JP2014011904A - 多相コンバータ - Google Patents

多相コンバータ Download PDF

Info

Publication number
JP2014011904A
JP2014011904A JP2012148107A JP2012148107A JP2014011904A JP 2014011904 A JP2014011904 A JP 2014011904A JP 2012148107 A JP2012148107 A JP 2012148107A JP 2012148107 A JP2012148107 A JP 2012148107A JP 2014011904 A JP2014011904 A JP 2014011904A
Authority
JP
Japan
Prior art keywords
voltage conversion
conversion circuit
controller
temperature difference
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012148107A
Other languages
English (en)
Inventor
Takashi Sasada
崇 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012148107A priority Critical patent/JP2014011904A/ja
Publication of JP2014011904A publication Critical patent/JP2014011904A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】多相コンバータの熱ストレスを平準化する技術を提供する。
【解決手段】本明細書が開示する多相コンバータは、並列に接続された複数の電圧変換回路と、入力電力に応じて、駆動する電圧変換回路の個数を決定するコントローラと、各電圧変換回路の温度を検出するセンサを備える。コントローラは、各電圧変換回路の温度の経時変化における特定期間の温度差を繰り返し計測してそのヒストグラムを記録し、予め定められた温度差閾値以上の温度差の出現頻度が小さい電圧変換回路を出現頻度が大きい電圧変換回路よりも先に駆動する電圧変換回路として選択する。
【選択図】図2

