JP2013258061A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2013258061A
JP2013258061A JP2012133539A JP2012133539A JP2013258061A JP 2013258061 A JP2013258061 A JP 2013258061A JP 2012133539 A JP2012133539 A JP 2012133539A JP 2012133539 A JP2012133539 A JP 2012133539A JP 2013258061 A JP2013258061 A JP 2013258061A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
circulation pump
supplied
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133539A
Other languages
English (en)
Other versions
JP6167477B2 (ja
Inventor
Hiromichi Miwa
博通 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012133539A priority Critical patent/JP6167477B2/ja
Priority to US14/400,613 priority patent/US9755257B2/en
Priority to PCT/JP2013/060475 priority patent/WO2013187110A1/ja
Priority to EP13804929.1A priority patent/EP2863462B1/en
Priority to CN201380031279.3A priority patent/CN104364953B/zh
Publication of JP2013258061A publication Critical patent/JP2013258061A/ja
Application granted granted Critical
Publication of JP6167477B2 publication Critical patent/JP6167477B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】循環ポンプのダイナミックレンジを低減し、且つ、改質ガス中に含まれる水分が凝縮することを防止することができる燃料電池システムを提供する。
【解決手段】循環ポンプ14の入口に導入される改質ガスを冷却するための第1熱交換器19の冷却能力を、燃料電池11の出力の増加と共に増大させる構成とする。これにより、循環ポンプ14の入口温度が、低発電電力時には相対的に高く、発電電力の増加に伴い低下する特性とし、要求される改質ガスの多い高発電電力時の体積流量を相対的に低減することができる。その結果、循環ポンプ14に要求されるダイナミックレンジを小さくできる。更に、低発電電力時に循環ポンプ14の入口での水凝縮を防止することができる。
【選択図】図1

Description

本発明は、固体酸化物型燃料電池を用いた燃料電池システムに係り、特に、システム全体を小型化、高効率化する技術に関する。
一般に、固体酸化物型燃料電池(SOFC, Solid Oxide Fuel Cell)を備える燃料電池システムでは、改質反応に炭化水素系の燃料、及び水が必要になる。このため、従来における燃料電池システムでは、循環ポンプを用いて燃料電池のアノードより排出される水分を含んだガス(以下、「アノードオフガス」という)を改質器に再循環させている。
しかしながら、アノードオフガスを再循環させる場合には、アノードオフガスの温度と同程度の高温に耐える性能を備えた循環ポンプが必要となる。更に、アノードオフガスの温度が高温であるために体積流量が大きくなり、循環ポンプの容量が大きくなるという問題がある。そこで、例えば、特開2006−302660号公報(特許文献1)には、燃料電池のカソードに導入される酸化剤(例えば、空気)と、循環されるアノードオフガスと、の間で熱交換することにより、循環ポンプに供給されるアノードオフガスを冷却し、循環ポンプの耐熱性能を低いものとし、且つ、アノードオフガスの体積流量を低減させることが開示されている。
特開2006−302660号公報
