JP2013208698A - Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance - Google Patents

Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance Download PDF

Info

Publication number
JP2013208698A
JP2013208698A JP2012082506A JP2012082506A JP2013208698A JP 2013208698 A JP2013208698 A JP 2013208698A JP 2012082506 A JP2012082506 A JP 2012082506A JP 2012082506 A JP2012082506 A JP 2012082506A JP 2013208698 A JP2013208698 A JP 2013208698A
Authority
JP
Japan
Prior art keywords
layer
ticn
average
modified
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082506A
Other languages
Japanese (ja)
Inventor
Fumio Tsushima
文雄 対馬
Takao Okuyama
貴央 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012082506A priority Critical patent/JP2013208698A/en
Publication of JP2013208698A publication Critical patent/JP2013208698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of alloy tool steel or the like.SOLUTION: A surface coated cutting tool has a hard coating layer comprising (a), (b) and (c) formed by chemical vapor deposition on a surface of a tool base body, where (a) is a lower layer made of a Ti compound layer having a total average layer thickness of 3-20 μm, (b) is an intermediate layer made of an aluminum oxide layer having an average layer thickness of 1-15 μm, and (c) is an upper layer made of a modified Ti carbonitride layer having a vertically-long grown crystalline structure with an average layer thickness of 4-14 μm. (d) The modified Ti carbonitride layer constituting the upper layer includes at least one B-containing region with an average B content of 1.5-3.0 atom% at an interval within a range of a depth of 0.5-4.0 μm from a surface toward an inner part along a layer thickness direction.

Description

本発明は、合金工具鋼等の高速強断続切削加工において、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮し、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed and strong intermittent cutting of alloy tool steel and the like, and exhibits excellent cutting performance over a long period of use. (Hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなるTi化合物層、
(b)上部層が、化学蒸着形成された酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られている。さらに、被覆工具の切削性能を向上させるための種々の方法が提案されている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer composed of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of (a) and (b) above is known. Furthermore, various methods for improving the cutting performance of the coated tool have been proposed.

例えば、特許文献1には、従来被覆工具において、下部層であるTi化合物層を構成するTiCN層を、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着し縦長成長結晶組織をもつTiCN層を形成することにより、硬質被覆層自身の強度向上を図ることが開示されている。   For example, in Patent Document 1, in a conventional coated tool, a TiCN layer constituting a Ti compound layer as a lower layer is used in a normal chemical vapor deposition apparatus, using a mixed gas containing organic carbonitride as a reaction gas, It is disclosed that the strength of the hard coating layer itself is improved by forming a TiCN layer having a vertically grown crystal structure by chemical vapor deposition in a medium temperature range of 700 to 950 ° C.

また、特許文献2には、超硬基体の表面に、TiC層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層からなるTi化合物層のうちの1種または2種以上と、縦長組織TiCN層と、さらに必要に応じてα型Al層および/またはκ型Al層とで構成された硬質被覆層を8〜30μmの全体平均層厚で形成してなる表面被覆超硬合金製スローアウエイ切削チップにおいて縦長組織TiCN層の平均層厚を6〜20μmに厚膜化すると共に、縦長組織TiCN層中に、縦長成長結晶組織を保持したままで、これを厚さ方向に区分する微細なTiB粒が0.1〜1μmの平均厚さで分散分布し、かつその分布割合がオージェ電子分光法を用いた0.3μm×0.3μm領域でのB(ボロン)成分の分析値(B濃度)で1〜10原子%を示すTiB粒分布区分帯域層を1層以上設けることによって、厚膜化した硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製スローアウエイ切削チップが開示されている。 Patent Document 2 discloses that one or two or more of a Ti compound layer composed of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, a TiNO layer, and a TiCNO layer on the surface of a cemented carbide substrate is vertically long. Surface formed by forming a hard coating layer composed of a textured TiCN layer and, if necessary, an α-type Al 2 O 3 layer and / or a κ-type Al 2 O 3 layer with an overall average layer thickness of 8 to 30 μm In the coated cemented carbide slow-away cutting tip, the average layer thickness of the vertically structured TiCN layer is increased to 6 to 20 μm, and the vertically grown crystal structure is retained in the vertically structured TiCN layer while maintaining the thickness. Fine TiB 2 grains divided in the direction are dispersed and distributed with an average thickness of 0.1 to 1 μm, and the distribution ratio is B (boron) in the 0.3 μm × 0.3 μm region using Auger electron spectroscopy Ingredient analysis value ( By providing the TiB 2 grain distribution segment band layer exhibiting a 1-10 atomic% in concentration) one or more layers, the surface-coated cemented carbide Suroauei cutting which exhibits chipping resistance of the hard coating layer was thickened is excellent A chip is disclosed.

特開平6−8010号公報Japanese Patent Laid-Open No. 6-8010 特開2000−54133号公報JP 2000-54133 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、従来被覆工具においては、これを合金工具鋼等の通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを、高熱発生を伴い、かつ、切刃部に断続的・衝撃的負荷がかかる高速強断続切削に用いた場合には、硬質被覆層にチッピング(微小欠け)、欠損等が発生し易くなり、また、耐摩耗性も十分であるとは言えないため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable, while the demand for labor saving and energy saving and further cost reduction for cutting is strong, and with this, cutting has been on the trend of higher speed. In this case, there is no problem when it is used for continuous cutting and intermittent cutting under normal conditions such as alloy tool steel, but this is accompanied by high heat generation and intermittent / impact on the cutting edge. When it is used for high-speed hard interrupted cutting that requires a heavy load, chipping (minute chipping), chipping, etc. are likely to occur in the hard coating layer, and it cannot be said that the wear resistance is sufficient. The current situation is that the service life is reached in a short time.

