on the photoelectric conversion layer 23 by a vacuum deposition method, a sputtering method, a pulse laser deposition method, or the like. The film thickness of the hole injection blocking layer 4 is, for example, 0.01 μm to 1 μm.

図7は、比較用に、正孔注入阻止層4を含まない光電変換素子で測定した暗電流の特性を示す図である。図8は、実施の形態2の光電変換素子20で測定した暗電流の特性を示す図である。図7に示す暗電流の特性を測定した比較用の光電変換素子は、図6に示す光電変換素子20から正孔注入阻止層4を除いた構成を有する。暗電流の特性は、電極2(負極性電圧)と電極5(正極性電圧)の間に電圧を印加して測定した。   FIG. 7 is a diagram showing characteristics of dark current measured by a photoelectric conversion element not including the hole injection blocking layer 4 for comparison. FIG. 8 is a diagram showing the characteristics of dark current measured by the photoelectric conversion element 20 of the second embodiment. The comparative photoelectric conversion element for measuring the dark current characteristics shown in FIG. 7 has a configuration in which the hole injection blocking layer 4 is removed from the photoelectric conversion element 20 shown in FIG. The characteristics of dark current were measured by applying a voltage between the electrode 2 (negative voltage) and the electrode 5 (positive voltage).

図7に示すように、比較用の光電変換素子では、例えば、2Vの直流電圧を印加した時に、暗電流は70μA/cmと非常に高い値であった。 As shown in FIG. 7, in the comparative photoelectric conversion element, for example, when a DC voltage of 2 V was applied, the dark current was a very high value of 70 μA / cm 2 .

これに対して、実施の形態2の光電変換素子20では、図8に示すように、例えば、2Vの直流電圧を印加した時に、暗電流は100nA/cmであった。すなわち、実施の形態2の光電変換素子20は、比較用の光電変換素子に比べて、暗電流が約1/100であり、大きく(約2桁)低減できた。 On the other hand, in the photoelectric conversion element 20 of Embodiment 2, as shown in FIG. 8, for example, when a DC voltage of 2 V was applied, the dark current was 100 nA / cm 2 . That is, the photoelectric conversion element 20 of Embodiment 2 has a dark current of about 1/100 compared to the comparative photoelectric conversion element, and can be greatly reduced (about two digits).

また、このように暗電流を低減できることにより、光電変換素子20のS/N比を改善することができる。   In addition, since the dark current can be reduced in this way, the S / N ratio of the photoelectric conversion element 20 can be improved.

<実施の形態3>
図9は、実施の形態3の光電変換素子の断面を示す図である。以下では、実施の形態1、2の光電変換素子10、20と同様の構成要素には同一符号を付し、その説明を省略又は簡略化する。
<Embodiment 3>
FIG. 9 is a diagram illustrating a cross section of the photoelectric conversion element of the third embodiment. Below, the same code | symbol is attached | subjected to the component similar to the photoelectric conversion elements 10 and 20 of Embodiment 1, 2, and the description is abbreviate | omitted or simplified.

実施の形態3の光電変換素子30は、基板1、電極2、電子注入阻止層32、光電変換層23、及び電極5を含む。実施の形態3の光電変換素子30は、実施の形態2の光電変換素子20から正孔注入阻止層を取り除き、電極2と光電変換層23との間に電子注入阻止層32を設けた構成を有する。   The photoelectric conversion element 30 of Embodiment 3 includes a substrate 1, an electrode 2, an electron injection blocking layer 32, a photoelectric conversion layer 23, and an electrode 5. The photoelectric conversion element 30 of Embodiment 3 has a configuration in which the hole injection blocking layer is removed from the photoelectric conversion element 20 of Embodiment 2 and an electron injection blocking layer 32 is provided between the electrode 2 and the photoelectric conversion layer 23. Have.

電子注入阻止層32は、電極2から光電変換層3への電子の注入を阻止する(抑制する)層であり、酸化ニッケル(NiO)層で構成される。酸化ニッケル(NiO)層で構成される電子注入阻止層32は、電極2の上に、例えば、蒸着法やスパッタリング法などにより形成される。電子注入阻止層32の膜厚は、例えば、10nm〜500nmである。   The electron injection blocking layer 32 is a layer that blocks (suppresses) injection of electrons from the electrode 2 to the photoelectric conversion layer 3, and is composed of a nickel oxide (NiO) layer. The electron injection blocking layer 32 composed of a nickel oxide (NiO) layer is formed on the electrode 2 by, for example, vapor deposition or sputtering. The film thickness of the electron injection blocking layer 32 is, for example, 10 nm to 500 nm.