しかしながら、上述した特許文献1に開示された従来例では、アノードオフガスをカソード供給用の酸化剤により冷却する構成であるので、車載用の燃料電池システムのように、要求される発電出力のダイナミックレンジが広い場合には、発電出力が大きくなるほど循環ポンプに導入されるアノードオフガスの温度が上昇し、要求される循環ガスの体積流量が多くなり、循環ポンプに要求されるダイナミックレンジが大きくなるという問題がある。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、循環ポンプのダイナミックレンジを狭めることができる燃料電池システムを提供することにある。
上記目的を達成するため、本願請求項1に記載の発明は、燃料電池のアノードより排出されるアノードオフガスの一部を循環させて改質手段に供給し、該改質手段で改質された改質ガスをアノードの入口へ導入する循環ポンプと、循環ポンプの入口側の流路に設けられ、循環ポンプに供給される改質ガスを冷却する第1熱交換手段とを備える。そして、第1熱交換手段は、燃料電池の出力電力が大きいほど、循環ポンプに供給される改質ガスを冷却する能力が増加するように設定される。
本発明に係る燃料電池システムでは、改質手段より出力される改質ガスを第1熱交換手段にて冷却し、更に、循環ポンプに供給して改質ガスを燃料電池のアノードに循環させる。また、燃料電池の出力電力が大きいほど、循環ポンプに供給される改質ガスを冷却する能力が増加するので、燃料電池の出力が増加するにつれて改質ガスの温度を低下させることができ、循環ポンプのダイナミックレンジを狭めることができる。
本発明の第1実施形態に係る燃料電池システムの構成を示すブロック図である。 本発明の第1実施形態に係る燃料電池システムの、発電電力と循環ポンプ入口ガス温度との関係を示す特性図である。 本発明の第1実施形態に係る燃料電池システムの、発電電力と循環ポンプ入口ガス温度、及び循環ポンプ入口のガス流量との関係を示す特性図である。 本発明の第2実施形態に係る燃料電池システムの構成を示すブロック図である。 本発明の第3実施形態に係る燃料電池システムの構成を示すブロック図である。 本発明の第4実施形態に係る燃料電池システムの構成を示すブロック図である。
以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態の説明]
図1は、本発明の第1実施形態に係る燃料電池システムの構成を示すブロック図である。図1に示すように、第1実施形態に係る燃料電池システム100は、アノード11a、及びカソード11bを備える固体酸化物型燃料電池11(以下、「燃料電池11」と略す)と、炭化水素系の燃料を供給する燃料ポンプ12と、改質器13aと燃焼器13bとを有し燃料ポンプ12より供給される燃料を改質する熱交換型改質装置13(改質手段)と、改質器13aで改質された改質ガスをアノード11aの入口に循環させる循環ポンプ14と、を備えている。
更に、カソード11bの排気ガスの熱により、燃料ポンプ12より供給される燃料を蒸発させて改質器13aに供給する燃料蒸発器15と、アノード11aの出口流路に接続され、アノード11aの排気ガス(以下、「アノードオフガス」という)を分流し、分流後の一方の系統を改質器13aに供給し、他方の系統を燃焼器13bに供給する分流弁16と、燃焼器13bに燃焼用の空気を供給する第1空気ブロワ20と、を備えている。
更に、カソード11bに空気(酸化剤)を供給する第2空気ブロワ17(酸化剤供給手段)と、燃焼器13bの排気ガスにより、第2空気ブロワ17より送出される空気を加熱する第3熱交換器(第3熱交換手段)18と、該第3熱交換器18により加熱された空気が低温側に供給され、高温側に改質器13aより出力される改質ガスが供給される第1熱交換器(第1熱交換手段)19と、を備えている。
ここで、第1熱交換器19、及び第3熱交換器18は、循環ポンプ14に供給される改質ガス温度が、この改質ガスの露点(水蒸気が結露する温度)を下回らない範囲で、当該改質ガスの温度を冷却するように、各種の諸元が設定されている。更に、その他のシステム構成についても、改質ガスの温度が露点を下回らないように設定されている。
次に、上述のように構成された第1実施形態に係る燃料電池システム100の作用について説明する。
燃料電池システム100の運転時においては、第1空気ブロワ20より熱交換型改質装置13の燃焼器13bに空気が供給され、且つ、該燃焼器13bにアノード11aより排出されるアノードオフガスが供給されて燃焼する。そして、燃焼器13bの排気ガスは第3熱交換器18の高温側に供給され、その後排出される。従って、燃焼器13bの排ガスの熱により、第2空気ブロワ17より送出される空気が加熱される。
また、カソード11bより排出される排気ガスは、燃料蒸発器15の高温側を通過することにより、燃料ポンプ12より送出される燃料を加熱し、該燃料を気化させる。
そして、燃料ポンプ12より送出されて燃料蒸発器15にて気化した燃料と、アノードオフガスの一部が混合した混合ガスが改質器13aに供給され、一方、燃焼器13bでは、アノードオフガスの一部が燃焼して発熱するので、改質器13aでは改質反応により改質ガスが生成される。