そこで、本発明者らは、前述のような観点から、被覆工具の硬質被覆層の耐チッピング性、耐摩耗性向上を図るべく、これの上部層に高い高温硬さと高温強度を有し、かつ、図1(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有する縦長成長結晶組織をもつTiCN層(以下、l−TiCN層という)を形成することに着目し、鋭意研究を行った。   Therefore, the present inventors have high high-temperature hardness and high-temperature strength in the upper layer in order to improve the chipping resistance and wear resistance of the hard coating layer of the coated tool from the above viewpoint, and As shown schematically in FIG. 1 (a), the crystal structure of an NaCl type face centered cubic crystal in which constituent atoms consisting of Ti, carbon, and nitrogen are present at lattice points (FIG. 1 (b) is ( 011) shows a state of being cut at the plane), and researched with a focus on forming a TiCN layer having a vertically elongated crystal structure (hereinafter referred to as an l-TiCN layer).

(a)まず、従来被覆工具の硬質被覆層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)でl−TiCN層からなる下部層を蒸着した後、この上に、Al層を蒸着することにより形成される。
(b)本発明者らは、前記Al層を蒸着した後、さらに、この上に、前述の通常の条件でl−TiCN層からなる上部層を蒸着した。
(c)このとき、前記l−TiCN層を通常条件で蒸着する成膜工程の途中段階で、前記反応雰囲気圧力を低下させ、同時に、微量のBClを短時間反応ガス中に添加して成膜を行い、その後は、通常条件にしたがって、l−TiCN層を成膜する。
さらに(c)の工程を繰り返し行うことにより、l−TiCN層内に所定の間隔をおいて複数のB含有領域、すなわち、TiB層を形成するには至っていないBが存在している領域が形成されることが確認された。そして、このB含有領域を1つ以上形成することにより、l−TiCN層の結晶粒の組織微細効果が顕著になることを見出した。
(A) First, the hard coating layer of the conventional coated tool is, for example, an ordinary chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
After forming a lower layer made of an l-TiCN layer under the above conditions (referred to as normal conditions), an Al 2 O 3 layer is deposited thereon.
(B) The present inventors, after depositing the the Al 2 O 3 layer, further thereon, was deposited top layer consisting of l-TiCN layer under normal conditions described above.
(C) At this time, in the middle of the film forming process for depositing the l-TiCN layer under normal conditions, the reaction atmosphere pressure is lowered, and at the same time, a small amount of BCl 3 is added to the reaction gas for a short time. After film formation, an l-TiCN layer is formed according to normal conditions.
Further, by repeatedly performing the step (c), a plurality of B-containing regions at a predetermined interval in the l-TiCN layer, that is, regions where B that has not reached the formation of the TiB 2 layer exists. It was confirmed that it was formed. And it discovered that the structure | tissue fine effect of the crystal grain of a 1-TiCN layer became remarkable by forming one or more of this B containing field.

(d)また、本発明者らは、前述のB含有領域が形成されているl−TiCN層について、その縦断面研磨面に沿ってオージェ電子分光法により、その層厚方向にB含有量を線分析したところ、Al層(中間層)とl−TiCN層(上部層)の界面から、l−TiCN層の内部側にB含有領域が形成されると同時に、図2に示すようにl−TiCN層の結晶組織が微細化されており、さらに、l−TiCN層の表面から層厚方向に沿って内部側に、0.5〜4.0μmの範囲内の間隔をおいて、B含有量の複数のピークが現れ、また、該ピーク位置におけるB含有量を測定したところ、Bの平均含有量が1.5〜3.0原子%であるB含有領域を1つ以上含むl−TiCN層(以下、「改質l−TiCN層」という)が形成されることを見出した。
(e)そして、Al層(中間層)を蒸着形成した上に、前記少なくとも1つのB含有領域を備え、かつ、微細化された組織を有する改質l−TiCN層(上部層)を蒸着形成した硬質被覆層を備えた被覆工具は、中間層と上部層との密着性が向上すると同時に、Alの上にl−TiCN層(上部層)を形成しているにもかかわらず、上部層の結晶粒粗大化が抑制されていることから、高熱発生を伴い、かつ、切刃部に断続的・衝撃的負荷がかかる高速強断続切削に用いた場合でも、すぐれた耐チッピング性を発揮し、長期の使用に亘ってすぐれた耐摩耗性を発揮することを見出した。
(D) Further, the present inventors set the B content in the layer thickness direction of the l-TiCN layer in which the B-containing region is formed by Auger electron spectroscopy along the vertical cross-section polished surface. As a result of a line analysis, a B-containing region is formed on the inner side of the l-TiCN layer from the interface between the Al 2 O 3 layer (intermediate layer) and the l-TiCN layer (upper layer), as shown in FIG. Further, the crystal structure of the l-TiCN layer is refined, and further, an interval in the range of 0.5 to 4.0 μm is provided on the inner side along the layer thickness direction from the surface of the l-TiCN layer, A plurality of peaks of B content appear, and when the B content at the peak position is measured, one or more B-containing regions having an average B content of 1.5 to 3.0 atomic% are included. -TiCN layer (hereinafter referred to as "modified l-TiCN layer") is formed. It was heading.
(E) Then, an Al 2 O 3 layer (intermediate layer) is formed by vapor deposition, and a modified l-TiCN layer (upper layer) having the at least one B-containing region and having a refined structure is formed. The coated tool provided with the hard coating layer formed by vapor deposition improves the adhesion between the intermediate layer and the upper layer, and at the same time forms the l-TiCN layer (upper layer) on the Al 2 O 3. Regardless of the fact that the grain growth of the upper layer is suppressed, it has excellent heat resistance even when it is used for high-speed hard interrupted cutting that involves high heat generation and intermittent and impact loads on the cutting edge. It has been found that it exhibits chipping properties and excellent wear resistance over a long period of use.