Description

本発明は、複数の電圧変換回路を並列に接続した多相コンバータに関する。
複数の電圧変換回路が並列に接続されており、入力電力(入力電流)の大きさに依存して駆動する電圧変換回路の個数を変更する多相コンバータが知られている。多相コンバータの性能を改善する技術の一例が特許文献1に開示されている。特許文献1の多相コンバータは、電圧変換効率と耐久性の双方を改善する。特許文献1の多相コンバータは、並列に接続された複数個の電圧変換回路と、入力電流を検出する電流センサを備えており、電流センサが検出する電流値に基づいて駆動する電圧変換回路の個数を決定する。その多相コンバータは、各電圧変換回路に流れる電流の大きさが所定の範囲内となるように駆動する電圧変換回路の個数Nを決定する。なお、各電圧変換回路に流れる電流の大きさは、[入力電流]/Nで定まる。電圧変換回路は、変換効率の高い電流範囲が決まっており、各電圧変換回路に流れる電流の大きさがその範囲内となるように個数Nを決定する。特許文献1の多相コンバータは、さらに、駆動する電圧変換回路を選定する優先順位を定めた複数のパターンを記憶しており、適宜にそのパターンを切り換えることで、複数の電圧変換回路の使用頻度を分散させる。そうして、特定の電圧変換回路だけが頻繁に使用されて劣化が進んでしまうことを防止する。なお、通常、電圧変換回路は、IGBTなどのスイッチング素子と、そのスイッチング素子と直列に接続しているダイオード、及び、一端がスイッチング素子とダイオードの中間点に接続しており、他端が電圧コンバータの低電圧側の正極に接続しているリアクトル(コイル)を主要構成部品としており、電圧変換回路の劣化は、主にIGBTやダイオードの劣化で決まる。
特開2009−296775号公報
各電圧変換回路の劣化の進み具合は、単純な使用頻度だけで決まるものではない。電圧変換回路の劣化を進める一つの要因に熱ストレスがある。入力電力の変化に伴い、各電圧変換回路の負荷も変化する。負荷の大きさに依存して発熱量も変化する。発熱量に応じて電圧変換回路自身の温度(IGBTやダイオードの温度)が変化する。温度変化が激しいと劣化が進む。電圧変換回路自身の温度変化が熱ストレスに相当する。本明細書は、多相コンバータにおいて複数の電圧変換回路の熱ストレスの平準化を図り、劣化を抑制する技術を提供する。
本明細書が開示する多相コンバータは、並列に接続された複数の電圧変換回路と、入力電力に応じて駆動する電圧変換回路の個数を決定するコントローラと、各電圧変換回路の温度を検出する温度センサを備える。そのコントローラは、各電圧変換回路の温度の経時変化における特定期間の温度差を繰り返し計測してそのヒストグラムを記録し、予め定められた温度差閾値以上の温度差の出現頻度が小さい電圧変換回路を出現頻度が大きい電圧変換回路よりも優先的に駆動する電圧変換回路として選択する。以下、駆動する電圧変換回路の個数をNとする。個数Nは電圧変換回路の総数以下である。
特定期間の温度差が大きいことは、熱ストレスが大きいことを意味する。上記の多相コンバータは、大きい熱ストレスが加わった頻度が少ない電圧変換回路を、頻度が多い電圧変換回路よりも優先して、駆動するN個の電圧変換回路として選択する。そうすることで、熱ストレスの平準化を図る。なお、「予め定められた温度差閾値以上の出現頻度が小さい」ことは、予め定められた温度差閾値未満の出現頻度が大きいことと等価である。従って、上記の「予め定められた温度差閾値以上の温度差の出現頻度が小さい電圧変換回路を出現頻度が大きい電圧変換回路よりも優先的に駆動する電圧変換回路として選択する」ことは、予め定められた温度差閾値未満の出現頻度が大きい電圧変換回路をその出現頻度が小さい電圧変換回路よりも優先的に電圧変換回路として選択することと等価である。ここで、「未満」は「以下」で置き換えてもよいことに留意されたい。
「優先的に選択する」とは、具体的には、所定の温度差閾値以上の出現頻度がaの電圧変換回路Aと出現頻度がbの電圧変換回路Bと出現頻度がcの電圧変換回路C(a<b<c)がある場合、個数N=1の場合は、最も出現頻度が小さい電圧変換回路Aを駆動する電圧変換回路として選択し、個数N=2の場合も最も出現頻度が小さい電圧変換回路Aを駆動する電圧変換回路としてまず選択し、残りの電圧変換回路BとCのいずれかを駆動する電圧変換回路として選択することを意味する。後述するように、選択する優先順位を出現頻度が小さい順とした場合には、コントローラは、個数N=2の場合は出現頻度が最も小さい電圧変換回路Aと、次いで出現頻度が小さい電圧変換回路Bを選択する。
上記の特定期間とは、典型的には、温度の経時変化における変曲点間がよい。即ち、一例のコントローラは、温度の経時変化における変曲点間の温度差のヒストグラムを記録する。変曲点を特定期間の始点終点とすることで、温度変化を正確に記録することができる。なお、コントローラは、前述した温度差閾値以上の出現頻度が小さい順に、駆動する電圧変換回路として選定することも好適である。