改質器13aにて生成された改質ガスは、第1熱交換器19の高温側を通過して循環ポンプ14の入口に供給され、該循環ポンプ14により燃料電池11のアノード11aに供給される。
また、第2空気ブロワ17より送出される空気(酸化剤)は、第3熱交換器18の低温側を通過し、更に、第1熱交換器19の低温側を通過して加熱され、燃料電池11のカソード11bに供給される。即ち、第3熱交換器18にて、燃焼器13bの排気ガスにより加熱され、第1熱交換器19にて、改質ガスにより加熱された後、カソード11bに供給される。そして、燃料電池11では、水素と酸素の化学反応により電子が生成され、直流電流として取り出される。
この際、改質器13aより出力される改質ガスは、第1熱交換器19の高温側を通過するので、該第1熱交換器19の低温側を通過するアノード供給用の空気により冷却されて温度が低下する。その後、温度が低下した改質ガスは、循環ポンプ14に供給される。即ち、改質器13aより出力される改質ガスを冷却して循環ポンプ14に供給することができる。このため、循環ポンプ14の耐熱性能を、より低い温度とすることができ、装置規模の小型化を図ることができる。
更に、燃料電池11の発電出力が増大すると、第2空気ブロワ17より送出される空気量が増加するので、第1熱交換器19の低温側に供給される空気量が増加し、第1熱交換器19における冷却能力が増大する。従って、改質器13aより出力される改質ガスを冷却する能力が増大するので、改質ガス温度をより低い温度とすることができる。
即ち、発電出力が大きくなると、第2空気ブロワ17より送出される空気量が増加することにより、第3熱交換器18での温度上昇分が少なくなり、第1熱交換器19の低温側入口の空気温度は、図2の曲線S1に示すように徐々に低下することになる。このため、第1熱交換器19での冷却能力が増大し、改質器13aより送出される改質ガスの温度は図2の曲線S2に示すように、発電出力の増大に伴って低下することになる。
図3は、燃料電池11の発電出力と、循環ポンプ14の入口における改質ガス温度、及び循環ポンプ14の入口における改質ガスの体積流量の変化を示す特性図であり、曲線P11は循環ポンプ14の入口温度、曲線P12は循環ポンプ14の入口流量を示している。また、曲線P13は従来例を採用した場合の循環ポンプの入口温度、曲線P14は従来例を採用した場合の循環ポンプの入口流量を示している。
曲線P13,P14に示すように、従来における燃料電池システムでは、燃料電池の発電出力が増大するにつれて、循環ポンプの入口温度が上昇する傾向となり、且つ、循環ポンプの入口流量が上昇する傾向となっている。このため、発電出力が最大のときの体積流量と、発電出力が最小のときの体積流量の差分はL2となり、ダイナミックレンジの大きい循環ポンプを使用する必要がある。
これに対して、本実施形態に係る燃料電池システム100では、曲線P11に示すように、燃料電池11の発電出力が増大するにつれて循環ポンプ14の入口温度が低下し、これに起因して、曲線P12に示すように、循環ポンプ14の入口流量の上昇が抑制されている。このため、発電出力が最大のときの体積流量と、発電出力が最小のときの体積流量の差分はL1となり、従来の循環ポンプと対比して相対的にダイナミックレンジの小さい循環ポンプを使用することができることが判る。
このようにして、第1実施形態に係る燃料電池システム100では、燃料電池11の発電電力が小さいときには、アノードオフガスの温度が高いので、改質器13aより送出される改質ガス中に含まれる水分が凝縮されること無く、循環ポンプ14を介して、燃料電池11のアノード11aに供給することができる。従って、アノード面での内部改質、及びシフト反応が妨げられることが無く、アノード面でのカーボン析出を防止することができる。更に、アノードオフガス中の水分量も十分に確保できるので、アノードオフガスの一部が導入される改質器13aに、改質に必要な水分を供給可能となり、改質器13aでのカーボン析出を防止することができる。
また、燃料電池11の発電電力が増加するにつれて、第1熱交換器19の冷却能力が増大するので、循環ポンプ14に流入する循環ガスの温度が低下する。その結果、循環ガスの体積密度を高めることができ(体積流量の増加を抑制することができ)、燃料電池11の発電電力範囲での循環ガスの体積流量の幅(ダイナミックレンジ)を狭めることができる。更に、燃料電池11の発電電力が増大し、循環ガスの温度が低下する場合でも、該循環ガスの温度が露点温度以上となるように第1熱交換器19、第3熱交換器18の諸元が設定されているので、循環ポンプ14の入口での水凝縮を防止することができる。その結果、循環ポンプ14の小型化、低消費エネルギー化を図ることができる。