本発明は、前記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成した表面被覆切削工具において、
前記硬質被覆層が、工具基体側から
(a)3〜20μmの合計平均層厚を有し、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層、
(b)1〜15μmの平均層厚を有する酸化アルミニウム層からなる中間層、
(c)4〜14μmの平均層厚の縦長成長結晶組織をもつ改質Ti炭窒化物層からなる上部層、
の積層構造からなるとともに、
(d)上部層を構成する前記縦長成長結晶組織をもつ改質Ti炭窒化物層は、その縦断面研磨面について、オージェ電子分光法により、上部層表面から層厚方向に沿って上部層全体に亘ってB含有量をAES線分析した場合、B含有量のピークとして観測されるB含有領域が表面から内部側深さ方向に0.5〜4.0μmの範囲内の間隔をおいて少なくとも1つ現れ、前記B含有領域におけるBの平均含有量が、1.5〜3.0原子%であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above knowledge,
In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer has a total average layer thickness of (a) 3 to 20 μm from the tool base side, and is a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, or carbonitride oxide layer. A lower layer composed of one or two or more Ti compound layers,
(B) an intermediate layer comprising an aluminum oxide layer having an average layer thickness of 1 to 15 μm,
(C) an upper layer comprising a modified Ti carbonitride layer having a vertically grown crystal structure with an average layer thickness of 4 to 14 μm,
With a laminated structure of
(D) The modified Ti carbonitride layer having the vertically grown crystal structure that constitutes the upper layer has a vertical cross-section polished surface of the entire upper layer along the layer thickness direction from the upper layer surface by Auger electron spectroscopy. When the B content is subjected to AES line analysis over a B area, the B content region observed as a peak of the B content is at least spaced from the surface in the range of 0.5 to 4.0 μm in the depth direction on the inner side. One surface-covered cutting tool that appears and has an average B content in the B-containing region of 1.5 to 3.0 atomic%. "
It has the characteristics.

つぎに、本発明の被覆工具の硬質被覆層の構成層について、詳細に説明する。
(a)下部層(Ti化合物層)
TiC層、TiN層、TiCN層(l−TiCN層も含む)、TiCO層、TiCNO層のうちの1層または2層以上からなるTi化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と中間層であるAl層の双方に強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速強断続切削でチッピングを起し易くなることから、その合計平均層厚を3〜20μmと定めた。
Next, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail.
(A) Lower layer (Ti compound layer)
Ti compound layer consisting of one or more of TiC layer, TiN layer, TiCN layer (including 1-TiCN layer), TiCO layer, TiCNO layer itself has high temperature strength. In addition to the high temperature strength of the hard coating layer, the hard coating layer firmly adheres to both the tool base and the Al 2 O 3 layer, which is an intermediate layer, and thus contributes to improving the adhesion of the hard coating layer to the tool base. However, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, chipping is particularly caused by high-speed, strong intermittent cutting with high heat generation. The total average layer thickness is determined to be 3 to 20 μm because it is easy to occur.

(b)中間層(Al層)
下部層の上に形成するAl層からなる中間層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与する作用を有するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方、その平均層厚が15μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(B) Intermediate layer (Al 2 O 3 layer)
The intermediate layer composed of the Al 2 O 3 layer formed on the lower layer has excellent high-temperature hardness and heat resistance, and has an effect of improving the wear resistance of the hard coating layer, but the average layer thickness is If the thickness is less than 1 μm, the hard coating layer cannot exhibit sufficient wear resistance. On the other hand, if the average thickness exceeds 15 μm, chipping tends to occur. Was set to 1 to 15 μm.

