JP2013540520A - Attenuated RF power for automated capsulotomy - Google Patents

Attenuated RF power for automated capsulotomy Download PDF

Info

Publication number
JP2013540520A
JP2013540520A JP2013531719A JP2013531719A JP2013540520A JP 2013540520 A JP2013540520 A JP 2013540520A JP 2013531719 A JP2013531719 A JP 2013531719A JP 2013531719 A JP2013531719 A JP 2013531719A JP 2013540520 A JP2013540520 A JP 2013540520A
Authority
JP
Japan
Prior art keywords
pulse
capsulotomy
series
pulses
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013531719A
Other languages
Japanese (ja)
Other versions
JP5876494B2 (en
Inventor
コアンヤオ チャ
サレヒ アーマッド
アール.サスマン グレン
ヤドロウスキ アン
Original Assignee
アルコン リサーチ, リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルコン リサーチ, リミテッド filed Critical アルコン リサーチ, リミテッド
Publication of JP2013540520A publication Critical patent/JP2013540520A/en
Application granted granted Critical
Publication of JP5876494B2 publication Critical patent/JP5876494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00754Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments for cutting or perforating the anterior lens capsule, e.g. capsulotomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00726Duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1407Loop

Abstract

嚢切開装置は、切開部を通して目に挿入するために構成された嚢切開プローブと、少なくとも1つの無線周波数(RF)パルスを嚢切開プローブに送るように構成されたパルス発生器と、を有する。送られたRFパルスは、送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する。ある実施形態において、パルス発生器は、一連の2回目以降のパルスのそれぞれのエネルギが直前のパルスに対して略減衰されるような一連の2以上のRFパルスを目に送るように構成される。  The capsulotomy device has a capsulotomy probe configured for insertion into the eye through the incision and a pulse generator configured to send at least one radio frequency (RF) pulse to the capsulotomy probe. The transmitted RF pulse has a predetermined attenuation shape such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse. In certain embodiments, the pulse generator is configured to deliver a series of two or more RF pulses to the eye such that the energy of each of the series of subsequent pulses is substantially attenuated relative to the immediately preceding pulse. .

Description

本出願は、2010年9月29日に出願された米国特許出願公開第12/893149号明細書の優先権の効果を主張する。本発明は、概して白内障の手術の分野に関し、より詳細には、嚢切開を行うための方法及び装置に関する。   This application claims the effect of priority of US patent application Ser. No. 12 / 893,149, filed Sep. 29, 2010. The present invention relates generally to the field of cataract surgery and, more particularly, to a method and apparatus for performing a capsulotomy.

受け入れられている白内障のための治療は、水晶体の外科的除去及び水晶体機能の人工眼内レンズによる交換である。米国において、白内障水晶体の大多数は、水晶体超音波乳化吸引と呼ばれる外科技術によって取り除かれる。白内障水晶体を取り除く前に、前嚢が開口され又は切開されなければならない。水晶体超音波乳化吸引の間、水晶体核が乳化される一方で、前方の嚢切開の切開縁において大きな張力がかかる。従って、タグ(tags)のない連続的な切除又は裂傷(切開)は、安全且つ効果的な水晶体超音波乳化吸引治療において重要なステップである。   The accepted treatment for cataracts is surgical removal of the lens and replacement of the lens function with an artificial intraocular lens. In the United States, the majority of cataract lenses are removed by a surgical technique called phacoemulsification. Before removing the cataractous lens, the anterior capsule must be opened or incised. During phacoemulsification and suction, the lens nucleus is emulsified while high tension is applied at the incision edge of the anterior capsulotomy. Therefore, continuous excision or laceration (incision) without tags is an important step in safe and effective phacoemulsification therapy.

嚢が多数の小さな嚢裂傷で開口された場合、残る小さなタグは、後嚢へと広がる放射状の嚢裂傷を生じさせ得る。こうした放射状の裂傷は、手術後に水晶体が、更に白内障除去され且つ水晶体嚢内の眼内レンズを安全に交換されるのを不安定とするため、合併症を引き起こす。次いで後嚢が更に裂孔されると、硝子体は、目の前房に侵入し得る。この場合、硝子体は、特別な器具を用いた付加的な治療によって取り除かれなければならない。硝子体の消失は、続発的網膜剥離及び/又は目の中の感染症の増加する確率とも関連する。重要なことに、これらの合併症は、失明に至る可能性がある。   If the sac is opened with many small sac lacerations, the remaining small tags can cause radial sac lacerations that spread into the posterior sac. These radial lacerations cause complications because after surgery, the lens becomes unstable after further removal of the cataract and safe replacement of the intraocular lens in the lens capsule. The vitreous can then enter the anterior chamber of the eye when the posterior capsule is further punctured. In this case, the vitreous must be removed by additional treatment with special instruments. Vitreous loss is also associated with an increased probability of secondary retinal detachment and / or infection in the eye. Importantly, these complications can lead to blindness.

水晶体超音波乳化吸引に用いられる公知の設備は、取り付けられた切開刃を備えた超音波的に駆動されるハンドピースを有する。これらのハンドピースのいくつかにおいて、作用部は、中央に配置され、中空共鳴バー又はホーンは、直接圧電結晶の組に取り付けられる。圧電結晶は、水晶体超音波乳化吸引の間、ホーン及び取り付けられた切開刃の両方を駆動するための超音波振動を供給する。   A known equipment used for phacoemulsification suction has an ultrasonically driven handpiece with an attached cutting blade. In some of these handpieces, the working part is centrally located and the hollow resonant bar or horn is attached directly to the set of piezoelectric crystals. Piezoelectric crystals provide ultrasonic vibrations to drive both the horn and the attached cutting blade during phacoemulsification.

嚢切開治療のために用いられる公知の装置及び方法の多くは、連続した曲線の嚢切開を生成する外科医の役割において多くの技術を必要とする。これは、装置の切開刃の経路を制御することの極度の困難性による。例えば、典型的な治療は、切開刀、例えば上述された切開刃による嚢切開から開始される。次いでこの切開部は、嚢内の切開部の先端を、切開形状というよりはむしろ楔のような切開刀を用いて押し込むことにより円形又は楕円形にされる。それとは別に、最初の嚢切開部は、微細口径フォーセップによって先端をつかまえることにより円形に引き裂かれ、切開部を広げてもよい。これらの方法のいずれかは、非常に困難な操作を伴い、引き裂き動作は、経験豊富な者であっても、水晶体の後方への望ましくない嚢の裂傷を生じさせることがある。   Many of the known devices and methods used for cystotomy treatment require a number of techniques in the role of the surgeon to produce a continuous curvilinear capsulotomy. This is due to the extreme difficulty of controlling the path of the cutting blade of the device. For example, a typical treatment begins with a capsulotomy with a cutting knife, such as the cutting blade described above. The incision is then made circular or oval by pushing the tip of the incision in the sac with a cutting knife such as a wedge rather than an incision shape. Alternatively, the initial sac incision may be torn in a circular shape by grasping the tip with a fine caliber forceset and widening the incision. Either of these methods is a very difficult operation, and the tearing operation can cause undesirable capsular tears to the back of the lens, even for experienced people.

更に、タグなく滑らかな嚢切開が最終的に生成されたとしても、嚢切開のサイズ、及び/又は位置は、問題を有し得る。例えば、小さすぎる嚢切開は、水晶体核及び水晶体皮質の安全な除去を阻害し、眼内レンズの、水晶体嚢への適切な挿入を妨げかねない。小さな又は誤った嚢切開操作を完了させるために必要な付加的な応力は、目を毛様小帯破損及び嚢破損の危険にさらす。これらの合併症のいずれかは、手術の長さ及び複雑さを増しかねず、硝子体を消失するかもしれない。   Furthermore, even if a smooth capsulotomy is finally created without a tag, the size and / or location of the capsulotomy can be problematic. For example, a capsulotomy that is too small can interfere with the safe removal of the lens nucleus and lens cortex and prevent proper insertion of the intraocular lens into the lens capsule. The additional stress required to complete a small or erroneous capsulotomy operation puts the eyes at risk of ciliary ligament breakage and sac breakage. Any of these complications can increase the length and complexity of the surgery and may cause the vitreous to disappear.

連続的で適切な配置且つ円状の切開部は、(1)前嚢内の放射状損傷及びタグの顕著な低減、(2)レンズプロテーゼの適切な中央配置のために必要な嚢の完全性、(3)安全且つ効果的なハイドロディセクション、(4)視覚の悪い嚢を有する患者及び/又は小さな瞳孔開口部を有する患者における嚢治療の安全な利用、といった結果となるため非常に好適となる。更に、嚢切開は、後嚢混濁化とも呼ばれる二次的白内障の危険性を低減するために埋め込まれる眼内レンズの径に対して適切に寸法化されなければならず、提案された調節性眼内レンズ設計の使用のためにも適切に寸法化されなければならない。従って、前房嚢切開を行うための改良された装置の継続的必要性がある。   Continuous, properly placed and circular incisions are (1) significant reduction of radial damage and tags in the anterior capsule, (2) sac integrity required for proper central placement of the lens prosthesis, ( This is very suitable because it results in 3) safe and effective hydrodissection, (4) safe use of sac treatment in patients with poor vision sac and / or patients with small pupil openings. In addition, the capsulotomy must be dimensioned appropriately to the diameter of the implanted intraocular lens to reduce the risk of secondary cataracts, also called posterior capsule opacification, and the proposed accommodative eye It must also be properly dimensioned for use with the inner lens design. Accordingly, there is a continuing need for improved devices for performing an anterior sac incision.

嚢切開プロセスを自動化するための様々な方法及び装置が提案されてきた。1つの方法は、2009年11月16日に出願された「パルス化された電界を用いた切開装置」という名称の米国特許出願公開第12/618805号明細書(以下’805出願)において説明された。全体の内容がここで参照によって組み込まれる’805出願は、単極電極を介して前水晶体嚢に与えられ高周波電流を用いて嚢切開を行うための方法及び装置を説明している。装置は、目の前嚢に対して配置され、リング電極を用いて生成される、切開動作を行うためのパルス化された電界と、目の内側又は外側の様々な位置に配置された接地電極と、を用いる。このシステムのある実施形態において、リング電極は、細い、導電性ワイヤを具備する。非常に小さな断面(例えば約0.25ミリメートルより小さい径)は、ワイヤ近傍の高強度電界を実現し、これらの電界は、ワイヤから離れると強度を更に低減する。切開電極より非常に大きな断面を有する接地電極がこのシステムにおいて用いられているため、電界は、接地電極において減衰されたままとなり、可能な切開エネルギの高い比率は、切開電極のワイヤ近傍の細い領域に残る。   Various methods and devices have been proposed for automating the capsulotomy process. One method is described in US patent application Ser. No. 12 / 618,805 (hereinafter the '805 application) entitled “Dissection Device Using Pulsed Electric Field” filed on Nov. 16, 2009. It was. The '805 application, the entire contents of which are hereby incorporated by reference, describes a method and apparatus for making a capsulotomy using a high frequency current applied to the anterior lens capsule via a monopolar electrode. The device is placed against the anterior capsule of the eye and is generated using a ring electrode, a pulsed electric field for performing an incision operation, and a ground electrode placed at various positions inside or outside the eye And are used. In some embodiments of this system, the ring electrode comprises a thin, conductive wire. Very small cross sections (e.g., less than about 0.25 millimeters in diameter) provide high strength electric fields in the vicinity of the wire, which further reduce the strength away from the wire. Since a ground electrode having a much larger cross-section than the cutting electrode is used in this system, the electric field remains attenuated at the ground electrode, and a high proportion of possible cutting energy is a narrow area near the wire of the cutting electrode. Remain in.

