JP2014004510A - 圧縮空気除湿装置 - Google Patents

圧縮空気除湿装置 Download PDF

Info

Publication number
JP2014004510A
JP2014004510A JP2012140534A JP2012140534A JP2014004510A JP 2014004510 A JP2014004510 A JP 2014004510A JP 2012140534 A JP2012140534 A JP 2012140534A JP 2012140534 A JP2012140534 A JP 2012140534A JP 2014004510 A JP2014004510 A JP 2014004510A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
compressed air
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012140534A
Other languages
English (en)
Inventor
Tsuyoshi Maruyama
強志 丸山
Koichi Ejiri
康一 江尻
Hideki Kaneko
英樹 金児
Takuya Shimizu
卓也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2012140534A priority Critical patent/JP2014004510A/ja
Publication of JP2014004510A publication Critical patent/JP2014004510A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

【課題】凍結を招くことなく、圧縮空気を好適に除湿し得る圧縮空気除湿装置を提供する。
【解決手段】コントローラ4が、蒸発器24内に流入する冷媒の温度が目標温度範囲よりも低温となる「第1の条件」、および蒸発器24内に流入する冷媒の温度が目標温度範囲よりも高温となる「第2の条件」のいずれかが満たされたか否かを監視すると共に、「第1の条件」が満たされているときに、電子膨張弁25を制御して、冷媒配管P1から冷媒配管P3に冷媒配管P5を通過して流入する冷媒の流量を「第1の条件」に対応付けられた「第1の量」だけ増加させる「第1の処理」を実行し、かつ、「第2の条件」が満たされているときに、電子膨張弁25を制御して、冷媒配管P1から冷媒配管P3に冷媒配管P5を通過して流入する冷媒の流量を「第2の条件」に対応付けられた「第2の量」だけ減少させる「第2の処理」を実行する。
【選択図】図1

Description

本発明は、除湿対象の圧縮空気を冷凍サイクルにおける蒸発器によって冷却することで圧縮空気に含まれている水分を結露させて圧縮空気を除湿する圧縮空気除湿装置に関するものである。
例えば、出願人が特開2008−290017号公報に開示している圧縮空気除湿装置は、圧縮機、凝縮器、電子膨張弁および蒸発器を有する冷凍サイクルと、蒸発器が収容された冷却器(熱交換器)と、冷凍サイクルの動作を制御する制御部とを備えて構成されている。この場合、この圧縮空気除湿装置における冷凍サイクルは、冷却器内において結露水が凍結するのを回避するためのホットガス回路を備えている。具体的には、この圧縮空気除湿装置では、一例として、圧縮機から凝縮器に至る冷媒配管と、蒸発器から圧縮機に至る冷媒配管(上記公開公報の例では、蒸発器からアキュムレータに至る冷媒配管)とを相互に連結して圧縮機から凝縮器に向かって移動する高温高圧の冷媒(ホットガス)の一部を蒸発器と圧縮機との間(以下、「蒸発器における冷媒出口近傍」ともいう)にバイパスさせるホットガス回路を備え、これにより、蒸発器内の冷媒圧力を上昇させる(すなわち、蒸発器内の冷媒温度を上昇させる)構成が採用されている。
また、この圧縮空気除湿装置では、上記のホットガス回路を構成する冷媒配管に、CCV制御用電磁弁(以下、単に「電磁弁」ともいう)およびキャパシティコントロールバルブ(以下、「CCV」ともいう)が直列接続されている。これにより、この圧縮空気除湿装置では、電磁弁を開放した状態においてCCVの動作状態に応じた量の冷媒を蒸発器の冷媒出口近傍にバイパスさせ、かつ電磁弁を閉塞することでホットガス回路を完全閉鎖することが可能となっている。
具体的には、この圧縮空気除湿装置では、電磁弁が開放されている状態において蒸発器の冷媒出口近傍における冷媒圧力が過剰に低くなっていないとき(すなわち、蒸発器内がそれほど温度低下していないとき)には、CCVの開度が小さくなって、ホットガス回路を介して極く少量のホットガスがバイパスされる状態となる。これにより、蒸発器内の冷媒圧力が過剰に高くなる事態(すなわち、ホットガスの供給によって蒸発器内が不要に温度上昇させられる事態)が回避される。一方、電磁弁が開放されている状態において蒸発器の冷媒出口近傍における冷媒圧力が低くなったとき(すなわち、蒸発器内が温度低下したとき)には、CCVの開度が大きくなって、ホットガス回路を介して充分な量のホットガスがバイパスされる。これにより、蒸発器内の冷媒圧力が上昇する結果、冷却器内の温度が上昇する。このように、出願人が開示している圧縮空気除湿装置では、圧縮機から吐出された高温高圧の冷媒の一部を蒸発器における冷媒出口近傍にバイパスさせることで蒸発器内の冷媒圧力を上昇させて冷却器内の温度を上昇させて、冷却器内(蒸発器の周囲)における凍結の発生を回避する構成が採用されている。
特開2008−290017号公報(第3−4頁、第1−3図)
ところが、出願人が開示している圧縮空気除湿装置には、以下の改善すべき課題が存在する。すなわち、この圧縮空気除湿装置では、圧縮機から吐出された高温高圧の冷媒の一部を蒸発器における冷媒出口近傍にバイパスさせることで冷却器内(蒸発器の周囲)における凍結の発生を回避する構成が採用されている。この場合、この圧縮空気除湿装置においてホットガス回路を通過する冷媒の量を調整するために配設されているCCVは、ホットガス回路における上流側の冷媒圧力と下流側の冷媒圧力との圧力差に応じて開度が変化する機械式の制御弁であって、圧力差が大きいときほど開度が大きくなり、圧力差が小さいときほど開度が小さくなるよう構成されている。しかしながら、この種の装置において使用されるCCVは、上記の圧力差の変化に対する開度変化の追従性が良好ではないため、ホットガス回路における上流側の冷媒圧力に対して下流側の冷媒圧力が変化した際に、その開度が、変化後の圧力差に応じた開度となるまでにある程度の時間を要するという現状がある。
このため、例えば、熱交換器への圧縮空気の供給量が大きく減少したり、圧縮空気の供給が停止したりしたときには、冷却器内が大きく温度低下して、蒸発器内や、蒸発器の冷媒出口近傍における冷媒圧力が大きく低下するにも拘わらず、CCVが充分な開度となるまでにある程度の時間を要する結果、充分な量のホットガス(高温高圧の冷媒)が供給されて蒸発器内の冷媒圧力が上昇するまでにある程度の時間を要することとなる。したがって、上記の例のように冷却器内が大きく温度低下したときには、CCVが充分な開度となるまで、蒸発器内の冷媒圧力が低下した状態(すなわち、蒸発器内の冷媒が温度低下した状態)が維持されるため、この際に、冷却器内において結露水が凍結するおそれがある。このため、この点を改善するのが好ましい。
また、圧縮空気を好適に除湿するには、冷却器内の温度を充分に低下させる必要がある。しかしながら、ホットガス回路によってバイパスさせるホットガスの量をCCVによって制御する構成では、例えば、熱交換器への圧縮空気の供給量が大きく増加したときに、CCVの開度が充分に小さくなる(ホットガスの供給量が充分に減少する)までにある程度の時間を要する。したがって、冷却器内を除湿に適した温度まで低下させるのにある程度の時間を要するため、圧縮空気を好適に除湿し得る状態となるまでに長い時間を要することとなる。このため、この点を改善するのが好ましい。
本発明は、かかる改善点に鑑みてなされたものであり、凍結を招くことなく、圧縮空気を好適に除湿し得る圧縮空気除湿装置を提供することを主目的とする。
上記目的を達成すべく請求項1記載の圧縮空気除湿装置は、圧縮機、凝縮器、膨張弁および蒸発器を有する冷凍サイクルと、除湿対象の圧縮空気を導入する導入口、除湿した圧縮空気を排気する排出口、および除湿によって生じたドレン水を排水する排水口がそれぞれ設けられると共に前記蒸発器が収容されて当該導入口から導入した圧縮空気と当該蒸発器内の冷媒との間で熱交換させることで当該導入した圧縮空気に含まれている水分を結露させて除湿する熱交換器と、前記冷凍サイクルの動作を制御する制御部とを備えた圧縮空気除湿装置であって、前記冷凍サイクルは、前記圧縮機から吐出された冷媒を前記凝縮器に案内する第1の冷媒配管と、前記凝縮器から吐出された冷媒を前記膨張弁に案内する第2の冷媒配管と、前記膨張弁から吐出された冷媒を前記蒸発器に案内する第3の冷媒配管と、前記蒸発器から排出された冷媒を前記圧縮機に案内する第4の冷媒配管と、前記第1の冷媒配管を前記第3の冷媒配管および前記第4の冷媒配管の少なくとも一方に連結して当該第1の冷媒配管内を移動する前記冷媒の一部を当該少なくとも一方の冷媒配管内に流入させる第5の冷媒配管と、当該第5の冷媒配管に配設されて当該第5の冷媒配管を通過する前記冷媒の流量を前記制御部の制御に従って調整する流量調整部とを備え、前記制御部は、前記蒸発器内に流入する冷媒の温度が目標温度範囲よりも低温となる第1の条件、および当該蒸発器内に流入する当該冷媒の温度が当該目標温度範囲よりも高温となる第2の条件のいずれかが満たされたか否かを監視すると共に、前記第1の条件が満たされているときに、前記流量調整部を制御して前記第5の冷媒配管を通過する前記冷媒の流量を当該第1の条件に対応付けられた第1の量だけ増加させる第1の処理を実行し、かつ、前記第2の条件が満たされているときに、前記流量調整部を制御して前記第5の冷媒配管を通過する前記冷媒の流量を当該第2の条件に対応付けられた第2の量だけ減少させる第2の処理を実行する。
また、請求項2記載の圧縮空気除湿装置は、請求項1記載の圧縮空気除湿装置において、前記制御部は、前記第1の条件が満たされているときに、前記蒸発器内に流入する冷媒の温度が、前記目標温度範囲よりも低温であって互いに相違するNa(Naは、2以上の自然数)の低温側温度範囲のうちのいずれに属する状態となっているかを特定し、特定した結果に応じて前記流量調整部を制御して、前記第5の冷媒配管を通過する前記冷媒の流量を当該Naの低温側温度範囲毎に予め規定された前記第1の量だけ増加させる処理を前記第1の処理として実行し、前記第2の条件が満たされているときに、前記蒸発器内に流入する冷媒の温度が、前記目標温度範囲よりも高温であって互いに相違するNb(Nbは、2以上の自然数)の高温側温度範囲のうちのいずれに属する状態となっているかを特定し、特定した結果に応じて前記流量調整部を制御して、前記第5の冷媒配管を通過する前記冷媒の流量を当該Nbの高温側温度範囲毎に予め規定された前記第2の量だけ減少させる処理を前記第2の処理として実行する。
さらに、請求項3記載の圧縮空気除湿装置は、請求項1または2記載の圧縮空気除湿装置において、前記流量調整部は、電子膨張弁で構成されている。
また、請求項4記載の圧縮空気除湿装置は、請求項1または2記載の圧縮空気除湿装置において、前記第5の冷媒配管をMa本(Maは、2以上の自然数)備え、前記流量調整部は、前記Ma本のうちのMb本(Mbは、Ma以下の自然数)の前記第5の冷媒配管にそれぞれ配設されて前記制御部の制御に従って前記冷媒の通過を許容または規制するMb個の制御弁を備えて構成され、前記制御部は、前記第1の処理および前記第2の処理において前記Mb個の制御弁を制御して前記冷媒の通過を許容させる前記第5の冷媒配管の本数を変更することで前記第1の冷媒配管内から前記少なくとも一方の冷媒配管内に流入させる当該冷媒の量を変更する。
さらに、請求項5記載の圧縮空気除湿装置は、請求項1から4のいずれかに記載の圧縮空気除湿装置において、前記制御部は、前記第1の処理において、前記蒸発器内に流入する前記冷媒の単位時間当りの温度低下量が予め規定された規定量Aを下回るとの条件A1が満たされているときよりも、当該蒸発器内に流入する当該冷媒の当該単位時間当りの温度低下量が当該規定量A以上となる条件A2が満たされたときの方が、前記第5の冷媒配管を通過する前記冷媒の当該単位時間当りの増加量が多くなるように前記流量調整部を制御する。
また、請求項6記載の圧縮空気除湿装置は、請求項1から5のいずれかに記載の圧縮空気除湿装置において、前記制御部は、前記第2の処理において、前記蒸発器内に流入する前記冷媒の単位時間当りの温度上昇量が予め規定された規定量Bを下回るとの条件B1が満たされているときよりも、当該蒸発器内に流入する当該冷媒の当該単位時間当りの温度上昇量が当該規定量B以上となる条件B2が満たされたときの方が、前記第5の冷媒配管を通過する前記冷媒の当該単位時間当りの減少量が多くなるように前記流量調整部を制御する。
さらに、請求項7記載の圧縮空気除湿装置は、請求項1から6のいずれかに記載の圧縮空気除湿装置において、前記蒸発器内に流入する前記冷媒の温度を測定する第1の温度センサ、および当該蒸発器から排出される冷媒の温度を測定する第2の温度センサのいずれか一方を備え、前記制御部は、前記一方の温度センサによって測定された前記冷媒の温度に基づき、前記蒸発器内に流入する冷媒の温度を特定する。
また、請求項8記載の圧縮空気除湿装置は、請求項1から6のいずれかに記載の圧縮空気除湿装置において、前記蒸発器内に流入する前記冷媒の圧力を測定する第1の圧力センサ、および当該蒸発器から排出される冷媒の圧力を測定する第2の圧力センサのいずれか一方を備え、前記制御部は、前記一方の圧力センサによって測定された前記冷媒の圧力に基づき、前記蒸発器内に流入する冷媒の温度を特定する。
請求項1記載の圧縮空気除湿装置では、蒸発器内に流入する冷媒の温度が目標温度範囲よりも低温となる第1の条件が満たされているときに、制御部が流量調整部を制御して第5の冷媒配管を通過する冷媒の流量を第1の量だけ増加させる第1の処理を実行し、蒸発器内に流入する冷媒の温度が目標温度範囲よりも高温となる第2の条件が満たされているときに、制御部が流量調整部を制御して第5の冷媒配管を通過する冷媒の流量を第2の量だけ減少させる第2の処理を実行する。
したがって、請求項1記載の圧縮空気除湿装置によれば、冷凍サイクルの作動開始直後や、熱交換器に対する圧縮空気の導入量が急激に減少したときなどに、蒸発器内に流入する冷媒の温度が急激に低下したとしても、第1の処理が実行されて充分な量のホットガス(圧縮機から吐出された高温高圧の冷媒)が速やかに第3の冷媒配管に供給されるため、蒸発器の周辺の冷媒温度が低下し続けて過剰に低温となるのを阻止することができ、また、冷媒温度が過剰に低温となったとしても、短時間で温度上昇させることができる。これにより、熱交換器内において結露水が凍結する事態を好適に回避することができる。また、熱交換器に対する圧縮空気の導入量が急激に増加したときなどに、蒸発器内に流入する冷媒の温度が急激に上昇したとしても、第2の処理が実行されて第3の冷媒配管に対するホットガスの供給量が速やかに減少させられるため、蒸発器の周辺の冷媒温度が上昇し続けて過剰に高温となるのを阻止することができ、また、冷媒温度が過剰に高温となったとしても、短時間で温度低下させることができる。これにより、熱交換器内の圧縮空気を除湿に適した温度まで充分に冷却することができる結果、好適に除湿することができる。