(c)上部層の改質l−TiCN層
中間層の上に形成する改質l−TiCN層からなる上部層は、立方晶であるTiCN結晶組織中に六方晶であるTiBを取り込むことにより、そこを起点にTiCN核再形成がなされTiCN粒子の粗大化が阻止される。しかも、TiBの形成は、短時間、断続的に複数回行うため、TiB層を形成せずBが多く存在している領域、すなわち、B含有領域として存在する。したがって、TiCNの立方晶結晶構造が完全に分断されることがないため、TiCN結晶が有する靱性を損なうことがない。
ここで、上部層の平均層厚が4μm未満であると、長期の使用に亘って耐摩耗性を確保できず、一方、14μmを超えると、層の肉厚化により耐チッピング性、耐欠損性が低下する。したがって、上部層の平均層厚を、4〜14μmと定めた。
既述のとおり、改質l−TiCN層は、l−TiCN層を通常条件で蒸着する成膜工程の途中段階、例えば、所定目標層厚のl−TiCN層の成膜が完了する50〜160分前の時点で、反応雰囲気圧力を3.0〜3.5kPaに低下させ、同時に、反応ガスに占める割合を0.8〜2.2容量%となるようにBClを60〜80秒間反応ガス中に添加して成膜を行い、その後は、通常条件にしたがって、所定目標層厚になるまでl−TiCN層を成膜する。この工程を所定の回数(少なくとも1回)繰り返し行うことにより、形成することができる。成膜された改質l−TiCN層の内側には、図2に示すように、所定の間隔で少なくとも1つのB含有領域が形成され、しかも、B含有領域における改質l−TiCN層の結晶粒は微細化組織となる。
(C) Upper-layer modified l-TiCN layer The upper layer composed of the modified l-TiCN layer formed on the intermediate layer is obtained by incorporating TiB 2 that is hexagonal into the cubic TiCN crystal structure. From this point, TiCN nuclei are reformed to prevent coarsening of TiCN particles. In addition, since TiB 2 is formed intermittently a plurality of times in a short time, a TiB 2 layer is not formed, and a B-rich region exists, that is, a B-containing region. Therefore, since the cubic crystal structure of TiCN is not completely divided, the toughness of the TiCN crystal is not impaired.
Here, if the average layer thickness of the upper layer is less than 4 μm, the wear resistance cannot be ensured over a long period of use. On the other hand, if it exceeds 14 μm, the chipping resistance and chipping resistance are increased due to the thickening of the layer. Decreases. Therefore, the average layer thickness of the upper layer was set to 4 to 14 μm.
As described above, the modified l-TiCN layer is formed in the middle of a film forming process for depositing the l-TiCN layer under normal conditions, for example, the film formation of the l-TiCN layer having a predetermined target layer thickness is completed. The reaction atmosphere pressure was reduced to 3.0 to 3.5 kPa at a time before 30 minutes, and at the same time, BCl 3 was reacted for 60 to 80 seconds so that the ratio of the reaction gas to the reaction gas was 0.8 to 2.2% by volume. A film is formed by adding it to the gas, and thereafter, an l-TiCN layer is formed until a predetermined target layer thickness is reached in accordance with normal conditions. It can be formed by repeating this step a predetermined number of times (at least once). As shown in FIG. 2, at least one B-containing region is formed at a predetermined interval inside the formed modified l-TiCN layer, and crystals of the modified l-TiCN layer in the B-containing region are formed. The grain becomes a refined structure.

改質l−TiCN層の縦断面研磨面について、オージェ電子分光法により、その層厚方向に沿ってB含有量を線分析すると、改質l−TiCN層の表面から層厚方向に沿って内部側に0.5〜4.0μmの範囲内の間隔をおいて、B含有量の複数のピークが現れる少なくとも1つのB含有領域が存在し、そして、そのB含有領域におけるBの平均含有量は1.5〜3.0原子%である。
ここで、本発明におけるB含有領域は、前述のようにTiBが連続した層を形成していないので、オージェ電子分光によるAES線分析にて縦断面研磨面の層厚方向に沿って照射したビーム位置において、図3に示すように、そこに、たまたまTiBが存在していない場合、Bを検出できず、B含有領域が存在しているにもかかわらず、検出できないという問題がある。そこで、本発明においては、改質l−TiCN層に対して水平方向に等間隔あけて、5箇所にAES線分析を実施して、B含有量のピークを検出した。そして、1箇所でもピークが検出されたとき、そこをB含有領域とし、そして、その時の5箇所のAES線分析にて検出されたそれぞれのB含有量の最大ピークを平均して、そのB含有領域のBの平均含有量(原子%)と定めた。
When the B content is linearly analyzed along the layer thickness direction by Auger electron spectroscopy on the vertical cross-section polished surface of the modified l-TiCN layer, the inner surface extends along the layer thickness direction from the surface of the modified l-TiCN layer. There is at least one B-containing region in which a plurality of peaks of B content appear with an interval in the range of 0.5 to 4.0 μm on the side, and the average content of B in the B-containing region is 1.5 to 3.0 atomic%.
Here, since the B-containing region in the present invention does not form a continuous layer of TiB 2 as described above, irradiation was performed along the layer thickness direction of the vertical cross-section polished surface by AES line analysis by Auger electron spectroscopy. At the beam position, as shown in FIG. 3, there is a problem that when TiB 2 happens to be absent, B cannot be detected, and it cannot be detected even though the B-containing region exists. Therefore, in the present invention, AES line analysis was performed at five locations at equal intervals in the horizontal direction with respect to the modified l-TiCN layer, and the peak of the B content was detected. And when a peak is detected even at one place, it is set as a B-containing region, and the maximum peak of each B content detected by the AES line analysis at five places at that time is averaged, and the B content is obtained. The average content of B in the region (atomic%) was determined.

B含有領域の間隔が0.5μm未満の場合には、新たなTiCN結晶の核形成により成長した改質l−TiCN層の強度が不十分であり、加工時における層内破壊による剥離を発生しやすくなり、一方、B含有領域の間隔が、4.0μmを超える内部側にある場合には、新たなTiCN結晶の核形成により成長した改質l−TiCN層の粒径が大きくなり過ぎる。したがって、B含有領域の間隔は、0.5〜4.0μmと定めた。   When the interval between the B-containing regions is less than 0.5 μm, the strength of the modified l-TiCN layer grown by nucleation of new TiCN crystals is insufficient, and peeling due to in-layer fracture during processing occurs. On the other hand, when the interval between the B-containing regions is on the inner side exceeding 4.0 μm, the grain size of the modified l-TiCN layer grown by nucleation of new TiCN crystals becomes too large. Therefore, the interval between the B-containing regions is set to 0.5 to 4.0 μm.