実施の形態3では、光電変換層23は、電子注入阻止層32の上に形成される。光電変換層23の膜厚は、実施の形態3では、例えば、0.01μm〜20μmである。   In Embodiment 3, the photoelectric conversion layer 23 is formed on the electron injection blocking layer 32. In Embodiment 3, the film thickness of the photoelectric conversion layer 23 is, for example, 0.01 μm to 20 μm.

図10は、実施の形態3の光電変換素子30の暗電流の特性を示す図である。図10には、比較用に、電子注入阻止層32を含まない光電変換素子の暗電流の特性も示す。この比較用の光電変換素子は、実施の形態3の光電変換素子30から電子注入阻止層32を取り除いた構成を有する。   FIG. 10 is a diagram illustrating the dark current characteristics of the photoelectric conversion element 30 according to the third embodiment. FIG. 10 also shows dark current characteristics of a photoelectric conversion element that does not include the electron injection blocking layer 32 for comparison. This comparative photoelectric conversion element has a configuration in which the electron injection blocking layer 32 is removed from the photoelectric conversion element 30 of the third embodiment.

図10には、実施の形態の光電変換素子30の暗電流の特性を丸いプロット(●)で示し、比較用の光電変換素子の暗電流の特性を三角のプロット(▲)で示す。   In FIG. 10, the dark current characteristics of the photoelectric conversion element 30 of the embodiment are indicated by a round plot (●), and the dark current characteristics of the comparative photoelectric conversion element are indicated by a triangular plot (▲).

図10に示すように、比較用の光電変換素子では、例えば、10Vの直流電圧を印加した時に、暗電流は約500μA/cmと非常に高い値であった。 As shown in FIG. 10, in the comparative photoelectric conversion element, for example, when a DC voltage of 10 V was applied, the dark current was a very high value of about 500 μA / cm 2 .

これに対して、実施の形態3の光電変換素子30では、図10に示すように、例えば、10Vの直流電圧を印加した時に、暗電流は約80μA/cmと低減した。すなわち、実施の形態3の光電変換素子30は、比較用の光電変換素子に比べて、暗電流が約1/6であり、大きく低減できた。 On the other hand, in the photoelectric conversion element 30 of Embodiment 3, as shown in FIG. 10, for example, when a DC voltage of 10 V was applied, the dark current was reduced to about 80 μA / cm 2 . That is, the photoelectric conversion element 30 of Embodiment 3 has a dark current of about 1/6 compared to the comparative photoelectric conversion element, and can be greatly reduced.

また、このように暗電流を低減できることにより、光電変換素子30のS/N比を改善することができる。   In addition, since the dark current can be reduced in this way, the S / N ratio of the photoelectric conversion element 30 can be improved.

なお、以上では、実施の形態1、2では正孔注入阻止層4を含む光電変換素子10、20について説明した。また、実施の形態3では電子注入阻止層32を含む光電変換素子30について説明した。   Note that, in the first and second embodiments, the photoelectric conversion elements 10 and 20 including the hole injection blocking layer 4 have been described above. In the third embodiment, the photoelectric conversion element 30 including the electron injection blocking layer 32 has been described.

実施の形態1、2の光電変換素子10、20において、電極2と光電変換層3又は23との間に、電子注入阻止層32を設けてもよい。また、実施の形態3において、光電変換層23と電極5との間に、正孔注入阻止層4を設けてもよい。この場合の光電変換素子の構成は、図11に示すようになる。   In the photoelectric conversion elements 10 and 20 of Embodiments 1 and 2, an electron injection blocking layer 32 may be provided between the electrode 2 and the photoelectric conversion layer 3 or 23. In Embodiment 3, the hole injection blocking layer 4 may be provided between the photoelectric conversion layer 23 and the electrode 5. The configuration of the photoelectric conversion element in this case is as shown in FIG.

図11は、実施の形態1乃至3の変形例の光電変換素子の断面を示す図である。   FIG. 11 is a diagram illustrating a cross section of a photoelectric conversion element according to a modification of the first to third embodiments.