別のシステムは、米国特許出願公開第2006/0100617号明細書に示されており、その全体の内容は、ここで参照によって組み込まれる。この公開は、エラストマー、アクリル又は熱可塑性材料で作られた円形の可撓性リングを具備する自動嚢切開装置を示す。この可撓性リングの様々な実施形態のそれぞれに組み込まれているのは、環状リング内の嚢の部分の容易な剥離のために弱められた境界を画成するべく局所的加熱を前嚢に生じさせるために、公知の技術によって励起された抵抗加熱要素又は一対の双極電極である。他の様々な装置が提案されており、その多くは、2000年5月23日に特許された米国特許第6066138号明細書、1984年11月13日に特許された米国特許4481948号明細書、及び、2006年10月19日に公開された国際公開第2006/109290号のような焼灼要素による。このパラグラフで示されたそれぞれの参照の全体の内容は、本発明のために背景及び事情を提供するために参照によってここで組み込まれる。   Another system is shown in US 2006/0100617, the entire contents of which are hereby incorporated by reference. This publication shows an automatic capsulotomy device with a circular flexible ring made of elastomer, acrylic or thermoplastic material. Incorporated in each of the various embodiments of this flexible ring is local heating on the anterior capsule to define a weakened boundary for easy detachment of the portion of the sac within the annular ring. To produce, a resistive heating element or a pair of bipolar electrodes excited by known techniques. Various other devices have been proposed, many of which are U.S. Pat. No. 6,066,138, patented May 23, 2000, U.S. Pat. No. 4,481,948, filed Nov. 13, 1984, And by cautery elements such as WO 2006/109290 published on October 19, 2006. The entire contents of each reference given in this paragraph are hereby incorporated by reference to provide background and context for the present invention.

嚢切開装置は、切開部を通して目に挿入するために構成された嚢切開プローブと、少なくとも1つの無線周波数(RF)パルスを嚢切開プローブに送るように構成されたパルス発生器と、を有する。RFパルスは、送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する。ある実施形態において、パルス発生器は、一連の2回目以降のパルスのそれぞれのエネルギが前のパルスのエネルギに対して略減衰されるような一連の2以上のRFパルスを目に送るように構成される。   The capsulotomy device has a capsulotomy probe configured for insertion into the eye through the incision and a pulse generator configured to send at least one radio frequency (RF) pulse to the capsulotomy probe. The RF pulse has a predetermined attenuation shape such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse. In certain embodiments, the pulse generator is configured to deliver a series of two or more RF pulses to the eye such that the energy of each of the series of subsequent pulses is substantially attenuated relative to the energy of the previous pulse. Is done.

ある実施形態において所定の減衰形状は、送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り少なくとも2分の1に減衰されるような減衰形状である。これらの実施形態及び他の実施形態において、所定の減衰形状は、目的とした領域を超えた水晶体嚢の過度の癒着又は過熱なく、目において送られたRFパルスが気泡核形成(bubble nucleation)を生じることを確実とするように設計されてもよい。いくつかの実施形態において、一連の2以上のRFパルスは、一連の2回目以降のパルスのそれぞれのエネルギが前のパルスのエネルギに対して略減衰されるように目に送られる。これらの実施形態のいくつかにおいて、一連の2回目以降のパルスのそれぞれの振幅は、直前のパルスの振幅に対して略減衰される。その他、2位回目以降のパルスのそれぞれの振幅は、一連の1回目のパルスの振幅と略等しいが、一連の2回目以降のパルスのそれぞれの長さは、直前のパルスの長さより略短い。   In some embodiments, the predetermined attenuation shape is an attenuation shape such that the power level of the transmitted RF pulse is attenuated by at least one-half over the duration of the RF pulse. In these and other embodiments, the predetermined attenuation shape is such that the RF pulse delivered in the eye causes bubble nucleation without excessive adhesion or overheating of the capsular bag beyond the intended area. It may be designed to ensure that it occurs. In some embodiments, a series of two or more RF pulses is sent to the eye such that the energy of each of the series of second and subsequent pulses is substantially attenuated relative to the energy of the previous pulse. In some of these embodiments, the amplitude of each of the series of subsequent pulses is substantially attenuated relative to the amplitude of the immediately preceding pulse. In addition, the amplitude of each pulse after the second round is substantially equal to the amplitude of the series of first pulses, but the length of each of the series of pulses after the second round is substantially shorter than the length of the immediately preceding pulse.

パルスの継続時間に亘りパルスパワーが減衰されるパルス内減衰形状、又は、一連のパルスのそれぞれのエネルギが前のパルスのエネルギに対して減衰されるパルス間減衰形状の使用を含む方法が開示された。いくつの実施形態において、両方の技術が使用される。従って、嚢切開を行うための1つの例示的方法は、目の前房への嚢切開プローブの挿入、及び、目の前水晶体嚢と接触した嚢切開プローブの切開部の配置によって開始する。次いで少なくとも1つの無線周波数(RF)パルスは、所定の減衰形状によって嚢切開プローブを介して目に送られる。この形状は、送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り略減衰されるような形状である。   A method is disclosed that includes the use of an intra-pulse attenuation shape where the pulse power is attenuated over the duration of the pulse, or an inter-pulse attenuation shape where the energy of each of a series of pulses is attenuated relative to the energy of the previous pulse. It was. In some embodiments, both techniques are used. Thus, one exemplary method for making a capsulotomy begins with the insertion of a capsulotomy probe into the anterior chamber of the eye and the placement of the capsulotomy probe incision in contact with the anterior lens capsule of the eye. At least one radio frequency (RF) pulse is then sent to the eye through the capsulotomy probe with a predetermined attenuation shape. This shape is such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse.

別の例示的方法も、目の前房への嚢切開プローブの挿入、及び、目の前水晶体嚢と接触した嚢切開プローブの切開部の配置によって開始する。次いで一連の2以上の無線周波数(RF)パルスは、一連の2回目以降のパルスのそれぞれのエネルギが前のパルスのエネルギに対して略減衰されるように、嚢切開プローブを介して目に送られる。いくつかの実施形態において、このパルス間減衰形状の使用は、パルス内減衰形状の使用と組合せられてもよい。   Another exemplary method begins with the insertion of a capsulotomy probe into the anterior chamber of the eye and the placement of the capsulotomy probe incision in contact with the anterior lens capsule of the eye. A series of two or more radio frequency (RF) pulses are then sent to the eye through the capsulotomy probe such that the energy of each of the series of second and subsequent pulses is substantially attenuated relative to the energy of the previous pulse. It is done. In some embodiments, the use of this interpulse attenuation shape may be combined with the use of an intrapulse attenuation shape.

いくつかの実施形態において、ここで開示された発明に係る技術を行うための嚢切開装置は、切開部を介して目に挿入するために構成された嚢切開プローブと、その嚢切開プローブに電気的に接続されたパルス発生器と、を有する。パルス発生器は、送られたRFパルスが、所定の減衰形状であって送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有するように、少なくとも1つの無線周波数(RF)パルスを嚢切開プローブに送るように構成される。ある実施形態において、パルス発生器は、一連の2回目以降のパルスのそれぞれのエネルギが前のパルスのエネルギに対して略減衰されるような一連の2以上のRFパルスを目に送るようにも構成される。その他の実施形態において、両方の技術が使用される。   In some embodiments, a capsulotomy device for performing the techniques disclosed herein includes a capsulotomy probe configured for insertion into the eye through an incision and an electrical Connected pulse generators. The pulse generator has a predetermined attenuation shape such that the transmitted RF pulse has a predetermined attenuation shape and the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse. It is configured to send at least one radio frequency (RF) pulse to the capsulotomy probe. In certain embodiments, the pulse generator may also send a series of two or more RF pulses to the eye such that the energy of each of the second and subsequent pulses in the series is substantially attenuated relative to the energy of the previous pulse. Composed. In other embodiments, both techniques are used.

当然のことながら、当業者は、本発明が上述した特徴、利点、事情又は例示に限定されるものではないことを理解し、以下の詳細な説明を読み且つ添付の図面を参照することにより、付加的特徴及び利点を理解する。   Of course, those skilled in the art will understand that the present invention is not limited to the above features, advantages, circumstances or examples, and upon reading the following detailed description and referring to the accompanying drawings, Understand additional features and benefits.

パルス発生器及び切開電極装置を含む本発明に係るいくつかの実施例による嚢切開装置を示す。Fig. 3 shows a capsulotomy device according to some embodiments of the present invention including a pulse generator and a cutting electrode device. 嚢切開プローブの詳細を示す。Details of the capsulotomy probe are shown. 図2のプローブの環状部の断面を示す。3 shows a cross section of the annular portion of the probe of FIG. 嚢切開を行うための方法を示すプロセスフロー図である。FIG. 5 is a process flow diagram illustrating a method for performing a capsulotomy. パルス発生器のブロック図である。It is a block diagram of a pulse generator. 所定の減衰形状を有する無線周波数パルスを示す。Fig. 3 shows a radio frequency pulse having a predetermined attenuation shape. 漸次的に減衰された一連の無線周波数パルスを示す。Fig. 4 shows a series of radio frequency pulses that are gradually attenuated. 一連の減衰された無線周波数パルスを示す。A series of attenuated radio frequency pulses is shown.

上述したように、嚢切開プロセスを自動化するための様々な方法及び装置が提案されてきた。例えば、上述の参照によって組み込まれた’805出願は、単極電極を通して前水晶体嚢に適用される高周波電流を用いて嚢切開を行うための方法及び装置を示す。抵抗加熱要素又は一対の双極電極による他の嚢切開プローブ構成が可能であり、前嚢に局所的加熱を生じさせるための公知の技術によって励起される。これらのシステムの多くに公知なのは、調整されたパルスエネルギを手術部位に伝えるための高エネルギパルス発生器の使用である。   As mentioned above, various methods and devices have been proposed for automating the capsulotomy process. For example, the '805 application, incorporated by reference above, shows a method and apparatus for performing a capsulotomy using a high frequency current applied to the anterior lens capsule through a monopolar electrode. Other capsulotomy probe configurations with resistive heating elements or a pair of bipolar electrodes are possible and are excited by known techniques for producing local heating in the anterior capsule. Known to many of these systems is the use of high energy pulse generators to deliver conditioned pulse energy to the surgical site.