また、B含有領域におけるBの平均含有量が1.5原子%未満の場合には、新たなTiCN結晶の核形成が十分でないため、B含有領域より上部層側の改質l−TiCN層における結晶粒微細化効果が少なく、一方、B含有領域におけるBの平均含有量が3.0原子%を超える場合には、結晶構造の異なるTiBが層として形成され、剥離発生の原因になるので、ピーク位置におけるB含有量は1.5〜3.0原子%であることが必要である。 Further, when the average content of B in the B-containing region is less than 1.5 atomic%, nucleation of new TiCN crystals is not sufficient, and therefore in the modified l-TiCN layer on the upper layer side from the B-containing region. On the other hand, when the average content of B in the B-containing region exceeds 3.0 atomic%, TiB 2 having a different crystal structure is formed as a layer, which causes peeling. The B content at the peak position needs to be 1.5 to 3.0 atomic%.

さらに、本発明では、中間層(Al層)の上に形成される改質l−TiCN層において、前記所定の間隔でB含有量のピークが存在するB含有領域が少なくとも1つ形成されることによって、このB含有領域における改質l−TiCN層の結晶粒が微細化し、中間層のAl層との密着性が向上するとともに、通常、Al層の上にTi化合物層を形成すると、結晶粒が粗大化するが、本発明では、改質l−TiCN層の結晶粒が微細化され、結晶粒の粗大化による耐チッピング性、耐摩耗性の低下を抑制することができる。さらに改質l−TiCN層を形成するに際し、酸素原子を付加しないので、TiCN層の靭性低下がなく、切削加工中のチッピングが少なくなる。 Furthermore, in the present invention, in the modified l-TiCN layer formed on the intermediate layer (Al 2 O 3 layer), at least one B-containing region where a peak of B content exists at the predetermined interval is formed. As a result, the crystal grains of the modified l-TiCN layer in this B-containing region become finer, the adhesion with the Al 2 O 3 layer of the intermediate layer is improved, and usually on the Al 2 O 3 layer When the Ti compound layer is formed, the crystal grains become coarse. However, in the present invention, the crystal grains of the modified l-TiCN layer are refined, and the deterioration of chipping resistance and wear resistance due to the coarsening of the crystal grains is suppressed. can do. Further, since oxygen atoms are not added when forming the modified l-TiCN layer, the toughness of the TiCN layer is not reduced and chipping during cutting is reduced.

本発明の被覆工具は、Al層(中間層)の上に、少なくとも1つのB含有領域を備え、かつ、微細化された組織を有する改質l−TiCN層(上部層)を蒸着形成されていることにより、中間層と上部層の密着性が向上すると同時に、上部層の改質l−TiCN層の結晶粒粗大化が抑制されるとともに、上部層中に実質的に酸素を含まないため靱性の低下が抑制されることから、高熱発生を伴い、かつ、切刃部に断続的・衝撃的負荷がかかる高速強断続切削に用いた場合でも、すぐれた耐チッピング性を発揮し、長期の使用に亘ってすぐれた耐摩耗性を発揮するのである。 The coated tool of the present invention deposits a modified l-TiCN layer (upper layer) having at least one B-containing region and having a refined structure on an Al 2 O 3 layer (intermediate layer). As a result, the adhesion between the intermediate layer and the upper layer is improved, and at the same time, coarsening of crystal grains of the modified l-TiCN layer of the upper layer is suppressed, and oxygen is substantially contained in the upper layer. Since the reduction in toughness is suppressed, it exhibits excellent chipping resistance even when used for high-speed, heavy-duty cutting with high heat generation and intermittent / impact loads on the cutting edge. It exhibits excellent wear resistance over a long period of use.

硬質被覆層の上部層を構成する改質l−TiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the modified l-TiCN layer which comprises the upper layer of a hard coating layer has. 硬質被覆層の縦断面組織構造の一例を示す概略縦断面模式図である。It is a schematic longitudinal cross-sectional schematic diagram which shows an example of the longitudinal cross-section structure | tissue structure of a hard coating layer. 本発明における改質l−TiCN層のオージェ電子分光によるB含有領域の特定方法の概念図である。It is a conceptual diagram of the identification method of the B containing area | region by Auger electron spectroscopy of the modified l-TiCN layer in this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa, This green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. -Tool bases a to f made of TiCN-based cermet having the insert shape of CNMG12041 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、表3に示される条件で、表5に示される組み合わせでTi化合物層(但し、改質l−TiCN層を除く)を蒸着形成し、
ついで、中間層としてのAl層を同じく、表3に示される条件で、かつ、同じく表5に示される目標層厚で蒸着形成し、その後、表4に示される条件にて、上部層としての改質l−TiCN層を同じく表5に示される組み合わせ、かつ、目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
さらに、参考の目的で、本発明被覆工具1、3、8、9と同じ工具基体および下部層を中間層の上に、上部層を本発明とは形成条件を変えて形成することにより、参考被覆工具1、3、8、9をそれぞれ製造した。
Next, on the surfaces of these tool bases A to F and tool bases a to f, the combination shown in Table 5 is used as a lower layer of the hard coating layer using a normal chemical vapor deposition apparatus under the conditions shown in Table 3. A Ti compound layer (however, excluding the modified l-TiCN layer) is formed by vapor deposition.
Subsequently, an Al 2 O 3 layer as an intermediate layer is formed by vapor deposition under the conditions shown in Table 3 and with the target layer thickness shown in Table 5 again, and then the upper layer is formed under the conditions shown in Table 4. The coated tools 1 to 13 of the present invention were produced by vapor-depositing the modified l-TiCN layers as layers in the combinations shown in Table 5 and with the target layer thickness.
Further, for reference purposes, the same tool base and lower layer as those of the present coated tool 1, 3, 8, 9 are formed on the intermediate layer, and the upper layer is formed by changing the forming conditions from the present invention. Coated tools 1, 3, 8, and 9 were produced.