請求項2記載の圧縮空気除湿装置では、第1の条件が満たされているときに、制御部が、蒸発器内に流入する冷媒の温度がNaの低温側温度範囲のうちのいずれに属する状態となっているかを特定し、その結果に応じて、第5の冷媒配管を通過する冷媒の流量をNaの低温側温度範囲毎に予め規定された第1の量だけ増加させる処理を第1の処理として実行し、第2の条件が満たされているときに、制御部が、蒸発器内に流入する冷媒の温度がNbの高温側温度範囲のうちのいずれに属する状態となっているかを特定し、その結果に応じて、第5の冷媒配管を通過する冷媒の流量をNbの高温側温度範囲毎に予め規定された第2の量だけ減少させる処理を第2の処理として実行する。
したがって、請求項2記載の圧縮空気除湿装置によれば、蒸発器内に流入する冷媒の温度が、Naの低温側温度範囲のうちの目標温度範囲に近い温度範囲内のときよりも、Naの低温側温度範囲のうちの目標温度範囲から離れた温度範囲内のときの方が第1の量が多くなるように流量調整部を制御することで、蒸発器内に流入する冷媒の温度が目標温度範囲から大きく離れて低温のときほど、第3の冷媒配管に多くのホットガスを供給して速やかに温度上昇させることができ、蒸発器内に流入する冷媒の温度が目標温度範囲よりもやや低い温度のときには、第3の冷媒配管にホットガスが過剰に供給されて冷媒温度が必要以上に温度上昇させられる事態を回避することができる。また、蒸発器内に流入する冷媒の温度が、Nbの高温側温度範囲のうちの目標温度範囲に近い温度範囲内のときよりも、Nbの高温側温度範囲のうちの目標温度範囲から離れた温度範囲内のときの方が第2の量が多くなるように流量調整部を制御することで、蒸発器内に流入する冷媒の温度が目標温度範囲から大きく離れて高温のときほど、第3の冷媒配管に対するホットガスの供給量を速やかに減少させて冷媒温度の上昇を速やかに停止させて温度低下させることができ、蒸発器内に流入する冷媒の温度が目標温度範囲よりもやや高い温度のときには、第3の冷媒配管に対するホットガスの供給量が過剰に減少させられて冷媒温度が必要以上に温度低下させられる事態を回避することができる。これにより、蒸発器内に流入する冷媒の温度を速やかに目標温度範囲内の温度とすることができる。
請求項3記載の圧縮空気除湿装置によれば、流量調整部を電子膨張弁で構成したことにより、比較的簡易な回路構成で冷凍サイクルにホットガスバイパス回路を構築することができるだけでなく、第5の冷媒配管を通過する冷媒の流量を多段階に制御することができるため、蒸発器内に流入する冷媒の温度を目標温度範囲内の温度とするのに必要充分なホットガスを第3の冷媒配管に供給することができる。また、この種の冷凍サイクルにおいて膨張弁として利用されることが多いために市場価格が安価な電子膨張弁を採用することで、圧縮空気除湿装置の製造コストを充分に低減することができる。
請求項4記載の圧縮空気除湿装置によれば、制御部が、第1の処理および第2の処理においてMa本のうちのMb本の第5の冷媒配管にそれぞれ配設されたMb個の制御弁を制御して冷媒の通過を許容させる第5の冷媒配管の本数を変更することで第1の冷媒配管内から少なくとも一方の冷媒配管内に流入させる冷媒の量を変更することにより、この種の冷凍サイクルにおいて利用されることが多いために市場価格が安価な制御弁を採用した簡易な回路構成で冷凍サイクルを構成することができるため、圧縮空気除湿装置の製造コストを充分に低減することができる。この場合、Ma=Mb本の第5の冷媒配管に制御弁をそれぞれ配設することにより、冷媒の通過を任意に変更可能な第5の冷媒配管の本数が十分に多数となる結果、第1の冷媒配管内から少なくとも一方の冷媒配管内に流入させる冷媒の量を多段階に調整することができるため、蒸発器内に流入する冷媒の温度を適切に目標温度範囲内の温度とすることができる。
請求項5記載の圧縮空気除湿装置によれば、蒸発器内に流入する冷媒の単位時間当りの温度低下量が予め規定された規定量A以上となる条件A2が満たされたときの方が、第5の冷媒配管を通過する冷媒の単位時間当りの増加量が多くなるように流量調整部を制御することにより、蒸発器内に流入する冷媒の急激な温度低下を充分に短い時間で停止させ、さらに、充分に短い時間で温度上昇させることができるため、熱交換器内において結露水が凍結するのを一層好適に回避することができる。
請求項6記載の圧縮空気除湿装置によれば、蒸発器内に流入する冷媒の単位時間当りの温度上昇量が予め規定された規定量B以上となる条件B2が満たされたときの方が、第5の冷媒配管を通過する冷媒の単位時間当りの減少量が多くなるように流量調整部を制御することにより、蒸発器内に流入する冷媒の急激な温度上昇を充分に短い時間で停止させ、さらに、充分に短い時間で温度低下させることができるため、熱交換器内が除湿に適した温度範囲よりも高温となる事態を回避する、または、除湿に適した温度範囲を僅かに超えたとしても充分に短い時間で除湿に適した温度範囲内の温度とすることができる結果、圧縮空気を一層好適に除湿することができる。
請求項7記載の圧縮空気除湿装置によれば、制御部が、蒸発器内に流入する冷媒の温度を測定する第1の温度センサ、および蒸発器から排出される冷媒の温度を測定する第2の温度センサのいずれか一方によって測定された冷媒の温度に基づき、蒸発器内に流入する冷媒の温度を特定することにより、蒸発器内に流入する冷媒の温度が、熱交換器内(蒸発器の周囲)において結露水が凍結する状態となり得る温度であるか否かや、圧縮空気を好適に除湿し得る状態の充分に低い温度であるか否かを迅速かつ確実に特定することができる。
請求項8記載の圧縮空気除湿装置によれば、制御部が、蒸発器内に流入する冷媒の圧力を測定する第1の圧力センサ、および蒸発器から排出される冷媒の圧力を測定する第2の圧力センサのいずれか一方によって測定された冷媒の圧力に基づき、蒸発器内に流入する冷媒の温度を特定することにより、蒸発器内に流入する冷媒の温度が、熱交換器内(蒸発器の周囲)において結露水が凍結する状態となり得る温度であるか否かや、圧縮空気を好適に除湿し得る状態の充分に低い温度であるか否かを迅速かつ確実に特定することができる。
本発明の実施の形態に係る圧縮空気除湿装置1(1B)の構成を示す構成図である。 本発明の実施の形態に係る圧縮空気除湿装置1において規定されている温度範囲T1〜T5の一例について説明するための説明図である。 本発明の実施の形態に係る圧縮空気除湿装置1において実行されるホットガスバイパス処理40のフローチャートである。 本発明の実施の形態に係る圧縮空気除湿装置1によって圧縮空気を除湿処理する際の温度センサ5aの位置における冷媒の温度、温度センサ5bの位置における冷媒の温度、および電子膨張弁25の開度の関係について説明するための説明図である。 本発明の実施の形態に係る圧縮空気除湿装置1A(1C)の構成を示す構成図である。
以下、添付図面を参照して、圧縮空気除湿装置の実施の形態について説明する。
最初に、圧縮空気除湿装置1の構成について、添付図面を参照して説明する。
図1に示す圧縮空気除湿装置1は、「圧縮空気除湿装置」の一例であって、図示しないエアーコンプレッサーから圧送される圧縮空気(「除湿対象の圧縮空気」の一例)を冷却することで除湿すると共に、除湿した圧縮空気を工作機械や医療機器などの各種の供給対象に供給可能に構成されている。この圧縮空気除湿装置1は、冷凍サイクル2、熱交換器3、コントローラ4および温度センサ5aを備え、これらが図示しない筐体内に収容されて構成されている。
冷凍サイクル2は、圧縮機21、凝縮器22、キャピラリチューブ23(膨張弁)および蒸発器24を備えると共に、これらが冷媒配管P1〜P4によって相互に接続されている。この場合、本例の圧縮空気除湿装置1における冷凍サイクル2では、圧縮機21から吐出された冷媒を凝縮器22に案内する冷媒配管P1が「第1の冷媒配管」に相当し、凝縮器22から吐出された冷媒をキャピラリチューブ23に案内する冷媒配管P2が「第2の冷媒配管」に相当し、キャピラリチューブ23から吐出された冷媒を蒸発器24に案内する冷媒配管P3が「第3の冷媒配管」に相当し、蒸発器24から排出された冷媒を圧縮機21に案内する冷媒配管P4が「第4の冷媒配管」に相当する。なお、キャピラリチューブ23で構成された「膨張弁」に代えて「電子膨張弁」を「膨張弁」として配設することもできる。
また、本例の冷凍サイクル2は、冷媒配管P1を冷媒配管P3に連結して冷媒配管P1内を移動する冷媒の一部を冷媒配管P3に流入させる冷媒配管P5(ホットガス回路を構成する冷媒配管:「第5の冷媒配管」の一例)を備えている(「第3の冷媒配管および第4の冷媒配管の少なくとも一方」が「第3の冷媒配管」である構成の一例)。さらに、本例の冷凍サイクル2では、冷媒配管P5を通過する冷媒の流量をコントローラ4の制御に従って調整する電子膨張弁25(「電子膨張弁で構成した流量調整部」の一例)が冷媒配管P5に配設されている。また、本例の冷凍サイクル2では、蒸発器24内に流入する冷媒の温度を測定するために、冷媒配管P3における冷媒配管P5の連結部位よりも蒸発器24寄りの位置(蒸発器24における冷媒入口の近傍)に上記の温度センサ5a(「第1の温度センサ」の一例)が配設されている。なお、実際の冷凍サイクル2には、アキュムレータやストレーナなどが配設されているが、冷凍サイクル2の構成に関する理解を容易とするために、これらについての図示および説明を省略する。
熱交換器3は、冷凍サイクル2における蒸発器24を収容可能な圧力容器で構成されており、除湿対象の圧縮空気を導入する導入口31、除湿した圧縮空気を排気する排出口32、および除湿によって生じたドレン水を排水する排水口33がそれぞれ設けられている。また、熱交換器3の排水口33には、ドレントラップ(図示せず)が取り付けられている。この熱交換器3は、エアーコンプレッサーによって圧縮されることで温度上昇した圧縮空気が導入口31から導入されたときに、蒸発器24内の低温の冷媒と、導入された圧縮空気との間で熱交換させることで圧縮空気を冷却し、圧縮空気に含まれている水分を結露させて除湿すると共に、除湿した圧縮空気を排出口32から排出して供給対象に供給し、かつ結露水を排水口33から排水するように構成されている。
コントローラ4は、「制御部」に相当し、圧縮空気除湿装置1(冷凍サイクル2)を総括的に制御する。具体的には、コントローラ4は、圧縮機21を制御して冷媒を圧縮させると共に、ファン22aを制御して凝縮器22に向けて送風させる。また、コントローラ4は、後述するように、温度センサ5aからのセンサ信号に基づいて蒸発器24内に流入する冷媒の温度を特定すると共に、特定した温度に応じて電子膨張弁25の開度を変更することにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3に流入させる冷媒(圧縮機21によって圧縮された高温高圧の冷媒)の流量(冷媒配管P5を通過する冷媒の流量)を調整する。この場合、本例の冷凍サイクル2では、一例として、上記の電子膨張弁25が、その開度を変更するためのステッピングモータ(図示せず)を備えて構成されており、コントローラ4が、このステッピングモータの回転方向および回転量(ステップ数:パルス数)を指示することで電子膨張弁25の開度を変更する構成が採用されている。
また、本例の圧縮空気除湿装置1では、図2に示すように、蒸発器24に流入する冷媒の温度(温度センサ5aによって測定される冷媒温度)に関し、8℃以上(温度範囲T1)、5℃以上8℃未満(温度範囲T2)、3℃以上5℃未満(温度範囲T3)、1℃以上3℃未満(温度範囲T4)および1℃未満(温度範囲T5)の5つの温度範囲を規定すると共に、コントローラ4が、図3に示すホットガスバイパス処理40において、上記の冷媒温度が各温度範囲T1〜T5のいずれに属するかに応じて電子膨張弁25の開度を調整する構成が採用されている。この場合、本例では、温度範囲T3が「目標温度範囲」に相当すると共に、温度範囲T4,T5の2つが「目標温度範囲よりも低温であって互いに相違するNaの低温側温度範囲(Na=2の例)」に相当し、かつ温度範囲T1,T2の2つが「目標温度範囲よりも高温であって互いに相違するNbの高温側温度範囲(Nb=2の例)」に相当する。
次に、圧縮空気除湿装置1による圧縮空気の除湿処理について、添付図面を参照して説明する。なお、圧縮空気除湿装置1の動作に関する理解を容易とするために、まず、ホットガスバイパス処理40の各ステップ毎の動作について説明する。
この圧縮空気除湿装置1では、図示しないスタートスイッチが操作されたときに、コントローラ4が、圧縮機21を制御して冷媒の圧縮を開始させると共に、ファン22aを制御して送風を開始させる。また、コントローラ4は、図3に示すホットガスバイパス処理40を開始する。このホットガスバイパス処理40では、コントローラ4は、まず、温度センサ5aからのセンサ信号に基づき、蒸発器24内に流入する冷媒の温度の単位時間当りの変化量が規定量(一例として、1秒当り0.2℃)を超えているか否かを判別する(「単位時間」が「1秒」で、「規定量A」および「規定量B」がそれぞれ「0.2℃」の例:ステップ41)。この際に、センサ信号に基づいて特定される冷媒温度が規定量を超えて急激に変化したときには、コントローラ4は、その温度変化が温度上昇であるか(温度上昇および温度低下のいずれであるか)を判別する(ステップ42)。
この際に、規定量を超える急激な温度上昇が生じたと判別したとき(蒸発器24内に流入する冷媒の1秒当りの温度上昇量が0.2℃を超えているとき:「条件B2が満たされているとき」の一例)に、コントローラ4は、電子膨張弁25を制御して、一例として、125m秒当り5ステップの割合(一例として、125m秒毎に5ステップのペース)で電子膨張弁25を閉弁させる(ステップ43)。これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒(圧縮機21によって圧縮されることで高温高圧となっている冷媒)の流量が比較的早いペースで減少する結果、蒸発器24近傍の冷媒圧力が短時間で低下するため、蒸発器24近傍の冷媒の温度(蒸発器24内に流入する冷媒の温度、蒸発器24内の冷媒の温度、および蒸発器24から排出される冷媒の温度)が短時間で低下することとなる。これにより、除湿対象の圧縮空気を充分に冷却することが可能となる。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
なお、この圧縮空気除湿装置1の例では、「蒸発器24内に流入する冷媒の1秒当りの温度上昇量が0.2℃以下」との状態(緩やかな温度上昇が生じた状態)が「条件B1が満たされているとき」に相当し、後述するように、このような状態においては、「125m秒当り5ステップ」との上記の割合よりも小さな割合で電子膨張弁25が閉弁制御される。したがって、この圧縮空気除湿装置1では、「条件B1」が満たされた際の閉弁制御時よりも、「条件B2」が満たされた際に125m秒当り5ステップの割合で電子膨張弁25を閉弁させる閉弁制御時の方が冷媒配管P5を通過する冷媒の単位時間当りの減少量が多くなる。
また、上記のステップ42において、規定量を超える急激な温度低下が生じたと判別したとき(蒸発器24内に流入する冷媒の1秒当りの温度低下量が0.2℃を超えているとき:「条件A2が満たされているとき」の一例)に、コントローラ4は、電子膨張弁25を制御して、一例として、125m秒当り5ステップの割合(一例として、125m秒毎に5ステップのペース)で電子膨張弁25を開弁させる(ステップ44)。これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒(圧縮機21によって圧縮されることで高温高圧となっている冷媒)の流量が比較的早いペースで増加する結果、蒸発器24近傍の冷媒圧力が短時間で上昇するため、蒸発器24近傍の冷媒の温度(蒸発器24内に流入する冷媒の温度、蒸発器24内の冷媒の温度、および蒸発器24から排出される冷媒の温度)が短時間で上昇することとなる。これにより、蒸発器24の周囲(熱交換器3内)が凍結温度まで低下する事態が回避される。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
なお、この圧縮空気除湿装置1の例では、「蒸発器24内に流入する冷媒の1秒当りの温度低下量が0.2℃以下」との状態(緩やかな温度低下が生じた状態)が「条件A1が満たされているとき」に相当し、後述するように、このような状態においては、「125m秒当り5ステップ」との上記の割合よりも小さな割合で電子膨張弁25が開弁制御される。したがって、この圧縮空気除湿装置1では、「条件A1」が満たされた際の開弁制御時よりも、「条件A2」が満たされた際に125m秒当り5ステップの割合で電子膨張弁25を開弁させる開弁制御時の方が冷媒配管P5を通過する冷媒の単位時間当りの増加量が多くなる。
一方、上記のステップ41において、蒸発器24内に流入する冷媒の温度の単位時間当りの変化量が規定量以下(一例として、1秒当り0.2℃以下)であると判別したときには、コントローラ4は、温度センサ5aからのセンサ信号に基づいて特定した冷媒温度が温度範囲T1内の温度であるか否かを判別する(ステップ45)。この際に、特定した冷媒温度が温度範囲T1内の温度のときには(「第2の条件」が満たされた状態の一例)、コントローラ4は、電子膨張弁25を制御して、一例として、3秒当り5ステップの割合(一例として、3秒毎に5ステップのペース)で電子膨張弁25を閉弁させる(「第2の処理」の一例:ステップ46)。
これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒の流量が徐々に減少する結果、蒸発器24近傍の冷媒圧力が徐々に低下するため、蒸発器24内に流入する冷媒の温度、すなわち、蒸発器24内の冷媒温度が徐々に低下することとなる。したがって、除湿対象の圧縮空気を充分に冷却することが可能となる。なお、上記の例では、3秒当り5ステップの割合での閉弁制御によって減少する冷媒の流量が「第2の条件に対応付けられた第2の量」に相当し、かつ温度範囲T1に対応して規定された「第2の量」に相当する。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
また、上記のステップ45において、特定した冷媒温度が温度範囲T1内の温度ではないと判別したときには、コントローラ4は、特定した冷媒温度が温度範囲T2内の温度であるか否かを判別する(ステップ47)。この際に、特定した冷媒温度が温度範囲T2内の温度のときには(「第2の条件」が満たされた状態の他の一例)、コントローラ4は、電子膨張弁25を制御して、一例として、8秒当り5ステップの割合(一例として、8秒毎に5ステップのペース)で電子膨張弁25を閉弁させる(「第2の処理」の他の一例:ステップ48)。
これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒の流量が徐々に減少する結果、蒸発器24近傍の冷媒圧力が徐々に低下するため、蒸発器24内に流入する冷媒の温度、すなわち、蒸発器24内の冷媒温度が徐々に低下することとなる。したがって、除湿対象の圧縮空気を充分に冷却することが可能となる。なお、上記の例では、8秒当り5ステップの割合での閉弁制御によって減少する冷媒の流量が「第2の条件に対応付けられた第2の量」の他の一例に相当し、かつ温度範囲T2に対応して規定された「第2の量」に相当する。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
さらに、上記のステップ47において、特定した冷媒温度が温度範囲T2内の温度ではないと判別したときには、コントローラ4は、特定した冷媒温度が温度範囲T4内の温度であるか否かを判別する(ステップ49)。この際に、特定した冷媒温度が温度範囲T4内の温度のときには(「第1の条件」が満たされた状態の一例)、コントローラ4は、電子膨張弁25を制御して、一例として、8秒当り5ステップの割合(一例として、8秒毎に5ステップのペース)で電子膨張弁25を開弁させる(「第1の処理」の一例:ステップ50)。
これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒の流量が徐々に増加する結果、蒸発器24近傍の冷媒圧力が徐々に上昇するため、蒸発器24内に流入する冷媒の温度、すなわち、蒸発器24内の冷媒温度が徐々に上昇することとなる。したがって、蒸発器24の周囲(熱交換器3内)が凍結温度まで低下する事態が回避される。なお、上記の例では、8秒当り5ステップの割合での開弁制御によって増加する冷媒の流量が「第1の条件に対応付けられた第1の量」に相当し、かつ温度範囲T4に対応して規定された「第1の量」に相当する。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
また、上記のステップ49において、特定した冷媒温度が温度範囲T4内の温度ではないと判別したときには、コントローラ4は、特定した冷媒温度が温度範囲T5内の温度であるか否かを判別する(ステップ51)。この際に、特定した冷媒温度が温度範囲T5内の温度のときには(「第1の条件」が満たされた状態の他の一例)、コントローラ4は、電子膨張弁25を制御して、一例として、3秒当り5ステップの割合(一例として、3秒毎に5ステップのペース)で電子膨張弁25を開弁させる(「第1の処理」の他の一例:ステップ52)。
これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒の流量が徐々に増加する結果、蒸発器24近傍の冷媒圧力が徐々に上昇するため、蒸発器24内に流入する冷媒の温度、すなわち、蒸発器24内の冷媒温度が徐々に上昇することとなる。したがって、蒸発器24の周囲(熱交換器3内)が凍結温度まで低下する事態が回避される。なお、上記の例では、3秒当り5ステップの割合での開弁制御によって増加する冷媒の流量が「第1の条件に対応付けられた第1の量」の他の一例に相当し、かつ温度範囲T5に対応して規定された「第1の量」に相当する。次いで、コントローラ4は、上記のステップ41に戻って、冷媒温度の単位時間当りの変化量が規定量を超えているか否かを判別する。
さらに、上記のステップ51において、特定した冷媒温度が温度範囲T5内の温度ではないと判別したとき(すなわち、特定した冷媒温度が、目標温度範囲である温度範囲T3内の温度であるとき)には、コントローラ4は、電子膨張弁25の開弁状態を維持しつつ(電子膨張弁25の閉弁制御や開弁制御を行わず)、上記のステップ41に戻る。これにより、冷媒配管P1から冷媒配管P5を介して冷媒配管P3にバイパスされている冷媒の流量が維持される結果、蒸発器24近傍の冷媒圧力が維持されるため、蒸発器24内に流入する冷媒の温度、すなわち、蒸発器24内の冷媒温度が「目標温度範囲」である温度範囲T3内の温度に維持される。この後、コントローラ4は、上記のステップ41以降の各処理を繰り返して実行する。
なお、この圧縮空気除湿装置1では、上記のステップ41において蒸発器24内に流入する冷媒の温度の単位時間当りの変化量が規定量(この例では、1秒当り0.2℃)を超えていないと判別される状況下において、上記のステップ45以降の処理が繰り返し実行される状態が「条件A1が満たされているとき」、または、「条件B1が満たされているとき」に相当する。この場合、単位時間当りの冷媒の温度上昇量が上記の規定量以下の状態(条件B1が満たされている状態)においては、3秒当り5ステップの閉弁制御(ステップ46)、および8秒当り5ステップの閉弁制御(ステップ48)のように、「条件B2が満たされたとき」に行われる125m秒当り5ステップの閉弁制御(ステップ43)よりも緩やかに電子膨張弁25が閉弁制御される。したがって、この圧縮空気除湿装置1では、「条件B2」が満たされたときよりも、「条件B1」が満たされているときの方が、冷媒配管P5を通過する冷媒の単位時間当りの減少量が少なくなっている。
また、単位時間当りの冷媒の温度低下量が上記の規定量以下の状態(条件A1が満たされている状態)においては、8秒当り5ステップの開弁制御(ステップ50)、および3秒当り5ステップの開弁制御(ステップ52)のように、「条件A2が満たされたとき」に行われる125m秒当り5ステップの開弁制御(ステップ44)よりも緩やかに電子膨張弁25が開弁制御される。したがって、この圧縮空気除湿装置1では、「条件A2」が満たされたときよりも、「条件A1」が満たされているときの方が、冷媒配管P5を通過する冷媒の単位時間当りの増加量が少なくなっている。
次いで、実際の除湿処理と、上記のホットガスバイパス処理40の各ステップ毎の動作との関係について、図面を参照しつつ説明する。
この圧縮空気除湿装置1では、コントローラ4の制御に従って圧縮機21が冷媒圧縮処理を開始したときに、圧縮機21から吐出された冷媒が冷媒配管P1を介して凝縮器22に案内され、凝縮器22において凝縮された後に、冷媒配管P2を介してキャピラリチューブ23に案内される。また、キャピラリチューブ23を通過した冷媒が冷媒配管P3を介して蒸発器24内に吐出される際には、圧力の低下に伴って温度低下する。この際に、蒸発器24が収容されている熱交換器3内に圧縮空気が供給されていないこの時点においては、蒸発器24内の冷媒と圧縮空気との熱交換が行われないため、冷媒流路における蒸発器24近傍の冷媒温度が低下し続ける。
したがって、図4に示すように、時点t1において圧縮機21の作動を開始させてから暫くの間は、蒸発器24内に流入する冷媒の温度(温度センサ5aによって測定される冷媒温度)が急激に低下することとなる。なお、同図では、蒸発器24における冷媒入口側温度(一例として、上記の温度センサ5aによって測定される冷媒温度)を一点鎖線L1で示し、蒸発器24における冷媒出口側温度(一例として、後述する温度センサ5b(図1参照)によって測定される冷媒温度)を二点鎖線L2で示し、電子膨張弁25の開閉状態を実線L3で示している。また、同図における破線L4は、上記の圧縮空気除湿装置1における冷凍サイクル2の電子膨張弁25に代えて冷媒配管P5にCCVを配設した圧縮空気除湿装置(図示せず:以下「圧縮空気除湿装置1x」ともいう)を、一点鎖線L1、二点鎖線L2および実線L3で示す例と同様の動作状態で動作させたときの蒸発器24における冷媒入口側温度を示している。
この場合、この圧縮空気除湿装置1では、圧縮機21が冷媒圧縮処理を開始した直後に蒸発器24内に流入する冷媒の温度が急激に低下したときに、上記のホットガスバイパス処理40におけるステップ41において、冷媒温度の単位時間当りの変化量が規定量を超えていると判別され、ステップ42において規定量を超える急激な温度低下が生じたと判別される。したがって、125m秒当り5ステップの割合で電子膨張弁25が開弁制御され(ステップ44)、冷媒配管P3にバイパスされている冷媒(圧縮機21によって圧縮されることで高温高圧となっている冷媒)の流量が比較的早いペースで増加する結果、蒸発器24近傍の冷媒圧力が短時間で上昇する。これにより、上記の時点t1から僅かな時間が経過した時点t1aにおいて、蒸発器24内に流入する冷媒の温度低下が停止して、熱交換器3内が凍結温度に達する事態が回避される。これに対して、圧縮空気除湿装置1xでは、CCVが充分に開弁されるまでに比較的長い時間を要するため、蒸発器24内に流入する冷媒の温度の低下が時点t1bまで続く結果、熱交換器3内が凍結温度以下となる。
また、図4の例において、圧縮空気除湿装置1では、時点t1以降にステップ44の処理が極く短い周期で繰り返して実行されることで、電子膨張弁25が極く短時間で最大開弁状態(電子膨張弁25の耐久性や破損回避を考慮して規定した最大開弁状態)に達して、その状態が維持され、その後に、蒸発器24内に流入する冷媒温度が徐々に上昇して温度範囲T3内であると判別される結果(ステップ51)、電子膨張弁25の開弁状態がt1cまで一定に維持される。また、蒸発器24内に流入する冷媒温度がさらに上昇し、時点t1cにおいて、冷媒温度が温度範囲T2内であると判別されたときには(ステップ47)、8秒当り5ステップの割合で電子膨張弁25を閉弁制御される(ステップ48)。これにより、蒸発器24内に流入する冷媒温度が徐々に低下し、時点t1dにおいて、冷媒温度が温度範囲T3内であると判別されて(ステップ51)、電子膨張弁25の開弁状態が時点t1eまで一定に維持される。
さらに、図4の例では、時点t1e〜t1fにおいて、冷媒温度が温度範囲T4内であると判別されて(ステップ49)、8秒当り5ステップの割合で電子膨張弁25が開弁制御される(ステップ50)。これにより、蒸発器24内に流入する冷媒温度が徐々に上昇し、時点t1fにおいて、冷媒温度が温度範囲T3内であると判別されて(ステップ51)、電子膨張弁25の開弁状態が一定に維持される。
一方、エアーコンプレッサーから除湿対象の圧縮空気が圧送されて導入口31から熱交換器3内に導入されたときには、蒸発器24内の冷媒と圧縮空気との熱交換が行われることにより、冷媒流路における蒸発器24近傍の冷媒温度が上昇する。したがって、図4に示すように、時点t2において圧縮空気の導入を開始したときには、温度範囲T3内に維持されていた冷媒の温度が温度範囲T2内であると判別され(ステップ47)、8秒当り5ステップの割合で電子膨張弁25が閉弁制御される(ステップ48)。また、同図に示す例では、時点t2aにおいて、冷媒温度が温度範囲T1内であると判別されて(ステップ45)、3秒当り5ステップの割合で電子膨張弁25が閉弁制御される(ステップ46)。
この場合、本例の圧縮空気除湿装置1では、冷媒温度が温度範囲T1内の温度となった時点t2a以降にステップ46の処理が比較的短い周期で繰り返して実行されることで、電子膨張弁25が比較的短時間で最小開弁状態(電子膨張弁25の耐久性や破損回避を考慮して規定した最小開弁状態)に達して、その状態が維持される。これにより、この圧縮空気除湿装置1では、熱交換器3内に圧縮空気が導入された直後や、熱交換器3内に導入される圧縮空気の量が増加したとき(負荷が増加したとき)に、冷媒配管P5を介して不要なホットガス(高温高圧の冷媒)が冷媒配管P3にバイパスされる時間を充分に短くすることが可能となっている。
また、熱交換器3に対する圧縮空気の導入が停止したときには、蒸発器24内の冷媒と圧縮空気との熱交換が行われなくなることに起因して、冷媒流路における蒸発器24近傍の冷媒温度が急激に低下することとなる。したがって、図4に示すように、時点t3において熱交換器3に対する圧縮空気の導入を停止してから暫くの間は、蒸発器24内に流入する冷媒の温度(温度センサ5aによって測定される冷媒温度)が急激に低下することとなる。この際には、上記のホットガスバイパス処理40におけるステップ41において、冷媒温度の単位時間当りの変化量が規定量を超えていると判別され、ステップ42において規定量を超える急激な温度低下が生じたと判別される。したがって、125m秒当り5ステップの割合で電子膨張弁25が開弁制御され(ステップ44)、冷媒配管P3にバイパスされている冷媒(圧縮機21によって圧縮されることで高温高圧となっている冷媒)の流量が比較的早いペースで増加する結果、蒸発器24近傍の冷媒圧力が短時間で上昇する。
これにより、上記の時点t3から僅かな時間が経過した時点t3aにおいて、蒸発器24内に流入する冷媒温度の低下の度合いが緩やかとなり、冷媒温度が温度範囲T3内となる。したがって、同図の例では、時点t3a〜t3bまで電子膨張弁25の開弁状態が維持され、その後に、時点t3bにおいて冷媒温度が温度範囲T4内と判別されたときに(ステップ49)、8秒当り5ステップの割合で電子膨張弁25が開弁制御される(ステップ50)。これにより、蒸発器24内に流入する冷媒温度が徐々に上昇して、熱交換器3内が凍結温度となる事態が回避され、その後に、冷媒温度が温度範囲T3内の温度となって、その状態が維持される。これに対して、圧縮空気除湿装置1xでは、CCVが充分に開弁されるまでに比較的長い時間を要するため、蒸発器24内に流入する冷媒の温度の低下が時点t3cまで続く結果、熱交換器3内が凍結温度以下となる。したがって、その後に圧縮空気の除湿処理を再開するとき(熱交換器3内に圧縮空気が再び導入されたとき)に、凍結した結露水が圧縮空気の通過を阻害するおそれがある。
また、図4の例とは相違するが、例えば、熱交換器3に導入される圧縮空気の量が急激に増加して、蒸発器24内の冷媒温度が短時間で急激に上昇させられたときには、前述したホットガスバイパス処理40におけるステップ41において、冷媒温度の単位時間当りの変化量が規定量を超えていると判別され、ステップ42において規定量を超える急激な温度上昇が生じたと判別される。したがって、125m秒当り5ステップの割合で電子膨張弁25が閉弁制御され(ステップ43)、冷媒配管P3にバイパスされている冷媒(圧縮機21によって圧縮されることで高温高圧となっている冷媒)の流量が比較的早いペースで減少する結果、蒸発器24近傍の冷媒圧力が短時間で低下する。これにより、圧縮空気の導入量が急激に増加したときから僅かな時間が経過した時点において、蒸発器24内に流入する冷媒の温度上昇が停止して、その後に冷媒温度が速やかに低下させられる結果、熱交換器3内が除湿に適した温度範囲内の温度となる。これに対して、圧縮空気除湿装置1xでは、CCVが充分に閉弁されるまでに比較的長い時間を要するため、蒸発器24内に流入する冷媒の温度の上昇が停止するまでにある程度長い時間を要する結果、熱交換器3内が除湿に適した温度範囲よりも高い温度となおそれがある。
このように、この圧縮空気除湿装置1では、蒸発器24内に流入する冷媒の温度が目標温度範囲(この例では、温度範囲T3)よりも低温となる「第1の条件」が満たされているとき(この例では、冷媒温度が温度範囲T4,T5のいずれかの範囲内のとき)に、コントローラ4が電子膨張弁25を制御して冷媒配管P5を通過する冷媒の流量を「第1の量(この例では、8秒当り5ステップの開弁制御、または3秒当り5ステップの開弁制御によって増加する冷媒の通過量)」だけ増加させる「第1の処理(この例では、ホットガスバイパス処理40におけるステップ50,52の処理)」を繰り返し実行し、蒸発器24内に流入する冷媒の温度が目標温度範囲よりも高温となる「第2の条件」が満たされているとき(この例では、冷媒温度が温度範囲T1,T2のいずれかの範囲内のとき)に、コントローラ4が電子膨張弁25を制御して冷媒配管P5を通過する冷媒の流量を「第2の量(この例では、8秒当り5ステップの閉弁制御、または3秒当り5ステップの閉弁制御によって減少する冷媒の通過量)」だけ減少させる「第2の処理(この例では、ホットガスバイパス処理40におけるステップ46,48の処理)」を繰り返し実行する。
したがって、この圧縮空気除湿装置1によれば、冷凍サイクル2の作動開始直後や、熱交換器3に対する圧縮空気の導入量が急激に減少したときなどに、蒸発器24内に流入する冷媒の温度が急激に低下したとしても、「第1の処理」が実行されて充分な量のホットガス(圧縮機21から吐出された高温高圧の冷媒)が速やかに冷媒配管P3に供給されるため、蒸発器24の周辺の冷媒温度が低下し続けて過剰に低温となるのを阻止することができ、また、冷媒温度が過剰に低温となったとしても、短時間で温度上昇させることができる。これにより、熱交換器3内において結露水が凍結する事態を好適に回避することができる。また、熱交換器3に対する圧縮空気の導入量が急激に増加したときなどに、蒸発器24内に流入する冷媒の温度が急激に上昇したとしても、「第2の処理」が実行されて冷媒配管P3に対するホットガスの供給量が速やかに減少させられるため、蒸発器24の周辺の冷媒温度が上昇し続けて過剰に高温となるのを阻止することができ、また、冷媒温度が過剰に高温となったとしても、短時間で温度低下させることができる。これにより、熱交換器3内の圧縮空気を除湿に適した温度まで充分に冷却することができる結果、好適に除湿することができる。
また、この圧縮空気除湿装置1では、「第1の条件」が満たされているときに、コントローラ4が、蒸発器24内に流入する冷媒の温度がNa=2の「低温側温度範囲(この例では、温度範囲T4,T5)」のうちのいずれに属する状態となっているかを特定し、その結果に応じて、冷媒配管P5を通過する冷媒の流量をNa=2の「低温側温度範囲」毎に予め規定された「第1の量」だけ増加させる処理(ステップ50,52の処理)を「第1の処理」として実行し、「第2の条件」が満たされているときに、コントローラ4が、蒸発器24内に流入する冷媒の温度がNb=2の「高温側温度範囲(この例では、温度範囲T1,T2)」のうちのいずれに属する状態となっているかを特定し、その結果に応じて、冷媒配管P5を通過する冷媒の流量をNb=2の「高温側温度範囲」毎に予め規定された「第2の量」だけ減少させる処理(ステップ46,48の処理)を「第2の処理」として実行する。
したがって、この圧縮空気除湿装置1によれば、蒸発器24内に流入する冷媒の温度が、Naの「低温側温度範囲(温度範囲T4,T5)」のうちの「目標温度範囲(温度範囲T3)」に近い温度範囲(温度範囲T4)内のときよりも、Naの「低温側温度範囲」のうちの「目標温度範囲」から離れた温度範囲(温度範囲T5)内のときの方が「第1の量」が多くなるように電子膨張弁25を制御することで、蒸発器24内に流入する冷媒の温度が「目標温度範囲」から大きく離れて低温のときほど、冷媒配管P3に多くのホットガスを供給して速やかに温度上昇させることができ、蒸発器24内に流入する冷媒の温度が「目標温度範囲」よりもやや低い温度のときには、冷媒配管P3にホットガスが過剰に供給されて冷媒温度が必要以上に温度上昇させられる事態を回避することができる。また、蒸発器24内に流入する冷媒の温度が、Nbの「高温側温度範囲(温度範囲T1,T2)」のうちの「目標温度範囲」に近い温度範囲(温度範囲T2)内のときよりも、Nbの「高温側温度範囲」のうちの「目標温度範囲」から離れた温度範囲(温度範囲T1)内のときの方が「第2の量」が多くなるように電子膨張弁25を制御することで、蒸発器24内に流入する冷媒の温度が「目標温度範囲」から大きく離れて高温のときほど、冷媒配管P3に対するホットガスの供給量を速やかに減少させて冷媒温度の上昇を速やかに停止させて温度低下させることができ、蒸発器24内に流入する冷媒の温度が「目標温度範囲」よりもやや高い温度のときには、冷媒配管P3に対するホットガスの供給量が過剰に減少させられて冷媒温度が必要以上に温度低下させられる事態を回避することができる。これにより、蒸発器24内に流入する冷媒の温度を速やかに「目標温度範囲」内の温度とすることができる。
さらに、この圧縮空気除湿装置1によれば、「流量調整部」を電子膨張弁25で構成したことにより、比較的簡易な回路構成で冷凍サイクル2にホットガスバイパス回路を構築することができるだけでなく、冷媒配管P5を通過する冷媒の流量を多段階に制御することができるため、蒸発器24内に流入する冷媒の温度を「目標温度範囲」内の温度とするのに必要充分なホットガスを冷媒配管P3に供給することができる。また、この種の「冷凍サイクル」において「膨張弁」として利用されることが多いために市場価格が安価な「電子膨張弁」を採用することで、圧縮空気除湿装置1の製造コストを充分に低減することができる。
また、この圧縮空気除湿装置1によれば、蒸発器24内に流入する冷媒の単位時間当りの温度低下量が予め規定された「規定量A」以上となる「条件A2(この例では、温度低下量が1秒当り0.2℃以上となる状態)」が満たされたときの方が、冷媒配管P5を通過する冷媒の単位時間当りの増加量が多くなるように電子膨張弁25を制御することにより、蒸発器24内に流入する冷媒の急激な温度低下を充分に短い時間で停止させ、さらに、充分に短い時間で温度上昇させることができるため、熱交換器3内において結露水が凍結するのを一層好適に回避することができる。
さらに、この圧縮空気除湿装置1によれば、蒸発器24内に流入する冷媒の単位時間当りの温度上昇量が予め規定された「規定量B」以上となる「条件B2(この例では、温度上昇量が1秒当り0.2℃以上となる状態)」が満たされたときの方が、冷媒配管P5を通過する冷媒の単位時間当りの減少量が多くなるように電子膨張弁25を制御することにより、蒸発器24内に流入する冷媒の急激な温度上昇を充分に短い時間で停止させ、さらに、充分に短い時間で温度低下させることができるため、熱交換器3内が除湿に適した温度範囲よりも高温となる事態を回避する、または、除湿に適した温度範囲を僅かに超えたとしても充分に短い時間で除湿に適した温度範囲内の温度とすることができる結果、圧縮空気を一層好適に除湿することができる。
また、この圧縮空気除湿装置1によれば、コントローラ4が、蒸発器24内に流入する冷媒の温度を測定する温度センサ5aによって測定された冷媒の温度に基づき、蒸発器24内に流入する冷媒の温度を特定することにより、蒸発器24内に流入する冷媒の温度が、熱交換器3内(蒸発器24の周囲)において結露水が凍結する状態となり得る温度であるか否かや、圧縮空気を好適に除湿し得る状態の充分に低い温度であるか否かを迅速かつ確実に特定することができる。
次いで、圧縮空気除湿装置の他の実施形態について、添付図面を参照して説明する。なお、上記の圧縮空気除湿装置1と同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。
図5に示す圧縮空気除湿装置1Aは、「圧縮空気除湿装置」の他の一例であって、前述した圧縮空気除湿装置1における冷媒配管P5に代えて、冷媒配管P5a1,P5a2のMa=2本を有する冷媒配管P5a(「第5の冷媒配管」の他の一例)によって冷媒配管P1と冷媒配管P3とがバイパスされた冷凍サイクル2aを備えている。なお、「Ma本の第5の冷媒配管」との構成には、「第1の冷媒配管」と「第3の冷媒配管および第4の冷媒配管の少なくとも一方」とを直接的に接続する冷媒配管がMa本存在する構成だけでなく、圧縮空気除湿装置1Aにおける冷媒配管P5aのように「第1の冷媒配管(この例では、冷媒配管P1)」と「第3の冷媒配管および第4の冷媒配管の少なくとも一方(この例では冷媒配管P3)」との間がMa本に分岐されて、「Ma本の冷媒配管」を備えているのと実質的に同様となっている冷媒配管がこれに含まれる。この場合、上記の冷媒配管P5aのような接続形態に代えて、冷媒配管P5a1,P5a2における冷媒配管P1側の端部をそれぞれ別個に冷媒配管P1に接続する接続形態や、冷媒配管P5a1,P5a2における冷媒配管P3側の端部をそれぞれ別個に冷媒配管P3に接続する接続形態を採用することもできる。
また、この圧縮空気除湿装置1Aでは、「Ma本の第5の冷媒配管」に相当する冷媒配管P5a1,P5a2の双方に、電磁弁26a,26bおよびキャピラリチューブ27a,27bがそれぞれ配設されている。この場合、電磁弁26a,26bは、「制御弁」に相当し、コントローラ4の制御に従って冷媒配管P5a1,P5a2の冷媒の通過を許容または規制する(Mb=Ma=2の構成の例)。また、キャピラリチューブ27a,27bは、電磁弁26a,26bが開弁状態に制御されたときに冷媒配管P5a1,P5a2を通過する冷媒の流量を制限するための「抵抗」として機能する要素であって、本例の圧縮空気除湿装置1Aでは、一例として、電磁弁26aの通過抵抗が電磁弁26bの通過抵抗よりも大きくなるように構成されている。
この圧縮空気除湿装置1Aでは、コントローラ4が、「第1の処理」および「第2の処理」において電磁弁26a,26bを開閉制御して、冷媒の通過を許容させる冷媒配管の本数を変更することで冷媒配管P1から冷媒配管P3に流入させる冷媒の量を変更する構成が採用されている。具体的には、本例の圧縮空気除湿装置1Aにおける冷凍サイクル2aでは、蒸発器24に流入する冷媒ガスの温度に応じて、電磁弁26a,26bの双方を閉弁して冷媒配管P1から冷媒配管P3に冷媒(ホットガス)を供給しない第1の状態、電磁弁26aを開弁し、かつ電磁弁26bを閉弁して冷媒配管P1から冷媒配管P3にキャピラリチューブ27aの通過抵抗に応じた量の冷媒を供給する第2の状態、電磁弁26aを閉弁し、かつ電磁弁26bを開弁して冷媒配管P1から冷媒配管P3にキャピラリチューブ27bの通過抵抗に応じた量の冷媒を供給する第3の状態、および電磁弁26a,26bの双方を開弁して冷媒配管P1から冷媒配管P3にキャピラリチューブ27aの通過抵抗に応じた量の冷媒とキャピラリチューブ27bの通過抵抗に応じた量の冷媒とを供給する第4の状態の4つの状態のいずれかに制御することが可能となっている。
したがって、前述した圧縮空気除湿装置1における電子膨張弁25の開閉制御に代えて、電磁弁26a,26bを開閉制御することで上記の第1の状態から第4の状態のいずれかに変更することにより、冷媒配管P1から冷媒配管P3に流入させるホットガス(圧縮機21から吐出された高温高圧の冷媒)の量を調整することができる。これにより、この圧縮空気除湿装置1Aによれば、前述した圧縮空気除湿装置1と同様にして、熱交換器3内における結露水の凍結を好適に回避することができると共に、圧縮空気を好適に除湿することができる。また、この圧縮空気除湿装置1Aによれば、この種の「冷凍サイクル」において利用されることが多いために市場価格が安価な「制御弁(電磁弁)」を採用した簡易な回路構成で冷凍サイクル2aを構成することができるため、圧縮空気除湿装置1Aの製造コストを充分に低減することができる。この場合、Ma=Mb=2本の冷媒配管P5a1,P5a2に電磁弁26a,26bをそれぞれ配設することにより、冷媒の通過を任意に変更可能な「第5の冷媒配管」の本数が十分に多数となる結果、冷媒配管P1内から冷媒配管P3内に流入させる冷媒の量を多段階に調整することができるため、蒸発器24内に流入する冷媒の温度を適切に目標温度範囲内の温度とすることができる。
なお、「圧縮空気除湿装置」の構成は、上記の圧縮空気除湿装置1,1Aの構成に限定されるものではない。例えば、冷媒配管P3に配設した温度センサ5aによって蒸発器24内に流入する冷媒の温度を直接測定する構成の圧縮空気除湿装置1,1Aを例に挙げて説明したが、図1,5に示すように、温度センサ5aに代えて、冷媒配管P4に配設した温度センサ5b(「第2の温度センサ」の一例)によって蒸発器24から排出された冷媒の温度を測定することで蒸発器24内に流入する冷媒の温度を間接的に特定する構成を採用することができる。このような構成を採用した場合においても、上記の圧縮空気除湿装置1,1Aと同様の効果を奏することができる。なお、圧縮空気除湿装置1,1Aと同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。
また、温度センサ5a,5bによって冷媒温度を測定することで蒸発器24に流入する冷媒の温度を特定する構成に代えて、圧縮空気除湿装置1,1Aにおける温度センサ5aの位置に圧力センサ6a(「第1の圧力センサ」の一例)を配設し、蒸発器24内に流入する冷媒の圧力を測定することで、蒸発器24に流入する冷媒の温度を間接的に特定する構成を採用することもできる。さらに、上記した温度センサ5bの位置に圧力センサ6b(「第2の圧力センサ」の一例)を配設し、蒸発器24内から排出された冷媒の圧力を測定することで、蒸発器24に流入する冷媒の温度を間接的に特定する構成を採用することもできる。このように、コントローラ4が、蒸発器24内に流入する冷媒の圧力を測定する圧力センサ6a、および蒸発器24から排出される冷媒の圧力を測定する圧力センサ6bのいずれか一方によって測定された冷媒の圧力に基づき、蒸発器24内に流入する冷媒の温度を特定する構成を採用した「圧縮空気除湿装置」によれば、前述した圧縮空気除湿装置1,1Aと同様にして、蒸発器24内に流入する冷媒の温度が、熱交換器3内(蒸発器24の周囲)において結露水が凍結する状態となり得る温度であるか否かや、圧縮空気を好適に除湿し得る状態の充分に低い温度であるか否かを迅速かつ確実に特定することができる。
さらに、「第5の冷媒配管」に相当する冷媒配管P5,P5aを「第3の冷媒配管」に相当する冷媒配管P3に接続した圧縮空気除湿装置1,Aを例に挙げて説明したが、図1に示す圧縮空気除湿装置1Bにおける冷凍サイクル2bのように、「第1の冷媒配管」に相当する冷媒配管P1と「第4の冷媒配管」に相当する冷媒配管P4とを相互に連結する冷媒配管P5bを「第5の冷媒配管」として配設することもできる。また、図5に示す圧縮空気除湿装置1Cにおける冷凍サイクル2cのように、「第1の冷媒配管」に相当する冷媒配管P1と「第4の冷媒配管」に相当する冷媒配管P4とを相互に連結する冷媒配管P5c(冷媒配管P5a1,P5a2)を「第5の冷媒配管」として配設することもできる。
この場合、圧縮空気除湿装置1B,1Cでは、冷媒配管P5b,P5cを介して冷媒配管P1から冷媒配管P4にホットガスが供給されることで、冷媒流路における蒸発器24の近傍の冷媒圧力が上昇する結果、蒸発器24内に流入する冷媒、蒸発器24内の冷媒、および蒸発器24から排出された冷媒の温度が上昇する。したがって、冷媒配管P5,P5aを介して冷媒配管P1から冷媒配管P3にホットガスを供給する圧縮空気除湿装置1,1Aと同様の効果を奏することができる。また、圧縮空気除湿装置1における冷凍サイクル2の構成に加えて冷媒配管P1から冷媒配管P4にホットガスを供給する「第5の冷媒配管」を配設したり、圧縮空気除湿装置1Aにおける冷凍サイクル2aの構成に加えて冷媒配管P1から冷媒配管P4にホットガスを供給する「第5の冷媒配管」を配設したりすることもできる。このような構成を採用した場合においても、上記の圧縮空気除湿装置1,1A〜1Cと同様の効果を奏することができる。
さらに、「Na=2の低温側温度範囲(温度範囲T4,T5)」および「Nb=2の高温側温度範囲(温度範囲T1,T2)」を規定して、冷媒配管P5を通過する冷媒の流量を各温度範囲毎に予め規定された「第2の量」だけ増加または減少させる処理を実行する構成の圧縮空気除湿装置1を例に挙げて説明したが、「Na=3以上の低温側温度範囲」および「Nb=3以上の高温側温度範囲」を規定して、「第5の冷媒配管」を通過する冷媒の流量を各温度範囲毎に予め規定された「第2の量」だけ増加または減少させる処理を実行する構成を採用することもできる。この場合、「低温側温度範囲」の数(Na)と、「高温側温度範囲」の数(Nb)とは互いに相違する数であってもよい。このような構成を採用することにより、供給するホットガスの量を一層細やかに変更することができる結果、「蒸発器」に流入する冷媒の温度を一層好適に「目標温度範囲」内の温度に調整することができる。
また、Ma=2本のうちのMb=2本の冷媒配管P5a1,P5a2に「制御弁」としての電磁弁26a,26bをそれぞれ配設した圧縮空気除湿装置1Aを例に挙げて説明したが、例えば、冷媒配管P5a1に配設した電磁弁26aおよびキャピラリチューブ27aに代えてCCVを配設してもよい(Ma=2本のうちのMb=1本の冷媒配管P5a2だけに「制御弁(制御部によって開閉制御される弁)」としての電磁弁26bを配設し、(Ma−Mb)=1本の冷媒配管P5b2に「制御弁」を配設しない構成)。このような構成を採用したときには、圧力差の変化に対する開度変化の追従性が良好ではないCCVによる冷媒の流量調整を冷媒配管P5a2によって補うことができるため、熱交換器3内における結露水の凍結を好適に回避することができると共に、圧縮空気を好適に除湿することができる。さらに、Ma=3本以上の「第5の冷媒配管」を配設し、そのうちのMb=2本以上に「制御弁」を設ける構成を採用することもできる。このような構成を採用することで、供給するホットガスの量を一層細やかに変更することができる結果、「蒸発器」に流入する冷媒の温度を一層好適に「目標温度範囲」内の温度に調整することができる。
1,1A〜1C 圧縮空気除湿装置
2,2a〜2c 冷凍サイクル
3 熱交換器
4 コントローラ
5a,5b 温度センサ
6a,6b 圧力センサ
21 圧縮機
22 凝縮器
23,27a,27b キャピラリチューブ
24 蒸発器
25 電子膨張弁
26a,26b 電磁弁
31 導入口
32 排出口
33 排水口
40 ホットガスバイパス処理
P1〜P5,P5a,P5b,P5a1,P5a2,P5c 冷媒配管
T1 〜T5 温度範囲

Claims (8)

  1. 圧縮機、凝縮器、膨張弁および蒸発器を有する冷凍サイクルと、除湿対象の圧縮空気を導入する導入口、除湿した圧縮空気を排気する排出口、および除湿によって生じたドレン水を排水する排水口がそれぞれ設けられると共に前記蒸発器が収容されて当該導入口から導入した圧縮空気と当該蒸発器内の冷媒との間で熱交換させることで当該導入した圧縮空気に含まれている水分を結露させて除湿する熱交換器と、前記冷凍サイクルの動作を制御する制御部とを備えた圧縮空気除湿装置であって、
    前記冷凍サイクルは、前記圧縮機から吐出された冷媒を前記凝縮器に案内する第1の冷媒配管と、前記凝縮器から吐出された冷媒を前記膨張弁に案内する第2の冷媒配管と、前記膨張弁から吐出された冷媒を前記蒸発器に案内する第3の冷媒配管と、前記蒸発器から排出された冷媒を前記圧縮機に案内する第4の冷媒配管と、前記第1の冷媒配管を前記第3の冷媒配管および前記第4の冷媒配管の少なくとも一方に連結して当該第1の冷媒配管内を移動する前記冷媒の一部を当該少なくとも一方の冷媒配管内に流入させる第5の冷媒配管と、当該第5の冷媒配管に配設されて当該第5の冷媒配管を通過する前記冷媒の流量を前記制御部の制御に従って調整する流量調整部とを備え、
    前記制御部は、前記蒸発器内に流入する冷媒の温度が目標温度範囲よりも低温となる第1の条件、および当該蒸発器内に流入する当該冷媒の温度が当該目標温度範囲よりも高温となる第2の条件のいずれかが満たされたか否かを監視すると共に、前記第1の条件が満たされているときに、前記流量調整部を制御して前記第5の冷媒配管を通過する前記冷媒の流量を当該第1の条件に対応付けられた第1の量だけ増加させる第1の処理を実行し、かつ、前記第2の条件が満たされているときに、前記流量調整部を制御して前記第5の冷媒配管を通過する前記冷媒の流量を当該第2の条件に対応付けられた第2の量だけ減少させる第2の処理を実行する圧縮空気除湿装置。
  2. 前記制御部は、前記第1の条件が満たされているときに、前記蒸発器内に流入する冷媒の温度が、前記目標温度範囲よりも低温であって互いに相違するNa(Naは、2以上の自然数)の低温側温度範囲のうちのいずれに属する状態となっているかを特定し、特定した結果に応じて前記流量調整部を制御して、前記第5の冷媒配管を通過する前記冷媒の流量を当該Naの低温側温度範囲毎に予め規定された前記第1の量だけ増加させる処理を前記第1の処理として実行し、前記第2の条件が満たされているときに、前記蒸発器内に流入する冷媒の温度が、前記目標温度範囲よりも高温であって互いに相違するNb(Nbは、2以上の自然数)の高温側温度範囲のうちのいずれに属する状態となっているかを特定し、特定した結果に応じて前記流量調整部を制御して、前記第5の冷媒配管を通過する前記冷媒の流量を当該Nbの高温側温度範囲毎に予め規定された前記第2の量だけ減少させる処理を前記第2の処理として実行する請求項1記載の圧縮空気除湿装置。
  3. 前記流量調整部は、電子膨張弁で構成されている請求項1または2記載の圧縮空気除湿装置。
  4. 前記第5の冷媒配管をMa本(Maは、2以上の自然数)備え、
    前記流量調整部は、前記Ma本のうちのMb本(Mbは、Ma以下の自然数)の前記第5の冷媒配管にそれぞれ配設されて前記制御部の制御に従って前記冷媒の通過を許容または規制するMb個の制御弁を備えて構成され、
    前記制御部は、前記第1の処理および前記第2の処理において前記Mb個の制御弁を制御して前記冷媒の通過を許容させる前記第5の冷媒配管の本数を変更することで前記第1の冷媒配管内から前記少なくとも一方の冷媒配管内に流入させる当該冷媒の量を変更する請求項1または2記載の圧縮空気除湿装置。
  5. 前記制御部は、前記第1の処理において、前記蒸発器内に流入する前記冷媒の単位時間当りの温度低下量が予め規定された規定量Aを下回るとの条件A1が満たされているときよりも、当該蒸発器内に流入する当該冷媒の当該単位時間当りの温度低下量が当該規定量A以上となる条件A2が満たされたときの方が、前記第5の冷媒配管を通過する前記冷媒の当該単位時間当りの増加量が多くなるように前記流量調整部を制御する請求項1から4のいずれかに記載の圧縮空気除湿装置。
  6. 前記制御部は、前記第2の処理において、前記蒸発器内に流入する前記冷媒の単位時間当りの温度上昇量が予め規定された規定量Bを下回るとの条件B1が満たされているときよりも、当該蒸発器内に流入する当該冷媒の当該単位時間当りの温度上昇量が当該規定量B以上となる条件B2が満たされたときの方が、前記第5の冷媒配管を通過する前記冷媒の当該単位時間当りの減少量が多くなるように前記流量調整部を制御する請求項1から5のいずれかに記載の圧縮空気除湿装置。
  7. 前記蒸発器内に流入する前記冷媒の温度を測定する第1の温度センサ、および当該蒸発器から排出される冷媒の温度を測定する第2の温度センサのいずれか一方を備え、
    前記制御部は、前記一方の温度センサによって測定された前記冷媒の温度に基づき、前記蒸発器内に流入する冷媒の温度を特定する請求項1から6のいずれかに記載の圧縮空気除湿装置。
  8. 前記蒸発器内に流入する前記冷媒の圧力を測定する第1の圧力センサ、および当該蒸発器から排出される冷媒の圧力を測定する第2の圧力センサのいずれか一方を備え、
    前記制御部は、前記一方の圧力センサによって測定された前記冷媒の圧力に基づき、前記蒸発器内に流入する冷媒の温度を特定する請求項1から6のいずれかに記載の圧縮空気除湿装置。
JP2012140534A 2012-06-22 2012-06-22 圧縮空気除湿装置 Pending JP2014004510A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012140534A JP2014004510A (ja) 2012-06-22 2012-06-22 圧縮空気除湿装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140534A JP2014004510A (ja) 2012-06-22 2012-06-22 圧縮空気除湿装置

Publications (1)

Publication Number Publication Date
JP2014004510A true JP2014004510A (ja) 2014-01-16

Family

ID=50102756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140534A Pending JP2014004510A (ja) 2012-06-22 2012-06-22 圧縮空気除湿装置

Country Status (1)

Country Link
JP (1) JP2014004510A (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284152A (ja) * 1986-05-31 1987-12-10 株式会社東芝 冷凍装置
JPH0735421A (ja) * 1993-07-22 1995-02-07 Sanyo Electric Co Ltd 蒸気圧縮式冷凍機
JP2003028515A (ja) * 2001-07-16 2003-01-29 Smc Corp 恒温液循環装置
JP2006346607A (ja) * 2005-06-17 2006-12-28 Orion Mach Co Ltd 圧縮気体除湿装置における熱交換器の凍結防止方法及び圧縮気体除湿装置
JP2008070060A (ja) * 2006-09-14 2008-03-27 Mayekawa Mfg Co Ltd デシカント空調機の処理空気温度制御方法及び装置
JP2008290017A (ja) * 2007-05-25 2008-12-04 Orion Mach Co Ltd 圧縮空気除湿装置
JP2010261623A (ja) * 2009-04-30 2010-11-18 Daikin Ind Ltd 空気調和装置
JP2012245496A (ja) * 2011-05-31 2012-12-13 Orion Machinery Co Ltd 圧縮空気除湿装置
JP2013113462A (ja) * 2011-11-28 2013-06-10 Orion Machinery Co Ltd 冷却装置および圧縮空気除湿装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284152A (ja) * 1986-05-31 1987-12-10 株式会社東芝 冷凍装置
JPH0735421A (ja) * 1993-07-22 1995-02-07 Sanyo Electric Co Ltd 蒸気圧縮式冷凍機
JP2003028515A (ja) * 2001-07-16 2003-01-29 Smc Corp 恒温液循環装置
JP2006346607A (ja) * 2005-06-17 2006-12-28 Orion Mach Co Ltd 圧縮気体除湿装置における熱交換器の凍結防止方法及び圧縮気体除湿装置
JP2008070060A (ja) * 2006-09-14 2008-03-27 Mayekawa Mfg Co Ltd デシカント空調機の処理空気温度制御方法及び装置
JP2008290017A (ja) * 2007-05-25 2008-12-04 Orion Mach Co Ltd 圧縮空気除湿装置
JP2010261623A (ja) * 2009-04-30 2010-11-18 Daikin Ind Ltd 空気調和装置
JP2012245496A (ja) * 2011-05-31 2012-12-13 Orion Machinery Co Ltd 圧縮空気除湿装置
JP2013113462A (ja) * 2011-11-28 2013-06-10 Orion Machinery Co Ltd 冷却装置および圧縮空気除湿装置

Similar Documents

Publication Publication Date Title
JP5634682B2 (ja) 空気調和機
CN101688703B (zh) 具有自由冷却泵保护程序的空调系统和方法
US9909784B2 (en) Outdoor unit of air conditioner and air conditioner
JP4797727B2 (ja) 冷凍装置
RU2743727C1 (ru) Устройство кондиционирования воздуха
JP6545252B2 (ja) 冷凍サイクル装置
EP3348932B1 (en) Refrigeration cycle apparatus
JP5514787B2 (ja) 環境試験装置
JP2007315702A (ja) 冷凍装置
JP2016061456A (ja) 空気調和装置
JP2014115011A (ja) 空気調和装置
WO2021063088A1 (zh) 变频器的冷却系统、方法及空调设备
RU2506986C1 (ru) Устройство и способ для осушки газа
JP5404761B2 (ja) 冷凍装置
JP2014029247A (ja) コンテナ用冷凍装置
JP2011174639A (ja) 空気調和機
JP2016166710A (ja) 空気調和システム
JP2014085078A (ja) 空気調和装置
JP2017009269A (ja) 空調システム
JP5992076B1 (ja) 冷凍サイクル装置、その冷凍サイクル装置を備えた冷蔵庫、冷凍サイクル装置の除霜方法
JP2014077560A (ja) 空気調和装置
JP2014004510A (ja) 圧縮空気除湿装置
KR101873419B1 (ko) 공기조화기의 냉동사이클 장치
GB2542971A (en) Air conditioning apparatus
JP2013113462A (ja) 冷却装置および圧縮空気除湿装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818