当業者はここで開示された様々な発明に係る技術及び装置のより広い適用性を理解するが、それらの技術は、前水晶体嚢に対して配置された加熱要素に適用されるパルスを用いて嚢切開を行うための、既に開示された方法を参照にしつつ説明される。こうした方法の1つは、「可撓性加熱要素を備えた嚢切開装置」という発明の名称の米国特許出願公開第2010/0094278号明細書に示されており、その全体の内容は参照によりここに取り込まれる。この手段は、環状に形成され、電気的抵抗を有する超弾性ワイヤから形成された抵抗加熱要素を使用する。加熱要素は、短パルス又は一連のパルスの電流で励起される。環形状要素の加熱は、水晶体嚢を焼き、効果的に滑らかな連続切開部を嚢に設ける。   Those skilled in the art will appreciate the broader applicability of the techniques and apparatus according to the various inventions disclosed herein, which techniques use pulses applied to a heating element placed against the anterior lens capsule. It will be described with reference to the previously disclosed method for making a capsulotomy. One such method is shown in US 2010/0094278, entitled “Sactomy Device With Flexible Heating Element”, the entire contents of which are hereby incorporated by reference. Is taken in. This means uses a resistance heating element formed from a superelastic wire which is annularly formed and has electrical resistance. The heating element is excited with a short pulse or a series of pulses of current. Heating the ring-shaped element burns the lens capsule and effectively provides a smooth incision in the capsule.

一方、”805出願で示されたシステムは、切開手術を行うため、目の前嚢に対して配置されたリング電極と、目の内側又は外側の他の箇所に配置された接地電極と、を用いて生成されたパルス状の電解を用いる。非常に細いワイヤは切開効率を上げ遠電界効果を低減するため、リング電極は、細い導電性ワイヤを具備する。非常に小さな断面(例えば約0.25ミリメートル未満の径)は、ワイヤ近傍で高強度電界を実現し、更にこれらの電界は、ワイヤ遠隔で強度を低減する。接地電極は、切開電極より大きな断面を有するため、接地電極において電界は減衰されたままとなる。従って、高い比率で切開可能なエネルギが、切開電極の周りの細い領域に付与される。   On the other hand, the system shown in the '805 application includes a ring electrode placed on the anterior capsule of the eye and a ground electrode placed on the inside or outside of the eye for performing an open operation. In order to increase the cutting efficiency and reduce the far field effect, the ring electrode is provided with a thin conductive wire. (Diameters less than 25 millimeters) provide high-intensity electric fields in the vicinity of the wires, and these electric fields further reduce the strength of the wires remotely. Thus, a high rate of dissecting energy is applied to the narrow area around the dissecting electrode.

図1は、本発明に係るいくつかの実施形態による例示的嚢切開装置の構成要素を示す。図示されたシステムは、切開電極120を通して目に適用するための高周波パルスを発生するパルス発生器110を含む。図2及び図3は、例示的切開電極装置120の詳細を示す。切開電極装置120は、可撓性リング122を有し、1つの、リング形のワイヤ電極128がそれに組み込まれる。可撓性シャフト124は、可撓性リング122をハンドル126に接続する。電気的リード線(図示せず)は、シャフト124内及び電極128をパルス発生器110に接続するためのハンドル126内を通る。より簡易な実施形態は、裸のワイヤ環状部のみを加熱要素として使用してもよい。   FIG. 1 illustrates components of an exemplary capsulotomy device according to some embodiments according to the present invention. The illustrated system includes a pulse generator 110 that generates a radio frequency pulse for application to the eye through the dissection electrode 120. 2 and 3 show details of an exemplary incision electrode device 120. The incision electrode device 120 has a flexible ring 122 into which a single ring-shaped wire electrode 128 is incorporated. A flexible shaft 124 connects the flexible ring 122 to the handle 126. Electrical leads (not shown) pass through shaft 124 and handle 126 for connecting electrode 128 to pulse generator 110. Simpler embodiments may use only a bare wire annulus as a heating element.

装置の可撓性リング部は、例えば約5ミリメートルの径を有する嚢切開の所望するサイズの寸法とされる。当業者は、開口部内の水晶体嚢の部分が動かされたときの裂傷を回避するために、図2に示されたような環状開口部が好適であることを理解する。リング形のワイヤ電極128は、電極の励起によって直接加熱される水晶体嚢の部分の境界を画成する。   The flexible ring portion of the device is dimensioned to the desired size of a capsulotomy having a diameter of, for example, about 5 millimeters. Those skilled in the art will appreciate that an annular opening as shown in FIG. 2 is preferred to avoid tearing when the portion of the capsular bag within the opening is moved. The ring-shaped wire electrode 128 delimits the portion of the capsular bag that is directly heated by the excitation of the electrode.

切開強度及び伸縮性を改善するための過熱によって引き起こされる切開縁部への二次的損傷を低減するため、無線周波数(RF)電圧の減衰されたパルスとパルスシーケンスが上述した嚢切開プローブを励起するために使用されてもよい。既に当業者に公知なように、自動化された嚢切開装置は、白内障を摘出する間に角膜内皮を保護し、前房を維持するために手術部位に案内された粘弾性材料と共に用いられることが多い。嚢切開プローブが励起されたとき、結果として生じる熱は、粘弾性材料内に突沸を生じさせる。沸騰は、組織水でも生じ得る。励起されたプローブ周り近傍の粘弾性材料における熱的プロセスは、パルスの開始における気泡核形成、次いで気泡癒着、最後に気泡崩壊、といった3つのステップへと分けられ得る。   In order to reduce secondary damage to the incision edge caused by overheating to improve incision strength and stretchability, attenuated pulses of radio frequency (RF) voltage and pulse sequence excite the capsulotomy probe described above May be used to As already known to those skilled in the art, an automated capsulotomy device can be used with viscoelastic material guided to the surgical site to protect the corneal endothelium and maintain the anterior chamber while removing the cataract. Many. When the capsulotomy probe is excited, the resulting heat causes bumping in the viscoelastic material. Boiling can also occur with tissue water. The thermal process in the viscoelastic material near the excited probe can be divided into three steps: bubble nucleation at the beginning of the pulse, then bubble adhesion, and finally bubble collapse.

粘弾性材料における相変化は、核形成ステージにおいて生じ、プロセスを開始するために高パワーが必要とされる。しかしながら、励起されたプローブ要素が泡によって液体から隔離されると、与えられた上昇温度を維持するのに必要なエネルギは、顕著に低下する。これは、周囲の粘弾性液体の熱伝導性と比較し、低い蒸気の熱伝導性によって生じた、顕著に低下された熱の消失の結果による。   Phase changes in viscoelastic materials occur at the nucleation stage, and high power is required to initiate the process. However, when the excited probe element is isolated from the liquid by bubbles, the energy required to maintain a given elevated temperature is significantly reduced. This is due to the significantly reduced heat dissipation caused by the low vapor thermal conductivity compared to the thermal conductivity of the surrounding viscoelastic liquid.

次いで、本発明に係る様々な実施形態において、嚢切開プローブに送られた無線周波数パルスは、それぞれのパルスの継続期間に亘り減衰される。このパルス内(intra-pulse)減衰は、パワー出力を、過熱によって引き起こされる切開縁部への二次的損傷を低減するための高速に変化する必要なパワーに調整する。RFパルスの減衰形状の例示は、図4に示されている。パルスの最初の高電圧は、粘弾性材料及び組織水の沸騰をすぐに生じさせるために使用され得る。パルス振幅は、所定の比率で又は実験的に決定された形状に従って減衰され、それによって、嚢切開プローブ又はその近傍の温度は、切開縁部へのより小さな熱損傷によって水晶体嚢に貫通切開部を生成するのに適切なレベルで維持されることができる。   Then, in various embodiments according to the present invention, radio frequency pulses sent to the capsulotomy probe are attenuated over the duration of each pulse. This intra-pulse attenuation adjusts the power output to the rapidly changing required power to reduce secondary damage to the incision edge caused by overheating. An example of the attenuation shape of the RF pulse is shown in FIG. The initial high voltage of the pulse can be used to quickly cause boiling of the viscoelastic material and tissue water. The pulse amplitude is attenuated at a predetermined rate or according to an experimentally determined shape, so that the temperature at or near the capsulotomy probe causes the penetrating incision to the capsular bag with less thermal damage to the incision edge. It can be maintained at an appropriate level to produce.

好適な減衰比率又は減衰形状は、与えられたRFエネルギの特性、嚢切開プローブの正確な構成、又は、プローブ等を含む様々なファクターによる。しかしながら、当業者は、所定の物理構成に適した形状が、実験的に決定され得ることを理解する。例えば、様々なパルス減衰形状によって生じた核生成プロセスは、励起されたプローブ周りの大きな泡の癒着(coalescence)を最小化する減衰形状を識別するために観察され得る。同様に、切開自体は、嚢の拡張性の損傷のような過度の損傷がなく、効果的に水晶体嚢を切開するそれらの形状を決定するため直接観察され得る。   The preferred attenuation ratio or shape depends on a variety of factors including the nature of the given RF energy, the exact configuration of the capsulotomy probe, or the probe. However, those skilled in the art will appreciate that a shape suitable for a given physical configuration can be determined experimentally. For example, the nucleation process caused by various pulse decay shapes can be observed to identify decay shapes that minimize large bubble coalescence around the excited probe. Similarly, the incisions themselves are free of undue damage, such as capsular expandable damage, and can be observed directly to determine their shape of effectively incising the lens capsule.

図6は、上述した原理を利用する嚢切開を行うための方法を示すプロセスフロー図である。プロセスは、ブロック610で示されたような嚢切開プローブの、前房への挿入、及び、ブロック620で示されたような目の前水晶体嚢と接触したプローブの切開部への配置によって開始する。使用され得る多種多様の任意の嚢切開プローブ構成は、プローブがパルス生成されたRFエネルギで励起され得るように設けられたにすぎない。   FIG. 6 is a process flow diagram illustrating a method for performing a capsulotomy utilizing the principles described above. The process begins with the insertion of a capsulotomy probe as shown at block 610 into the anterior chamber and placement of the probe into the incision in contact with the anterior lens capsule as shown at block 620. . The wide variety of optional capsulotomy probe configurations that can be used is merely provided so that the probe can be excited with pulsed RF energy.

次いでブロック630に示されたように、少なくとも1つのRFパルスが、嚢切開プローブを介して目に送られる。送られるRFパルスは、送られるRFパルスのパワーレベルが、RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する。「略減衰された」は、単に、パルスの経路に亘るパワーの減衰が、系統的且つ意図的に行われたことを意味する。当業者は、物理的負荷に対してパルス生成されたRFエネルギの発生及び送信が本質的に不正確であり、送信パワーの不確かさ及びパルス比率のばらつきが避けられないことを理解する。しかしながら、本発明に係るパルス内減衰技術を用いるシステムにおいて、与えられるパルスに亘る減衰の度合いは、これらの通常の不確かさ及びばらつきより大きい。   Then, as indicated at block 630, at least one RF pulse is delivered to the eye via the capsulotomy probe. The transmitted RF pulse has a predetermined attenuation shape such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse. “Substantially attenuated” simply means that power attenuation along the path of the pulse has been systematically and intentionally performed. One skilled in the art understands that the generation and transmission of pulsed RF energy for a physical load is inherently inaccurate, and transmission power uncertainty and pulse rate variations are inevitable. However, in systems using the intrapulse attenuation technique according to the present invention, the degree of attenuation over a given pulse is greater than these normal uncertainties and variations.