また、比較の目的で、硬質被覆層の下部層として、表3に示される条件で、表6に示される組み合わせ、かつ、同じく表6に示される目標層厚でTi化合物層を蒸着形成し、その後、表3に示される条件にて、中間層としてのAl層を、同じく表6に示される目標層厚で蒸着形成し、その後、表3に示される条件で、上部層としての通常のl−TiCN層を同じく表6に示される目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。 Further, for the purpose of comparison, as a lower layer of the hard coating layer, a Ti compound layer is formed by vapor deposition with the combination shown in Table 6 and the target layer thickness also shown in Table 6 under the conditions shown in Table 3. Thereafter, an Al 2 O 3 layer as an intermediate layer is formed by vapor deposition at the target layer thickness shown in Table 6 under the conditions shown in Table 3, and then as an upper layer under the conditions shown in Table 3. Conventional coated tools 1 to 13 were manufactured by vapor-depositing normal l-TiCN layers with the target layer thicknesses shown in Table 6 as well.

ついで、前記本発明被覆工具の改質l−TiCN層について、縦断面研磨面について、オージェ電子分光法により、その層厚方向に水平方向に等間隔に並ぶ5本のラインに沿ってB含有量を線分析し、B含有量のピークが現れる各ピーク位置を求めるとともに、5本のラインのうち、1つでもピークが現れたとき、その位置をB含有領域とし、さらにその時の5本のライン上のそれぞれの最大のピークから求めたB含有量の平均値を求め、それを、そのB含有領域のBの平均含有量と定めた。   Next, with respect to the modified l-TiCN layer of the coated tool of the present invention, the B content along five lines arranged at equal intervals in the horizontal direction in the layer thickness direction by Auger electron spectroscopy on the vertical cross-section polished surface The line analysis is performed to obtain each peak position where the peak of the B content appears, and when any one of the five lines appears, the position is set as the B-containing region, and further, the five lines at that time The average value of B content calculated | required from each upper peak of the top was calculated | required, and it was defined as the average content of B of the B content area | region.

表5に、本発明被覆工具および参考被覆工具の各B含有領域におけるBの平均含有量の値を示す。   Table 5 shows the value of the average content of B in each B-containing region of the present coated tool and the reference coated tool.

同様に従来被覆工具のl−TiCN層についてもB含有量を線分析したが、Bは含有していなかった。   Similarly, the B content of the l-TiCN layer of the conventional coated tool was linearly analyzed, but B was not contained.

さらに、本発明被覆工具の改質l−TiCN層について、電界放出型走査電子顕微鏡及び電子後方散乱回折像装置を用いて、各B含有領域における改質l−TiCN結晶粒の単位面積当たりの粒界長さを求め、また、各B含有領域より内部側にある結晶粒の単位面積当たりの粒界長さを求め、各B含有領域の結晶微細化率RTiCN(但し、R=(B含有領域における改質l−TiCN結晶粒の単位面積当たりの粒界長さ)/(B含有領域より内部側にある改質l−TiCN結晶粒の単位面積当たりの粒界長さ)を算出した。 Further, for the modified l-TiCN layer of the coated tool of the present invention, grains per unit area of the modified l-TiCN crystal grains in each B-containing region using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The boundary length is obtained, and the grain boundary length per unit area of the crystal grains on the inner side from each B-containing region is obtained, and the crystal refinement ratio R TiCN of each B-containing region (where R = (B containing The grain boundary length per unit area of the modified l-TiCN crystal grains in the region / (grain boundary length per unit area of the modified l-TiCN crystal grains on the inner side from the B-containing region) was calculated.

ここで、改質l−TiCN結晶粒の単位面積当たりの粒界長さは、以下のようにして測定算出することができる。   Here, the grain boundary length per unit area of the modified l-TiCN crystal grains can be measured and calculated as follows.

すなわち、前記改質l−TiCN層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、所定測定領域を0.1μm/stepの間隔で、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型走査電子顕微鏡により、改質l−TiCN層のB含有領域における縦断面測定領域を走査し、該測定領域内で粒界として識別される部分の長さGBLO(μm)を求め、そして、測定した縦断面研磨面の面積GAO(μm)との比の値GBLO/GAOを求めた。 That is, the modified l-TiCN layer is set in a lens barrel of a field emission scanning electron microscope in a state where the vertical cross section of the modified l-TiCN layer is a polished surface. A line is irradiated at an irradiation current of 1 nA to individual crystal grains existing within the measurement range of the vertical cross-section polished surface, and an electron backscatter diffraction image apparatus is used, and a predetermined measurement region is spaced at an interval of 0.1 μm / step. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface. Then, the angles at which the (001) plane normal lines and the (011) plane normal lines cross each other at the interface between adjacent crystal grains are obtained, and the (001) plane normal lines and ( 011) The angle at which the surface normals intersect is 2 degrees After setting the above case as a grain boundary, a field emission scanning electron microscope is used to scan the longitudinal cross-section measurement region in the B-containing region of the modified l-TiCN layer and identify it as a grain boundary in the measurement region The length GB LO (μm) of the portion to be measured was determined, and the value GB LO / G AO of the ratio to the measured area G AO (μm 2 ) of the vertical cross-section polished surface was determined.