図11に示す光電変換素子40は、基板1、電極2、電子注入阻止層32、光電変換層3、正孔注入阻止層4、及び電極5を含む。光電変換素子40は、実施の形態1の光電変換素子10の電極2と光電変換層3との間に、電子注入阻止層32を設けた構成を有する。   A photoelectric conversion element 40 illustrated in FIG. 11 includes a substrate 1, an electrode 2, an electron injection blocking layer 32, a photoelectric conversion layer 3, a hole injection blocking layer 4, and an electrode 5. The photoelectric conversion element 40 has a configuration in which an electron injection blocking layer 32 is provided between the electrode 2 of the photoelectric conversion element 10 of Embodiment 1 and the photoelectric conversion layer 3.

このように、正孔注入阻止層4と電子注入阻止層32の両方を含む光電変換素子40では、正孔注入阻止層4によって電極5から光電変換層3に正孔が注入されることが阻止(抑制)され、電子注入阻止層32によって電極2から光電変換層3に電子が注入されることが阻止(抑制)される。   Thus, in the photoelectric conversion element 40 including both the hole injection blocking layer 4 and the electron injection blocking layer 32, holes are blocked from being injected from the electrode 5 into the photoelectric conversion layer 3 by the hole injection blocking layer 4. (Suppressed), and the electron injection blocking layer 32 prevents (suppresses) electrons from being injected from the electrode 2 into the photoelectric conversion layer 3.

このため、光電変換素子40によれば、暗電流を低減でき、S/N比を改善することができる。   For this reason, according to the photoelectric conversion element 40, dark current can be reduced and S / N ratio can be improved.

なお、光電変換素子40は、カルコパイライト型半導体で構成される光電変換層3の代わりに、結晶化セレン(六方晶セレン(Se))で構成される光電変換層23を含んでもよい。   Note that the photoelectric conversion element 40 may include a photoelectric conversion layer 23 made of crystallized selenium (hexagonal selenium (Se)) instead of the photoelectric conversion layer 3 made of chalcopyrite semiconductor.

以上、本発明の例示的な実施の形態の光電変換素子、及び、イメージセンサについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。   The photoelectric conversion element and the image sensor according to the exemplary embodiment of the present invention have been described above, but the present invention is not limited to the specifically disclosed embodiment, and is not limited to the claims. Various modifications and changes can be made without departing from the above.

10、20、30、40 光電変換素子
1 基板
2 電極
3、23 光電変換層
4 正孔注入阻止層
5 電極
32 電子注入阻止層
100 イメージセンサ
10, 20, 30, 40 Photoelectric conversion element 1 Substrate 2 Electrode 3, 23 Photoelectric conversion layer 4 Hole injection blocking layer 5 Electrode 32 Electron injection blocking layer 100 Image sensor

Claims (7)