ある場合において、所定の減衰形状は、送られたRFパルスのパワーレベルがRFパルスの継続時間に亘り、少なくとも3分の1、例えば3dBまで減衰されてもよい。その他の場合において、減衰の度合いは、例えばより実質的な10dB、20dB又は30dBであってもよい。上述したように、所定の外科手術の状況に適用された特定の減衰形状は、予め実験的に決定されてもよく、送られたRFパルスの開始部は、大きな泡の癒着を避けるため且つ水晶体嚢の過熱を避けるために切開部(trailing portion)が十分に減衰されるように目において気泡核形成を生じるように設計されてもよい。   In some cases, the predetermined attenuation shape may attenuate the power level of the transmitted RF pulse to at least one third, eg, 3 dB, over the duration of the RF pulse. In other cases, the degree of attenuation may be, for example, a more substantial 10 dB, 20 dB, or 30 dB. As mentioned above, the specific attenuation shape applied to a given surgical situation may be pre-determined experimentally, the start of the transmitted RF pulse is used to avoid large bubble adhesions and the lens It may be designed to produce bubble nucleation in the eye so that the trailing portion is sufficiently damped to avoid overheating of the sac.

手術部位に送られる切開エネルギのより柔軟な制御を提供し、更に組織の熱変性によって引き起こされる二次的損傷を低減するため、RF電圧の複数のパルスが使用され得る。これらのパルスの継続時間及びそれらの間のタイミングは、熱緩和時間のコンセプトに基づいて設計されることができ、直接過熱された組織領域から熱が伝わるのに必要な時間を見積もるためによく用いられるパラメータである(例えば、B.Choi及びA.J. Welchらによる「組織のレーザー照射時における熱緩和の解析」、Las. Surg. Med. 29, 351-359 (2001)を参照のこと)。組織の特徴的熱緩和時間は、高局所化された領域へと密閉された嚢切開の熱効果を維持するのに好適であるため、加熱された粘弾性及び組織が冷却される一連のパルス間の時間と同様、与えられたRFパルスの最大長さを決定するのに有用な指針となる。   Multiple pulses of RF voltage can be used to provide more flexible control of the incision energy delivered to the surgical site and to reduce secondary damage caused by thermal degeneration of the tissue. The duration of these pulses and the timing between them can be designed based on the concept of thermal relaxation time and is often used to estimate the time required for heat to transfer directly from a superheated tissue region. (See, for example, B. Choi and AJ Welch et al., “Analysis of thermal relaxation during laser irradiation of tissue”, Las. Surg. Med. 29, 351-359 (2001)). The characteristic thermal relaxation time of the tissue is suitable to maintain the thermal effect of a sealed capsulotomy to a highly localized area, so that the heated viscoelasticity and the time between a series of pulses during which the tissue is cooled Is a useful guide for determining the maximum length of a given RF pulse.

図4及び図6と関連して、上述したような個々のパルス内のRF電圧の減衰の代わりに或いは減衰に加え、「全体の」減衰形状は、熱の吸収によって引き起こされる熱損傷を低減するために図7で示されたようなパルスシーケンスに重ね合わせられ得る(図7は、パルスシーケンスのパワー形状である一方で、図4は、内部パルス減衰を備えたパルスの電圧形状を示す)。この全体減衰形状は、図4で示された「パルス内」減衰に対して「パルス間(inter-pulse)」減衰を定義するものとみなされてもよい。図7に示されたように、図示されたシーケンスにおけるそれぞれの2回目以降のパルスは、概してその前のパルスに対して減衰される。従って、それぞれのパルスのエネルギは、前のパルスと比較して減衰される。例示にすぎないが、一連のパルスのそれぞれの最初のパワーレベルは、その前のパワーレベルに対して20パーセント減衰されてもよく(約1dB)、一方で、パルス間のパワーレベルは、パルスのコースに亘り例えば2分の1又はそれよりも減衰される。図示された一連のパルスは、単調な減衰パルスのみ有するが、他のシーケンスは、パルスのいくつかのサブシーケンスを有してもよく、それぞれのサブシーケンスにおけるそれぞれの2回目以降のパルスは、その前のパルスに対して略減衰されるが、パワーレベルは、それぞれのサブシーケンスの開始においてより高いレベルに「リセット」されてもよい。   In conjunction with or in addition to the attenuation of the RF voltage within an individual pulse as described above in connection with FIGS. 4 and 6, the “overall” attenuation shape reduces thermal damage caused by heat absorption. Can be superimposed on a pulse sequence as shown in FIG. 7 (FIG. 7 shows the power shape of the pulse sequence, while FIG. 4 shows the voltage shape of the pulse with internal pulse attenuation). This overall attenuation shape may be considered to define an “inter-pulse” attenuation relative to the “in-pulse” attenuation shown in FIG. As shown in FIG. 7, each second and subsequent pulse in the illustrated sequence is generally attenuated relative to the previous pulse. Thus, the energy of each pulse is attenuated compared to the previous pulse. By way of example only, the initial power level of each of a series of pulses may be attenuated by 20 percent relative to the previous power level (approximately 1 dB), while the power level between pulses is Attenuated over the course, for example by a half or more. The series of pulses shown has only a monotonically decaying pulse, but other sequences may have several subsequences of pulses, each second and subsequent pulses in each subsequence being Although substantially attenuated relative to the previous pulse, the power level may be “reset” to a higher level at the beginning of each subsequence.

図8は、目に伝えられる一連のパルスのそれぞれによって運ばれるエネルギを減衰させるための別の方法を示す。図8に示された一連のパルスにおいて、一連のパルスのそれぞれの振幅は略等しいが、2回目以降のパルスのそれぞれの継続時間が直前のパルスに対して減らされる。減らされたパルスの継続時間に加え、パルス間の時間も変えられ、それによって、任意の特定の間隔で目に運ばれるパワーの実効値は、好適な形状により減衰される。図7と関連して説明された技術と同様、図8において示された技術は、前述したパルス内減衰形状と組合せられてもよく、それによって、一連のパルスのそれぞれの振幅は、パルスの継続時間に亘り減衰される。   FIG. 8 illustrates another method for attenuating the energy carried by each of a series of pulses delivered to the eye. In the series of pulses shown in FIG. 8, the amplitude of each of the series of pulses is substantially equal, but the duration of each of the second and subsequent pulses is reduced relative to the previous pulse. In addition to the reduced pulse duration, the time between pulses is also varied so that the effective value of power delivered to the eye at any particular interval is attenuated by a suitable shape. Similar to the technique described in connection with FIG. 7, the technique shown in FIG. 8 may be combined with the intra-pulse attenuation shape described above so that the amplitude of each of the series of pulses is a continuation of the pulse. Attenuated over time.

あるシステムにおいて、パルス間減衰のみ又はパルス内減衰のみが使用されてもよい一方で、その他において、両方の技術が使用されてもよい。RF電圧の大きさの局所的減衰及び全体的減衰に加えて、変更されたパルス長さ、デューテー周期等が、RFパワー出力を、更により正確に、熱的プロセスの様々な段階で必要なパワーに調整するように使用され得る。更に、上述されたパワー構成は、更に熱的損傷を低減するための切開機構としての組織水の突沸の機能を強めるように変形され得る。(水晶体嚢は水を含む。加熱速度が十分に速い場合、組織で水の突沸が生じ、これは、組織の閉じ込め(confinement)によって、局所化された高い圧力、例えば応力を組織に生じさせる。こうした局所化された応力は、組織解剖における機能を果たし得る。従って、切開機構は、熱的効果と機械的効果の組合せであり、組織への二次的損傷は、単純な熱的切開と比較して低減され得る。)   In some systems, only interpulse attenuation or only intrapulse attenuation may be used, while in others, both techniques may be used. In addition to local and global attenuation of the magnitude of the RF voltage, the modified pulse length, duty cycle, etc., make the RF power output even more accurate, the power required at various stages of the thermal process. Can be used to adjust. Furthermore, the power configuration described above can be modified to enhance the function of tissue water bumping as an incision mechanism to further reduce thermal damage. (The capsular bag contains water. If the heating rate is fast enough, the tissue will experience water bumping, which creates a localized high pressure, for example stress, in the tissue due to tissue confinement. Such localized stress can serve a function in tissue anatomy, so the incision mechanism is a combination of thermal and mechanical effects, and secondary damage to the tissue is compared to a simple thermal incision. And can be reduced.)

図5は、本発明に係るいくつかの実施形態によるパルス発生器110の機能的要素を示す。パルス発生器110は、外部の交流電源(例えば120ボルト、60Hz)又は直流電源から操作され得る主電源510を有する。パルス発生器530は、制御回路520によって制御された主電源510からRFパルスを生成する。RF高強度パルスは、リード線550を通して切開電極装置120に供給される。ユーザインタフェース540は、操作者に、パルス発生器110(例えばスイッチ又はタッチスクリーン入力等)を操作するための適した機構と、適したフィードバック(例えば装置状態等)と、を提供する。ここで説明された技術によって容易に構成され得る高強度パルス電界生成装置の更なる詳細は、2007年7月5日に公開された米国特許出願公開第2007/0156129号明細書において提供されており、その全体の内容は、参照によりここに組み込まれる。   FIG. 5 illustrates functional elements of a pulse generator 110 according to some embodiments according to the present invention. The pulse generator 110 has a main power supply 510 that can be operated from an external AC power supply (eg, 120 volts, 60 Hz) or a DC power supply. The pulse generator 530 generates an RF pulse from the main power source 510 controlled by the control circuit 520. The RF high intensity pulse is supplied to the dissecting electrode device 120 through the lead wire 550. User interface 540 provides the operator with a suitable mechanism for operating pulse generator 110 (e.g., a switch or touch screen input) and suitable feedback (e.g., device status). Further details of a high-intensity pulsed electric field generator that can be easily constructed by the techniques described herein are provided in US Patent Application Publication No. 2007/0156129 published July 5, 2007. The entire contents of which are hereby incorporated by reference.

本発明に係るある実施形態において、パルス発生器110は、少なくとも1つの無線周波数(RF)パルスを嚢切開プローブへと送るように構成され、送られたRFパルスは、送られたRFパルスのパワーレベルが、RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する。他の実施形態において、パルス発生器110は、一連の1又は複数の無線周波数(RF)パルスを、一連の2回目以降のパルスのそれぞれが前のパルスに対して略減衰されるように嚢切開プローブへと送るように構成される。更に別の実施形態は、両方の特徴を提供するように構成され、それによって、パルス内減衰形状及びパルス間減衰形状の両方が一連のパルスに適用される。   In certain embodiments according to the invention, the pulse generator 110 is configured to send at least one radio frequency (RF) pulse to the capsulotomy probe, wherein the sent RF pulse is the power of the sent RF pulse. The level has a predetermined attenuation shape that is substantially attenuated over the duration of the RF pulse. In other embodiments, the pulse generator 110 may perform a series of one or more radio frequency (RF) pulses so that each of the series of subsequent pulses is substantially attenuated relative to the previous pulse. Configured to send to probe. Yet another embodiment is configured to provide both features whereby both intra-pulse attenuation shapes and inter-pulse attenuation shapes are applied to a series of pulses.

嚢切開装置及びこれらの装置を使用する方法の様々な実施形態に係る前述した説明は、説明及び例示の目的のために与えられた。当然のことながら、当業者は、本発明が、本発明に係る本質的特徴から逸脱することなくここで詳細に説明された以外の他の方法で実行され得ることを理解する。従って、本実施形態は、全ての点において例示且つ非制限的なものとみなされ、添付された特許請求の範囲の意味の範囲内及び均等な範囲内において全ての変形例は、そこに包含されるものとみなされる。   The foregoing descriptions of various embodiments of capsulotomy devices and methods of using these devices have been given for purposes of illustration and illustration. Of course, those skilled in the art will appreciate that the invention may be practiced otherwise than as specifically described herein without departing from the essential characteristics of the invention. Accordingly, the present embodiment is considered to be illustrative and non-restrictive in all respects, and all modifications within the meaning and equivalent scope of the appended claims are included therein. Is considered to be.

Claims (22)

嚢切開を行うための方法であって、
嚢切開プローブを目の前房へと挿入することと、
前記嚢切開プローブの一部を前記目の前水晶体嚢に接触させて配置することと、
前記嚢切開プローブを介して少なくとも1つの無線周波数(RF)パルスを前記目に送ることと、を含み、送られた前記RFパルスは、送られた該RFパルスのパワーレベルが前記RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する方法。
A method for making a capsulotomy,
Inserting a capsulotomy probe into the anterior chamber of the eye;
Placing a portion of the capsulotomy probe in contact with the anterior lens capsule of the eye;
Sending at least one radio frequency (RF) pulse to the eye through the capsulotomy probe, wherein the RF pulse sent is such that the power level of the RF pulse sent is a continuation of the RF pulse. A method having a predetermined attenuation shape that is substantially attenuated over time.
前記所定の減衰形状は、送られた前記RFパルスの前記パワーレベルが前記RFパルスの継続時間に亘り少なくとも2分の1に減衰されるような減衰形状である請求項1に記載の方法。   The method of claim 1, wherein the predetermined attenuation shape is an attenuation shape such that the power level of the transmitted RF pulse is attenuated by at least one-half over the duration of the RF pulse. 前記所定の減衰形状は、送られた前記RFパルスが前記目の中で気泡核形成を生じるような減衰形状である請求項1に記載の方法。   The method of claim 1, wherein the predetermined attenuation shape is an attenuation shape such that the delivered RF pulse causes bubble nucleation in the eye. 少なくとも1つの前記RFパルスを前記目に送ることは、一連の2回目以降のパルスのそれぞれのエネルギが直前のパルスのエネルギに対して略減衰されるような一連の2以上のRFパルスを前記目に送ることを含む請求項1に記載の方法。   Sending at least one RF pulse to the eye includes a sequence of two or more RF pulses such that the energy of each of the second and subsequent pulses is substantially attenuated relative to the energy of the immediately preceding pulse. The method of claim 1 comprising sending to: 前記一連の2回目以降のパルスのそれぞれの振幅が、前記直前のパルスの振幅に対して略減衰される請求項4に記載の方法。   The method according to claim 4, wherein the amplitude of each of the second and subsequent pulses is substantially attenuated with respect to the amplitude of the immediately preceding pulse. 前記一連の2回目以降のパルスのそれぞれの振幅が、一連の1回目のパルスの振幅と略等しく、前記一連の2回目以降のパルスのそれぞれの長さは、前記直前のパルスの長さより略短い請求項4に記載の方法。   The amplitude of each of the series of second and subsequent pulses is substantially equal to the amplitude of the series of first pulses, and the length of each of the series of second and subsequent pulses is substantially shorter than the length of the immediately preceding pulse. The method of claim 4. 嚢切開を行うための方法であって、
嚢切開プローブを目の前房へと挿入することと、
前記嚢切開プローブの一部を前記目の前水晶体嚢に接触させて配置することと、
一連の2以上の無線周波数(RF)パルスを前記嚢切開プローブを介して前記目に送ることであって一連の2回目以降のパルスのそれぞれのエネルギが直前のパルスのエネルギに対して略減衰されるように送ることと、を含む方法。
A method for making a capsulotomy,
Inserting a capsulotomy probe into the anterior chamber of the eye;
Placing a portion of the capsulotomy probe in contact with the anterior lens capsule of the eye;
Sending a series of two or more radio frequency (RF) pulses to the eye through the capsulotomy probe so that the energy of each of the second and subsequent pulses is substantially attenuated relative to the energy of the previous pulse. Sending.
前記一連の2回目以降のパルスのそれぞれの振幅が、前記直前のパルスの振幅に対して略減衰される請求項7に記載の方法。   The method according to claim 7, wherein the amplitude of each of the series of second and subsequent pulses is substantially attenuated with respect to the amplitude of the immediately preceding pulse. 前記一連の2回目以降のパルスのそれぞれの振幅が、一連の1回目のパルスの振幅と略等しく、前記一連の2回目以降のパルスのそれぞれの長さが、前記直前のパルスの長さより略短い請求項7に記載の方法。   The amplitude of each of the series of second and subsequent pulses is substantially equal to the amplitude of the series of first pulses, and the length of each of the series of second and subsequent pulses is substantially shorter than the length of the immediately preceding pulse. The method of claim 7. 前記一連の2回目以降のパルスのそれぞれのエネルギが、前のパルスのエネルギに対して少なくとも20パーセント減衰される請求項7に記載の方法。   8. The method of claim 7, wherein the energy of each of the series of subsequent pulses is attenuated by at least 20 percent relative to the energy of the previous pulse. 送られた前記RFパルスのそれぞれは、送られた該RFパルスのパワーレベルが前記RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する請求項7に記載の方法。   8. The method of claim 7, wherein each transmitted RF pulse has a predetermined attenuation shape such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse. 切開部を通して目に挿入するために構成された嚢切開プローブと、
該嚢切開プローブに電気的に接続され、少なくとも1つの無線周波数(RF)パルスを前記嚢切開プローブに送るように構成されたパルス発生器と、を具備し、送られた前記RFパルスは、送られた該RFパルスのパワーレベルが前記RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する嚢切開装置。
A capsulotomy probe configured for insertion into the eye through the incision;
A pulse generator electrically connected to the capsulotomy probe and configured to send at least one radio frequency (RF) pulse to the capsulotomy probe, wherein the transmitted RF pulse is transmitted A capsulotomy device having a predetermined attenuation shape such that the power level of the generated RF pulse is substantially attenuated over the duration of the RF pulse.
所定の減衰形状は、送られた前記RFパルスの前記パワーレベルが前記RFパルスの継続時間に亘り少なくとも2分の1に減衰されるような減衰形状である請求項12に記載の嚢切開装置。   13. The capsulotomy device of claim 12, wherein the predetermined attenuation shape is an attenuation shape such that the power level of the transmitted RF pulse is attenuated by at least one half over the duration of the RF pulse. 前記所定の減衰形状は、送られた前記RFパルスが前記目の中で気泡核形成を生じるような減衰形状である請求項12に記載の嚢切開装置。   The capsulotomy device according to claim 12, wherein the predetermined attenuation shape is an attenuation shape in which the transmitted RF pulse causes bubble nucleation in the eye. 前記パルス発生器は、一連の2回目以降のパルスのそれぞれのエネルギが前のパルスのエネルギに対して略減衰されるような一連の2以上のRFパルスを前記目に送るように構成された請求項12に記載の嚢切開装置。   The pulse generator is configured to deliver a series of two or more RF pulses to the eye such that the energy of each of the series of subsequent pulses is substantially attenuated relative to the energy of the previous pulse. Item 13. A capsulotomy device according to Item 12. 前記一連の2回目以降のパルスのそれぞれの振幅が、直前のパルスの振幅に対して略減衰される請求項15に記載の嚢切開装置。   16. The capsulotomy device according to claim 15, wherein the amplitude of each of the second and subsequent pulses is substantially attenuated relative to the amplitude of the immediately preceding pulse. 前記一連の2回目以降のパルスのそれぞれの振幅が、一連の1回目のパルスの振幅と略等しく、前記一連の2回目以降のパルスのそれぞれの長さは、直前のパルスの長さより略短い請求項15に記載の嚢切開装置。   The amplitude of each of the series of second and subsequent pulses is substantially equal to the amplitude of the series of first pulses, and the length of each of the series of second and subsequent pulses is substantially shorter than the length of the immediately preceding pulse. Item 16. A capsulotomy device according to Item 15. 切開部を通して目に挿入するために構成された嚢切開プローブと、
パルス発生器であって、前記嚢切開プローブに電気的に接続され、且つ、一連の2回目以降のパルスのそれぞれのエネルギが直前のパルスのエネルギに対して略減衰されるような一連の2以上の無線周波数(RF)パルスを前記嚢切開プローブに送るように構成されたパルス発生器と、を具備する嚢切開装置。
A capsulotomy probe configured for insertion into the eye through the incision;
A series of two or more pulse generators electrically connected to the capsulotomy probe and in which the energy of each of the second and subsequent pulses is substantially attenuated relative to the energy of the immediately preceding pulse And a pulse generator configured to deliver a radio frequency (RF) pulse to the capsulotomy probe.
前記一連の2回目以降のパルスのそれぞれの振幅が、直前のパルスの振幅に対して略減衰される請求項18に記載の嚢切開装置。   19. The capsulotomy device according to claim 18, wherein the amplitude of each of the second and subsequent pulses is substantially attenuated relative to the amplitude of the immediately preceding pulse. 前記一連の2回目以降のパルスのそれぞれの振幅が、一連の1回目のパルスの振幅と略等しく、前記一連の2回目以降のパルスのそれぞれの長さは、前記直前のパルスの長さより略短い請求項18に記載の嚢切開装置。   The amplitude of each of the series of second and subsequent pulses is substantially equal to the amplitude of the series of first pulses, and the length of each of the series of second and subsequent pulses is substantially shorter than the length of the immediately preceding pulse. The capsulotomy device according to claim 18. 前記一連の2回目以降のパルスのそれぞれのエネルギが、前のパルスのエネルギに対して少なくとも20パーセント減衰される請求項18に記載の嚢切開装置。   19. The capsulotomy device of claim 18, wherein the energy of each of the series of second and subsequent pulses is attenuated by at least 20 percent relative to the energy of the previous pulse. 送られた前記RFパルスのそれぞれは、送られた該RFパルスのパワーレベルが前記RFパルスの継続時間に亘り略減衰されるような所定の減衰形状を有する請求項18に記載の嚢切開装置。   19. The capsulotomy device of claim 18, wherein each transmitted RF pulse has a predetermined attenuation shape such that the power level of the transmitted RF pulse is substantially attenuated over the duration of the RF pulse.
JP2013531719A 2010-09-29 2011-09-27 Attenuated RF power for automated capsulotomy Active JP5876494B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/893,149 US9149388B2 (en) 2010-09-29 2010-09-29 Attenuated RF power for automated capsulorhexis
US12/893,149 2010-09-29
PCT/US2011/053451 WO2012044615A1 (en) 2010-09-29 2011-09-27 Attenuated rf power for automated capsulorhexis

Publications (2)

Publication Number Publication Date
JP2013540520A true JP2013540520A (en) 2013-11-07
JP5876494B2 JP5876494B2 (en) 2016-03-02

Family

ID=44774162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531719A Active JP5876494B2 (en) 2010-09-29 2011-09-27 Attenuated RF power for automated capsulotomy

Country Status (7)

Country Link
US (2) US9149388B2 (en)
EP (1) EP2621422B1 (en)
JP (1) JP5876494B2 (en)
AU (1) AU2011307254B2 (en)
CA (1) CA2810082A1 (en)
ES (1) ES2536298T3 (en)
WO (1) WO2012044615A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123498A1 (en) * 2016-12-27 2018-07-05 株式会社ニデック Ophthalmic surgical device
JP2022519144A (en) * 2018-11-16 2022-03-22 アプライド メディカル リソーシーズ コーポレイション Electrosurgical system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963758B1 (en) * 2016-12-28 2019-03-29 부산대학교 산학협력단 Electric Heating Tip and Thermal Cutting Device for Lens Anterior Capsule comprising the same
US11166844B2 (en) 2019-04-25 2021-11-09 Alcon Inc. Retinal patch graft and biopsy device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576562A (en) * 1991-03-28 1993-03-30 Oertli Instr Ag Power supply apparatus for bipolar electrode used for capsulotomy
JP2002538881A (en) * 1999-03-16 2002-11-19 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Method and apparatus for pulsed plasma electrosurgery in a liquid medium
JP2007061627A (en) * 2005-08-31 2007-03-15 Alcon Inc Method of generating energy for use with ophthalmic surgical device

Family Cites Families (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159161A (en) 1962-11-14 1964-12-01 Ness Richard Alton Fistulizing canaliculus
US3844272A (en) 1969-02-14 1974-10-29 A Banko Surgical instruments
US3915172A (en) 1970-05-27 1975-10-28 Ceskoslovenska Akademie Ved Capillary drain for glaucoma
US3809093A (en) 1972-04-14 1974-05-07 S Abraham Surgical tool
US4002169A (en) 1972-04-18 1977-01-11 Cupler Ii John A Method and apparatus for performing surgery without tissue incision
JPS5241593B2 (en) * 1972-12-29 1977-10-19
SU452338A1 (en) 1973-05-18 1974-12-05 Предприятие П/Я А-3959 Work tool for ultrasonic separation of biological tissue
US3949750A (en) 1974-10-07 1976-04-13 Freeman Jerre M Punctum plug and method for treating keratoconjunctivitis sicca (dry eye) and other ophthalmic aliments using same
US4026295A (en) 1975-06-19 1977-05-31 Lieberman David M Surgical knife
US4068664A (en) 1976-02-25 1978-01-17 Texas Medical Products, Inc. Surgical suction wand assembly and method
US4368734A (en) 1978-01-27 1983-01-18 Surgical Design Corp. Surgical instrument
US4210146A (en) 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
JPS592474B2 (en) 1979-12-19 1984-01-18 電気化学工業株式会社 adhesive composition
US4301802A (en) 1980-03-17 1981-11-24 Stanley Poler Cauterizing tool for ophthalmological surgery
DE3038024A1 (en) 1980-10-08 1982-04-29 Hans-Joachim Prof.Dr.med. 6650 Homburg Schlegel Eye lens capsule opening instrument - has cutter head with annular guide track for axially-protruding blade
US4805616A (en) 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4367744A (en) 1980-12-29 1983-01-11 Sole Gary M Medical instrument, and method of utilizing same
US4481948A (en) 1980-12-29 1984-11-13 Sole Gary M Medical instrument, and methods of constructing and utilizing same
NO147900C (en) 1981-03-12 1983-07-06 Finn Skjaerpe MICROSURGICAL INSTRUMENT.
US4429694A (en) * 1981-07-06 1984-02-07 C. R. Bard, Inc. Electrosurgical generator
US4457757A (en) 1981-07-20 1984-07-03 Molteno Anthony C B Device for draining aqueous humour
SU1148613A1 (en) 1981-12-30 1985-04-07 Всесоюзный Научно-Исследовательский Институт Глазных Болезней Apparatus for forming holes in anterior capsule of eye crystalline bursa
DE3205959A1 (en) 1982-02-19 1983-09-01 Hans Geuder GmbH, 6900 Heidelberg Instrument for ophthalmic surgery to open and remove the anterior crystalline capsule
SU1050702A1 (en) 1982-04-13 1983-10-30 Горьковский государственный медицинский институт им.С.М.Кирова Device for breaking and aspirating cataracta
DE3248101A1 (en) 1982-12-24 1984-06-28 Hans-Joachim Prof.Dr.med. 6650 Homburg Schlegel Device for perforating the anterior wall of the crystalline capsule of the eye of a living being
US4530356A (en) 1983-02-08 1985-07-23 Helfgott Maxwell A Ophthalmic surgical instrument with beveled tip
US4530359A (en) 1983-02-08 1985-07-23 Helfgott Maxwell A Ophthalmic perforating instrument and surgical method employing said instrument
FR2544979B3 (en) 1983-04-26 1987-05-22 Moria Dugast Sa SCISSOR FOR MICROSURGERY AND IN PARTICULAR OCULAR MICROSURGERY
DE3480462D1 (en) * 1983-09-13 1989-12-21 Valleylab Inc Electrosurgical generator
US4708138A (en) 1983-10-27 1987-11-24 Pazandak Bradford B Rotating surgical cutting knife
WO1985003217A1 (en) 1984-01-30 1985-08-01 Schlegel Hans Joachim Apparatus for perforating the front wall of the phacocyst of the eye of a living being
SU1395314A1 (en) 1984-02-24 1988-05-15 Московский научно-исследовательский институт микрохирургии глаза Arrangement for dissection of anterior crystalline
US4559942A (en) 1984-02-29 1985-12-24 William Eisenberg Method utilizing a laser for eye surgery
US4570632A (en) 1984-03-16 1986-02-18 Woods Randall L Cystotome for eye surgery and method of opening lens capsule
EP0165657B1 (en) 1984-03-23 1989-07-12 Alcon Pharmaceuticals Limited Knife for cataract surgery
DE3434930A1 (en) 1984-09-22 1986-04-03 Hans Geuder GmbH, 6900 Heidelberg Ophthalmic surgical instrument (capsulotome) for perforation of the crystalline capsule of the eye
WO1986002257A1 (en) 1984-10-19 1986-04-24 Coopervision, Inc. Surgical cutting instrument for ultrasonic eye surgery
US4955894A (en) 1984-10-30 1990-09-11 Alcon Laboratories, Inc. Posterior capsulotomy knife
DE3569079D1 (en) 1984-10-30 1989-05-03 Alcon Pharma Posterior capsulotomy knife
US4676243A (en) 1984-10-31 1987-06-30 Aldebaran Xiii Consulting Company Automated anterior capsulectomy instrument
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
SU1301400A1 (en) 1985-09-10 1987-04-07 О.И.Лебедев и Т.П.Шорников Arrangement for ophthalmologic operations
FR2588751A1 (en) 1985-10-17 1987-04-24 Imbert Philippe Trepan in particular for extracapsular extraction of a cataract
US4781675A (en) 1985-11-27 1988-11-01 White Thomas C Infusion cannula
DE3672981D1 (en) 1985-11-27 1990-08-30 Thomas C White TISSUE-IMPLANTABLE LIQUID DISTRIBUTION DEVICE.
US4729761A (en) 1985-11-27 1988-03-08 White Thomas C Tissue-implantable, fluid-dissipating device
US4885004A (en) 1986-01-24 1989-12-05 Pao David S C Rotating stylus cystitome
US4766896A (en) 1986-01-24 1988-08-30 Pao David S C Anterior capsulotomy procedures
SU1431752A1 (en) 1986-07-24 1988-10-23 М. Е. Манук н, Г. А. Арутюн н, Р. А. Бадал Н и Р. Н. Барсег н Resector of crystalline capsule
SU1440496A1 (en) 1986-09-15 1988-11-30 Предприятие П/Я В-8534 Apparatus for implanting intraocular lens into posterior chamber of the eye
US4911161A (en) 1987-04-29 1990-03-27 Noetix, Inc. Capsulectomy cutting apparatus
US4766897A (en) 1987-06-16 1988-08-30 Heinz Smirmaul Capsulectomy surgical instrument
US4900300A (en) 1987-07-06 1990-02-13 Lee David A Surgical instrument
DE8710541U1 (en) 1987-07-31 1987-11-19 Uthoff, Detlef, Dr., 2300 Kiel, De
US6544254B1 (en) 1988-02-24 2003-04-08 Patricia Era Bath Combination ultrasound and laser method and apparatus for removing cataract lenses
AU3221589A (en) 1988-03-31 1989-10-05 Site Microsurgical Systems, Inc. Means for tissue removal using an erbium host laser
US4936825A (en) 1988-04-11 1990-06-26 Ungerleider Bruce A Method for reducing intraocular pressure caused by glaucoma
IT1225673B (en) 1988-07-22 1990-11-22 Luigi Bozzo DESTRUCTOR DEVICE FOR USE IN THE URINARY OBSTRUCTIVE PATHOLOGY OF THE MALE AND INSTRUCTOR-EXTRACTOR INSTRUMENT OF THE DEVICE ITSELF
DE3828787A1 (en) 1988-08-25 1990-03-08 Adatomed Pharma & Med DEVICE FOR CARRYING OUT A TREPANATION ON THE EYE
US4994066A (en) 1988-10-07 1991-02-19 Voss Gene A Prostatic stent
US4986825A (en) 1988-10-11 1991-01-22 Concept, Inc. Surgical cutting instrument
US4869716A (en) 1988-10-24 1989-09-26 Smirmaul Heinz J Surgical instrument and method for cutting the lens of an eye
US4950272A (en) 1989-06-19 1990-08-21 Smirmaul Heinz J Surgical instrument and method for removing the lens of an eye
US4955859A (en) 1989-07-07 1990-09-11 C. R. Bard, Inc. High-friction prostatic stent
US5047008A (en) 1989-10-27 1991-09-10 Storz Instrument Company Vitrectomy probe
US5306237A (en) 1989-11-06 1994-04-26 Mectra Labs, Inc. Disposable lavage
SU1766403A1 (en) 1990-01-12 1992-10-07 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Method for extracting traumatic cataract
US5180362A (en) 1990-04-03 1993-01-19 Worst J G F Gonio seton
DE4012882A1 (en) 1990-04-23 1991-10-31 Michael Dr Med Sasu Surgical instrument for removing cataract from eye - has circular blade which is rotated by drive in handle
US5199445A (en) 1990-06-06 1993-04-06 Look, Inc. Stromal puncture method
US5188634A (en) 1990-07-13 1993-02-23 Trimedyne, Inc. Rotatable laser probe with beveled tip
US5911699A (en) 1990-07-17 1999-06-15 Aziz Yehia Anis Removal of tissue
GB9017784D0 (en) 1990-08-14 1990-09-26 Mahmud Ahmed S D Disposable capsulotomy knife with suction for extra-capsular cataract extraction
US5203865A (en) 1990-08-23 1993-04-20 Siepser Steven B Surgical knives for use in ophthalmic surgery
FR2707872A1 (en) 1990-10-19 1995-01-27 Defauchy Arlette Novel opthalmological surgical method and adapted surgical instrument
RU1805938C (en) 1991-03-11 1993-03-30 Мнтк, Краснодарский Филиал "Микрохирургия Глаза" Implant for draining at treating glaucoma
RU1790934C (en) 1991-04-11 1993-01-30 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Iridocapsuloretractor
RU1790935C (en) 1991-04-11 1993-01-30 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Exsector for anterior lens capsule
US5364405A (en) 1991-04-23 1994-11-15 Allergan, Inc. Ophthalmic instrument with curved suction conduit and internal ultrasound needle
US5242449A (en) 1991-04-23 1993-09-07 Allergan, Inc. Ophthalmic instrument
FR2676355A1 (en) 1991-05-14 1992-11-20 De Crepy Bruno Surgical prosthesis for vascular surgery
FR2677244A1 (en) 1991-06-05 1992-12-11 Kabbara Jamil Apparatus for making an incision in the anterior wall of the crystalline capsule of the eye
US5123906A (en) 1991-06-20 1992-06-23 Kelman Charles D Surgical toroidal snare
US5234436A (en) 1991-07-17 1993-08-10 Eaton Alexander M Sheath structure for a surgical knife
US5312413A (en) 1991-07-17 1994-05-17 Eaton Alexander M Instrumentation for ophthalmic surgery and method of using the same
ES2103635B1 (en) 1991-09-06 1998-05-01 Espinos Guillermo Garau MEDICAL AND SURGICAL APPARATUS TO SIMPLIFY THE PREVIOUS CAPSULOTOMY TECHNIQUE, IN THE CATARACT SURGERY.
IT1249714B (en) 1991-10-11 1995-03-09 Mauro Caponi DOUBLE CANNAL SURGICAL INSTRUMENT.
US5135530A (en) 1991-11-12 1992-08-04 Lara Lehmer Anterior capsular punch with deformable cutting member
US5269787A (en) 1991-12-17 1993-12-14 Cozean Jr Charles H Apparatus and method for capsulorhexis
US5360399A (en) 1992-01-10 1994-11-01 Robert Stegmann Method and apparatus for maintaining the normal intraocular pressure
US5242404A (en) 1992-02-12 1993-09-07 American Cyanamid Company Aspiration control system
EP0680282A1 (en) 1992-04-16 1995-11-08 MICHALOS, Peter Surgical cutting instrument
US5522829A (en) 1992-04-16 1996-06-04 Arthur D. Little Enterprises, Inc. Surgical cutting instrument
US5261923A (en) 1992-04-23 1993-11-16 Soares Christopher J Method and apparatus for continuous circular capsulorehexis
US5322504A (en) 1992-05-07 1994-06-21 United States Surgical Corporation Method and apparatus for tissue excision and removal by fluid jet
US6966927B1 (en) 1992-08-07 2005-11-22 Addition Technology, Inc. Hybrid intrastromal corneal ring
US5413574A (en) 1992-09-04 1995-05-09 Fugo; Richard J. Method of radiosurgery of the eye
US5700243A (en) 1992-10-30 1997-12-23 Pdt Systems, Inc. Balloon perfusion catheter
US5342377A (en) 1992-12-18 1994-08-30 Lazerson Howard E Rotating blade capsulotomy instrument and method of performing a capsulotomy
GB9303985D0 (en) 1993-02-26 1993-04-14 Bartholomew Richard S Surgical cutting tool
US5423330A (en) 1993-03-10 1995-06-13 The University Of Miami Capsule suction punch instrument and method of use
FR2702955B1 (en) 1993-03-26 1995-04-28 Hagege Joseph Instrument for eye surgery.
FI96733C (en) 1993-06-18 1996-08-12 Nokia Telecommunications Oy Subscriber network arrangement for connecting subscribers to the public telephone network
US5411510A (en) 1993-07-06 1995-05-02 Fugo; Richard J. Surgical blade and method for ocular surgery
CA2127637C (en) 1993-07-26 2006-01-03 Scott Bair Fluid jet surgical cutting tool
DE9311879U1 (en) 1993-08-03 1993-10-14 Kuehl Wolfram Dr Standardized capsulorhexis loop (NKS) for eye surgery
US6673069B1 (en) * 2000-03-30 2004-01-06 Refractec, Inc. Thermokeratoplasty system with a power supply that can determine a wet or dry cornea
FR2710269A1 (en) 1993-09-22 1995-03-31 Voir Vivre Implantable device for the treatment of edemas.
US5478338A (en) 1993-09-24 1995-12-26 Reynard; Michael Fiber optic sleeve for surgical instruments
US5439474A (en) 1993-10-08 1995-08-08 Li Medical Technologies, Inc. Morcellator system
US5445637A (en) * 1993-12-06 1995-08-29 American Cyanamid Company Method and apparatus for preventing posterior capsular opacification
US5484433A (en) 1993-12-30 1996-01-16 The Spectranetics Corporation Tissue ablating device having a deflectable ablation area and method of using same
US5466234A (en) 1994-01-31 1995-11-14 Trimedyne, Inc. Expandable laser catheter
SG52621A1 (en) 1994-02-09 1998-09-28 Keravision Inc An electrosurgical procedure recurving the cornea
DE4407949B4 (en) 1994-03-09 2006-12-07 Klaas, Dieter, Dr.med. Probe for aspirating eye tissue
US5423841A (en) 1994-03-15 1995-06-13 Kornefeld; Michael S. Intraocular knife
AU681247B2 (en) 1994-04-15 1997-08-21 Smith & Nephew, Inc. Curved surgical instrument with segmented inner member
US5487725A (en) 1994-05-12 1996-01-30 Syntec, Inc. Pneumatic vitrectomy for retinal attachment
US5395361A (en) 1994-06-16 1995-03-07 Pillco Limited Partnership Expandable fiberoptic catheter and method of intraluminal laser transmission
US5569280A (en) 1994-06-29 1996-10-29 Kamerling; William H. Ophthalmic template
US6616996B1 (en) 1994-10-28 2003-09-09 Medsource Trenton, Inc. Variable stiffness microtubing and method of manufacture
US5527332A (en) 1994-11-02 1996-06-18 Mectra Labs, Inc. Tissue cutter for surgery
US5601094A (en) 1994-11-22 1997-02-11 Reiss; George R. Ophthalmic shunt
US5569197A (en) 1994-12-21 1996-10-29 Schneider (Usa) Inc Drug delivery guidewire
US5891084A (en) 1994-12-27 1999-04-06 Lee; Vincent W. Multiple chamber catheter delivery system
DE19508805C2 (en) 1995-03-06 2000-03-30 Lutz Freitag Stent for placement in a body tube with a flexible support structure made of at least two wires with different shape memory functions
US5626558A (en) 1995-05-05 1997-05-06 Suson; John Adjustable flow rate glaucoma shunt and method of using same
IL113723A (en) 1995-05-14 2002-11-10 Optonol Ltd Intraocular implant
US5630827A (en) 1995-06-19 1997-05-20 Dutch Ophthalmic Research Center International Bv Vitreous removing apparatus
US5651783A (en) 1995-12-20 1997-07-29 Reynard; Michael Fiber optic sleeve for surgical instruments
US5669923A (en) 1996-01-24 1997-09-23 Gordon; Mark G. Anterior capsulotomy device and procedure
US5873883A (en) 1996-01-25 1999-02-23 Cozean, Jr.; Charles H. Hydraulic capsulorhexitome
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
WO1997030669A1 (en) 1996-02-22 1997-08-28 Svrcek Petr Electrical tool for erosion of the structure of the human intraocular lens anterior capsula
EP0910290B1 (en) 1996-04-12 2005-04-13 Howmedica Osteonics Corp. Surgical cutting device removably
US5716363A (en) 1996-04-15 1998-02-10 Josephberg; Robert Gary Pars plana vitrectomy tool
US5989262A (en) 1996-04-15 1999-11-23 Josephberg; Robert Gary Sutureless pars plana vitrectomy tool
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
JPH1033549A (en) 1996-07-24 1998-02-10 Shinji Kokubu Laser probe
US5860994A (en) 1996-07-30 1999-01-19 Yaacobi; Yoseph Remotely operable intraocular surgical instrument for automated capsulectomies
US5857995A (en) 1996-08-15 1999-01-12 Surgical Dynamics, Inc. Multiple bladed surgical cutting device removably connected to a rotary drive element
US5733297A (en) 1996-09-10 1998-03-31 Medical Instrument Development Laboratories, Inc. Cutter for surgical probe
US5957921A (en) 1996-11-07 1999-09-28 Optex Ophthalmologics, Inc. Devices and methods useable for forming small openings in the lens capsules of mammalian eyes
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5728117A (en) 1997-03-11 1998-03-17 Lash; Roger S. Retractable capsulorrehexis instument
US5893862A (en) 1997-04-10 1999-04-13 Pratt; Arthur William Surgical apparatus
DE19719549C2 (en) 1997-05-09 1999-10-14 Joachim Schoen Ophthalmic surgical instrument for opening the front lens capsule
US5921999A (en) 1997-06-03 1999-07-13 Dileo; Frank System and method employing a pie-zoelectric crystal and transverse oscillation to perform a capsulotomy
EP0898947A3 (en) 1997-08-15 1999-09-08 GRIESHABER & CO. AG SCHAFFHAUSEN Method and apparatus to improve the outflow of the aqueous humor of an eye
DE19740530A1 (en) 1997-09-15 1999-03-18 Kreco Kreiner Consulting Ges F Device for removing eye tissue, especially natural lens
US6217598B1 (en) 1997-11-25 2001-04-17 Linvatec Corporation End-cutting shaver blade
DE19809510A1 (en) 1998-03-05 1999-09-23 Till Anschuetz Rhexis appliance for cutting front lens cap
US6066138A (en) 1998-05-27 2000-05-23 Sheffer; Yehiel Medical instrument and method of utilizing same for eye capsulotomy
US6036688A (en) 1998-06-17 2000-03-14 Edwards; Stuart D. Radio frequency refractive keratectomy apparatus and method
US6264668B1 (en) 1998-09-16 2001-07-24 Arnold S. Prywes Ophthalmologic instrument for producing a fistula in the sclera
US6241721B1 (en) 1998-10-09 2001-06-05 Colette Cozean Laser surgical procedures for treatment of glaucoma
US20040167508A1 (en) * 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US6162202A (en) 1998-10-26 2000-12-19 Sicurelli; Robert Flexible syringe needle
EP1010410A1 (en) 1998-12-16 2000-06-21 Optisoins SA Surgical instrument for cutting the lens capsule
KR20020007307A (en) 1999-02-17 2002-01-26 조셉 러딕 Methods, apparatus and system for removal of lenses from mammalian eyes
GR1003307B (en) 1999-02-17 2000-01-25 Surgical knife-capsulotome
US6440103B1 (en) 1999-03-17 2002-08-27 Surgijet, Inc. Method and apparatus for thermal emulsification
US20020007150A1 (en) 1999-04-09 2002-01-17 Stephen H. Johnson Instrument sheath and blade guide
US6165190A (en) 1999-06-01 2000-12-26 Nguyen; Nhan Capsulectomy device and method therefore
US6306155B1 (en) 1999-10-25 2001-10-23 Becton, Dickinson And Company Capsulorhexis forceps and method of use
AU776599B2 (en) 1999-11-24 2004-09-16 Grieshaber & Co. Ag Device for improving the aqueous humour outflow in the eye of a living thing
US6440125B1 (en) 2000-01-04 2002-08-27 Peter Rentrop Excimer laser catheter
IL134370A0 (en) 2000-02-03 2001-04-30 Cutmed Ltd A medical instrument for use in cataract surgery and a method for use thereof
US6379370B1 (en) 2000-02-18 2002-04-30 Matthew Feinsod Incising apparatus for use in cataract surgery
JP2001252300A (en) 2000-03-14 2001-09-18 Mototsugu Nishinobu Method for replacing crystalline lens substance
US6575929B2 (en) 2000-03-14 2003-06-10 Alcon Manufacturing, Ltd. Pumping chamber for a liquefaction handpiece
US6551326B1 (en) 2000-04-17 2003-04-22 Anthony Y. Van Heugten Capsulorrhexis device
US6503263B2 (en) 2000-09-24 2003-01-07 Medtronic, Inc. Surgical micro-shaving instrument with elevator tip
US6893435B2 (en) * 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US20040116950A1 (en) 2000-11-28 2004-06-17 The Regents Of The University Of Michigan Instrument and method for creating an intraocular incision
US6629980B1 (en) 2000-11-28 2003-10-07 The Regents Of The University Of Michigan Instrument and method for creating an intraocular incision
JP4194842B2 (en) 2001-01-18 2008-12-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Minimally invasive glaucoma surgical instruments and methods
EP1418868B1 (en) 2001-04-07 2008-03-26 Glaukos Corporation Glaucoma stent for glaucoma treatment
US20020161365A1 (en) 2001-04-25 2002-10-31 Heraldo Martins Method of incision/excision/coagulation of scleral, peri-scleral, iris and corneal tissues with a bipolar pulsed high frequency diathermy tip
DE10220253A1 (en) 2001-05-04 2002-11-14 Michael Ulrich Dardenne Surgical instrument for removing circular tissue disks from the front and rear lens capsule of the eye has a fast rotating support for blade elements that allows disks to be removed without uncontrolled tearing of the tissue
AU2002324929A1 (en) 2001-09-07 2003-03-24 Steven B. Siepser Intraocular lens extracting device
FR2830186B1 (en) 2001-10-03 2004-06-11 Didier Ducournau TOOL FOR THE INCISION OF SCLEROTICS FOR THE PLACEMENT OF A BREWING CANNULA AND CORRESPONDING BREWING CANNULA
US20030088253A1 (en) 2001-11-07 2003-05-08 Seil Randolph L Dual action ophthalmic implant extractor
KR100976186B1 (en) 2001-11-21 2010-08-17 아이싸이언스 코포레이션 Ophthalmic microsurgical system
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US20040106929A1 (en) 2002-08-20 2004-06-03 Samuel Masket Method and apparatus for performing an accurately sized and placed anterior capsulorhexis
WO2004039295A1 (en) 2002-11-01 2004-05-13 Phaco Treat Ab Methods and devices usable in eye surgery
AU2004231968B2 (en) 2003-04-16 2011-02-24 Iscience Surgical Corporation Opthalmic microsurgical instruments
FR2855745A1 (en) 2003-06-03 2004-12-10 Joseph Leon Intraocular lens capsule part cutting device for cataract surgery, has ring with cutting edge, folded in guide tube during its insertion into eye and unfolded to be applied on capsule for repeatedly performing cutting operation
FR2855746A1 (en) 2003-06-03 2004-12-10 Joseph Leon Intraocular lens capsule part cutting device for cataract surgery, has circular wire with cutting edge and rolled in guide tube during its insertion into eye and unrolled to be applied on capsule to repeatedly perform cutting operation
JP4704344B2 (en) 2003-06-10 2011-06-15 ネオメディックス コーポレイション Electrosurgical instrument for selectively cutting tissue and system including the same
ATE551973T1 (en) 2003-06-10 2012-04-15 Neomedix Corp TUBULAR CUTTING DEVICE
ES2420684T3 (en) 2003-06-10 2013-08-26 Neomedix Corporation Device for the treatment of glaucoma and other surgical procedures and method for its manufacture
US7785337B2 (en) 2003-09-09 2010-08-31 Medtronic Xomed, Inc. Surgical micro-burring instrument and method of performing sinus surgery
US20050228419A1 (en) 2004-04-09 2005-10-13 El-Mansoury Jeylan A Automated ophthalmic device for performance of capsulorhexis
US20060259053A1 (en) 2004-04-09 2006-11-16 El-Mansoury Jeylan A Automated ophthalmic device for performance of capsulorhexis
US8262682B2 (en) 2004-08-10 2012-09-11 Asico Llc Nucleus chopper and splitter
AU2005289828A1 (en) * 2004-09-24 2006-04-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for the non-thermal, electrically-induced closure of blood vessels
US20060100617A1 (en) 2004-11-09 2006-05-11 Alcon, Inc. Capsularhexis device
WO2006109255A1 (en) 2005-04-13 2006-10-19 Safe Surgery Technologies, Llc Capsulotomy instrument
US8162931B2 (en) 2005-04-13 2012-04-24 Valens Associated Inc. Thermal capsulotomy tool and system
WO2006117772A1 (en) 2005-05-02 2006-11-09 Itos International Ltd. Thermal burning ring tool and system
WO2007021671A2 (en) 2005-08-10 2007-02-22 Insight Instruments, Inc. Tool for extracting vitreous samples from an eye
US20070049957A1 (en) 2005-08-29 2007-03-01 Pedro Benitez Ccutter
US8016843B2 (en) 2005-09-09 2011-09-13 Alcon Research Ltd Ultrasonic knife
US7763032B2 (en) 2005-12-20 2010-07-27 Ellis Forrest J Method and apparatus for forming an aperture in a lens capsule of an eye
ATE466537T1 (en) 2006-01-03 2010-05-15 Alcon Inc SYSTEM FOR CLIVING AND REMOVAL OF PROTEINOUS TISSUE
AU2006337171A1 (en) * 2006-01-31 2007-08-09 Regents Of The University Of Minnesota Surgical support structure
US20080027304A1 (en) 2006-04-18 2008-01-31 Pardo Geoffrey B Intraocular pressure attenuation device
GB2437252A (en) 2006-04-19 2007-10-24 Daniel Calladine Capsulorhexis custotomes and capsulorhexis forceps with visible scale at tips
CA2670969C (en) * 2006-12-06 2016-01-19 Boston Scientific Limited Tissue ablation using pulse modulated radio frequency energy
WO2008080149A1 (en) 2006-12-22 2008-07-03 Mynosys Cellular Devices, Inc. Microsurgery device for lens capsule surgery
US20080262525A1 (en) 2007-04-17 2008-10-23 Usgi Medical, Inc. Tissue penetration and grasping apparatus
FR2924924B1 (en) 2007-12-17 2010-09-24 Pascal Pietrini DEVICE FOR ABLATION OF THE CAPSULAR CAPSULAR BOTTOM CAPSULE.
US20090287143A1 (en) 2008-05-15 2009-11-19 Casey Line Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
US20090287233A1 (en) 2008-05-15 2009-11-19 Huculak John C Small Gauge Mechanical Tissue Cutter/Aspirator Probe For Glaucoma Surgery
ES2427613T3 (en) 2008-05-15 2013-10-31 Mynosys Cellular Devices, Inc. Ophthalmic surgical device for capsulotomy
GB0811087D0 (en) 2008-06-17 2008-07-23 Nottingham University Hospital Surgical cutting implement
US20100022943A1 (en) 2008-07-25 2010-01-28 Medtronic Vascular, Inc. Hydrodynamic Thrombectomy Catheter
US9125720B2 (en) 2008-10-13 2015-09-08 Alcon Research, Ltd. Capsularhexis device with flexible heating element
US8137344B2 (en) 2008-12-10 2012-03-20 Alcon Research, Ltd. Flexible, automated capsulorhexis device
US8157797B2 (en) 2009-01-12 2012-04-17 Alcon Research, Ltd. Capsularhexis device with retractable bipolar electrodes
US8814854B2 (en) 2009-06-03 2014-08-26 Alcon Research, Ltd. Capsulotomy repair device and method for capsulotomy repair
US20100312252A1 (en) 2009-06-03 2010-12-09 Guangyao Jia Capsularhexis device with flexible heating element having an angled transitional neck
US20110118734A1 (en) 2009-11-16 2011-05-19 Alcon Research, Ltd. Capsularhexis device using pulsed electric fields
WO2011081897A1 (en) * 2009-12-15 2011-07-07 Alcon Research, Ltd. High-intensity pulsed electric field vitrectomy apparatus
US9427810B2 (en) 2012-04-25 2016-08-30 Joong Han PARK Tool holder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576562A (en) * 1991-03-28 1993-03-30 Oertli Instr Ag Power supply apparatus for bipolar electrode used for capsulotomy
JP2002538881A (en) * 1999-03-16 2002-11-19 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Method and apparatus for pulsed plasma electrosurgery in a liquid medium
JP2007061627A (en) * 2005-08-31 2007-03-15 Alcon Inc Method of generating energy for use with ophthalmic surgical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123498A1 (en) * 2016-12-27 2018-07-05 株式会社ニデック Ophthalmic surgical device
JP2022519144A (en) * 2018-11-16 2022-03-22 アプライド メディカル リソーシーズ コーポレイション Electrosurgical system
JP7232328B2 (en) 2018-11-16 2023-03-02 アプライド メディカル リソーシーズ コーポレイション electrosurgical system

Also Published As

Publication number Publication date
US9351872B2 (en) 2016-05-31
CA2810082A1 (en) 2012-04-05
JP5876494B2 (en) 2016-03-02
ES2536298T3 (en) 2015-05-22
US9149388B2 (en) 2015-10-06
AU2011307254A1 (en) 2013-03-28
EP2621422A1 (en) 2013-08-07
US20150359671A1 (en) 2015-12-17
WO2012044615A1 (en) 2012-04-05
EP2621422B1 (en) 2015-03-04
US20120078242A1 (en) 2012-03-29
AU2011307254B2 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5502896B2 (en) Sactomy device with retractable bipolar electrode
US9125720B2 (en) Capsularhexis device with flexible heating element
JP5491521B2 (en) Flexible automatic capsulotomy device
US20110118734A1 (en) Capsularhexis device using pulsed electric fields
JP2003501206A (en) Surgical handpiece tip
US6428508B1 (en) Pulsed vacuum cataract removal system
US20110144638A1 (en) Localized Shockwave-Induced Tissue Disruption
US5445636A (en) Method and apparatus for preventing posterior capsular opacification
US9351872B2 (en) Attenuated RF power for automated capsulorhexis
US20160346124A1 (en) Method of Generating a Pulse Sequence with a Pulse Control Apparatus for an Ophthalmic Surgical System
Yousuf Phaco–Emulsification Using Rotating Needle–A Newer Cheaper Technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160121

R150 Certificate of patent or registration of utility model

Ref document number: 5876494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250