更に、燃料電池11より排出される排気ガスの流量は、発電電力の増加に伴って増加し、これに伴って、燃料電池11に供給される空気(酸化剤)の流量も増加する。一方、第2空気ブロワ17より送出される空気を昇温させるための第3熱交換器18の熱交換面積は一定値で固定されているため、発電電力の増加に伴い、熱交換後の空気の温度は低下することになり、循環ポンプ14に供給される改質ガスの温度を低下させることが可能となる。
また、システムの排気ガスを第3熱交換器18の高温側に供給することにより、排気ガスが有する熱エネルギーを、第3熱交換器18を介してカソードへ導入される空気(酸化剤)に供給できるので、廃棄される熱エネルギーを低減でき、システムの効率を向上させることができる。
更に、燃料電池11の排気ガスとして、熱交換型改質装置13の燃焼器13bの出口ガスを第3熱交換器18に供給するので、未使用となるアノードオフガスの有するエネルギーを改質反応(吸熱反応)に利用することができ、更に、この熱をカソード11bに導入される空気に供給することができるので、廃棄される熱エネルギーを低減させることができシステムの効率を向上させることができる。
また、第1熱交換器19、及び第3熱交換器18の諸元を適宜設定することにより、燃料電池11の最小出力時における循環ポンプ14に供給される改質ガスの温度が、この改質ガスの露点を上回るように設定できるので、燃料電池11の発電出力が変化した場合でも、改質ガス中に含まれる水分が凝縮することを防止できる。このため、アノード面での内部改質、及びシフト反応が妨げられることが無く、アノード面でのカーボン析出等が防止できるばかりでなく、アノードオフガス中の水分量も十分に確保できるため、アノードオフガスの一部が導入される改質器13aに、改質に必要な水分を供給可能となり、改質器13aでのカーボン析出を防止できる。
[第2実施形態の説明]
次に、本発明の第2実施形態について説明する。図4は、第2実施形態に係る燃料電池システムの構成を示すブロック図である。図4に示すように、第2実施形態に係る燃料電池システム101は、前述した図1に示した燃料電池システム100に対して、循環ポンプ14の出口側の管路に、第2熱交換器(第2熱交換手段)21を設けている点で相違している。それ以外の構成は図1と同様であるので、同一符号を付して構成説明を省略する。
第2熱交換器21は、高温側に改質器13aより出力される改質ガスが供給され、低温側に循環ポンプ14より出力される改質ガスが供給される。従って、改質器13aより出力される改質ガスは、第2熱交換器21にて冷却され、更に、第1熱交換器19にてより一層冷却される。その後、循環ポンプ14に供給される。そして、循環ポンプ14より出力される改質ガスは第2熱交換器21により加熱された後、燃料電池11のアノード11aに供給される。
このようにして、第2実施形態に係る燃料電池システム101では、前述した第1実施形態と同様の効果を達成できる。更に、第2熱交換器21、及び第1熱交換器19の2段階で改質ガスの温度を低下させると共に、第2熱交換器21の低温側に流れる流体が循環ポンプ14より送出される改質ガスであるので、冷却によって取り去った熱エネルギーを、アノード11aに導入される改質ガスに与えることが可能となる。従って、廃棄される熱エネルギーを低減することができ、システム効率を向上させることができる。
[第3実施形態の説明]
次に、本発明の第3実施形態について説明する。図5は、第3実施形態に係る燃料電池システム102の構成を示すブロック図である。図5に示すように、第3実施形態に係る燃料電池システム102では、前述の図1に示した燃料電池システム100に対して、第1熱交換器19の低温側に、第3空気ブロワ31を設けている点、及び第3熱交換器18の低温側の出力がカソード11bに連結されている点で相違している。それ以外の構成は、図1に示した燃料電池システム100と同一構成であるので、同一符号を付して構成説明を省略する。
第3空気ブロワ31は、図示省略の制御手段の制御により、送出する空気(流体)の流量を適宜調整することができる。従って、燃料電池11の発電出力の増加に応じて、第3空気ブロワ31より送出する空気の流量を増加させることにより、第1熱交換器19における冷却能力を高めることができ、前述した第1実施形態と同様の効果を達成できる。
また、第3空気ブロワ31より送出される空気の流量をQcとし、循環ポンプ14に流入する改質ガス量をQrとしたとき、これらの比率「Qc/Qr」を燃料電池11の出力増加と共に増加させることによって、第1熱交換器19による改質ガスの冷却能力を向上させることができる。従って、燃料電池11の発電出力が増加した際に、循環ポンプ14に流入する改質ガスの温度を低減させることができ、循環ポンプのダイナミックレンジを小さくすることができる。