第1電極層と、
前記第1電極層に積層される光電変換層と、
酸化ガリウムで構成され、前記光電変換層に積層される正孔注入阻止層と、
前記正孔注入阻止層に積層され、透光性電極材料で構成される第2電極層と
を具える光電変換素子。
A first electrode layer;
A photoelectric conversion layer laminated on the first electrode layer;
A hole injection blocking layer composed of gallium oxide and stacked on the photoelectric conversion layer;
A photoelectric conversion element comprising: a second electrode layer laminated on the hole injection blocking layer and made of a translucent electrode material.
酸化ニッケルで構成され、前記第1電極層に積層される電子注入阻止層をさらに具え、
前記光電変換層は、前記電子注入阻止層を介して前記第1電極層に積層される、請求項1記載の光電変換素子。
An electron injection blocking layer made of nickel oxide and stacked on the first electrode layer;
The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer is stacked on the first electrode layer via the electron injection blocking layer.
第1電極層と、
酸化ニッケルで構成され、前記第1電極層に積層される電子注入阻止層と、
前記電子注入阻止層に積層される光電変換層と、
前記光電変換層に積層され、透光性電極材料で構成される第2電極層と
を具える光電変換素子。
A first electrode layer;
An electron injection blocking layer made of nickel oxide and stacked on the first electrode layer;
A photoelectric conversion layer laminated on the electron injection blocking layer;
A photoelectric conversion element comprising: a second electrode layer laminated on the photoelectric conversion layer and made of a translucent electrode material.
酸化ガリウムで構成され、前記光電変換層に積層される正孔注入阻止層をさらに具え、
前記第2電極層は、前記正孔注入阻止層を介して前記光電変換層に積層される、請求項3記載の光電変換素子。
Further comprising a hole injection blocking layer made of gallium oxide and stacked on the photoelectric conversion layer;
The photoelectric conversion element according to claim 3, wherein the second electrode layer is stacked on the photoelectric conversion layer via the hole injection blocking layer.
前記光電変換層は、カルコパイライト型半導体層で構成される、請求項1乃至4のいずれか一項記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer is formed of a chalcopyrite semiconductor layer. 前記光電変換層は、セレンを主体とする結晶質半導体層で構成される、請求項1乃至4のいずれか一項記載の光電変換素子。   The photoelectric conversion element according to any one of claims 1 to 4, wherein the photoelectric conversion layer is formed of a crystalline semiconductor layer mainly containing selenium. 請求項1乃至6のいずれか一項記載の光電変換素子と、
前記電極層の前記光電変換層が積層される面とは反対側の面に配設され、前記光電変換層の光電変換によって生じる信号を読み出す信号読み出し部と
を具えるイメージセンサ。
The photoelectric conversion element according to any one of claims 1 to 6,
An image sensor comprising: a signal reading unit that is disposed on a surface of the electrode layer opposite to a surface on which the photoelectric conversion layer is laminated and reads a signal generated by photoelectric conversion of the photoelectric conversion layer.
JP2012155401A 2012-07-11 2012-07-11 Photoelectric conversion element and image sensor Pending JP2014017440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155401A JP2014017440A (en) 2012-07-11 2012-07-11 Photoelectric conversion element and image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155401A JP2014017440A (en) 2012-07-11 2012-07-11 Photoelectric conversion element and image sensor

Publications (1)

Publication Number Publication Date
JP2014017440A true JP2014017440A (en) 2014-01-30

Family

ID=50111862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155401A Pending JP2014017440A (en) 2012-07-11 2012-07-11 Photoelectric conversion element and image sensor

Country Status (1)

Country Link
JP (1) JP2014017440A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216271A (en) * 2014-05-12 2015-12-03 日本放送協会 Solid state image pickup device
JP2015225886A (en) * 2014-05-26 2015-12-14 日本放送協会 Photoelectric conversion device, method for manufacturing photoelectric conversion device, laminate type solid-state imaging device, and solar battery
JP2015233027A (en) * 2013-06-13 2015-12-24 日本放送協会 Photoelectric conversion device, manufacturing method thereof, lamination type solid-state imaging device, and solar battery
JP2016113680A (en) * 2014-12-16 2016-06-23 日本放送協会 Formation method of crystal selenium film and photoelectric conversion element
KR20160134533A (en) 2015-05-14 2016-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Photoelectric conversion element and imaging device
WO2017021812A1 (en) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 Photoelectric conversion element, imaging device, and method for producing photoelectric conversion element
US9754980B2 (en) 2015-06-30 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
JP2017208376A (en) * 2016-05-16 2017-11-24 日本放送協会 Solid-state imaging device and method for manufacturing the same
JP2020035915A (en) * 2018-08-30 2020-03-05 日本放送協会 Photoelectric conversion film, imaging apparatus, and photoelectric conversion element
CN111710731A (en) * 2020-06-19 2020-09-25 中国科学技术大学 Gallium oxide solar blind photoelectric detector and preparation method thereof
US10991899B2 (en) 2019-01-15 2021-04-27 Samsung Electronics Co., Ltd. Quantum dot device and electronic device
JP7402635B2 (en) 2019-08-05 2023-12-21 日本放送協会 Solid-state imaging device, imaging device, and method for suppressing white scratches

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235993A (en) * 1975-09-15 1977-03-18 Rca Corp Photosensitive device
JP2009272528A (en) * 2008-05-09 2009-11-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing photoelectric conversion element, and solid-state image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235993A (en) * 1975-09-15 1977-03-18 Rca Corp Photosensitive device
JP2009272528A (en) * 2008-05-09 2009-11-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing photoelectric conversion element, and solid-state image sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016030858; R.Betancur: '"Sputtered NiO as electron blocking layer in P3HT:PCBM solar cells fabricated in ambient air"' Solar Energy Materials & Solar Cells Vol.95 (2011), pp.735-739 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233027A (en) * 2013-06-13 2015-12-24 日本放送協会 Photoelectric conversion device, manufacturing method thereof, lamination type solid-state imaging device, and solar battery
JP2015216271A (en) * 2014-05-12 2015-12-03 日本放送協会 Solid state image pickup device
JP2015225886A (en) * 2014-05-26 2015-12-14 日本放送協会 Photoelectric conversion device, method for manufacturing photoelectric conversion device, laminate type solid-state imaging device, and solar battery
JP2016113680A (en) * 2014-12-16 2016-06-23 日本放送協会 Formation method of crystal selenium film and photoelectric conversion element
JP7045131B2 (en) 2015-05-14 2022-03-31 株式会社半導体エネルギー研究所 Photoelectric conversion element, image pickup device
JP2016219800A (en) * 2015-05-14 2016-12-22 株式会社半導体エネルギー研究所 Photoelectric conversion element, and imaging device
KR20160134533A (en) 2015-05-14 2016-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Photoelectric conversion element and imaging device
JP2022084781A (en) * 2015-05-14 2022-06-07 株式会社半導体エネルギー研究所 Photoelectric conversion element
US11728356B2 (en) 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
US9754980B2 (en) 2015-06-30 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
WO2017021812A1 (en) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 Photoelectric conversion element, imaging device, and method for producing photoelectric conversion element
JP2017208376A (en) * 2016-05-16 2017-11-24 日本放送協会 Solid-state imaging device and method for manufacturing the same
JP2020035915A (en) * 2018-08-30 2020-03-05 日本放送協会 Photoelectric conversion film, imaging apparatus, and photoelectric conversion element
JP7164996B2 (en) 2018-08-30 2022-11-02 日本放送協会 Photoelectric conversion film, imaging device, photoelectric conversion device, method for manufacturing imaging device, and method for manufacturing photoelectric conversion device
US10991899B2 (en) 2019-01-15 2021-04-27 Samsung Electronics Co., Ltd. Quantum dot device and electronic device
JP7402635B2 (en) 2019-08-05 2023-12-21 日本放送協会 Solid-state imaging device, imaging device, and method for suppressing white scratches
CN111710731A (en) * 2020-06-19 2020-09-25 中国科学技术大学 Gallium oxide solar blind photoelectric detector and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2014017440A (en) Photoelectric conversion element and image sensor
Chen et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications
Miyasaka Perovskite photovoltaics: rare functions of organo lead halide in solar cells and optoelectronic devices
Zhang et al. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects
Lee et al. An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction
US9583655B2 (en) Method of making photovoltaic device having high quantum efficiency
JP2009026891A (en) Photoelectric element and sulfide system compound semiconductor
Kim et al. Cu4O3-based all metal oxides for transparent photodetectors
CN102244111A (en) Thin film solar cell
Jalali et al. Controlled conduction band offset in Sb2Se3 solar cell through introduction of (Zn, Sn) O buffer layer to improve photovoltaic performance: A simulation study
Wu et al. High-Performance Photodetectors with an Ultrahigh Photoswitching Ratio and a Very Fast Response Speed in Self-Powered Cu2ZnSnS4/CdS PN Heterojunctions
JP6575997B2 (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, solid-state imaging element
JP2013529378A (en) Manufacturing method of solar cell
JP6362257B2 (en) PHOTOELECTRIC CONVERSION ELEMENT, METHOD FOR PRODUCING PHOTOELECTRIC CONVERSION ELEMENT, LAMINATED SOLID IMAGE PICKUP ELEMENT, AND SOLAR CELL
JP6463937B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP6654856B2 (en) Method for manufacturing photoelectric conversion element
JP2014209538A (en) Photoelectric conversion element and method for manufacturing the same
JP2015225886A (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, laminate type solid-state imaging device, and solar battery
Tanaka et al. Development of ZnTe-based solar cells
JP7344086B2 (en) Photoelectric conversion element, its manufacturing method, and stacked image sensor
JP2012209518A (en) Photoelectric element and solar battery
JP7457508B2 (en) Solid-state image sensor and its manufacturing method
JP6570173B2 (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, solid-state imaging element
KR101437070B1 (en) Photovoltaic Device
JP2012138556A (en) Multi-junction solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816