本明細書が開示する技術の詳細とさらなる改良は発明を実施するための形態の項にて説明する。
実施例の燃料電池車のパワー系の回路構成図である。 コントローラが実行する起動処理のフローチャートである。 コントローラが実行する終了処理のフローチャートである。 電圧変換回路の温度変化の一例を示す図である。 ヒストグラムの一例を示す図である。
以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。
(特徴1)コントローラは、駆動する電圧変換回路を選択する際の優先順位を定めており、発熱頻度が最も小さい電圧変換回路をその優先順位の最初に位置させる。なお、ここで、「発熱頻度」とは、前述したヒストグラムにおいて、予め定められた温度差閾値以上の出現頻度の総数を意味する。
この構成によると、発熱頻度が最も低い電圧変換回路を最初に起動させることができるため、各電圧変換回路の発熱頻度が均一化され易くなる。
(特徴2)コントローラは、各電圧変換回路の発熱頻度の昇順に従って上記の優先順位を定め、その優先順位に従って、N個の電圧変換回路を起動してもよい。ここで、「N個」は、前述したように、入力電力に応じて定められた起動する電圧変換回路の個数である。
この構成によると、発熱頻度の小さい電圧変換回路の起動タイミングが、発熱頻度の高い電圧変換回路より先となる。それゆえ、各電圧変換回路の発熱頻度を一層均一化することができる。
(特徴3)コントローラは、全ての電圧変換回路が停止した後に、発熱頻度に応じて優先順位を更新する。
温度変化の時定数はコントローラの制御周期よりは格段に長いので、多相コンバータの動作中に駆動する電圧変換回路を頻繁に変更することもない。例えば、燃料電池車において燃料電池に接続された多相コンバータの場合、車両が停止するときに燃料電池も停止する。そのときに多相コンバータも停止する。多相コンバータが停止したときに、即ち、全ての電圧変換回路が停止したときに、次の稼働に備えて、それまでの発熱頻度に応じて優先順位を入れ替えることも好適である。
以下、実施例を説明する。図1は、実施例の多相コンバータ20を含む、燃料電池車2の電力系のブロック図である。燃料電池車2は、燃料電池10と、燃料電池10の出力電圧を昇圧する多相コンバータ20と、多相コンバータ20から供給される直流電力を交流電力に変換するインバータ40と、走行用のモータ50と、コントローラ60を備える。また、燃料電池10の出力電流を計測する電流センサ12と、燃料電池10の出力電圧を計測する電圧センサ13を備える。
コントローラ60の処理を概説する。コントローラ60は、車両のアクセル開度や車速からモータ50の目標出力を決定し、燃料電池10の出力が目標出力となるように燃料電池10を制御する。
良く知られているように、燃料電池10は供給する燃料に依存して出力電流と出力電圧が大きく変化する。即ち、燃料電池10は供給する燃料に依存して出力電力が大きく変化する。例えば、実施例の燃料電池10は出力電圧が300ボルトから400ボルトの間で変化する。多相コンバータは、入力電力に応じて駆動する電圧変換回路の個数を変えることができるので、入力電力が大きく変化するシステム(典型的には本実施例のごとく燃料電池を使ったシステム)に好適である。
燃料電池10の出力端には多相コンバータ20が接続されている。多相コンバータ20は、燃料電池10の出力電圧をモータ駆動電圧に昇圧する。モータ駆動電圧は、例えば600ボルトである。多相コンバータ20の出力はインバータ40に供給される。インバータ40は、直流電力をモータ50の目標回転数に応じた周波数の交流に変換し、モータ50へ供給する。
一般に、電圧変換回路は、変換効率の良い電力範囲が決まっている。それゆえ、出力電力が大きく変化する燃料電池10に対して、多相コンバータ20が採用される。多相コンバータ20は、燃料電池10の変化する出力電力を効率よく安定した一定電圧の電力に調整する。多相コンバータ20は、並列に接続された複数の電圧変換回路31−34を備えており、入力される電力に応じて駆動する電圧変換回路の数を決定する。具体的には、コントローラ60は、電流センサ12と電圧センサ13のセンサデータから燃料電池10の出力電力を算定する。なお、燃料電池10の出力電力は、多相コンバータ20の入力電力に相当する。コントローラ60は、熱ストレスが平準化するように、駆動する電圧変換回路を選定する。多相コンバータ20の制御については後に詳しく説明する。
多相コンバータ20の回路構成を説明する。多相コンバータ20は、4個の電圧変換回路31−34とコンデンサ30が並列に接続された回路構成を有する。燃料電池10の出力電圧が、各電圧変換回路31−34への入力電圧に相当する。本実施例の場合、電圧変換回路31−34は、入力電圧を昇圧して出力する。
全ての電圧変換回路は同じ構成を有するので、電圧変換回路31について説明する。電圧変換回路31は、リアクトル22U、スイッチング素子26U、ダイオード28U、29U、及び、温度センサ27Uで構成される。スイッチング素子26Uとダイオード29Uが直列に接続されている。ダイオード29Uのアノードがスイッチング素子26Uのコレクタに接続しており、カソードは多相コンバータ20の高電圧側(インバータ側)の正極端子に接続している。スイッチング素子26Uのエミッタは多相コンバータ20の負極端子(接地端子)に接続している。スイッチング素子26Uとダイオード29Uの中間点にリアクトル22Uの一端が接続している。リアクトル22Uの他端は多相コンバータ20の低電圧側の正極端子に接続している。もう1つのダイオード28Uは、スイッチング素子26Uと逆並列に接続している。スイッチング素子26Uは、スイッチング素子のOFFへの切換時の逆流電流を逃がすために設けられている。スイッチング素子26Uは、典型的には、IGBTである。
この電圧変換回路31の構成は良くしられており、スイッチング素子26Uのゲートに加えるPWM信号を適宜に調整することにより、低電圧側に接続されている燃料電池10の出力電圧を昇圧して高電圧側(インバータ側)から出力することができる。他の電圧変換回路32−34も同じ構成を有している。また、各電圧変換回路には、その温度を計測する温度センサ27U(27V、27W、27X)が備えられている。コンデンサ30は、多相コンバータ20の出力電圧を平滑化するために備えられている。コントローラ60が、電流センサ12、電圧センサ13、温度センサ27U、27V、27W、27Xのセンサデータに基づいて多相コンバータ20を制御する。
コントローラ60が実行する処理を説明する。図2は、多相コンバータを起動する際(及び起動中)のフローチャートを示しており、図3は多相コンバータを停止するときのフローチャートを示している。
図2の起動処理から説明する。コントローラ60は、まず、電流センサ12と電圧センサ13によって燃料電池10の出力電流と出力電圧を計測する。コントローラ60は、計測した出力電流に出力電圧を乗じて燃料電池10の出力電力W_FCを取得する(S10)。次にコントローラ60は、起動する電圧変換回路の個数Nを決定する。例えば、各々の電圧変換回路において最も変換効率のよい入力電力がWa(この電力を基準電力Waと称する)の場合、個数Nは、出力電力W_FC/基準電力Waに最も近い整数として求められる(S12)。例えば、出力電力W_FC=45[kw]であり、基準電力Wa=14[kw]の場合、個数N=出力電力W_FC/基準電力Wa≒3となる。
次に、コントローラ60は、4個の電圧変換回路31−34の中から、駆動すべき3個の電圧変換回路を選択する(S14)。コントローラ60は、選択する順序を規定した優先順位を記憶している。例えば、その優先順位が、優先度の高い順に、電圧変換回路34、電圧変換回路31、電圧変換回路33、電圧変換回路32、である場合、コントローラ60は、優先度の高い順に3個の電圧変換回路、即ち、電圧変換回路34、31、33を選択する。なお、選択する順序を規定した優先順位は、多相コンバータ20が停止する毎に更新される。優先順位の更新については後述する。
そしてコントローラ60は、選択した3個の電圧変換回路を駆動する。ここで、「電圧変換回路を駆動する」とは、電圧変換回路のスイッチング素子に所定のデューティ比のPWM信号を与えることである。なお、デューティ比は、燃料電池10の電圧と、多相コンバータ20の目標出力電圧の比で定まる。
コントローラ60は、定期的に図2の処理を繰り返す。燃料電池車2の走行中であっても、車速やアクセル開度に応じて、目標出力が変化する。燃料電池車2は、目標出力の変化に応じて燃料電池10の出力も変更する。従って、コントローラ60は、定期的に図2の処理を繰り返し、そのときの燃料電池10の出力に応じた適切な数の電圧変換回路を駆動する。
コントローラ60は、多相コンバータ20を駆動している間、温度センサ27U、27V、27W、27Xにより、各電圧変換回路の温度変化を記録する。温度変化の記録方法と記録した温度変化の利用については後述する。
次に、図3を参照して、多相コンバータ20を停止したときの処理を説明する。コントローラ60は、上位のコントローラから多相コンバータ20の停止命令を受信すると、全ての電圧変換回路を停止する(S30)。例えば、車両のイグニッションスイッチがOFFに切り換えられたときに、上位のコントローラから多相コンバータの停止命令が出力される。先に述べたように、コントローラ60は、多相コンバータの駆動中は、各電圧変換回路の温度変化を記録している。コントローラ60は、温度変化から所定期間の温度差を抽出し、その温度差の範囲を階級(ビン)とするヒストグラムを記録する。そして、多相コンバータ20が停止する毎に、ヒストグラムを更新する(S32)。そして、更新されたヒストグラムに基づいて、図2のステップS14で用いた優先順位を更新する(S34)。次に、ヒストグラムと優先順位の更新について説明する。