[第4実施形態の説明]
次に、本発明の第4実施形態について説明する。図6は、第4実施形態に係る燃料電池システム103の構成を示すブロック図である。図6に示すように、第4実施形態に係る燃料電池システム103では、前述の図5に示した燃料電池システム102に対して、第3空気ブロワ31の出力側に加熱体32を設けている点で相違する。それ以外の構成は、図5にて示した燃料電池システム102と同一構成であるので、同一符号を付して構成説明を省略する。
加熱体32は、例えば、燃焼バーナや電気ヒータであり、第3空気ブロワ31より送出される空気を加熱し、加熱した空気を第1熱交換器19の低温側に供給する。こうすることにより、第1熱交換器19における熱交換効率を適宜変更することができる。
具体的には、燃料電池11の発電出力の増大に応じて、加熱体32から単位流量当りの空気に供給する熱量を小さくする。これにより、第1熱交換器19の低温側に流入する空気の温度が低下するので、循環ポンプ14の入口に供給される改質ガスの温度を低下させることができる。
また、加熱体32の発熱量を一定とした場合には、燃料電池11の発電出力の増加に伴い、分流弁16を介して循環されるアノードオフガス量、及び燃料ポンプ12を介して供給される燃料量が増加し、ひいては改質器13aより出力される改質ガス流量が増加する。従って、第3空気ブロワ31の流量を増加させることにより、第1熱交換器19の低温側に供給する空気の温度を低下させ、改質ガス温度を冷却する際の冷却能力が増大する。これにより、循環ポンプ14に供給される改質ガス温度を低下させることができる。
一方、第3空気ブロワ31より送出される空気の流量が一定の場合は、加熱体32の発熱量を、燃料電池11の出力増加と共に低下させる。これにより、循環ポンプ14に供給される改質ガス温度を低下させることができる。更に、車載用のように、燃料電池11の出力電圧の範囲が広い場合は、加熱体32の温度、及び第3空気ブロワ31の送出空気量の双方を制御することにより、第1熱交換器19における改質ガスの冷却能力を、燃料電池11の出力増加と共に増加させ、循環ポンプ14に供給される改質ガス温度を低下させることができる。
このようにして、第4実施形態に係る燃料電池システム103では、第3空気ブロワ31の出力流量、及び加熱体32の発熱量の少なくとも一方を制御することにより、循環ポンプ14に供給される改質ガスの冷却能力を適宜変化させることができる。従って、前述した第1実施形態と同様の効果を達成することができ、これに加えて、燃料電池11の発電出力が低い場合には、循環ポンプ14に供給される改質ガス温度を相対的に高くすることができる。更に、発電電力の増加と共に改質ガス温度を低下させることができる。その結果、循環ポンプ14に供給される改質ガス流量の変化を、図3の曲線P12に示した特性とすることができ、循環ポンプ14のダイナミックレンジを小さくすることができる。 以上、本発明の燃料電池システムを図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。
例えば、上述した各実施形態では、酸化剤として空気を用いる例について説明したが、本発明はこれに限定されるものではなく、空気以外の酸素を含むガスを用いることができる。
本発明は、例えば車載用の燃料電池において、装置の小型化、低コスト化を図ることに利用することができる。
11 固体酸化物型燃料電池
11a アノード
11b カソード
12 燃料ポンプ
13 熱交換型改質器(改質手段)
13a 改質器
13b 燃焼器
14 循環ポンプ
15 燃料蒸発器
16 分流弁
17 第2空気ブロワ(酸化剤供給手段)
18 第3熱交換器
19 第1熱交換器(第1熱交換手段)
20 第1空気ブロワ
21 第2熱交換器(第2熱交換手段)
31 第3空気ブロワ
32 加熱体
100,101,102,103 燃料電池システム

Claims (8)

  1. 燃料を改質して改質ガスを生成する改質手段と、
    アノード及びカソードを有し、前記アノードに前記改質ガスが供給され、前記カソードに酸化剤が供給されて電力を発生する燃料電池と、
    前記アノードより排出されるアノードオフガスの一部を循環させて前記改質手段に供給し、該改質手段で改質された改質ガスを前記アノードの入口へ導入する循環ポンプと、
    前記循環ポンプの入口側の流路に設けられ、循環ポンプに供給される改質ガスを冷却する第1熱交換手段と、を有し、
    前記第1熱交換手段は、前記燃料電池の出力電力が大きいほど、前記循環ポンプに供給される改質ガスを冷却する能力が増加するように設定されることを特徴とする燃料電池システム。
  2. 前記第1熱交換手段は、前記燃料電池の出力電力が大きいほど、該第1熱交換器の低温側に供給される流体の温度が低下するように制御されることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記第1熱交換手段の低温側に供給される流体は、酸化剤供給手段より送出されて前記カソードに供給される酸化剤であり、該酸化剤は、前記第1熱交換手段の上流にて、前記燃料電池の排気ガスとの間での熱交換によって昇温されることを特徴とする請求項2に記載の燃料電池システム。
  4. 前記排気ガスは、未循環分のアノードオフガスを燃焼させる燃焼器の出口ガスであることを特徴とする請求項3に記載の燃料電池システム。
  5. 前記改質手段は、改質に必要な熱流を供給する燃焼器を有し、前記排気ガスは、未循環分のアノードオフガスを前記燃焼器にて燃焼させた後、該燃焼器より排出されるガスであることを特徴とする請求項3に記載の燃料電池システム。
  6. 前記改質手段より出力される改質ガスと、前記循環ポンプの出口ガスとの間で熱交換する第2熱交換手段を更に備え、
    前記改質手段より出力される改質ガスは、前記第2熱交換手段の高温側、及び前記第1熱交換手段の高温側を経由して前記循環ポンプに供給され、
    前記循環ポンプより送出される改質ガスは、前記第2熱交換手段の低温側を経由して前記アノードに供給されることを特徴とする請求項1に記載の燃料電池システム。
  7. 前記第1熱交換手段の低温側を流れる流体の流量と、前記循環ポンプに流入するガス量の比率を、前記燃料電池の出力に応じて変化させることを特徴とする請求項1に記載の燃料電池システム。
  8. 前記燃料電池の発電出力が最小出力のときに、前記循環ポンプの入口ガスの温度が、入口ガスの露点を超える温度となるようにシステム構成を設定することを特徴とする請求項1〜請求項7のいずれか1項に記載の燃料電池システム。
JP2012133539A 2012-06-13 2012-06-13 燃料電池システム Expired - Fee Related JP6167477B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012133539A JP6167477B2 (ja) 2012-06-13 2012-06-13 燃料電池システム
US14/400,613 US9755257B2 (en) 2012-06-13 2013-04-05 Fuel cell system and method for controlling fuel cell system
PCT/JP2013/060475 WO2013187110A1 (ja) 2012-06-13 2013-04-05 燃料電池システム及び燃料電池システムの制御方法
EP13804929.1A EP2863462B1 (en) 2012-06-13 2013-04-05 Fuel cell system and method for controlling fuel cell system
CN201380031279.3A CN104364953B (zh) 2012-06-13 2013-04-05 燃料电池系统以及燃料电池系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133539A JP6167477B2 (ja) 2012-06-13 2012-06-13 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2013258061A true JP2013258061A (ja) 2013-12-26
JP6167477B2 JP6167477B2 (ja) 2017-07-26

Family

ID=49757949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133539A Expired - Fee Related JP6167477B2 (ja) 2012-06-13 2012-06-13 燃料電池システム

Country Status (5)

Country Link
US (1) US9755257B2 (ja)
EP (1) EP2863462B1 (ja)
JP (1) JP6167477B2 (ja)
CN (1) CN104364953B (ja)
WO (1) WO2013187110A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679971B1 (ko) * 2015-05-14 2016-11-25 현대자동차주식회사 연료전지시스템의 공기공급계 고장진단장치 및 그 고장진단방법
FR3036855B1 (fr) * 2015-05-28 2022-01-07 Commissariat Energie Atomique Installation de cogeneration comprenant une pile a combustible sofc fonctionnant au gaz naturel, au demarrage facilite eta la securite accrue
AT519416B1 (de) 2016-11-29 2019-01-15 Avl List Gmbh Brennstoffzellensystem

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385289A (en) * 1976-12-30 1978-07-27 Matsushita Electric Works Ltd Temperature control system
JPH0364865A (ja) * 1989-07-31 1991-03-20 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池発電装置
JPH0750171A (ja) * 1994-06-20 1995-02-21 Hitachi Ltd 溶融塩型燃料電池発電プラント
JPH09180743A (ja) * 1995-12-22 1997-07-11 Fuji Electric Co Ltd 固体高分子形燃料電池
JP2002298889A (ja) * 2001-04-02 2002-10-11 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池システム
JP2003132918A (ja) * 2001-10-22 2003-05-09 Tlv Co Ltd 燃料電池発電システム
JP2004247247A (ja) * 2003-02-17 2004-09-02 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2004281330A (ja) * 2003-03-18 2004-10-07 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2005197120A (ja) * 2004-01-08 2005-07-21 Hitachi Ltd 燃料電池発電システム
JP2006302660A (ja) * 2005-04-20 2006-11-02 Daikin Ind Ltd 固体酸化物型燃料電池発電装置
JP2008045650A (ja) * 2006-08-14 2008-02-28 Toyota Motor Corp 水素貯蔵装置
JP2009076273A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システム
JP2009099264A (ja) * 2007-10-12 2009-05-07 Hitachi Ltd 固体酸化物形燃料電池発電システムおよびその起動方法
JP2011151033A (ja) * 2004-11-25 2011-08-04 Aisin Seiki Co Ltd 燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339831A (ja) * 1998-05-31 1999-12-10 Aisin Seiki Co Ltd 車両搭載用燃料電池システム
US6606850B2 (en) * 2001-01-10 2003-08-19 En Gen Group, Inc. Hybrid high temperature fuel cell volume expansion heat engine
JP2003007319A (ja) * 2001-06-22 2003-01-10 Nissan Motor Co Ltd 燃料電池システム
JP4555961B2 (ja) * 2003-12-10 2010-10-06 独立行政法人産業技術総合研究所 燃料電池、燃料電池の作動方法
US7998632B2 (en) * 2005-05-20 2011-08-16 Delphi Technologies, Inc. Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385289A (en) * 1976-12-30 1978-07-27 Matsushita Electric Works Ltd Temperature control system
JPH0364865A (ja) * 1989-07-31 1991-03-20 Ishikawajima Harima Heavy Ind Co Ltd 溶融炭酸塩型燃料電池発電装置
JPH0750171A (ja) * 1994-06-20 1995-02-21 Hitachi Ltd 溶融塩型燃料電池発電プラント
JPH09180743A (ja) * 1995-12-22 1997-07-11 Fuji Electric Co Ltd 固体高分子形燃料電池
JP2002298889A (ja) * 2001-04-02 2002-10-11 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池システム
JP2003132918A (ja) * 2001-10-22 2003-05-09 Tlv Co Ltd 燃料電池発電システム
JP2004247247A (ja) * 2003-02-17 2004-09-02 Osaka Gas Co Ltd 固体酸化物形燃料電池システム
JP2004281330A (ja) * 2003-03-18 2004-10-07 Tokyo Gas Co Ltd 固体酸化物形燃料電池システム
JP2005197120A (ja) * 2004-01-08 2005-07-21 Hitachi Ltd 燃料電池発電システム
JP2011151033A (ja) * 2004-11-25 2011-08-04 Aisin Seiki Co Ltd 燃料電池システム
JP2006302660A (ja) * 2005-04-20 2006-11-02 Daikin Ind Ltd 固体酸化物型燃料電池発電装置
JP2008045650A (ja) * 2006-08-14 2008-02-28 Toyota Motor Corp 水素貯蔵装置
JP2009076273A (ja) * 2007-09-19 2009-04-09 Nippon Telegr & Teleph Corp <Ntt> 燃料電池システム
JP2009099264A (ja) * 2007-10-12 2009-05-07 Hitachi Ltd 固体酸化物形燃料電池発電システムおよびその起動方法

Also Published As

Publication number Publication date
US20150140459A1 (en) 2015-05-21
EP2863462B1 (en) 2016-12-21
US9755257B2 (en) 2017-09-05
WO2013187110A1 (ja) 2013-12-19
CN104364953A (zh) 2015-02-18
JP6167477B2 (ja) 2017-07-26
EP2863462A1 (en) 2015-04-22
CN104364953B (zh) 2017-02-22
EP2863462A4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP6431908B2 (ja) 向上した燃料電池システムおよび方法
JP6838577B2 (ja) 燃料電池システム
JPWO2007125945A1 (ja) 燃料電池システム
JP2012155978A (ja) 燃料電池システム
JP6167477B2 (ja) 燃料電池システム
JP2013058339A (ja) 燃料電池システム
JP5201850B2 (ja) 燃料電池装置
WO2021131513A1 (ja) 燃料電池システム及び運転方法
JP2014182923A (ja) 燃料電池システム及びその運転方法
JP4015225B2 (ja) 一酸化炭素除去装置
JP2005116256A (ja) 燃料電池コージェネレーションシステム
JP7249172B2 (ja) 流体を加熱する熱供給装置
JP2012038608A (ja) 燃料電池システム及び燃料電池システムにおける改質用水供給量の制御方法
JP2011222315A (ja) 燃料電池システム及び膜加湿器
JP5502521B2 (ja) 燃料電池システム
JP2006302678A (ja) 燃料電池システム
JP2007103034A (ja) 燃料電池システム及びその起動方法
JP5102511B2 (ja) 燃料電池システム
WO2018212214A1 (ja) 燃料電池システム
JP3728742B2 (ja) 燃料電池設備
JP4601406B2 (ja) 燃料電池システム
JP2004119044A (ja) 移動体用燃料電池システム
JP5266782B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5659868B2 (ja) 燃料電池システム
JP5212889B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees