JP2013522574A - 静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置 - Google Patents

静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置 Download PDF

Info

Publication number
JP2013522574A
JP2013522574A JP2012557291A JP2012557291A JP2013522574A JP 2013522574 A JP2013522574 A JP 2013522574A JP 2012557291 A JP2012557291 A JP 2012557291A JP 2012557291 A JP2012557291 A JP 2012557291A JP 2013522574 A JP2013522574 A JP 2013522574A
Authority
JP
Japan
Prior art keywords
refrigerant
cryostat
cooling
conduit
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012557291A
Other languages
English (en)
Inventor
ブラック ランドール
マーティエン ディネッシュ
ニールズ ウィリアム
ディードリクス ヨースト
Original Assignee
クォンタム デザイン,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クォンタム デザイン,インク. filed Critical クォンタム デザイン,インク.
Publication of JP2013522574A publication Critical patent/JP2013522574A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/005Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
    • F17C13/006Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
    • F17C13/007Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats used for superconducting phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0369Localisation of heat exchange in or on a vessel
    • F17C2227/0376Localisation of heat exchange in or on a vessel in wall contact
    • F17C2227/0383Localisation of heat exchange in or on a vessel in wall contact outside the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0509"Dewar" vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Abstract

【課題】 物質の物性を測定するための温度調節を提供する高信頼性のクライオスタットを提供する。
【解決手段】本発明のクライオスタットはサンプル空間(21)に可変磁場を生成するための超電導磁石アセンブリ(19)を使用し、また前記サンプル空間を冷却するための超低温クーラー(30,31,33,50,52)を使用する。超低温冷却クーラーチャンバ(22)の構成は超低温冷却クーラーの別の段間で効率的な熱交換を提供し、物理的な熱リンクを必要としない。この構造では超低温冷却クーラーからクライオスタット内部の所望の領域への冷却力の選択的供給が可能でフレキシブルな物理的熱リンクを用いない。カウンターフロー交換器(43)と環境温度弁(40,46)により超低温冷却クーラーの冷却段(30,31)を効率的に使用出来る。掃引モードで動作しつつ超伝導磁石により生成される大量の熱負荷の除去が、一部で超低温冷却クーラーチャンバと磁石アセンブリの間に固体(27)熱伝導カップリングエレメントを用いることで実現される。
【選択図】図1

Description

本発明は一般にクライオスタットの温度調節に関連し、超伝導磁石を冷却しつつ、超低温冷却測定チャンバにおける温度を調節するための装置並びに方法として、このようなクライオスタットを用いる代表的な目的は、低温供給源として超低温冷却クーラーを使用する。
超低温領域で温度調節するためにクライオスタットを使用するシステムが利用可能になっている。このようなクライオスタットのひとつの使用方法としては試料の物性を試験することがある。異なる物性の各種試料で物性を試験する必要性は過去数年に渡り実質的に増加してきた。各種測定条件下で各種材料の物性を特徴づけるシステムが存在しているが、これは温度と磁場掃引の任意のシーケンス並びに試料の各種物性を特徴づけるステップをプログラミングすることによるものである。
このようなシステムは代表的に多数の熱シールドを有する超低温チャンバと、ヘリウムなどの冷媒、冷却の供給源(超低温クーラー)、超伝導磁石、試料チャンバ、及び温度を制御するための装置を含むもので、これらすべてをまとめてクライオスタットと呼ぶ。超低温試験チャンバ内の温度調節には熱エネルギーの供給と損失の間の微妙なバランスが要求され、低温(超低温)でのこのような作業を実現する各種方法が工夫されてきた。特定の制御方法の効率の尺度は、制御が効果的また効率的に維持できる温度範囲の幅と、この範囲の何らかの温度で実現される持続時間と安定性である。システム性能全体のさらなる尺度としては、冷媒の使用量で、使用率が低いほうが好ましい。
このような測定システムの一例では、各種の自動測定を実行するように設計された可変温度フィールド制御装置を使用する。実験を実行するために、システムは一般に±16テスラの間の磁場を急激に変化させる必要があり、一方で一般に約4.2Kの一定温度に磁石を維持する必要がある。同時に、試料を含むチャンバとこれに関係する実験装置は典型的には約400Kから約2K以下の範囲の任意の温度シーケンスで制御される。この機能性は様々な量の冷却力をシステムの異なるコンポーネントへ異なる温度で供給できるシステム設計を必要とする。更に、代表的な試験スケジュールは代表的な超低温クーラー(大半の実施条件下では4.2K)の最も温度が低いステージ以下のサンプル温度を達成する必要があり、したがって液体ヘリウムの連続ストリームの蒸発プロセスを使用する。
代表的には、ギフォード・マクマホーン(GM)またはGM型パルスチューブ超低温クーラー(PTC)がこの目的で使用される。PT超低温クーラーは異なる温度ステージで動作する場合に異なる量の冷却力を提供する。最も高い温度ステージは実質的にもっと低い温度ステージより高い冷却力を提供するこのような超低温クーラーの例はPT410型で、ニューヨーク州シラキュースにあるCryomesh Incが販売しており、50K温度ステージで40Wの冷却力を提供するが、4.2Kステージでは約1ワットの冷却力しか提供しない。
現在市販されている設計の幾つかはマルチステージPTC(3段またはそれ以上)と一緒に超低温クーラーとクライオスタットアセンブリの残りの部分を結合するための各種方法の組み合わせと一緒に用いることで超電導磁石と試料チャンバに可変冷却力を提供する必要性に対応している。クライオスタットのPTCと他の要素例えば固定熱交換器ユニットなどとの間の可撓性編組線メタルリンクがしばしば用いられてPTC冷却素子をクライオスタットの他の部分に物理的に結合させている。可撓性物理リンク又は固定熱交換器ユニットの使用はモジュール性と測定システムの利用を制限し、熱交換レートの増加が必要な場合にはPTCと他のクライオスタットエレメントの間の熱交換に上限を設定し追加の熱結合が必要になる場合があることに因る。全体として、超低温クーラーとクライオスタットの残りの部分との間の物理的結合は、メンテナンスを実質的に複雑にし、全体的なシステムの複雑性とコストの増加を招く。
代表的なパルスチューブ型超低温クーラーユニットは通常の動作条件下で周波数1Hz付近の振動を発生する。したがって物理リンクを使用するシステムはPTCからサンプル領域へ余分な振動エネルギーを伝達してしまい、微小な振動に特に敏感な用途例えば光学的干渉計などでは致命的な場合があり、PTCの振動エネルギーがサンプル信号を汚染しないように特別な注意を払う必要がある。PTCの振動からサンプル信号を切り離すための努力がなされてきた。
現在利用可能な幾つかの超低温測定システムでは、セパレート式再コンデンサモジュールを使用してガス状冷媒を液体状に変換しており、これは最低温度のクライオスタット動作で代表的に必要とされる。このアプローチはシステムを複雑化しコスト上昇を招く一方で使用の柔軟性を制限するが、これは、再コンデンサユニットはPTCと物理的に接触を必要とすることによる。約4.2Kまたはそれ以下の超低温を得るには多数の(又は多段式の)超低温クーラーユニットが一般に必要とされることが従来技術で認識されている。
異なる温度の別の超低温クーラー段を接続切断する困難な作業は、多段熱交換器に導管を組み合わせた少なくとも3段の超低温クーラー装置を使用してクライオスタットの所望の領域に別の段から冷却力を供給するということにより従来技術の一つの例では解決されている。
他の従来技術で教示していることは、少なくとも理論的には多段超冷却クーラーの動作中に機械弁を使用してカップリングチューブを開閉しうることである。しかし高信頼性の低温弁の作成は困難でこのアプローチの有用性を制限している。超低温チャンバの温度を調節する別の方法としては、2重毛細管インレットチャンバと多段式クーラー/ヒーター装置を使用する。このような設計では所望の範囲にわたりサンプルチャンバ内のスムースな温度調節が可能だが、コスト上昇を招き測定装置が複雑化し、超電導磁石が掃引モードで動作中には超伝導磁石へ余分な冷却力を供給する必要に対応できない。
本発明の原理を実施する温度調節用システムにおいて、超伝導磁石により可変地場を生成する。一つの実施例においてサンプルチャンバ内の温度は多様な温度範囲のもとで制御され、これはシステム装置内部の別の領域へ超低温クーラーから冷却力を選択的に移送することによる。磁石アセンブリは4.2Kのほぼ一定温度に維持されるが、これは一部において熱伝導素子との個体熱伝導接触によるもので、熱伝導素子は超低温クーラーにより圧縮されるガス状又は液体状ヘリウムにより冷却される。
このような構成では、サンプル試料の温度掃引及び制御(400Kから2K以下までの間で)が同時的に可能であり、また熱分布と制御のための従来技術の物理リンクや超低温可動部品、機械弁等に依存しない単一の多段ヘリウム温度超冷却クーラーを使用することにより高磁場超電導磁石の冷却も行える。本発明では急速な初期冷却(24時間又はそれ以下)をごく少量の外部供給ヘリウムガスで提供し、メンテナンスの必要なしにまたあったとしても最小限のヘリウム補充だけで長期間にわたって動作することができる。本システムは一般に超低温クーラーの底部にある液体ヘリウムにより動作するが、約4.2Kのガス状ヘリウムでも十分である。
本発明の実施例の装置は超伝導磁石の掃引により発生する大量の熱負荷の除去に特に対応しており、これはクーラーチャンバの底部にある液体状冷媒と磁石頂部フランジとの間の超高伝導性リンク(固体プレートとポスト)を提供することによる。本発明の実施例のクライオスタットの構造は共通に使用される可撓性銅リンクを使用せず、熱サイホン効果を使用することでクライオスタットの設計を単純化でき、冷却装置とクライオスタットの他の部分との間で大きな熱伝導性を提供するものである。
クーラーチャンバの底部から取り出された液体ヘリウムの気化冷却を用いて、約2K以下までサンプルチャンバの冷却ができる。この液体は超低温クーラーの第2段での圧縮で製造されクーラーチャンバの底部にあるプールへ滴下する。この液状冷媒がクーラーチャンバの底部にあるプールから伸びる固定流量毛細管を介して蒸発チャンバへ供給される。初期のシステム冷却(クールダウン)中と動作中において、磁石の冷却メカニズムは磁石とクーラーチャンバ底部の間にある4.2Kのプレートにおける固体伝導による。通常動作中は、クーラーチャンバの底部はクーラーチャンバ内部にある液体との直接接触で冷却される。初期システム冷却中、クーラーチャンバの底部は超低温クーラーの第1段と第2段の両方との浮動還流により冷却される。
更に詳しく説明すると、本発明は温度調節のためのクライオスタット装置を含み、当該装置は、前記クライオスタット内部の少なくともひとつの冷却されたコンポーネントであって、前記少なくともひとつの冷却されたコンポーネントが可変熱負荷と動作温度により選択的に冷却を必要とするコンポーネントと、前記超低温クーラーチャンバの内部を画成する内側表面と外側表面とによる壁を有し、更に少なくともひとつの環境温度冷媒ガスインレットポートを有する超低温クーラーチャンバと、少なくともひとつの減温度段を備える超冷却クーラーであって、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部にあるクーラーと、前記クライオスタット装置を環境温度冷媒ガスの供給源に接続するための手段と、前記冷媒ガス供給源を前記ガスインレットポートへ接続するための主ガスインレット導管と、前記超低温クーラーチャンバの前記壁を貫通する少なくとも2本のサイホンポートも含み、前記サイホンポートのひとつは前記超低温クーラーチャンバからガス又は液体いずれかの状態にある冷却された冷媒を除去するように構成され、前記冷却された冷媒は前記超低温クーラーの前記少なくともひとつの減温度段との熱交換により環境温度より冷却されていることと、前記少なくとも2本のサイホンポートの一方を前記少なくとも1本の冷却コンポーネントへ接続する少なくとも1本の冷媒導管と、前記少なくとも1本の冷却コンポーネントから前記クライオスタットの外側へ延出していて前記少なくともひとつの冷却コンポーネントに冷却を提供したあとで前記クライオスタットから冷媒を流出させるように構成された少なくとも1本のクライオスタット排出導管と、を含むことを特徴とする。
本発明はさらに温度調節用クライオスタット装置として定義され、前記装置は、前記クライオスタット内部の少なくともひとつの冷却されたコンポーネントであって、前記少なくともひとつの冷却されたコンポーネントが可変熱負荷と動作温度により選択的に冷却を必要とするコンポーネントと、前記超低温クーラーチャンバの内部を画成する内側表面と外側表面とによる壁を有し、更に少なくともひとつの環境温度冷媒ガスインレットポートを有する超低温クーラーチャンバと、少なくともひとつの減温度段を備える超冷却クーラーであって、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部にあるクーラーと、前記クライオスタット装置を環境温度冷媒ガスの供給源に接続するための手段と、前記冷媒ガス供給源を前記ガスインレットポートへ接続するための主ガスインレット導管と、前記超低温クーラーチャンバの前記壁を貫通する少なくとも2本のサイホンポートも含み、前記サイホンポートのひとつは前記超低温クーラーチャンバからガス又は液体いずれかの状態にある冷却された冷媒を除去するように構成され、前記冷却された冷媒は前記超低温クーラーの前記少なくともひとつの減温度段との熱交換により環境温度より冷却されていることと、前記少なくとも2本のサイホンポートの一方を前記少なくとも1本の冷却コンポーネントへ接続する少なくとも1本の冷媒導管と、前記少なくとも1本の冷却コンポーネントから前記クライオスタットの外側へ延出していて前記少なくともひとつの冷却コンポーネントに冷却を提供したあとで前記クライオスタットから冷媒を流出させるように構成された少なくとも1本のクライオスタット排出導管と、上部を有する外殻であって、前記外殻上部の外側表面は環境温度になっていることを含み、前記冷却コンポーネントの一つはさらに、環境温度絶縁弁と、前記絶縁弁から前記外殻上部を貫通して前記外殻の内部へ延在する第1の導管と、前記外殻内部で前記導管が接続される第1段のコールドトラップと、前記外殻内部にある第2段コールドトラップと、前記第2段コールドトラップ内部に結合された吸引ポンプと、を含むことを特徴とする。
本発明をさらに定義すると、本発明は温度を調節するためのクライオスタット装置を含み、前記装置は、前記クライオスタット内部の少なくともひとつの冷却されたコンポーネントであって、前記少なくともひとつの冷却されたコンポーネントが可変熱負荷と動作温度により選択的に冷却を必要とするコンポーネントと、前記超低温クーラーチャンバの内部を画成する内側表面と外側表面とによる壁を有し、更に少なくともひとつの環境温度冷媒ガスインレットポートを有する超低温クーラーチャンバと、少なくともひとつの減温度段を備える超冷却クーラーであって、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部にあるクーラーと、前記クライオスタット装置を環境温度冷媒ガスの供給源に接続するための手段と、前記冷媒ガス供給源を前記ガスインレットポートへ接続するための主ガスインレット導管と、前記超低温クーラーチャンバの前記癖を貫通する少なくとも2本のサイホンポートも含み、前記サイホンポートのひとつは前記超低温クーラーチャンバからガス又は液体いずれかの状態にある冷却された冷媒を除去するように構成され、前記冷却された冷媒は前記超低温クーラーの前記少なくともひとつの減温度段との熱交換により環境温度より冷却されていることと、前記少なくとも2本のサイホンポートの一方を前記少なくとも1本の冷却コンポーネントへ接続する少なくとも1本の冷媒導管と、前記少なくとも1本の冷却コンポーネントから前記クライオスタットの外側へ延出していて前記少なくともひとつの冷却コンポーネントに冷却を提供したあとで前記クライオスタットから冷媒を流出させるように構成された少なくとも1本のクライオスタット排出導管と、上部を有する外殻であって、前記外殻上部の外側表面は環境温度になっていることを含み、第1の前記少なくともひとつの冷媒導管にあるカウンターフロー熱交換器(CFE)と、前記外殻の外部にある前記第1の少なくとも1本の冷媒導管に接続された第1の環境温度フロー制御弁を含み、前記CFEは、冷却導管と全長の少なくとも一部にわたって熱的接触する加温導管であって、前記加温導管は前記少なくとも2本のサイホンポートの一方に結合した冷インレットと、前記第1のフロー制御弁に結合された温アウトレットとを有することと、前記冷却導管は前記フロー制御弁に結合された温インレットと前記少なくともひとつの冷却コンポーネントに結合された冷アウトレットと、前記CFEは前記少なくとも1つの冷却コンポーネントへの冷却された冷媒の流れを制御するように構成されることと、を含むことを特徴とする。
本発明の方法はクライオスタット装置における温度調節の方法として説明され、当該装置は少なくともひとつの環境温度ガスインレットポートを備える超低温クーラーチャンバと、少なくともひとつの減温度段を備える超低温クーラーと、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部にあることと、前記超低温クーラーの前記少なくともひとつの減温度段と前記超低温クーラーチャンバの内壁との間にあってガスインレットポートが貫入するようにしてある空間を含む冷却容積と、環境温度冷媒ガス供給源へ接続するための手段と、前記超低温クーラーチャンバの壁に配置された少なくともひとつのガス又は液体サイホンポートと、少なくとも部分的には前記クライオスタットの内部に配置され少なくとも部分的には冷却容積の外側に配置され冷却を必要とする少なくともひとつの冷却コンポーネントと、それぞれのガスまたは液体サイホンポートと前記少なくともひとつの冷却コンポーネントのひとつを接続する冷媒導管と、前記少なくともひとつの冷却コンポーネントの一つからクライオスタットの外側へ延在しクライオスタットから冷媒を流出させるように配設された少なくとも1本のクライオスタット排出導管を含み、前記方法は、前記ガスインレットポートへまた前記超低温クーラーチャンバの冷却容積へ環境温度冷媒を流通させるステップと、前記冷却容積へ前記冷媒ガスを流通させこれによって前記超低温クーラーの一つ又はそれ以上の徐々に冷たくなる減温度段による熱交換により冷媒を冷却するステップと、前記冷却容積から前記少なくともひとつのサイホンポートを通って前記冷却された冷媒を排出するステップと、前記少なくともひとつのサイホンポートから前記少なくともひとつの冷却コンポーネントの一つへ前記冷却された冷媒を供給して前記冷却コンポーネントを冷却するステップと、前記冷却容積から前記少なくともひとつのクライオスタット排出導管を介して前記クライオスタットの外側へ前記冷媒を排出するステップと、を含むことを特徴とする。
本発明の方法はクライオスタット装置における温度調節の方法として説明され、当該装置は少なくともひとつの環境温度ガスインレットポートを備える超低温クーラーチャンバと、少なくともひとつの減温度段を備える超低温クーラーと、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部にあることと、前記超低温クーラーの前記少なくともひとつの減温度段と前記超低温クーラーチャンバの内壁との間にあってガスインレットポートが貫入するようにしてある空間を含む冷却容積と、環境温度冷媒ガス供給源へ接続するための手段と、前記超低温クーラーチャンバの壁に配置された少なくともひとつのガス又は液体サイホンポートと、少なくとも部分的には前記クライオスタットの内部に配置され少なくとも部分的には冷却容積の外側に配置され冷却を必要とする少なくともひとつの冷却コンポーネントと、それぞれのガスまたは液体サイホンポートと前記少なくともひとつの冷却コンポーネントのひとつを接続する冷媒導管と、前記少なくともひとつの冷却コンポーネントの一つからクライオスタットの外側へ延在しクライオスタットから冷媒を流出させるように配設された少なくとも1本のクライオスタット排出導管と、少なくともひとつのサイホンポートは更に詳しくは前記冷却容積内部の異なる温度で流れる冷媒をサンプリングするように配設されることと、前記冷媒導管の少なくともひとつは前記少なくとも1本のガス状又は液体サイホンポートを前記少なくともひとつの冷却コンポーネントを接続することと、前記少なくとも1本の冷媒導管はカウンターフロー熱交換器(CFE)と少なくともひとつの環境温度フロー制御弁を含み前記CFEはその前兆の一部にそって冷却導管と熱的接触する加温導管を含み、前記加温導管は前記少なくともひとつの環境温度フロー制御弁へ接続された温インレットと前記少なくともひとつの冷却コンポーネントへ接続された冷アウトレットとを有し、前記CFEは前記少なくともひとつの冷却コンポーネントへ冷却された冷媒の流れを制御するように構成されることを含み、前記方法は、前記ガスインレットポートへまた前記超低温クーラーチャンバの冷却容積へ環境温度冷媒を流通させるステップと、前記冷却容積へ前記冷媒ガスを流通させこれによって前記超低温クーラーの一つ又はそれ以上の徐々に冷たくなる減温度段による熱交換により冷媒を冷却するステップと、前記冷却用性から前記少なくともひとつのサイホンポートを通って前記冷却された冷媒を排出するステップと、前記少なくともひとつのサイホンポートから前記少なくともひとつの冷却コンポーネントの一つへ前記冷却された冷媒を供給して前記冷却コンポーネントを冷却するステップと、前記冷却容積から前記少なくともひとつのクライオスタット排出導管を介して前記クライオスタットの外側へ前記冷媒を排出するステップと、前記冷却容積から第1のサイホンポートを経由して前記冷却された冷媒の流れの一部を引き出し、前記サイホンされた冷媒は前記クーラーの最小限の減温度段より高い温度に冷却されることと、前記冷却容積から少なくともひとつさらに別のサイホンポートを通して前記冷媒の流れのさらに一部を引き出し、前記サイホンされた冷媒は前記第1のサイホンポートより低い温度まで冷却されていることと、少なくともひとつの冷却コンポーネントへの冷却された冷媒の流れを制御するために、前記少なくとも1本のサイホンポートから引き出された冷却された冷媒を前記CFEの冷インレットへ流入させ、前記流れが環境温度まで加温されるまで前記CFEの冷却フローと熱交換することにより冷媒の流れを徐々に加温し、前記環境温度フロー制御弁を介して前記環境温度の冷媒を流通させ、前記環境温度フロー制御弁を使用して前記冷媒の流れを制御し、流れが実質的に前記冷却された冷媒の温度へ冷却されるまで前記CFEの加温フローと熱交換することにより前記環境温度フロー制御弁から前記フローを徐々に冷却し、前記冷媒を前記少なくともひとつの冷却コンポーネントへ供給することを含むステップと、を含むことを特徴とする。
本発明は温度調節のためのクライオスタット装置としてさらに定義され、前記装置は、外殻と、少なくとも部分的には前記外殻内部にあり、底部と少なくともひとつのサイホンポートとを有する超低温クーラーチャンバと、少なくとも部分的には前記超低温クーラーチャンバ内部にあり、少なくともひとつの減温度段を有する超低温クーラーと、前記超低温クーラーチャンバから前記外殻へと延在し、冷媒の供給源に接続されるのに適した第1の導管と、前記超低温クーラーチャンバの第1のサイホンポートに結合されたカウンターフロー熱交換器(CFE)を含み、前記CFEは、前記超低温クーラーチャンバから前記外殻外側へと延在する第1のCFE導管と、前記外殻より外部にある前記第1のCFE導管の環境CFE弁と、前記環境CFE弁へ接続されて前記外殻内部へ延出し、少なくとも部分的には前記外殻内部の前記第1のCFE導管と同延でこれを包囲する第2のCFE導管と、前記外殻内部にある少なくともひとつの冷却コンポーネントであって前記第2のCFE導管が前記少なくともひとつの冷却コンポーネントの少なくとも一つへの冷却された冷媒の流れを制御するようにしてあることと、を含むことを特徴とする。
ある程度別の方法で定義すると本発明は温度を調節するためのクライオスタット装置であって、外殻と、前記外殻内部にある超伝導磁石アセンブリと、少なくとも部分的には前記外殻内部にあって、底部と少なくともひとつのサイホンポートとを有する超低温クーラーチャンバと、少なくとも部分的には前記超低温クーラーチャンバ内部にあって、少なくともひとつの減温度段を有する超低温クーラーと、前記超低温クーラーチャンバから前記外殻外側へと延在し冷媒の供給源に接続されるのに適している第1の導管と、前記底部と前記磁石アセンブリの間で熱的に結合された低温度プレートと、を含むことを特徴とする。
本発明はまた温度調節のためのクライオスタット装置であって、外殻と、少なくとも一部が前記外殻内部にあって、底部と少なくとも2つのサイホンポートを有する超低温クーラーチャンバと、少なくとも部分的には前記超低温クーラーチャンバ内部にあって、少なくともひとつの減温度段を有する超低温クーラーと、前記超低温クーラーチャンバから前記外殻外側へと延在し、冷媒の供給源に接続されるのに適している第1の導管と、前記外殻内部にある少なくともひとつの冷却コンポーネントと、前記少なくとも2本のサイホンポートのうちの一本と前記少なくともひとつの冷却コンポーネントのうちの一つとの間に結合された第1の冷媒導管と、を含むことを特徴とする。
本発明はまた温度調節のためのクライオスタット装置であり、外殻と、前記外殻内部の少なくともひとつの冷却コンポーネントと、前記少なくともひとつの冷却コンポーネントの一つである超電導磁石アセンブリと、少なくとも部分的に前記外各内部にあって、底部と少なくともひとつのサイホンポートを有する超低温クーラーチャンバと、少なくとも部分的に前記超低温クーラーチャンバ内部にあって、少なくともひとつの減温度段を有する超低温クーラーと、前記超低温クーラーチャンバから前記外殻へと延在し、冷媒の供給源に接続されるのに適している第1の導管と、前記少なくともひとつの減温度段のひとつと前記少なくともひとつの冷却コンポーネントのうちの一つとの間で熱的に結合された中間温度プレートと、前記底部と前記磁石アセンブリとの間に熱的に結合されている低温度プレートと、を含むことを特徴とする。
本発明は超低温クーラーとクライオスタットアセンブリの他の部分との間で熱交換を行うために静止及び流動ガス体を用いることによる超電導磁石を使用する超低温測定システムにおける温度調節のための装置並びに方法を提供する。
クライオスタット装置:本発明の装置の典型的実施例が図1に図示してある。クライオスタット11は上部エレメント又はプレート13を用いて上部で閉じている外側真空チャンバまたは外殻12を含み、この外殻のことを“300K”上部プレートとも呼ぶことがある。この上部プレートは何らかの適当な材料例えばアルミニウムなどから製造されるもので、これの上部表面は典型的には環境温度になる。ここで注意すべきこととしては、外殻12の上部は平坦であったり、陥凹、凸面、又は何らかの他の形状をなすことがあり、外殻12と一体成型されることがある。利便のため、エレメント13は本明細書において一般に上部プレートと呼ぶことにする。この外殻の内部の容積は排気されて熱的絶縁を提供する。上部プレートは開口部またはチャンバアクセスポート14を有しサンプルチャンバ21へのアクセスを提供するようになっている。
図面に図示してあるように、クライオスタットはオプション的に内殻16を含む。内殻16は“50K”熱放射シールドとして機能し、シールドプレート17を用いて上部で閉じている。クライオスタットに含める場合には、シールドプレートは1本またはそれ以上の支持ロッド18とクーラーチャンバ22の上部クーラーチャンバ23の壁を用いて上部プレート13へ取り付けられる。シールドプレート17は“50K”シールドプレート又は中間温度プレートと呼ぶことがある。上部プレート13でも言えることだがシールドプレート17は何らかの適当な形状をなして殻16と一体化することができる。内殻16は必ずしもクライオスタットの適正動作に必要ではないが、これを用いることでクライオスタットの性能が向上することがわかっている。
超電導磁石19は、磁石装置又はアセンブリと呼ぶことがあるが、内殻16の内部に図示してありサンプルチャンバ21の下側部分を収容する内腔20を形成する。このようなサンプルチャンバはクライオスタット11が実験装置として使用される場合に用いられるものである。超低温クーラーチャンバ22は上部クーラーチャンバ部分23と、下側クーラーチャンバ部分24と、チャンバ底部26から構成され、チャンバ底部26は“4.2K”プレート27と直接熱的接触している。4.2Kプレートとチャンバ底部26は望ましくは無酸素高伝導性(OFTC)銅、又はその他の高伝導性材料例えばアルミニウム、銀、又はその他の品位の銅、などから作成して、高い熱伝導性を実現するのが望ましい。プレート27は「低温プレート」とも呼ばれ、何らかの適当な形状又は構成をなしている。更に、底部26の内部表面はフィンまたはその他の形状で構成されて、クーラーチャンバ底部で液体又はガス体又はその両方との熱交換を促進するように構成されている。
チャンバ部分23及び24と支持ロッド18は典型的には、セクション23及び24の金属拡散バリアを取り付けた従来品のG10グラスファイバー・エポキシ材料で作成されている。拡散バリアはクライオスタットの真空空間内へ冷媒が漏洩するのを防止しクライオスタットコンポーネント間の断熱が低下するのを防止する。G10ロッドは従来技術で公知となっているように、ある程度の量の可撓性を有する。G10材料は熱伝導性の低い何らかの他の材料例えばステンレス鋼、銅−ニッケル、又は同様な合金、及びポリイミドなどのプラスチック類などに置換することが可能である。
約100kgにもなる質量を有する磁石19の構造的支持は、チャンバ22、4.2Kプレート27により、また支持ロッド18により提供される。一例として支持ロッド18は個数で言うと2本またはそれ以上である。クーラーチャンバ22を上部プレート13、初段ネックリング29、4.2Kプレート27に取り付けるには適当な熱伝導性のある手段例えば糊や、又は何らかの他の接着剤を用いる。支持ロッド18は上部プレート13、50Kシールドプレート17、4.2Kプレート27に対して何らかの適当な手段を用いて適切に連結される。
上部プレート13に対して発生することが考えられる50Kシールドプレート17の何らかの横方向への熱収縮は、支持ロッド18の相対的可撓性によって対応する。支持ロッドとチャンバ部分23及び24との間の比較的大きな距離は4.2Kプレート内部の潜在的な縦方向の変形を優位に減少させるが、この変形は支持ロッドとクーラーチャンバ22に対する熱収縮の不均衡から発生する。アセンブリの横方向とねじれ方向に対する剛性は主としてチャンバ部分23と24により主としてもたらされるが縦方向の支持とアライメントはチャンバ部分と支持ロッドの組み合わせによって得られるものである。
図面に図示してあるように、クライオスタット装置は一般にクーラーチャンバ22の内部に装置されるクーラーを除き縦向きの方向を有しているが、コンポーネント類は必ずしも縦向きに配置する必要はない。
PTクーラー装置:代表的実施例としてこのシステムでは従来型のパルスチューブ・超低温クーラー(PTC)をクライオスタット装置における冷却力の供給源として使用している。PTCクーラーは上部又は環境温度フランジ33、チューブ30及び31、冷却段50及び52からなり、これらのすべてがチャンバ22内部に配置されている。このクーラーは代表的には少なくとも2つの冷却段を有し、それぞれが異なる量の冷却力を異なる温度で提供する。高い方の温度の段のPTCクーラーは低い方の温度の段に比べて実質的に大きな冷却力を提供する。例えば、本発明で図示している実施例にとって好適な代表的なPTCクーラー例えばCryomech PT410などでは、40Wの熱負荷で温度50Kを維持することができるような冷却能力の第一段目50を有しているが、1Wの熱負荷では30Kを維持することができる。比較すると、第二段目52は50Kではそれほど大きな冷却能力を提供しないが、1W熱負荷の場合には4.2Kを維持することができる。最大の冷却能力は両方の段を同時に作動させると利用できる。
他の種類の超低温クーラーを使用することができるが、PTCクーラーが適用可能なのは、独立した冷却段から冷却力を提供することに加えて、このクーラーが独立した段間に配置されたりジェネレータ領域で連続した温度での冷却を提供できるためである。本発明の装置でこの追加の冷却力を利用することができるのは、冷媒がクーラーのすべての外部表面と直接接触しているためである。PTCクーラーは冷媒ガスを環境温度から冷却するのに特に好適で、クーラー段に到着するまでにもっと高い温度でガスから多くの熱を取り出すことができることによる。可能な限り高い温度で排熱するこの原理は高い冷却能力を実現する方法として従来技術で周知である。
本明細書で使用しているように、一般的術語である「冷媒」はガス状又は液体状のいずれかの態様を取ることができ「冷却された冷媒」もまたガス状又は液体状のいずれかの態様を取ることができる。
PTCクーラーがこれらの実施例で選択可能な種類のクーラーである他の理由は、このクーラーの一部でクライオスタットと常時接触している部分が可動部品を有していないことによる。その結果、GM型クーラーと比べてこのクーラーは有意に小さい振動をクライオスタットに与える。これは有意な利点で、このような振動が物性測定系において測定の品質に対して有利な影響を与えるためである。
冷却分布と冷媒のフロー:本発明の装置はPTCクーラーの各段から冷却力を取り出すための主な手段として、またこの冷却力を様々なクライオスタットコンポーネントへ供給するための主な手段として、ガス交換を使用する。超低温クーラーの環境温度フランジ33はプレート13に装着され冷却段50と52は超低温クーラーチャンバ22内部に配置される。主冷媒インレットチューブ34は外部冷媒インレット又は充填ポート36へ環境温度冷媒ガス(例えばヘリウムで、これはヘリウム4アイソトープである場合があり、これは選択的にガスボンベ(図示していない)やガス再循環ポンプ又はポンプ系56へ連結できる)の供給源への環境温度弁37を介して取り付けてある。これが超低温クーラーチャンバ22の冷媒供給源である。弁37は冷媒の外部タンクから分注され充填ポート36は外部冷媒タンクであることが可能である。
インレットポートへ流入する冷媒ガスはクーラー段で熱交換されることで冷却される。冷媒が第1のクーラーチャンバチューブ30にそって流下すると対流熱交換によって第1の冷却段50へ熱を移動させ実質的に第2のクーラーチャンバチューブ31にそって流下して超低温クーラーの第2のクーラー段52へ移動する。このようにして得られた冷却済みの冷媒は、クーラーチャンバの壁部のいずれかの熱伝導領域を冷却し、熱伝導領域がさらにチャンバの外側にある熱伝導領域との固体熱伝導接触によりクライオスタット内の他のコンポーネントを冷却する。例えば、第一段目50の近くで冷却された冷媒はネックリング29と50Kシールドプレートアセンブリ17を冷却することになるが、このアセンブリはネックリングが熱的に結合していて、他方で第二段目52近くの冷却された冷媒は底部26、4.2Kプレート27、磁石アセンブリ19を冷却する。底部、4.2Kプレート、磁石アセンブリはすべて熱的結合状態にある。その他のクライオスタットコンポーネントは、例えばサンプルチャンバ21など、クーラーチャンバの内部で別々の位置からサイホンで吸い上げられて循環している冷却された冷媒ガスまたは冷媒液またはその両方との熱交換により冷却することができる。真空断熱空間と断熱チャンバセクション23と24は特にクライオスタットコンポーネント間でのその他の浮動する熱的連通を有意に減少させる。
冷却された冷媒を用いてクーラーからクーラーチャンバの壁へ冷却力を移動させるためまたクライオスタットのその他の冷却されたコンポーネントへ冷却力を移動させるのに使用しているため、第一段目又は第二段目のPTCクーラーのどちらかからクーラーチャンバの残りの部分又はクライオスタットの他の部分へ結合する物理的接続は存在していない。この構成により機械的接続が存在していない又は環境温度フランジ33より低い超低温クーラー及びクーラーチャンバ22の冷却段50及び52の間で必要とされるフロー制御装置が存在していないため超低温クーラーの統合に対して非常に高いレベルのモジュール性が実現される。この構造は従来利用可能だったシステムに対して実質的利点を提供し、利点としては構造の複雑さが減少すること、機械的可動部品が少ないことによる高い信頼性、メンテナンス及び修理の容易さ、超低温クーラーとその他のクライオスタットコンポーネントとの間で結合する振動の減少、ならびに測定系の他の部分への冷却力供給の制御に大きな柔軟性があること、などが挙げられる。
もう一つの別の随意的なクライオスタットコンポーネントで蒸気のメカニズムにより冷却されるのは、図3に図示してあるように、超電導超低温磁石19のためのカレントリードアセンブリである。磁石は室温電源に接続して磁場の生成に必要な電流を提供する必要がある。この電流は100アンペアを超えることがあるため、大電流導体をクライオスタットの外部の室温領域とクライオスタット内部にある磁石との間に必要とする。残念ながら大電流通常金属(非超電導)導体もまた大量の熱を伝導する。これはクライオスタット内の最低温度コンポーネントに対して受け入れがたい熱負荷を発生させることがある。本実施例において通常金属導体71は上部プレート13と第一段目の温度にある熱アンカー72とに結合された端子70間で使用されている。超電導リード73は第一段目アンカーと磁石の温度になっている熱アンカー74との間で電流を伝送する。第一段目温度の熱アンカーは超電導リードの全長にわたって十分冷却され通常動作中にこれの遷移温度以下で在り続けることを保証する。超電導イットリウム・バリウム・銅酸化物(YCBO)から制作された超電導体では、遷移温度は約90Kである。超電導磁石リードの使用は超低温度で大電流が要求される部分において従来技術で公知となっている。本実施例において、超電導リードの底部74と上部72両方での熱アンカーポイントは4Kプレート27と第一段目ネックリング29のそれぞれへの固体熱伝導により提供される。従来技術とは異なり、この熱的接触はクーラー段への直接的な物理接触なしに実現される。外部の、環境温度になっているリード75は必要な電源(図示していない)へ接続するために提供される。明示する目的で、支持ロッド18はここでは図示していない。
圧力解除:クライオスタット真空が破損した場合には、従来技術の幾つかのシステムにおいてはクーラーチャンバ内の液体冷媒が突然加熱され爆発的に膨張することがあった。大型のオリフィス排気ポートがなければ、チャンバ内の過剰圧力がクーラーチャンバ壁を破壊することがありうる。本発明の装置は、チャンバ内の実質的な過剰圧力がクーラーを上向きに移動させ、圧力を逃がすようにクーラーが配置されている。これはクーラーチューブと格段への固体リンクの束縛がないことにより可能になった。更に詳しく説明すると、クーラー(チューブ30,31と各段50,52)とクーラーチャンバ22の間に物理的リンケージが存在しないので、クーラーは圧力解除安全装置として効果的に自己機能することができる。
冷媒の階層化とサイホン吸収:冷媒とPTCクーラーの間で超低温クーラーチャンバ22にそって連続的に行われる熱交換で冷却が行われ最終的にはガス状冷媒を望ましくは液相にまで圧縮し、これが超低温クーラーチャンバの底部26にプールする。この漸増的熱交換、並びに超低温クーラーチャンバ22の冷媒の自然の熱階層化により、冷却された冷媒を異なる温度と相でカラムから吸い出すことができる。第一段目の近くではガス状冷媒が約50Kで吸い上げられる。第二段目の近くでは約4Kの温度にあるガス状冷媒を液体レベル以上に吸い上げ可能で、液状冷媒をチャンバの底部にあるプールからチューブ61を通して吸い出すことができる。ここで注意しておくべきこととしては、システムが効果的に作動するために冷媒が液体になる必要がないことで、これは約4Kのガスは所望する冷却機能を実行することが可能なためである。
好適実施例において、50K冷媒がクーラーチャンバ22から第一段目サイホン57を経由して引き出され、サンプルチャンバ21の上部ネック部分41の周囲に配置されているネック交換器39を通り、チャンバアクセスポート14から侵入してくる熱を遮断するために使用する。このネック交換器39の冷却力は環境温度ネック弁40を使用して制御する。超低温弁は必要ではない。
クーラーチャンバ22内部のガス状冷媒の自然の熱階層化も、本発明の装置では非常に効果的なスタンバイモードを可能にしている。超低温クーラーでは実質的な電力消費(5000から10000W)があるので、システムが使用されていない時にはこれを停止させておくのが望ましい。しかし、装置が室温近くにまで加温されるのを許容する場合、もう一度動作温度まで冷却するにはほぼ1日かかる。クーラーをオフにした場合、クーラーの温まっているフランジからの熱を伝導するため最も低温の段が極めて急速に温まる。従来の設計では、金属製の熱リンクをクーラー段へと使用するのが代表的であるため、オフにしたクーラーは熱リンクを経由してクライオスタットの他の部分を急速に加熱する。しかし、本発明の装置では、クーラーが底部より温まっている場合、クーラーチャンバ22にある冷媒の熱的階層化によってチャンバの底部26への熱伝導を有意に減少させる。これは熱サイホンの性質でありクーラーがチャンバ22の底部26にある液状又はガス状冷媒を約4.2Kに維持しつつ、約1時間までクーラーをオフにしておくことができる。30分にわたってクーラーをオンにし1時間の間オフにするサイクルを繰り返すプログラムで、装置の電力消費量を半分以下にまで減少させることができると同時に、このスタンバイモードを終了してから1時間以内にシステムの完全動作が可能になる。
カウンターフロー熱交換器:クーラーチャンバの底部26から冷ガスサイホン53経由で引き上げられた4.2K冷媒を用いてサンプルチャンバ21を冷却する。この冷媒のフローレートはカンターフロー熱交換器(CFE)43と環境温度CFEフロー弁46を用いることで制御する。4.2Kの冷媒は冷ガスサイホン53を通ってCFE43の高温導管へ流入し、CFEフロー弁46を経由して流れてCFEの冷却導管42へ流入し、そこからチャンバガス冷媒導管44に入り、さらにサンプルチャンバ21の底部を包囲する冷却リング58へ流入する。蒸発チャンバ35が導管44と冷却リング58の間の部分に図面では図示してあるが、開示した実施例の動作には必ずしも必要とされない代替要素である。この方法でCFEを使用することにより冷却された冷媒のフローの完全な制御が高信頼性かつ商業的に入手可能な環境温度フロー制御弁46の使用で実現され、冷却された冷媒の寄生加熱はごくわずか又は全くない。CFE弁を通る代表的なフローレートは約0から10標準リットル毎分の間で変化する。更に、超低温弁がここでも必要ない。
カウンターフロー熱交換器43において、サイホン53から第1の熱交換器導管にあるCFEフロー弁46へ流動する冷却された冷媒は弁46から導管42を通って冷媒導管44へ逆流してくるカウンターフロー冷媒流との連続的な熱交換によりその全長にわたって徐々に暖められる。2本の熱交換器導管はその全長にわたって熱的に密着しているため、全長にわたって各ポイントで第2の(冷却)導管からの熱が第1の(加温)導管内の冷媒へ移動する。効率的な熱交換器設計は加温側と冷却側のフローの両方で冷媒の温度が交換器の全長にそってどの点でもほぼ同一になるように保証する。結果として、有意ではない量の熱がこの弁方式によって冷却された冷媒に導入され、冷却された冷媒をクーラーの第二段の温度(4.2K)またはその付近の温度で最大フローレートまで制御することができる。
第一段50から第二段52へ超低温クーラーチャンバ22を冷媒が流下していくと、約4.2Kまで冷却され、この点でPTCクーラーの第2段コンデンサで液相への濃縮が可能になる。システムが液体冷媒で動作している場合、濃縮された液体冷媒は第2段冷却段又はコンデンサ52から滴下し超低温クーラーチャンバ22の底部26にプールされる。
磁石からの熱が4.2Kプレート27を通って導入されると、この熱フラックスは底部26にプールされている液体冷媒を加温し、液体冷媒のいくらかを蒸発させる。蒸発したガス相冷媒はこのあと第2段コンデンサ52で再凝縮され底部へまた滴下する超低温クーラーチャンバ22の底部と第2段コンデンサはこれによって古典的な2相ヒートパイプを形成する。この種類の2相ヒートパイプは熱移動の点で非常に効率的である。本発明の本実施例において説明しているようなヒートパイプメカニズムの使用方法は約4.2Kの動作温度にある超電導磁石から効率的な熱転移を提供しクーラーの第2段目52との固体熱接触を必要としない。磁石が動作温度以上になった場合、例えば、磁石とクライオスタットが環境温度から冷却されつつある場合、このジオメトリは単相ヒートパイプとして機能する。
熱接触のこの方法のさらなる利点としては、ヒートパイプの2つのエレメントの間での効率的な熱伝導がPTCクーラーの第2段52とクーラーチャンバ底部26の間の距離とは無関係な点である。これは2相重力熱サイホンの性質である。この高さと無関係な性質は本発明の説明している実施例のシステムを異なる超低温クーラーの長さやクライオスタット装置の寸法で適用できるようにしている。
固体熱結合:本発明の説明している実施例のシステムの温度調節で使用されている高磁場超電導磁石は約16テスラまでの磁場を発生し、約100kg(220lbs)までの重量、掃引モードで動作中には約1ワットまでの熱を放散する。このような大きな熱負荷は4.2KでPTCクーラーの冷却能力に近い。前述したように、2相熱サイホンは超低温クーラーチャンバの底部26とクーラーの第2段52の間での熱伝導に対応している。典型的な実施例の設計は超電導磁石19から超低温クーラーチャンバの底部26へ4.2Kプレート27を通る固体伝導経路を経由する熱伝導に対応しており、これにより非常に大きな熱伝導リンクを提供する。この大きな熱伝導は磁石が熱を発生する掃引モードの間に磁石が適切な動作を出来るように磁石を冷却しておくために必要とされる。熱サイホンと固体リンクのこの組み合わせにより、従来システムでは熱伝導を提供するために代表的に使用されてきたクーラー段とクライオスタットコンポーネントとの間の可撓性銅熱リンクが不要になる。この構造では超低温クーラー段に対するクライオスタットの異なる熱収縮から発生する機械的ストレスも排除している。熱サイホンは開示された実施例において差動熱収縮に対応しているので、伝導リンクの可撓性は必要とされない。固体リンクは長さに対する断面積の大きな(A:L)比によるもので、固体伝導経路をこれが提供している。過去に共通であるように、固体プレートとポストを使用する高いA:L 比を持つ熱リンクを使用するほうが、可撓性リンクを用いた同等の熱伝送を使用するよりも、大幅に効率的である。
更に、本発明の開示した実施例の測定システムは、サンプルチャンバ21の温度が磁石装置19で利用可能な冷却力から大きな度合いで遮断されるように構成されている。これは、磁石用の冷却力がクーラーチャンバ22の底部(26)にある液体に由来しているためで、液体は飽和温度にあり、一方でサンプルチャンバの冷却力は主としてクーラーチャンバの底部にある液面より上から到来するガス状冷媒の流動に主として由来するためである。臨界フローレート以下では、ガスフローレートの変化は液体冷媒のプールに対して僅かな影響しか有していない。このため温度制御と磁場動作が相互に対して独立的に実行できるようになる。つまり、サンプルチャンバのヒーターとクローズドループ温度制御を組み合わせた場合、試料温度の変化は超電導磁石の温度に有意に影響しない。逆に、磁石の磁場の変化はサンプルチャンバ内の試料の温度に有意な影響を及ぼさない。したがって、磁石コイルの電流を変化させることで超電導磁石を掃引した場合、磁石からの有意に高い熱負荷はサンプルチャンバの温度制御に優位な影響を及ぼさない。システムが運転状態になれば、試料は基底温度(2K未満)と環境温度(約400k)又はそれ以上の間で、短時間(約60分未満)実質的に磁石や超低温クーラーの温度に実質的な影響を与えることなく、加温又は冷却できる。
高速予備冷却:初期のシステム冷却中と運転中に、ひとつの実施例では、磁石の主冷却メカニズムは磁石とチャンバ底部26にある冷媒の間で結合された4.2Kプレート27の固体伝導による。図2に図示してある別の実施例では、液体窒素又はヘリウム冷媒を外部貯蔵フラスコ(図示していない)から熱交換器59を使用して4.2Kプレート27へ熱的に結合している予備冷却導管54への移し替えを行い、例えば約77Kまで磁石アセンブリの初期冷却を高速化することを目的とする。この場合移送チューブ(図示していない)は予備冷却ポート55へ用手的に接続し、貯蔵フラスコ内の圧力を介して窒素又はヘリウムのフローを維持する。熱交換器で使用するヘリウムはヘリウム3アイソトープである。システムが約77Kまで冷却されたら、移送チューブを切断し、予備冷却ポート55を封止して氷結を防止する。残りの冷却プロセスは前述したようにクーラーのみを使用して進行する。このような予備冷却構成ではクライオスタット運転のスタートアップ時間を削減できる。支持ロッド18は図面において簡略化のため図示していないがこれは導管54と同じ近さにあるためである。
システムのスタートアップと浮動対流:ここで図1に戻ると、超電導磁石19の大きな熱容量のため、冷却時間を最小限に抑えるためには超低温クーラーの各段の効率的な仕様が必要である。磁石アセンブリ19の温度とチャンバ底部26が第一段50の約50Kの温度以上になっている場合、超低温クーラーチャンバ22の開いた縦方向のカラムによりクーラーチャンバ底部26と超低温クーラー各段(50、52)ならびにクーラーの第2段リジェネレータ領域49の間の浮遊対流が効率的に行われる。チャンバ底部温度が第一段目温度以下になっている場合、浮動対流の高さが低減しガスが熱的に第一段の近くで階層化する。その結果、クーラーの第一段目は下方にあるもっと冷たいガスから熱的に断熱される一方で、浮動対流による熱交換がチャンバ底部26とクーラーの第2段目52及び第2段目リジェネレータ領域49の間で継続する。実際上、これが発生すると第一段目とチャンバ底部26の間の熱リンクが途切れる。システム冷却中の第一段目冷却から第二段目冷却へのこの自動クロスオーバーはクーラーチャンバの開放縦カラム型設計の特徴である。この設計は冷却中のいずれの時点においても利用可能な最高温度の段を使用して進行する底部26から熱を抽出するため高効率である。本発明の好適実施例の測定システムにおいて、動作温度までのシステム冷却時間は約24時間である。磁石が通常動作温度である約4.2Kまで冷却されると、前述したように2相熱サイホン効果によりチャンバ底部26と磁石19の連続冷却が行われる。
クライオポンプアセンブリ:幾つかの用途、たとえばサンプルチャンバ21が実験装置の環境チャンバであるような場合だと、何らかの測定を実行する目的で又は実験試料を調製するため、高真空状態(<1mTorr)までチャンバを排気する必要があることがある。クライオポンプは極めて優れた高真空条件を提供することが従来技術で公知となっている。通常であればクライオポンプは冷却段の冷却温度と環境からの断熱の必要性から高価である。しかし多数の冷却コンポーネントを同時に冷却することが可能であるため、本発明の実施例ではごくわずかの追加の支出だけで高性能多段クライオポンプで必要な冷却段と断熱を提供している。クライオポンプへポンプされる容積を連結する導管が非常に短いので、この一体化設計にはさらなる利点が存在しており、遠隔的に装置されたポンプと比較してポンピングレートが増加する。
このようなクライオポンプアセンブリの実施例が図4に図示してある。環境温度ポンピング導管81はサンプルチャンバ21の上部ネック部分41とクライオポンプチューブ82を連結する。クライオポンプチューブは上部プレート13を経由してクライオスタットの真空空間へ入っている。クライオポンプの第一段目コールドトラップ83は、第一段目の温度で、フレキシブル熱リンク84経由で50Kシールドプレート17へ保持される。導管88はコールドトラップ83から内殻16へ入りそこから第二段目コールドトラップ85へ延在する。吸引ポンプ86とコールドトラップ85は第二段目熱リンク87経由で4.2Kプレート27の温度に保持される。環境温度断熱弁80を使用して、サンプルチャンバ21に高真空が要求されない場合又は周辺大気のチャンバへのアクセスが必要とされる場合サンプルチャンバからクライオポンプを封止する。ここでは簡略化のため支持ロッド18は図示していない。
システム動作:通常約4.2Kである超低温クーラーの第二段目温度以下にまでサンプルチャンバを冷却するためには、本発明の図示してある実施例のシステムでは蒸発チャンバ35で発生する蒸発冷却のメカニズムを代わりに使用可能である。底部26に回収された液状冷媒は毛細管フローインピーダンス47の供給源として作用し、これは約0ないし約1標準リットル毎分の間の範囲のフローを有する。この液状冷媒のフローが蒸発チャンバ35に低温で侵入し集結する。この液体が次に蒸発し、ポンピングシステム56によってサンプルチャンバ21を包囲する冷却リング58にポンピングすることにより冷却される。冷媒フローが導管44に存在しない場合蒸発した冷たい冷媒がサンプルチャンバを約2K以下にまで冷却する。
本発明の図示した実施例の測定システムではサンプルチャンバ21を通って流れるガス状冷媒の単一ストリームを使用するサンプルチャンバのガスフロー冷却を使用している。この冷媒フローのフローレートと温度は冷却の要求によって変化し、チャンバガス冷媒導管44を通って供給されるガス状冷媒と毛細管インピーダンス47を通って供給される液状冷媒の様々な量を混合して蒸発チャンバ35へ供給することによって行われる(この別の構造を使用している場合)。冷媒導管44を通る冷媒は約4.2Kの温度で約0から約10標準リットル毎分まで変化する速度で供給される。蒸発した冷媒は通常は2Kより低い温度であり約0.2と約1標準リットル毎分の間の通常は毛細管インピーダンスによって固定されているフローレートである。異なる温度と冷却能力を有する別の供給源からの冷媒フローの混合により適切な冷却レートと要求されるサンプルチャンバ21の基底温度を達成することができる。約4.2K以上の温度の場合に急速なサンプルチャンバの冷却は環境温度弁CFE46を通してガスを流し、この弁で冷媒フローを冷媒導管44へ誘導することで実現される。4.2K以下の温度へのサンプルチャンバの冷却は弁46へのフローを遮断し冷たいガスの比較的少ないフローだけをサンプルチャンバ21へ通すようにすることで実現する。サンプルチャンバの加温と一定温度での安定化は、チャンバ壁面に取り付けたヒーター素子(図示していない)を用いて直接印加する熱を用いることで実現する。
本発明のこの実施例において用いているクローズドループ構成の利点はひとつのコールドトラップを冷媒の流入に用いることにより汚染されたガスが冷媒循環ループを塞栓しないようにすることができる能力である。コールドトラップは冷媒ガス以外のすべての蒸気を凍結する装置でありガス供給源と循環ポンプ56からのそれぞれのインレットに必要なもので、これが超低温導管やクライオスタット内の毛細管の凍結と塞栓を防止する。コールドトラップは比較的大型で設計に相当の複雑性を付加しうるので、可能な限り少ない冷媒インレットを有するようにするのが有利である。本発明のこの実施例において、冷媒のクライオスタット11への流入は単一のインレットポート36,37,34に制限され、これを用いてクライオスタットアセンブリ内部にある多数の循環ループ(39,44,61)へ環境の冷媒ガスを供給する。更に環境温度フランジ33とクーラーの第一段目50との間のクーラーチャンバの容積48が大容量コールドトラップの機能を提供する。これにより独立した専用のコールドトラップアセンブリの必要性がなく、そのため設計を相当に簡略化することができる。
すべての冷媒フロー制御弁(37,40,46)は外殻12の外側でクライオスタット上部にあるように図示してあるが、これらの弁は環境温度又はその付近の温度になっている点だけが関連性があり、上部13を貫通する導管内に存在すべきでないことだけは注意しておくべきである。これらの弁が結合されている導管へのアクセスは外殻の側面並びに上部を経由することができる。
本発明の代表的実施例及び代替実施例について上記で詳細に提示したが、多数の変化が存在しうることは認識されるべきである。また説明した実施例は単なる例であること、また説明した発明の範囲、構成、又は応用可能性をいかなる方法においても制限することを意図したものではないことが認識されるべきである。添付の請求項及びその法的等価物において後述する範囲から逸脱することなく多数の変化を機能並びに要素の構成になしうることは理解されるべきである。
本発明の目的、利点及び特徴について添付の図面との関連において以下の詳細な説明を熟読することによりいっそう容易に理解されるであろう。図面において、
図1は本発明による装置の略図と実施例である。 図2は本発明による装置の略図と別の実施例である。 図3は本発明による装置の超電導磁石リードアセンブリの詳細を示す超低温容器の略図である。 図4は本発明による装置のクライオスタットアセンブリに連結するクライオポンプアセンブリ並びに熱的及びガス状接続の詳細を示す超低温容器の略図である。

Claims (53)

  1. 温度を調節するためのクライオスタット装置であって、前記装置は
    少なくともひとつのサイホン効果ポート(53,57,61)を備えた超低温クーラーチャンバ(22)と、少なくともひとつの温度減少段(30,31)を備えた超低温クーラー(30,31,33,50,52)を含み、前記超低温クーラーは少なくとも部分的に前記超低温クーラーチャンバ内部に存在する
    ことを特徴とする装置。
  2. 前記装置は外殻(12)と少なくともひとつの冷却コンポーネント(16,17,19,21,22,26,27,29,35,39,43,57,58,72,73,74)を含む
    ことを特徴とする請求項1に記載の装置。
  3. 前記装置は前記クライオスタット(11)内部に少なくともひとつの冷却コンポーネント(16,17,19,21,22,26,27,29,35,39,43,57,58,72,73,74)を含み、前記少なくともひとつの冷却コンポーネントは可変熱負荷及び運転温度により選択的に冷却することを必要とすることと、
    前記超低温クーラーチャンバは前記超低温クーラーチャンバの内部(48)を画成する内部表面と外部表面とを備えた壁を有し、また少なくともひとつの環境温度冷媒ガスインレットポート(36)を有することと、
    前記クライオスタット装置を環境温度冷媒ガスの供給源(36)に接続する手段(34,37)と、
    前記冷媒ガス供給源を前記ガスインレットポートへ接続する主ガスインレット導管(34)と、
    少なくともひとつの追加のサイホン効果ポート(61)を含み、
    前記少なくとも2つのサイホン効果ポート(53,57)は前記超低温クーラーチャンバの前記壁を貫通して配置され、ひとつの前記サイホン効果ポート(61)は前記超低温クーラーチャンバ(22,26)からガス又は液体のいずれかの状態にある冷却された冷媒を除去するように配置され、前記冷却された冷媒は前記超低温クーラーの前記少なくともひとつの中間温度段との熱交換により環境温度より冷却されていることと、
    少なくともひとつの冷媒導管(39,44,61)が前記少なくともひとつの冷却されたコンポーネントへ前記少なくとも2つのサイホン効果ポートの一方を接続することと、
    前記少なくともひとつの冷却されたコンポーネントから前記クライオスタット装置の外部へ延在し前記少なくともひとつの冷却されたコンポーネントへ冷却を提供したあとで前記クライオスタットから冷媒を排出するように構成された少なくともひとつのクライオスタット排気導管(20,42)を更に含む
    ことを特徴とする請求項1又は請求項2に記載の装置。
  4. 請求項2に従属する場合には
    前記超低温クーラーチャンバは少なくとも部分的に前記外殻の内部にあって、前記超低温クーラーチャンバは底部(26)を有し、
    前記超低温クーラーチャンバから前記外殻の外側へ延在する第1の導管(34)を含み、前記第1の導管は冷媒の供給源(36)へ接続されるのに適している
    ことを特徴とする請求項2又は請求項3に記載のクライオスタット装置。
  5. 前記クライオスタット装置は、前記超低温クーラーチャンバの第1のサイホン効果ポート(53)へ接続されたカウンターフロー熱交換器(CFE)(43)を含み、前記CFEは
    前記超低温クーラーチャンバから前記外殻の外側へ延在する第1のCFE導管(42)と、
    前記外殻の外側で前記第1のCFE導管に取り付けられた環境CFE弁(46)と、
    前記環境CFE弁へ接続されて前記外殻の内部へ延在する第2のCFE導管(44)を含み、前記第2のCFE導管は前記外殻の内部で前記第1のCFE導管と共延しつつこれを取り囲み、
    前記外殻内部の少なくともひとつの冷却されたコンポーネント(21,27,35,58)を更に含み、前記第2のCFE導管が前記少なくともひとつの冷却されたコンポーネントのうちの少なくとも一つへの冷却された冷媒のフローを制御する
    ことを特徴とする請求項4に記載のクライオスタット装置。
  6. 前記超低温クーラーチャンバは少なくとも部分的には前記外殻内部にあって、前記超低温クーラーチャンバは少なくともひとつのサイホン効果ポート(53,57,61)を有し、
    前記外各内部の少なくともひとつの冷却されたコンポーネントと、
    前記少なくとも2つのサイホン効果ポートの一方と前記少なくともひとつの冷却されたコンポーネントのうちの一方の間に結合された第1の冷媒導管とを含む
    ことを特徴とする請求項4又は請求項5に記載のクライオスタット装置。
  7. 前記装置は
    前記外各内部に少なくともひとつの冷却されたコンポーネントと、
    前記少なくともひとつの中間温度段の一つと前記少なくともひとつの冷却されたコンポーネントのうちの一つと熱的に結合された中間温度プレート(17)とを含む
    ことを特徴とする請求項4又はこれに従属する他のいずれかの請求項に記載のクライオスタット装置。
  8. 前記超低温クーラーチャンバは少なくともひとつの熱的に伝導する領域(23,24,26)を有し、前記領域は前記超低温クーラーチャンバの外側に位置している前記少なくともひとつの冷却されたコンポーネント(17,27)と前記超低温クーラーチャンバの内側に位置している熱交換器表面(30,31)の間に熱伝導経路を提供するように構成され、前記熱交換器表面は前記超低温クーラーチャンバ内部の冷却された冷媒と熱的に接触した状態にある
    ことを特徴とする請求項1から請求項7までのいずれか一つに記載のクライオスタット装置。
  9. 前記少なくともひとつの冷却されたコンポーネントはクライオポンプアセンブリ(80,81,82,83,84,85,86,87,88)である
    ことを特徴とする請求項1から請求項8までのいずれか一つに記載のクライオスタット装置。
  10. 環境温度断熱弁(80)と、
    前記断熱弁から前記外殻上部を貫通して前記外殻の内部へ延在する第1の導管(82)と、
    前記外殻内部にあって前記導管が接続される第一段目コールドトラップ(83)と、
    前記外殻内部にある第二段目コールドトラップ(85)と、
    前記第一段目コールドトラップから前記第二段目コールドトラップへ延在する第2の導管(88)と、
    前記第二段目コールドトラップの内部で結合された吸引ポンプを更に含む
    ことを特徴とする請求項9に記載のクライオスタット装置。
  11. 前記少なくともひとつの冷却されたコンポーネントは熱放射シールド(16)である
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  12. 少なくともひとつの冷却コンポーネントを有し、
    前記少なくともひとつの冷却コンポーネントは超電導磁石アセンブリー(19)で、望ましくは外殻内部に構成される
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  13. 低温プレート(27)が前記底部と前記磁石アセンブリの間で熱的に結合されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  14. 前記超低温クーラーチャンバの前記底部と前記磁石アセンブリの間で熱的に結合されている熱伝導素子(27)を更に含む
    ことを特徴とする請求項13に記載のクライオスタット装置。
  15. 上部(13)を有する前記外殻をさらに含み、前記外殻上部の外側表面は環境温度になっている
    ことを特徴とする請求項2またはこれに従属するいずれかの請求項に記載のクライオスタット装置。
  16. 前記超低温クーラーと前記超低温クーラーチャンバは実質的に垂直方向に向けられ上部が下部より暖かく内部にある冷媒ガスは底部に冷たく密度の高い冷媒ガスがたまり上部に暖かく密度の低い冷媒ガスがたまるように熱的に層構造を形成する
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  17. 前記外殻の外側にあってインレットポートとアウトレットポートを有するガス再循環ポンプ(56)を更に含み、前記アウトレットポートは前記主ガスインレット導管に接続され前記インレットポートは前記少なくともひとつのクライオスタット排気導管へ接続される
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  18. 前記超低温クーラーチャンバに流入する冷媒ガスは前記超低温クーラーによって冷却されて前記超低温クーラーチャンバの底部で液状冷媒として回収される
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。

  19. 少なくとも2つのサイホンの効果ポートを有し、前記少なくとも2つのサイホン効果ポートのうちの一つは液状冷媒を前記冷媒導管内に吸引するように構成されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  20. 前記超低温クーラーチャンバ(26)の底部と前記超低温クーラーチャンバより外部で前記クライオスタットの内部にある前記少なくともひとつの冷却コンポーネント(19,21,35,58,85,86,87,88)との間で熱的に結合されている熱伝導素子(27)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  21. 前記超低温クーラーチャンバの底部と前記超低温クーラーチャンバの外部にある前記少なくともひとつの冷却コンポーネント(19,21,35,58)との間に接続されている液状冷媒導管(61)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  22. 前記超低温クーラーチャンバ(26)の底部は内部が熱交換器表面で構成され、前記熱交換器が前記超低温クーラーチャンバの底部に存在する液状冷媒(4.2K)と直接接触するようになっており、前記超低温クーラーチャンバの底部は熱伝導領域であって前記熱交換器表面と前記少なくともひとつの冷却コンポーネントの間に熱伝導路を提供するように構成されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  23. 前記超低温クーラーチャンバ(26)の底部は内部が熱交換器表面で構成され、前記熱交換器が前記超低温クーラーチャンバの底部で冷やされて高密度の冷媒ガス(4.2K)と直接接触するようになっており、前記超低温クーラーチャンバの底部は熱伝導領域であって前記熱交換器表面と前記少なくともひとつの冷却コンポーネントの間に熱伝導路を提供するように構成されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  24. 前記熱交換器表面に隣接した前記超低温クーラーチャンバは前記少なくともひとつの中間温度段と前記熱交換器表面との間での主な熱交換が浮遊対流(26,49,50,52)により行われるように構成されている
    ことを特徴とする請求項23に記載のクライオスタット装置。
  25. 第1の前記少なくともひとつの冷媒導管のカウンターフロー熱交換器(CFE)(43)と、
    前記外殻より外側の前記第1の少なくともひとつの冷媒導管に接続され第1の環境温度フロー制御弁(46)を更に含み、前記CFEは
    冷却導管(44)と全長の少なくとも一部にそって熱的接触した状態の加温導管(42)であって、前記加温導管は前記少なくとも2つのサイホン効果ポートのうちの一つ(53)に冷間インレットが接続されており前記第1のフロー制御弁に温間アウトレットが接続され、
    前記冷却導管は前記フロー制御弁に温間インレットが接続され前記少なくともひとつの冷却コンポーネント(19,21,35,58)に冷間アウトレットが接続され、
    前記CFEは前記少なくともひとつの冷却コンポーネントへ流れる冷却された冷媒のフローを制御するように構成されていることを含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  26. フロー制限装置(47)と、さらに
    蒸発チャンバ(35)を更に含み、
    前記フロー制限装置は前記少なくともひとつの冷媒導管(61)のひとつにおいて前記超低温クーラーチャンバの底部と前記蒸発チャンバの間に接続してあり、前記超低温クーラーチャンバの底部における圧力よりも小さい圧力で前記蒸発チャンバへ液状冷媒を供給して前記蒸発チャンバ内の温度が前記超低温クーラーチャンバの底部にある液状冷媒の温度より低くなるようにすることができる
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  27. 前記少なくともひとつの冷却コンポーネントの下流側にある前記少なくともひとつのクライオスタット排気導管の一つに取り付けられた環境温度制御弁を更に含み、前記環境制御弁は前記少なくともひとつの冷却コンポーネントより上流側の冷却された冷媒のフローを制御するように接続され構成されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  28. 前記蒸発チャンバから前記蒸発した冷媒が提供されて前記少なくともひとつの冷却されたコンポーネント(19,21,58)を冷却する
    ことを特徴とする請求項26または請求項27に記載のクライオスタット装置。
  29. 前記蒸発チャンバは前記少なくともひとつの冷却されたコンポーネント(19,21,58)と熱的連通状態にある
    ことを特徴とする請求項25から請求項28までのいずれかに記載のクライオスタット装置。
  30. 前記少なくともひとつの冷却されたコンポーネント(21)は検査室試料の測定又は調整のための熱的環境チャンバである
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  31. サンプルチャンバ(21)と、
    前記超低温クーラーチャンバ(22)の前記底部(26)を前記サンプルチャンバと熱的に連結する第三の導管(61)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  32. 第四の導管を用いて前記超低温クーラーチャンバの第2の前記サイホン効果ポート(57)へ接続されたネック熱交換器(39)を更に含み、前記ネック熱交換器は前記サンプルチャンバ(21)と熱結合している
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  33. 前記磁石アセンブリに熱的に結合され前記外殻より外側の予備冷却液体の供給源に接続するのに適している予備冷却手段(54,55,59)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  34. 前記外殻(12)の内部にある内殻(16)と、
    前記内殻の上部を含む中間温度プレート(17)と、
    前記中間温度プレートに熱的に接続されたネックリング(29)を更に含み、前記ネックリングは前記超低温クーラーチャンバに連結され前記超低温クーラーによる熱的冷却により冷却される
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  35. 前記超低温クーラーは少なくとも2つの冷却段(50,52)を備え、前記底部(26)にある冷媒は前記超低温クーラーにより生成された最小温度になっている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  36. 内殻(16)と外殻(12)を更に含み、前記外殻は前記内殻を包囲し、前記外殻は上部プレート(13)が形成してありその外側表面が環境温度になっており、
    前記超低温クーラーは前記上部プレートの前記外側表面上において前記外殻より外側に存在する環境温度上部フランジ(33)を有する
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  37. 前記外殻(12)の内部にある内殻(16)と、前記内殻より内側にある磁石アセンブリ(19)とを更に含み、前記超低温クーラーチャンバ(22)は少なくとも部分的には前記内殻の内側にあって、前記第1の導管が前記内殻内部の前記超低温クーラーチャンバの一部から延出し、前記超低温クーラーチャンバの前記第1のサイホン効果ポートが前記内殻より内部にある
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  38. 前記超低温クーラーは約4.2Kに冷却された冷媒を全基底部へ提供し、これによって約4.2Kの温度を前記低温度プレート(27)経由で前記磁石アセンブリへ熱伝導的に提供するようにしてある
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  39. 前記底部と前記磁石アセンブリの間に結合されて前記磁石アセンブリへ約4.2Kの冷媒液体を提供するようになっている低温度導管(61)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  40. 前記少なくともひとつの中間温度段は第1の冷却段(50)と第2の冷却段(52)を含み、前記超低温クーラーは前記第1の導管から前記超低温クーラーチャンバの前記底部(26)へ徐々に冷たい冷媒液体を提供するように構成されている
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  41. 前記外殻(12)内部の内殻(16)と、
    前記第1の冷却段に熱的に結合された中間温度プレート(17)を更に含み、前記中間温度プレートは前記内殻の上部を含むようにしてある
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  42. 前記クライオスタット装置内部の少なくともひとつの冷却コンポーネント(21)と、
    前記超低温クーラーチャンバ(22)の中間温度サイホン効果ポート(57)と、
    前記中間温度サイホン効果ポートと前記少なくともひとつの冷却されたコンポーネントの一つとの間に結合されている中間温度冷媒導管(39)とを更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  43. 前記外殻の内部にある少なくともひとつの冷却コンポーネントであって、前記第2のCFE導管が前記少なくともひとつの冷却されたコンポーネントの少なくとも幾つかへの冷却された冷媒のフローを制御することと、
    前記外殻(12)内部の内殻(16)と、
    前記超低温クーラーチャンバに固定されたネックリング(29)を更に含み、前記ネックリングは前記超低温クーラーの前記第1の冷却段へ熱的に結合され、また
    前記ネックリングに熱的に結合された中間温度プレート(17)を更に含み、前記中間温度プレートは前記内殻の上部を含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  44. 前記外殻(12)内部のネック熱交換器(39)と
    前記少なくとも2つのサイホン効果ポートのうちの一つから前記ネック熱交換器へ結合された第2の導管(57)を更に含む
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  45. 少なくとも2つのサイホン効果ポートのうちの一つは前記底部から前記磁石アセンブリへ温度を下げた冷媒を結合する
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  46. 前記装置は温度を調節するのに適している
    ことを特徴とする先行の請求項のいずれかに記載のクライオスタット装置。
  47. クライオスタット装置において温度を調節する方法であって、前記装置は少なくともひとつの環境温度冷媒ガスインレットポート(36)を備えた超低温クーラーチャンバ(22)と、少なくともひとつの低温度段(50,52)を備えた超低温クーラー(30,31,33)を含み、前記超低温クーラーは少なくとも部分的には前記超低温クーラーチャンバ内部に配設され、冷却容積(48)は超低温クーラーの少なくともひとつの低温度段とガスインレットポートが侵入する超低温クーラーチャンバの内壁との間の空間を含み、さらに環境温度冷媒ガス供給源へ接続する手段(34,37)、超低温クーラーチャンバの壁に配設された少なくともひとつのガス又は液体サイホン効果ポート(53,57,61)、少なくとも部分的には前記クライオスタット内部に配置され少なくとも部分的には前記冷却容積の外側に配置され冷却を必要とする少なくともひとつの冷却コンポーネント(21)、それぞれのガス又は液体サイホン効果ポートを前記少なくともひとつの冷却コンポーネントのうちの一つ(39,44,61)と連結する冷媒導管、前記少なくともひとつの冷却されるコンポーネントのひとつから延出して前記クライオスタットの外部へ達し前記クライオスタットから冷媒を流出させるように構成された少なくともひとつのクライオスタット排気導管を含み、前記方法は
    環境温度にある冷媒をガスインレットポートに流入させさらに超低温クーラーチャンバの冷却容積に流入させるステップと、
    前記冷媒ガスを前記冷却容積に流通させこれによって超低温クーラーの一段又はそれ以上の徐々に冷たくなる温度低下段との熱交換により前記冷媒を冷却するステップと、
    前記少なくともひとつのサイホン効果ポートを通して前記冷却容積から冷却された冷媒を流出させるステップと、
    前記少なくともひとつのサイホン効果ポートから少なくともひとつの前記少なくともひとつの冷却コンポーネントへ冷却された冷媒を供給して前記冷却コンポーネントを冷却するステップと、
    前記冷却コンポーネントから前記クライオスタット外部へ少なくともひとつのクライオスタット排出導管を経由して前記冷媒を流出させるステップと、
    を含むことを特徴とする方法。
  48. 前記クライオスタットは前記冷却容積内部の異なる温度で前記冷媒フローをサンプリングするように特に配置したサイホン効果ポート(53,57,61)を更に含み、前記方法はさらに
    前記冷却容積から第1のサイホン効果ポートを通して前記冷却された冷媒フローの一部を排出させ、前記サイホン採取した冷媒は前記クーラーの最小低下温度より大きな温度まで冷却されるようにするステップと、
    前記冷却容積から少なくともひとつのさらに別のサイホン効果ポートを通して前記冷媒フローのさらに別の一部を排出させ、前記サイホン採取された冷媒は前記第1のサイホン効果ポートより低い温度まで冷却されているようにするステップと、
    を含むことを特徴とする請求項47に記載の方法。
  49. 前記クライオスタット装置はさらに、前記少なくともひとつのガス状又は液体状サイホン効果ポートから前記少なくともひとつの冷却コンポーネントへ接続する前記冷媒導管のうち少なくともひとつの冷媒導管を含み、前記少なくともひとつの冷媒導管は、カウンターフロー熱交換器(CFE)(43)と少なくともひとつの環境温度フロー制御弁(46)を含み、前記CFEは冷却導管(44)に沿ったこれの全長の一部で熱交換する加温導管(42)を含み、前記加温導管は前記冷媒サイホンポートに接続された冷インレットと第1の環境温度フロー制御弁に接続された温アウトレットを備え、前記冷却導管は前記少なくともひとつの環境温度フロー制御弁へ接続された温インレットと前記少なくともひとつの冷却コンポーネント(19,21,35)へ結合された冷アウトレットを備え、前記CFEは前記少なくともひとつの冷却コンポーネントへの冷却された冷媒のフローを制御するように構成されており、前記方法はさらに、
    少なくともひとつの冷却コンポーネントへの冷却された冷媒のフローを制御するためのステップを含み、前記ステップは更に、
    前記少なくともひとつのサイホン効果ポート(53)から排出された冷却された冷媒を前記CFEの冷インレットへ流入させるステップと、
    前記CFEの前記冷却フロートの熱交換により冷媒のフローを徐々に加温し前記フローが環境温度になるまで加温を続けるステップと、
    前記環境温度冷媒を前記環境温度フロー制御弁に流通させるステップと、
    前記環境温度フロー制御弁を使用して前記冷媒フローを制御するステップと、
    前記環境温度フロー制御弁からの前記フローを前記加温フロートの熱交換により徐々に冷却し、前記フローが前記冷却された冷媒の温度まで実質的に冷却されるまで継続するステップと、
    前記少なくともひとつの冷却コンポーネントへ前記冷媒を供給するステップと
    を含むことを特徴とする請求項47又は請求項48に記載の方法。
  50. 前記クライオスタット装置はさらに前記冷却容積から液化された冷媒を排出するように特に構成され配置されている前記サイホン効果ポート(61)の少なくとも一つを含み、蒸発チャンバ(35)へ結合された前記冷媒導管の一部として液状冷媒を前記蒸発チャンバへ供給するように特に構成され配置されているフロー制限装置(47)を含み、前記方法はさらに、
    前記冷却容積内部の前記冷却された冷媒の少なくともいくらかを十分に冷却し冷媒を液状冷媒にまで濃縮できるようにするステップと、
    前記超低温クーラーチャンバから前記液状冷媒をサイホンで吸い上げ前記フロー制限装置を経由して前記蒸発チャンバへ冷媒を供給するステップと、
    接続されている前記排出導管を経由して前記蒸発チャンバへポンプで圧送して蒸発させ前記上初チャンバを冷却し前記蒸発した冷媒を前記超低温クーラーの最も低温の温度低下段の温度より低い温度まで冷却するステップと、
    を含むことを特徴とする請求項47から請求項49までの一つに記載の方法。
  51. 前記クライオスタット装置はさらに、関連する前記少なくともひとつの冷却コンポーネントの下流の一点で環境温度フロー制御弁へ結合されたクライオスタット排出導管の少なくとも一つを含み、前記方法はさらに、
    冷却された冷媒のフローを制御し、前記環境温度フロー制御弁で前記排気冷媒のフローを制御することにより前記関連する少なくともひとつの冷却コンポーネントにおいて利用可能な冷却力を制御するようにするステップ
    を含むことを特徴とする請求項47から請求項50までの一つに記載の方法。
  52. 前記クライオスタット装置はさらに、前記超低温クーラーチャンバの壁面に一つ又はそれ以上の熱伝導する領域を含み、それぞれの領域は前記超低温クーラーチャンバの外側にある前記少なくともひとつの冷却コンポーネントと前記超低温クーラーチャンバの内側に配置された熱交換器表面との間の熱伝導経路を提供するように構成されており、前記方法はさらに、
    前記冷却用管内の前記冷却された冷媒との熱交換により前記熱交換器表面を冷却するステップと、
    前記超低温クーラーチャンバの壁面の前記熱伝導領域を介して固体熱伝導により前記少なくともひとつの冷却コンポーネントを冷却するステップと
    を含むことを特徴とする請求項47から請求項51までの一つに記載の方法。
  53. 前記クライオスタット装置はさらに、前記熱伝導領域に取り付けられた少なくともひとつのヒーターを含み、前記熱伝導領域は前記クーラーチャンバ内にある液状冷媒と熱的連通状態にあり、前記方法はさらに、
    前記ヒーターの出力を調節して最小冷媒蒸気圧を維持し、これにより前記クーラーチャンバ内部の冷媒圧力を維持し、前記冷媒圧力は冷媒の循環を駆動するのに必要なだけの圧力であるとするステップ
    を含むことを特徴とする請求項47から請求項52までのいずれか一つに記載の方法。
JP2012557291A 2010-03-11 2011-03-11 静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置 Withdrawn JP2013522574A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/722,128 2010-03-11
US12/722,128 US9234691B2 (en) 2010-03-11 2010-03-11 Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
PCT/US2011/028184 WO2011112987A2 (en) 2010-03-11 2011-03-11 Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas

Publications (1)

Publication Number Publication Date
JP2013522574A true JP2013522574A (ja) 2013-06-13

Family

ID=44070663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012557291A Withdrawn JP2013522574A (ja) 2010-03-11 2011-03-11 静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置

Country Status (6)

Country Link
US (1) US9234691B2 (ja)
JP (1) JP2013522574A (ja)
CN (1) CN102971594A (ja)
DE (1) DE112011100875T5 (ja)
GB (1) GB2490836A (ja)
WO (1) WO2011112987A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042000A (ja) * 2014-08-18 2016-03-31 英樹 矢山 クライオスタット装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2389983B1 (en) 2005-11-18 2016-05-25 Mevion Medical Systems, Inc. Charged particle radiation therapy
DE102006046688B3 (de) * 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
US20120167598A1 (en) * 2010-09-14 2012-07-05 Quantum Design, Inc. Vacuum isolated multi-well zero loss helium dewar
US8338979B2 (en) * 2011-06-30 2012-12-25 General Electric Company Method and apparatus for a superconducting direct current generator driven by a wind turbine
US10113793B2 (en) * 2012-02-08 2018-10-30 Quantum Design International, Inc. Cryocooler-based gas scrubber
DK2637181T3 (en) * 2012-03-06 2018-06-14 Tesla Engineering Ltd Multi-orientable cryostats
GB2502629B (en) * 2012-06-01 2015-03-11 Siemens Plc A closed cryogen cooling system and method for cooling a superconducting magnet
GB201210927D0 (en) * 2012-06-20 2012-08-01 Oxford Instr Nanotechnology Tools Ltd Reduction of blockages in a cryogenic refrigerator system
FR2992978B1 (fr) * 2012-07-06 2014-07-11 Commissariat Energie Atomique Dispositif de generation de cibles a base d'hydrogene et/ou de deuterium solide
WO2014081932A1 (en) * 2012-11-21 2014-05-30 D-Wave Systems Inc. Systems and methods for cryogenic refrigeration
US20140326001A1 (en) * 2012-11-21 2014-11-06 D-Wave Systems Inc. Systems and methods for cryogenic refrigeration
KR101805075B1 (ko) * 2013-04-24 2017-12-05 지멘스 헬스케어 리미티드 2단 극저온 냉동기 및 관련 장착 설비를 포함하는 조립체
CN103424358B (zh) * 2013-07-10 2016-05-04 中国科学院安徽光学精密机械研究所 多参数可控温模拟垂直大气环境吸收池装置
US10403423B2 (en) * 2013-11-13 2019-09-03 Koninklijke Philips N.V. Superconducting magnet system including thermally efficient ride-through system and method of cooling superconducting magnet system
US20150300719A1 (en) * 2014-04-16 2015-10-22 Victoria Link Ltd Cryogenic gas circulation and heat exchanger
WO2015159258A1 (en) * 2014-04-17 2015-10-22 Victoria Link Ltd Cryogenic fluid circuit design for effective cooling of an elongated thermally conductive structure extending from a component to be cooled to a cryogenic temperature
CN103985499B (zh) * 2014-04-19 2016-06-08 云南电力试验研究院(集团)有限公司电力研究院 高温超导磁体液氮零蒸发冷却系统
CN103920303A (zh) * 2014-04-22 2014-07-16 中国科学院长春应用化学研究所 一种冷阱的气流加热除霜方法
US10378803B2 (en) 2014-08-08 2019-08-13 D-Wave Systems Inc. Systems and methods for electrostatic trapping of contaminants in cryogenic refrigeration systems
US20160040830A1 (en) * 2014-08-11 2016-02-11 Raytheon Company Cryogenic assembly including carbon nanotube electrical interconnect
CN104237817B (zh) * 2014-09-26 2016-11-30 苏州露宇电子科技有限公司 核磁共振磁体恒温装置
CN105823261B (zh) * 2015-01-06 2022-10-28 青岛海尔智能技术研发有限公司 磁制冷组件及磁制冷设备
GB201517391D0 (en) * 2015-10-01 2015-11-18 Iceoxford Ltd Cryogenic apparatus
EP3285032B1 (de) * 2016-08-18 2019-07-24 Bruker BioSpin AG Kryostatanordnung und verfahren zum betrieb davon
JP6626816B2 (ja) * 2016-11-24 2019-12-25 ジャパンスーパーコンダクタテクノロジー株式会社 超電導コイルの予冷方法及び超電導マグネット装置
CN106601422B (zh) * 2016-12-29 2018-05-04 东莞市玻尔超导科技有限公司 一种传导冷却高温超导磁体的温度控制系统及其控制方法
CN106683821B (zh) * 2017-03-28 2018-10-30 潍坊新力超导磁电科技有限公司 一种用于氦气冷却的冷头容器
DE102017205279B3 (de) * 2017-03-29 2018-09-20 Bruker Biospin Ag Kryostatanordnung mit einem Halsrohr mit einer tragenden Struktur und ein die tragende Struktur umgebendes Außenrohr zur Verringerung des Kryogenverbrauchs
US11148832B2 (en) * 2017-06-16 2021-10-19 Iris Technology Corporation Systems and methods for vibration control
GB2567130B (en) * 2017-07-25 2022-11-30 Tesla Engineering Ltd Cryostat arrangements and mounting arrangements for cryostats
US11125664B2 (en) * 2017-12-04 2021-09-21 Montana Instruments Corporation Analytical instruments, methods, and components
US10724780B2 (en) 2018-01-29 2020-07-28 Advanced Research Systems, Inc. Cryocooling system and method
US11035807B2 (en) * 2018-03-07 2021-06-15 General Electric Company Thermal interposer for a cryogenic cooling system
US11396980B2 (en) 2018-11-13 2022-07-26 Quantum Design International, Inc. Low vibration cryocooled cryostat
CN109285646B (zh) * 2018-11-30 2020-08-25 合肥中科离子医学技术装备有限公司 一种用于冷屏快速降温的结构及方法
JP2020106490A (ja) 2018-12-28 2020-07-09 横河電機株式会社 測定装置、検量線作成システム、スペクトル測定方法、検量線作成方法、分析装置、液化ガス製造プラント、及び性状分析方法
JP7265363B2 (ja) * 2019-01-16 2023-04-26 住友重機械工業株式会社 極低温冷凍機および極低温システム
JP7186132B2 (ja) 2019-05-20 2022-12-08 住友重機械工業株式会社 極低温装置およびクライオスタット
US20220236349A1 (en) * 2019-05-21 2022-07-28 Koninklijke Philips N.V. Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets
US10785891B1 (en) 2019-06-17 2020-09-22 Microsoft Technology Licensing, Llc Superconducting computing system in a liquid hydrogen environment
DE102020117235A1 (de) * 2019-07-01 2021-01-07 Montana Instruments Corporation Kryogene Analysesysteme und Verfahren
US11674738B2 (en) * 2020-04-23 2023-06-13 Quantinuum Llc Testing environment for cryogenic chamber
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods
CN113654382B (zh) * 2021-07-20 2022-04-15 中国科学院高能物理研究所 一种无运动部件驱动的超导冷却循环系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848093A (en) * 1987-08-24 1989-07-18 Quantum Design Apparatus and method for regulating temperature in a cryogenic test chamber
US4791788A (en) * 1987-08-24 1988-12-20 Quantum Design, Inc. Method for obtaining improved temperature regulation when using liquid helium cooling
US5220800A (en) * 1990-12-10 1993-06-22 Bruker Analytische Messtechnik Gmbh Nmr magnet system with superconducting coil in a helium bath
US5410286A (en) * 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet
GB2318176B (en) 1995-05-16 1999-05-19 Toshiba Kk A refrigerator having a plurality of cooling stages
US5647218A (en) * 1995-05-16 1997-07-15 Kabushiki Kaisha Toshiba Cooling system having plural cooling stages in which refrigerate-filled chamber type refrigerators are used
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
US5647228A (en) * 1996-07-12 1997-07-15 Quantum Design, Inc. Apparatus and method for regulating temperature in a cryogenic test chamber
US5701744A (en) * 1996-10-31 1997-12-30 General Electric Company Magnetic resonance imager with helium recondensing
JPH11288809A (ja) * 1998-03-31 1999-10-19 Toshiba Corp 超電導マグネット装置
GB0014715D0 (en) 2000-06-15 2000-08-09 Cryogenic Ltd Method and apparatus for providing a variable temperature sample space
DE10033410C1 (de) * 2000-07-08 2002-05-23 Bruker Biospin Gmbh Kreislaufkryostat
GB0121603D0 (en) * 2001-09-06 2001-10-24 Oxford Instr Superconductivity Magnet assembly
WO2003081145A1 (fr) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Dispositif de stockage a temperature cryogenique et refrigerateur
US6477847B1 (en) * 2002-03-28 2002-11-12 Praxair Technology, Inc. Thermo-siphon method for providing refrigeration to a refrigeration load
JP3726965B2 (ja) * 2002-07-01 2005-12-14 富士電機システムズ株式会社 酸素の製造方法と装置
US6640552B1 (en) * 2002-09-26 2003-11-04 Praxair Technology, Inc. Cryogenic superconductor cooling system
US7191607B2 (en) * 2002-10-23 2007-03-20 Morton Curtis Air conditioning system with moisture control
GB0401835D0 (en) * 2004-01-28 2004-03-03 Oxford Instr Superconductivity Magnetic field generating assembly
GB0408312D0 (en) * 2004-04-14 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
GB0411072D0 (en) * 2004-05-18 2004-06-23 Oxford Instr Superconductivity Apparatus and method for performing in-vitro dnp-nmr measurements
US7170377B2 (en) * 2004-07-28 2007-01-30 General Electric Company Superconductive magnet including a cryocooler coldhead
DE102004037172B4 (de) * 2004-07-30 2006-08-24 Bruker Biospin Ag Kryostatanordnung
DE102004060832B3 (de) * 2004-12-17 2006-06-14 Bruker Biospin Gmbh NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE102005029151B4 (de) * 2005-06-23 2008-08-07 Bruker Biospin Ag Kryostatanordnung mit Kryokühler
JP4150745B2 (ja) * 2006-05-02 2008-09-17 住友重機械工業株式会社 クライオポンプ及びその再生方法
DE102006046688B3 (de) * 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
US7631507B2 (en) * 2006-11-02 2009-12-15 General Electric Company Methods and devices for polarized samples for use in MRI
WO2009086430A2 (en) * 2007-12-28 2009-07-09 D-Wave Systems Inc. Systems, methods, and apparatus for cryogenic refrigeration
US20090293505A1 (en) * 2008-05-29 2009-12-03 Cryomech, Inc. Low vibration liquid helium cryostat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042000A (ja) * 2014-08-18 2016-03-31 英樹 矢山 クライオスタット装置

Also Published As

Publication number Publication date
US9234691B2 (en) 2016-01-12
GB2490836A (en) 2012-11-14
WO2011112987A2 (en) 2011-09-15
WO2011112987A3 (en) 2012-11-08
DE112011100875T5 (de) 2013-04-11
GB201215293D0 (en) 2012-10-10
US20110219785A1 (en) 2011-09-15
CN102971594A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
JP2013522574A (ja) 静止状態及び流動状態のガスを用いて超低温冷却クライオスタットにおける温度を制御するための方法およびその装置
JP3996935B2 (ja) クライオスタット構造
US7474099B2 (en) NMR apparatus with commonly cooled probe head and cryogenic container and method for the operation thereof
US7430871B2 (en) NMR spectrometer with a common refrigerator for cooling an NMR probe head and cryostat
JP4417247B2 (ja) 超伝導磁石と冷凍ユニットとを備えたmri装置
KR101422231B1 (ko) 고온 연결 부재 및 저온 연결 부재를 구비하고 상기 연결 부재들에 연결되는 열교환 튜브를 구비하는 냉각 설비
US6389821B2 (en) Circulating cryostat
JP6356883B2 (ja) 超伝導マグネットアセンブリ及び冷却試料ヘッド部品を備えるnmr装置
JP4031121B2 (ja) クライオスタット装置
JP2005214976A (ja) 磁場生成組立体
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
US20050229609A1 (en) Cooling apparatus
JP2008014878A (ja) クライオスタット及び試料装着装置、温度制御方法
US8117850B2 (en) Refrigeration apparatus having warm connection element and cold connection element and heat pipe connected to connection elements
JP4595121B2 (ja) 機械式冷凍機とジュール・トムソン膨張を用いた極低温冷凍装置
US20200041176A1 (en) Cryostat assembly with superconducting magnet coil system with thermal anchoring of the mounting structure
JP2008538856A (ja) クライオスタットアセンブリ
WO2013179011A1 (en) Cryostat
Trollier et al. Remote helium cooling loops for laboratory applications
JP2007078310A (ja) 極低温冷却装置
JPH1026427A (ja) 冷却装置
US20220236349A1 (en) Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets
JP4150825B2 (ja) Nmrプローブ
JPH09113052A (ja) 冷凍装置
Teleberg et al. A miniature dilution refrigerator for sub-Kelvin detector arrays

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513