先に述べたように、コントローラ60は、多相コンバータ20を駆動している間、定期的に各電圧変換回路の温度をモニタする。そして、多相コンバータ20を停止した後、各電圧変換回路について、温度変化の変曲点を特定し、隣接する変曲点の間での温度差dTを算出する。そして、温度差dTのヒストグラムを記憶する。なお、コントローラ60は過去のヒストグラムのデータを蓄積しており、多相コンバータ20を停止する毎に新たなデータを加えてヒストグラムを更新する。図4に、特定の電圧変換回路についての温度変化の模式的なグラフを示す。このグラフによると、時刻tsにて多相コンバータ20を起動し、時刻teで終了した。コントローラ60は、グラフから、その間の温度変化における変曲点P1、P2、P3、P4を抽出する。次いでコントローラ60は、隣接する変曲点の間の温度差dT1、dT2、dT3を特定する。コントローラ60は、特定した複数の温度差を、過去のヒストグラムのデータに加える。即ち、ヒストグラムを更新する(S32)。図5にヒストグラムの一例を示す。このヒストグラムでは、第1の階級として温度差dT<20[℃]の範囲が選定され、第2の階級として20[℃]≦温度差dT<40[℃]の範囲が選定され、第3の階級として40[℃]≦温度差dT<60[℃]の範囲が選定され、第4の階級として60[℃]≦温度差dTの範囲が選定されている。コントローラ60は、図4で説明した温度差群dT1、dT2、dT3を加えて図5のヒストグラムを更新する。
コントローラ60には、また、温度差閾値が予め記録されている。コントローラ60は、温度差閾値以上の温度差におけるヒストグラムの出現頻度の和を算出する。例えば図5では、温度差閾値が40[℃]に定められており、コントローラ60は、温度差が40[℃]以上の階級の出現頻度を合算する。合算したものが、先に述べた発熱頻度に相当する。
最後にコントローラ60は、発熱頻度の小さい順に優先順位を並べ替える。即ち、コントローラ60は、優先順位を更新する(S34)。多相コンバータ20を再び起動する際、コントローラ60は、先に説明した図4のステップS16において、更新された優先順位を用いて駆動すべき電圧変換回路を決定する。即ち、コントローラ60は、温度差閾値以上の温度差dTの出現頻度(発熱頻度)が小さい順に、駆動する電圧変換回路として選択する。また、コントローラ60は、選択されたN個の電圧変換回路を起動する際、優先順位の高い順に起動する。
上記の燃料電池車2では、複数の電圧変換回路のうち、発熱頻度の小さいものほど使用頻度が高くなる。頻繁に使われて発熱頻度が他の電圧変換回路よりも多くなると、使われる頻度が少なくなる。こうして、複数の電圧変換回路が並列に接続された多相コンバータにおいて、発熱頻度の平準化が達成される。
「発熱頻度」とは、駆動中に温度差閾値よりも大きい温度変化を生じた回数に相当する。温度変化は熱ストレスを生じる。電圧変換回路は温度変化(熱ストレス)が激しいと劣化が進む。実施例の多相コンバータ20は、熱ストレスを平準化し、複数の電圧変換回路において劣化の偏在を防止し、多相コンバータ全体としての耐久性を向上させる。
実施例の技術に関する留意点を述べる。実施例の多相コンバータ20は4個の電圧変換回路31−34を並列に接続したものである。接続される電圧変換回路の数は4個に限られない。また、温度差を特定する期間は、温度変化の変曲点間に限られない。例えば、予め定められた期間における温度差を採用してもよい。ただし、変曲点間の温度差を採用することによって、電圧変換回路の駆動中に生じる温度差を正確に網羅することができる。
実施例では、多相コンバータ20を停止した後に変曲点間の温度差を特定した(図3のステップS32)。コントローラ60は、多相コンバータの駆動中に変曲点を検知し、検知する毎に温度差を特定してもよい。
実施例の多相コンバータ20は、入力電圧(燃料電池10の出力電圧)を昇圧して出力する昇圧タイプであった。本明細書が開示する技術は、降圧タイプの多相コンバータに適用することもできる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:燃料電池車
10:燃料電池
12:電流センサ
13:電圧センサ
20:多相コンバータ
22U、22V、22W、22X:リアクトル
26U、26V、26W、26X:スイッチング素子
27U、27V、27W、27X:温度センサ
28U、28V、28W、28X、29U、29V、29W、29X:ダイオード
30:コンデンサ
31、32、33、34:電圧変換回路
40:インバータ
50:モータ
60:コントローラ

Claims (3)

  1. 多相コンバータであり、
    並列に接続された複数の電圧変換回路と、
    入力電力に応じて、駆動する電圧変換回路の個数を決定するコントローラと、
    各電圧変換回路の温度を検出する温度センサと、
    を備えており、
    コントローラは、各電圧変換回路の温度の経時変化における特定期間の温度差を繰り返し計測して温度差のヒストグラムを記録し、予め定められた温度差閾値以上の温度差の出現頻度が小さい電圧変換回路を出現頻度が大きい電圧変換回路よりも優先的に駆動する電圧変換回路として選択することを特徴とする多相コンバータ。
  2. コントローラは、前記経時変化における変曲点間の温度差のヒストグラムを記録することを特徴とする請求項1に記載の多相コンバータ。
  3. コントローラは、前記温度差閾値以上の温度差の頻度が小さい順に、駆動する電圧変換回路として選択する、ことを特徴とする請求項1または2に記載の多相コンバータ。
JP2012148107A 2012-07-02 2012-07-02 多相コンバータ Pending JP2014011904A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148107A JP2014011904A (ja) 2012-07-02 2012-07-02 多相コンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148107A JP2014011904A (ja) 2012-07-02 2012-07-02 多相コンバータ

Publications (1)

Publication Number Publication Date
JP2014011904A true JP2014011904A (ja) 2014-01-20

Family

ID=50108133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148107A Pending JP2014011904A (ja) 2012-07-02 2012-07-02 多相コンバータ

Country Status (1)

Country Link
JP (1) JP2014011904A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152632A (ja) * 2015-02-16 2016-08-22 株式会社デンソー スイッチング素子の駆動装置
CN106531704A (zh) * 2015-09-14 2017-03-22 三菱电机株式会社 寿命推定电路及使用了该寿命推定电路的半导体装置
CN107154739A (zh) * 2016-03-02 2017-09-12 丰田自动车株式会社 Dc‑dc变换器
JP2018085882A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 駆動装置
JP2019071730A (ja) * 2017-10-10 2019-05-09 トヨタ自動車株式会社 電力変換装置
JP2019103350A (ja) * 2017-12-07 2019-06-24 トヨタ自動車株式会社 制御装置
JP2019126184A (ja) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 多相コンバータ
JP2019129606A (ja) * 2018-01-24 2019-08-01 トヨタ自動車株式会社 多相コンバータ
US10454372B2 (en) 2016-02-24 2019-10-22 Honda Motor Co., Ltd. Power supply device, apparatus, and control method
JP2021103910A (ja) * 2019-12-24 2021-07-15 本田技研工業株式会社 電力変換装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152632A (ja) * 2015-02-16 2016-08-22 株式会社デンソー スイッチング素子の駆動装置
CN106531704A (zh) * 2015-09-14 2017-03-22 三菱电机株式会社 寿命推定电路及使用了该寿命推定电路的半导体装置
JP2017058146A (ja) * 2015-09-14 2017-03-23 三菱電機株式会社 寿命推定回路およびそれを用いた半導体装置
US10338128B2 (en) 2015-09-14 2019-07-02 Mitsubishi Electric Corporation Life estimation circuit and semiconductor device made using the same
US10454372B2 (en) 2016-02-24 2019-10-22 Honda Motor Co., Ltd. Power supply device, apparatus, and control method
CN107154739A (zh) * 2016-03-02 2017-09-12 丰田自动车株式会社 Dc‑dc变换器
CN107154739B (zh) * 2016-03-02 2019-11-26 丰田自动车株式会社 Dc-dc变换器
JP2018085882A (ja) * 2016-11-25 2018-05-31 トヨタ自動車株式会社 駆動装置
JP2019071730A (ja) * 2017-10-10 2019-05-09 トヨタ自動車株式会社 電力変換装置
JP2019103350A (ja) * 2017-12-07 2019-06-24 トヨタ自動車株式会社 制御装置
JP2019126184A (ja) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 多相コンバータ
JP7003677B2 (ja) 2018-01-17 2022-01-20 トヨタ自動車株式会社 多相コンバータ
JP2019129606A (ja) * 2018-01-24 2019-08-01 トヨタ自動車株式会社 多相コンバータ
JP2021103910A (ja) * 2019-12-24 2021-07-15 本田技研工業株式会社 電力変換装置
US11368082B2 (en) 2019-12-24 2022-06-21 Honda Motor Co., Ltd. Power conversion device

Similar Documents

Publication Publication Date Title
JP2014011904A (ja) 多相コンバータ
JP6247034B2 (ja) コンバータ装置およびそれを備えた燃料電池システム、コンバータ装置の制御方法および制御装置
CN1246954C (zh) 开关式电源
CN102377344B (zh) 开关电源装置
JP6225942B2 (ja) 電力変換システム
CN1905340A (zh) 控制非同步型dc-dc转换器的自举电容器充电的方法及装置
JP6642351B2 (ja) 電力変換回路の制御装置
JP6185860B2 (ja) 双方向コンバータ
CN111200144B (zh) 电流控制系统、燃料电池系统以及升压转换器的控制方法
JP2014030285A (ja) 電力変換装置及び該電力変換装置を備えた充電装置、電力変換装置のスイッチング制御方法
JP5214258B2 (ja) Pwm信号生成回路、このpwm信号生成回路を備えた系統連系インバータシステム、及びこのpwm信号生成回路を実現するためのプログラム
JP5075223B2 (ja) インバータ装置
CN1471226A (zh) 脉冲宽度调制型马达驱动装置
CN1641967A (zh) 电池充电器的充电控制方法及其电路
JP6930439B2 (ja) 多相コンバータ
JP2015159646A (ja) モータ制御システム
JP7003677B2 (ja) 多相コンバータ
JP6020489B2 (ja) 昇圧コンバータ及びその制御方法
US9012101B2 (en) Fuel cell stacks
JP2011010380A (ja) 直流電力変換装置
JP6513479B2 (ja) 電源装置および電源装置の制御方法
JP2020072535A (ja) 多相コンバータ
JP7183684B2 (ja) 多相コンバータ
JP2022542991A (ja) 制御装置、インバータ、インバータおよび電気機械を有するアセンブリ、ならびにインバータを動作させる方法およびコンピュータプログラム
KR20210129894A (ko) 직류-직류 컨버터 및 그 제어 방법