また、同様に、改質l−TiCN層のB含有領域より内部側における縦断面測定領域を走査し、該測定領域内で粒界として識別される部分の長さGBLI(μm)を求め、そして、測定した縦断面研磨面の面積GAI(μm)との比の値GBLI/GAIを求めた。 Similarly, the longitudinal cross-sectional measurement region on the inner side from the B-containing region of the modified l-TiCN layer is scanned, and the length GB LI (μm) of the portion identified as the grain boundary in the measurement region is obtained, then, to determine the value GB LI / G AI ratio between the area G AI of the measured longitudinal sectional polished surface (μm 2).

ついで、前記GBLO/GAO(B含有領域における単位面積当たりの粒界長さに相当)と、前記GBLI/GAI(B含有領域より内部側における単位面積当たりの粒界長さに相当)との比の値を求め、これを、改質l−TiCN層の結晶微細化率RTiCNであると定義した。 Next, GB LO / G AO (corresponding to the grain boundary length per unit area in the B-containing region) and GB LI / G AI (corresponding to the grain boundary length per unit area on the inner side from the B-containing region) ) Was determined and this was defined as the crystal refinement rate R TiCN of the modified l-TiCN layer.

即ち、結晶微細化率RTiCN
=(B含有領域における改質l−TiCN結晶粒の単位面積当たりの粒界長さ)/(B含有領域より内部側にある改質l−TiCN結晶粒の単位面積当たりの粒界長さ)
=(GBLO/GAO)/(GBLI/GAI
である。
That is, the crystal refinement ratio R TiCN
= (Grain boundary length per unit area of modified l-TiCN crystal grains in the B-containing region) / (grain boundary length per unit area of modified l-TiCN crystal grains inside the B-containing region)
= (GB LO / G AO ) / (GB LI / G AI )
It is.

表5に、本発明被覆工具の改質l−TiCN層についての各B含有領域の結晶微細化率RTiCNの値を示す。 Table 5 shows the value of the crystal refining rate R TiCN of each B-containing region for the modified l-TiCN layer of the coated tool of the present invention.

表5に示される通り、本発明被覆工具の改質l−TiCN層は、結晶微細化率RTiCNがいずれも15.8より大きく、B含有領域においては結晶粒が微細化していることが分かる。 As shown in Table 5, it can be seen that the modified l-TiCN layer of the coated tool of the present invention has a crystal refinement ratio R TiCN larger than 15.8, and crystal grains are refined in the B-containing region. .

なお、本発明被覆工具および従来被覆工具の下部層、中間層、上部層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   In addition, when the thickness of the lower layer, the intermediate layer, and the upper layer of the coated tool of the present invention and the conventional coated tool was measured using the scanning electron microscope (same longitudinal section measurement), all were substantially equal to the target layer thickness. The same average layer thickness (average value of 5-point measurement) was shown.


つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13、従来被覆工具1〜13および参考被覆工具1、3、8、9について、
被削材:JIS・SKD12の長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:2.5mm、
送り:0.3mm/rev.、
切削時間:18分、
の条件(切削条件A)での合金工具鋼の湿式高速強断続切削試験
(通常の切削速度は、200m/min.)、
被削材:JIS・SKD62の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:2.5mm、
送り:0.5mm/rev.、
切削時間:15分、
の条件(切削条件B)での合金工具鋼の乾式高速強断続切削試験
(通常の切削速度は、180m/min.)、
被削材:JIS・SKD4の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min.、
切り込み:1.5mm、
送り:0.6mm/rev.、
切削時間:18分、
の条件(切削条件C)での合金工具鋼の乾式高速連続切削試験
(通常の切削速度は、200m/min.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。

Next, the coated tools of the present invention 1 to 13, the conventional coated tools 1 to 13, and the reference coated tool 1 in the state in which each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig. 3, 8, 9
Work material: JIS / SKD12 lengthwise equidistant four round grooved round bars,
Cutting speed: 280 m / min. ,
Incision: 2.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 18 minutes
Wet high-speed strong interrupted cutting test of alloy tool steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min.),
Work material: JIS · SKD62 lengthwise equidistant four round grooved round bars,
Cutting speed: 300 m / min. ,
Incision: 2.5mm,
Feed: 0.5 mm / rev. ,
Cutting time: 15 minutes,
Dry high-speed strong interrupted cutting test of alloy tool steel under the conditions (cutting condition B) (normal cutting speed is 180 m / min.),
Work material: JIS / SKD4 lengthwise equidistant four round grooved round bars,
Cutting speed: 320 m / min. ,
Incision: 1.5mm,
Feed: 0.6 mm / rev. ,
Cutting time: 18 minutes
Dry high-speed continuous cutting test of alloy tool steel under the following conditions (cutting condition C) (normal cutting speed is 200 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.


表5〜7に示される結果から、本発明被覆工具1〜13は、B含有領域を備え、かつ、微細化された組織を有する改質l−TiCN層(上部層)が形成されていることにより、中間層と上部層の密着性が向上すると同時に、上部層の改質l−TiCN層の結晶粒粗大化が抑制されることから、高熱発生を伴い、かつ、切刃部に断続的・衝撃的負荷がかかる高速強断続切削に用いた場合でも、すぐれた耐チッピング性を発揮し、長期の使用に亘ってすぐれた耐摩耗性を示す。

From the results shown in Tables 5 to 7, the coated tools 1 to 13 of the present invention have a B-containing region and a modified l-TiCN layer (upper layer) having a refined structure is formed. As a result, the adhesion between the intermediate layer and the upper layer is improved, and at the same time, the coarsening of crystal grains of the modified l-TiCN layer of the upper layer is suppressed. Even when used for high-speed, heavy-duty cutting that requires an impact load, it exhibits excellent chipping resistance and excellent wear resistance over a long period of use.

これに対して、硬質被覆層の上部層として、B含有領域を備え、かつ、微細化された組織を有する改質l−TiCN層が形成されていない従来被覆工具1〜13においては、上部層において結晶粒の粗大化が生じやすく、そのため、中間層と上部層の密着性、耐摩耗性が十分でないため、高熱発生を伴い、かつ、切刃部に断続的・衝撃的負荷がかかる高速強断続切削では、チッピング、欠損、剥離等が発生し、比較的短時間で使用寿命に至ることが明らかである。   On the other hand, as the upper layer of the hard coating layer, in the conventional coated tools 1 to 13 having the B-containing region and the modified l-TiCN layer having a refined structure is not formed, the upper layer In this case, the crystal grains are likely to be coarsened, and therefore, the adhesion and wear resistance between the intermediate layer and the upper layer are not sufficient, resulting in high heat generation and high-speed strong force that causes intermittent and impact loads on the cutting edge. In intermittent cutting, it is clear that chipping, chipping, peeling, etc. occur and the service life is reached in a relatively short time.

また、B含有領域を備えてはいるが、そのB平均含有量が1.5〜3.0原子%の範囲でない参考被覆工具1、3、8、9は、従来被覆工具と比べて使用寿命が同等かそれ以上ではあるが、上部層の改質l−TiCN層の結晶粒粗大化抑制作用が十分でなく、比較的短時間で使用寿命に至ることが明らかである。   In addition, the reference coated tools 1, 3, 8, and 9, which have a B-containing region but whose B average content is not in the range of 1.5 to 3.0 atomic%, have a service life as compared with the conventional coated tools. However, it is clear that the modified layer of the upper layer 1-TiCN layer is not sufficient in suppressing the grain coarsening and reaches the service life in a relatively short time.

前述のように、本発明の被覆工具は、合金工具鋼などの高速強断続切削ですぐれた耐チッピング性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention exhibits excellent chipping resistance and wear resistance in high-speed hard interrupted cutting such as alloy tool steel, and exhibits excellent cutting performance over a long period of time. It can cope with high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成した表面被覆切削工具において、
前記硬質被覆層が、工具基体側から
(a)3〜20μmの合計平均層厚を有し、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層、
(b)1〜15μmの平均層厚を有する酸化アルミニウム層からなる中間層、
(c)4〜14μmの平均層厚の縦長成長結晶組織をもつ改質Ti炭窒化物層からなる上部層、
の積層構造からなるとともに、
(d)上部層を構成する前記縦長成長結晶組織をもつ改質Ti炭窒化物層は、その縦断面研磨面について、オージェ電子分光法により、上部層表面から層厚方向に沿って上部層全体に亘ってB含有量をAES線分析した場合、B含有量のピークとして観測されるB含有領域が表面から内部側深さ方向に0.5〜4.0μmの範囲内の間隔をおいて少なくとも1つ現れ、前記B含有領域におけるBの平均含有量が、1.5〜3.0原子%であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The hard coating layer has a total average layer thickness of (a) 3 to 20 μm from the tool base side, and is a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, or carbonitride oxide layer. A lower layer composed of one or two or more Ti compound layers,
(B) an intermediate layer comprising an aluminum oxide layer having an average layer thickness of 1 to 15 μm,
(C) an upper layer comprising a modified Ti carbonitride layer having a vertically grown crystal structure with an average layer thickness of 4 to 14 μm,
With a laminated structure of
(D) The modified Ti carbonitride layer having the vertically grown crystal structure that constitutes the upper layer has a vertical cross-section polished surface of the entire upper layer along the layer thickness direction from the upper layer surface by Auger electron spectroscopy. When the B content is subjected to AES line analysis over a B area, the B content region observed as a peak of the B content is at least spaced from the surface in the range of 0.5 to 4.0 μm in the depth direction on the inner side. One surface-covered cutting tool that appears and has an average B content in the B-containing region of 1.5 to 3.0 atomic%.
JP2012082506A 2012-03-30 2012-03-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance Pending JP2013208698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082506A JP2013208698A (en) 2012-03-30 2012-03-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082506A JP2013208698A (en) 2012-03-30 2012-03-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance

Publications (1)

Publication Number Publication Date
JP2013208698A true JP2013208698A (en) 2013-10-10

Family

ID=49527076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082506A Pending JP2013208698A (en) 2012-03-30 2012-03-30 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP2013208698A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871279A (en) * 2018-09-04 2020-03-10 株式会社泰珂洛 Coated cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110871279A (en) * 2018-09-04 2020-03-10 株式会社泰珂洛 Coated cutting tool
EP3620552A1 (en) * 2018-09-04 2020-03-11 Tungaloy Corporation Coated cutting tool
JP2020037150A (en) * 2018-09-04 2020-03-12 株式会社タンガロイ Coated cutting tool
US11007579B2 (en) 2018-09-04 2021-05-18 Tungaloy Corporation Coated cutting tool
CN110871279B (en) * 2018-09-04 2021-06-08 株式会社泰珂洛 Coated cutting tool

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006075976A (en) Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting work
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2013188833A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2015100870A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5477767B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2013208698A (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2013208697A (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5742572B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5682500B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer