JP2013207115A - Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component - Google Patents

Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component Download PDF

Info

Publication number
JP2013207115A
JP2013207115A JP2012075110A JP2012075110A JP2013207115A JP 2013207115 A JP2013207115 A JP 2013207115A JP 2012075110 A JP2012075110 A JP 2012075110A JP 2012075110 A JP2012075110 A JP 2012075110A JP 2013207115 A JP2013207115 A JP 2013207115A
Authority
JP
Japan
Prior art keywords
connection
connection terminals
insulating structure
electronic component
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075110A
Other languages
Japanese (ja)
Inventor
Satoshi Igarashi
智 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2012075110A priority Critical patent/JP2013207115A/en
Publication of JP2013207115A publication Critical patent/JP2013207115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a short circuit between adjacent connection terminals.SOLUTION: A connection structure includes an electronic components 1, 2 which have a plurality of connection terminals 6, 7 and are connected at the connection terminals 6, 7 via a conductive adhesive 3 to each other. In at least the electronic components 1, an insulative structure 20 is formed between adjacent connection terminals 6, 6. The insulative structure 20 is formed so that its upper part width is smaller than its bottom part width in a sectional view.

Description

本発明は、複数の接続端子が配列された電子部品同士が、導電性接着剤を介して接続端子同士が接続された接続構造体及びその製造方法、複数の接続端子が配列された電子部品及びその製造方法、複数の接続端子が配列された電子部品同士を接続する電子部品の接続方法に関する。   The present invention relates to a connection structure in which electronic components in which a plurality of connection terminals are arranged are connected to each other via a conductive adhesive, a manufacturing method thereof, an electronic component in which a plurality of connection terminals are arranged, and The present invention relates to a manufacturing method and a method for connecting electronic components that connect electronic components in which a plurality of connection terminals are arranged.

従来、ガラス基板やガラスエポキシ基板等のリジッド基板とフレキシブル基板とを接続する際や、フレキシブル基板同士を接続する際に、バインダー樹脂に導電性粒子が分散されてなる異方性導電接着剤が用いられている。フレキシブル基板の接続端子とリジッド基板の接続端子とを接続する場合、両基板の接続端子が形成された領域の間に異方性導電接着剤を配置して熱加圧する。すると、バインダー樹脂は流動性を示し、フレキシブル基板の接続端子とリジッド基板の接続端子との間から流出するとともに、異方性導電接着剤中の導電性粒子は、両接続端子間に挟持されて押し潰される。   Conventionally, when connecting a rigid substrate such as a glass substrate or a glass epoxy substrate and a flexible substrate, or connecting flexible substrates, an anisotropic conductive adhesive in which conductive particles are dispersed in a binder resin is used. It has been. When connecting the connection terminal of the flexible substrate and the connection terminal of the rigid substrate, an anisotropic conductive adhesive is disposed between the regions where the connection terminals of both the substrates are formed, and heat-pressed. Then, the binder resin exhibits fluidity and flows out from between the connection terminal of the flexible substrate and the connection terminal of the rigid substrate, and the conductive particles in the anisotropic conductive adhesive are sandwiched between the connection terminals. It is crushed.

その結果、フレキシブル基板の接続端子とリジッド基板の接続端子とは、導電性粒子を介して電気的に接続され、この状態でバインダー樹脂が硬化する。両接続端子の間にない導電性粒子は、バインダー樹脂に分散されており、電気的に絶縁した状態を維持している。これにより、フレキシブル基板の接続端子とリジッド基板の接続端子との間のみで電気的導通が図られることになる。   As a result, the connection terminal of the flexible substrate and the connection terminal of the rigid substrate are electrically connected via the conductive particles, and the binder resin is cured in this state. The conductive particles that are not between the two connection terminals are dispersed in the binder resin and maintain an electrically insulated state. Thereby, electrical conduction is achieved only between the connection terminal of the flexible substrate and the connection terminal of the rigid substrate.

特開平11−282002号公報Japanese Patent Laid-Open No. 11-282002 特開2000−323523号公報JP 2000-323523 A

ところで、異方性導電接着剤を用いた接続方法においては、熱加圧領域に形成された端子の分布や端子高さにバラツキがあると、接続端子にかかる圧力が不均一となり、圧力不足による導通不良や圧力過剰による導電性粒子の潰れすぎが生じうる。   By the way, in the connection method using an anisotropic conductive adhesive, if the distribution and terminal height of the terminals formed in the heat and pressure region vary, the pressure applied to the connection terminals becomes non-uniform, resulting in insufficient pressure. Conductive particles may be crushed too much due to poor conduction or excessive pressure.

図12(a)に示すように、相対向する基板の接続端子50,51間で導電性粒子52を挟持したときに、該導電性粒子52を潰しすぎてしまうと、熱加圧工程の終了後の温度や湿度等の環境変化や、基板同士の接続構造体の経年変化等により、接続領域のバインダー樹脂53が膨張し、接続端子50,51間が離間した場合に、図12(b)に示すように、導電性粒子52が接続端子50,51間の離間に追従する弾力を失い、導通不良を起こす危険がある。また、導電性粒子52が潰れすぎるまで押し込むと、接続端子50,51間のバインダー樹脂52も不足し、接続信頼性にも劣る。   As shown in FIG. 12 (a), when the conductive particles 52 are excessively crushed when the conductive particles 52 are sandwiched between the connection terminals 50 and 51 of the opposing substrates, the thermal pressurization process is completed. When the binder resin 53 in the connection region expands and the connection terminals 50 and 51 are separated due to subsequent environmental changes such as temperature and humidity, and aging of the connection structure between the substrates, FIG. As shown in FIG. 2, there is a risk that the conductive particles 52 lose the elasticity to follow the separation between the connection terminals 50 and 51 and cause poor conduction. In addition, when the conductive particles 52 are pushed in until they are crushed, the binder resin 52 between the connection terminals 50 and 51 is also insufficient, and the connection reliability is poor.

また、熱加圧領域に形成された端子の分布や端子高さにバラツキがあると、熱加圧工程の際に、基板に反りを生じ、配線パターンの損傷や接続端子間の剥離等の危険もある。   In addition, if the distribution and terminal height of the terminals formed in the thermal pressurization area vary, the substrate may be warped during the thermal pressurization process, resulting in dangers such as damage to the wiring pattern and peeling between connection terminals. There is also.

そこで、従来、かかる不都合を防止するために、基板上に導通に寄与しないダミーバンプを設ける手法や、異方性導電接着剤中に大径のスペーサ粒子を配合する手法が採用されている(例えば特許文献1、特許文献2参照)。   Therefore, conventionally, in order to prevent such inconvenience, a method of providing dummy bumps that do not contribute to conduction on a substrate and a method of blending large-diameter spacer particles in an anisotropic conductive adhesive are employed (for example, patents). Reference 1 and Patent Reference 2).

しかし、図13(a)に示すように、矩形状のダミーバンプ54を設けた場合、図13(b)に示すように、ダミーバンプ54上に導電性粒子52が連なり、隣り合う接続端子50,50間や、隣り合う接続端子51,51間を短絡させる危険があった。   However, when rectangular dummy bumps 54 are provided as shown in FIG. 13 (a), conductive particles 52 are arranged on the dummy bumps 54 as shown in FIG. There is a risk of short-circuiting between adjacent connection terminals 51 and 51.

また、異方性導電接着剤中に大径のスペーサ粒子を配合した場合、相対向する基板の接続端子間で当該スペーサ粒子を挟持してしまうと、高さのバラツキや基板の反りを解消することができなかった。   In addition, when large-diameter spacer particles are blended in the anisotropic conductive adhesive, if the spacer particles are sandwiched between the connecting terminals of the opposing substrates, variations in height and warping of the substrate are eliminated. I couldn't.

そこで、本発明は、隣り合う接続端子間の短絡を防止することができる接続構造体及びその製造方法、電子部品及びその製造方法、電子部品の接続方法を提供することを目的とする。また、本発明は、導電性粒子の潰れすぎを防止することができる接続構造体及びその製造方法、電子部品及びその製造方法、電子部品の接続方法を提供することを目的とする。   Then, an object of this invention is to provide the connection structure which can prevent the short circuit between adjacent connection terminals, its manufacturing method, an electronic component, its manufacturing method, and the connection method of an electronic component. Another object of the present invention is to provide a connection structure that can prevent the conductive particles from being crushed, a method for manufacturing the connection structure, an electronic component, a method for manufacturing the electronic component, and a method for connecting the electronic component.

上述した課題を解決するために、本発明に係る接続構造体は、複数の接続端子が配列された電子部品同士が、導電性接着剤を介して上記接続端子同士が接続された接続構造体において、少なくとも一方の電子部品には、隣り合う上記接続端子間に、絶縁性構造体が形成され、上記絶縁性構造体は、断面視で底部幅より上部幅が幅狭に形成されているものである。   In order to solve the above-described problems, a connection structure according to the present invention is a connection structure in which electronic components in which a plurality of connection terminals are arranged are connected to each other via a conductive adhesive. In at least one of the electronic components, an insulating structure is formed between the adjacent connection terminals, and the insulating structure is formed such that the top width is narrower than the bottom width in a sectional view. is there.

また、本発明に係る接続構造体の製造方法は、複数の接続端子が配列された電子部品同士が、導電性接着剤を介して上記接続端子同士が接続された接続構造体の製造方法において、少なくとも一方の電子部品の隣り合う上記接続端子間に、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成し、上記電子部品同士を、上記接着剤を介して上記接続端子同士を対向させて加圧するとともに、上記接着剤を硬化させて、電気的、機械的に接続するものである。   Moreover, in the method for manufacturing a connection structure according to the present invention, the electronic components in which a plurality of connection terminals are arranged are connected to each other via the conductive adhesive. Between the connection terminals adjacent to each other at least one electronic component, an insulating structure is formed in which the upper width is narrower than the bottom width in a cross-sectional view, and the electronic components are connected to each other via the adhesive. The connection terminals are opposed to each other and pressed, and the adhesive is cured to be electrically and mechanically connected.

また、本発明に係る電子部品は、隣接して配列された複数の接続端子と、隣り合う複数の上記接続端子の間に形成され、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体とを備え、導電性接着剤を介して、上記接続端子が他の電子部品に形成された接続端子に接続されるものである。   The electronic component according to the present invention is formed between a plurality of adjacent connection terminals and a plurality of adjacent connection terminals, and has an upper width narrower than a bottom width in a cross-sectional view. The connection terminal is connected to a connection terminal formed on another electronic component via a conductive adhesive.

また、本発明に係る電子部品の製造方法は、隣接して配列された複数の接続端子を形成し、隣り合う複数の上記接続端子の間に断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成するものである。   In the electronic component manufacturing method according to the present invention, a plurality of connection terminals arranged adjacent to each other are formed, and an upper width is formed narrower than a bottom width in a sectional view between the plurality of adjacent connection terminals. Insulating structures are formed.

また、本発明に係る電子部品の接続方法は、複数の接続端子が配列された電子部品同士を、導電性接着剤を介して接続する接続方法において、少なくとも一方の電子部品の隣り合う上記接続端子間に、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成し、上記電子部品同士を、上記接着剤を介して上記接続端子同士を対向させて加圧するとともに、上記接着剤を硬化させて、電気的、機械的に接続するものである。   Moreover, the connection method of the electronic component which concerns on this invention is the connection method which connects the electronic components with which the several connection terminal was arranged through the conductive adhesive, The said connection terminal which at least one electronic component adjoins. In the meantime, an insulating structure having an upper width narrower than a bottom width in a cross-sectional view is formed, and the electronic parts are pressed with the connection terminals facing each other via the adhesive. The adhesive is cured and electrically and mechanically connected.

本発明によれば、絶縁性構造体は、断面視で底部幅より頂部幅が狭い形状を有し、電子部品を介して上方から熱加圧されることにより、頂部付近の導電性粒子を頂部に沿って左右に分離させる。これにより、絶縁性構造体は、隣り合う接続端子間に導電性粒子が連なることを防止することができ、接続端子間の短絡を防止することができる。   According to the present invention, the insulating structure has a shape in which the top width is narrower than the bottom width in a cross-sectional view, and is thermally pressed from above through the electronic component, so that the conductive particles near the top are formed on the top. Along the left and right sides. Thereby, the insulating structure can prevent a conductive particle from continuing between adjacent connection terminals, and can prevent the short circuit between connection terminals.

また、本発明によれば、絶縁性構造体が電子部品同士の接続厚みを規制するストッパーとして機能し、接続端子同士によって導電性粒子を潰しすぎることを防止することができる。   Moreover, according to this invention, an insulating structure functions as a stopper which controls the connection thickness of electronic components, and it can prevent that a conductive particle is crushed too much by connection terminals.

本発明が適用されたプリント配線板とフレキシブル基板との接続構造体を示す分解斜視図である。It is a disassembled perspective view which shows the connection structure of the printed wiring board and flexible substrate to which this invention was applied. プリント配線板のFOB実装部における接続状態を示す分解斜視図である。It is a disassembled perspective view which shows the connection state in the FOB mounting part of a printed wiring board. 異方性導電フィルムを示す断面図である。It is sectional drawing which shows an anisotropic conductive film. ACFを介して絶縁性構造体が形成されたプリント配線板とフレキシブル基板とを接続する工程を示す断面図であり、(a)は熱加圧前を示し、(b)は熱加圧後を示す。It is sectional drawing which shows the process of connecting the printed wiring board in which the insulating structure was formed via ACF, and a flexible substrate, (a) shows before heat press, (b) shows after heat press. Show. 三角形状の絶縁性構造体が設けられたプリント配線板と、フレキシブル基板とを示す断面図である。It is sectional drawing which shows the printed wiring board provided with the triangular-shaped insulating structure, and a flexible substrate. 台形状の絶縁性構造体が設けられたプリント配線板と、フレキシブル基板とを示す断面図である。It is sectional drawing which shows the printed wiring board provided with the trapezoid insulating structure, and a flexible substrate. 本発明が適用された接続構造体において、接続後に、プリント配線板とフレキシブル基板とが離間した状態を示す断面図である。In the connection structure to which the present invention is applied, the printed wiring board and the flexible substrate are separated from each other after connection. プリント配線板にソルダーレジスト層を形成する工程を示す斜視図である。It is a perspective view which shows the process of forming a soldering resist layer in a printed wiring board. 半円状の絶縁性構造体を形成する工程を示す側面図である。It is a side view which shows the process of forming a semicircular insulating structure. 三角形状の絶縁性構造体を形成する工程を示す側面図である。It is a side view which shows the process of forming a triangular-shaped insulating structure. 台形状の絶縁性構造体を形成する工程を示す側面図である。It is a side view which shows the process of forming a trapezoidal insulating structure. 導電性粒子が潰れすぎた従来の接続構造体を示す断面図であり、(a)は接続直後、(b)はバインダー樹脂の膨張による接続端子間の離間が生じた状態を示す。It is sectional drawing which shows the conventional connection structure in which the electroconductive particle was crushed too much, (a) is the state immediately after the connection, (b) shows the state which the separation between the connection terminals produced by expansion | swelling of binder resin. ダミーバンプを形成した従来の接続構造体を示す断面図であり、(a)は熱加圧前、(b)は熱加圧によってダミーバンプ上に導電性粒子が連なり短絡が生じた状態を示す。It is sectional drawing which shows the conventional connection structure in which the dummy bump was formed, (a) is the state before thermal pressurization, (b) shows the state which the electroconductive particle continued on the dummy bump and the short circuit occurred by thermal pressurization.

以下、本発明が適用された接続構造体及びその製造方法、電子部品及びその製造方法、電子部品の接続方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, a connection structure to which the present invention is applied, a method for manufacturing the same, an electronic component, a method for manufacturing the electronic component, and a method for connecting the electronic component will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

[プリント配線板]
本発明が適用された接続構造体は、フレキシブル基板とリジット基板とが異方性導電接続された接続構造体、あるいはフレキシブル基板同士が異方性導電接続された接続構造体であり、例えば、テレビやPC、携帯電話、ゲーム機、オーディオ機器、タブレット端末あるいは車載用モニタ等のあらゆる電子機器に内蔵されているプリント配線板に用いることができる。このようなプリント配線板においては、ファインピッチ化、軽量薄型化等の観点から、各種回路が形成されたフレキシブル基板を直接プリント配線板上に実装するいわゆるFOB(film on board)が採用されている。
[Printed wiring board]
The connection structure to which the present invention is applied is a connection structure in which a flexible substrate and a rigid substrate are connected in an anisotropic conductive manner, or a connection structure in which flexible substrates are connected in an anisotropic conductive manner. It can be used for printed wiring boards incorporated in all electronic devices such as PCs, mobile phones, game machines, audio devices, tablet terminals, and in-vehicle monitors. In such a printed wiring board, a so-called FOB (film on board) in which a flexible substrate on which various circuits are formed is directly mounted on the printed wiring board is adopted from the viewpoints of fine pitch, light weight and thinning. .

プリント配線板1は、図1に示すように、各種配線パターンが形成されると共に、ICチップ等の各種部品が実装され、さらにフレキシブル基板2が異方性導電フィルム(ACF:anisotropic conductive film)3を介して接続されることにより接続構造体を構成する。   As shown in FIG. 1, the printed wiring board 1 is formed with various wiring patterns and various components such as an IC chip, and a flexible substrate 2 is formed of an anisotropic conductive film (ACF) 3. The connection structure is configured by being connected via the.

プリント配線板1は、フレキシブル基板2が接続されるFOB実装部5には、フレキシブル基板2に設けられた接続端子7と接続される複数の端子部6が形成されている。端子部6は、図2に示すように、例えば略矩形状に形成され、長手方向に直交する方向に亘って複数配列して形成されている。   In the printed wiring board 1, a plurality of terminal portions 6 connected to connection terminals 7 provided on the flexible substrate 2 are formed in the FOB mounting portion 5 to which the flexible substrate 2 is connected. As shown in FIG. 2, the terminal portion 6 is formed in, for example, a substantially rectangular shape, and is formed by arranging a plurality of terminals over a direction orthogonal to the longitudinal direction.

このFOB実装部5は、導電性の接着剤として異方性導電フィルム3を用いてフレキシブル基板2が接続される。異方性導電フィルム3は、後述するように、バインダー樹脂に導電性粒子を含有しており、フレキシブル基板2の接続端子7とプリント配線板1に形成された端子部6とを、導電性粒子を介して電気的に接続させる。   The FOB mounting portion 5 is connected to the flexible substrate 2 using an anisotropic conductive film 3 as a conductive adhesive. As will be described later, the anisotropic conductive film 3 contains conductive particles in a binder resin, and the conductive terminals include the connection terminals 7 of the flexible substrate 2 and the terminal portions 6 formed on the printed wiring board 1. Electrical connection via

[フレキシブル基板]
プリント配線板1のFOB実装部5に接続されるフレキシブル基板2は、ポリイミド等の可撓性を有する基板9上に、図2に示すように、端子部6と接続される接続端子7が複数配列して形成されている。接続端子7は、例えば銅箔等がパターニングされるとともに、適宜、表面にニッケル金メッキ等のメッキコート処理が施されることにより形成され、端子部6と同様に、例えば略矩形状に形成され、長手方向に直交する方向に亘って複数配列して形成されている。
[Flexible substrate]
As shown in FIG. 2, the flexible substrate 2 connected to the FOB mounting portion 5 of the printed wiring board 1 has a plurality of connection terminals 7 connected to the terminal portion 6 on a flexible substrate 9 such as polyimide. It is formed in an array. The connection terminal 7 is formed, for example, by patterning a copper foil or the like, and by appropriately performing a plating coating process such as nickel gold plating on the surface. A plurality are arranged in a direction orthogonal to the longitudinal direction.

[異方性導電フィルム]
異方性導電フィルム3は、熱硬化型あるいは紫外線硬化型の接着剤であり、加熱押圧ヘッド(図示せず)により熱加圧されることにより流動化して導電性粒子が端子部6とフレキシブル基板2の接続端子7との間で押し潰され、加熱あるいは紫外線照射により、導電性粒子が押し潰された状態で硬化する。これにより、異方性導電フィルム3は、プリント配線板1とフレキシブル基板2とを電気的、機械的に接続する。
[Anisotropic conductive film]
The anisotropic conductive film 3 is a thermosetting or ultraviolet curable adhesive, which is fluidized by heat and pressure applied by a heating and pressing head (not shown) so that the conductive particles become the terminal portion 6 and the flexible substrate. It is crushed between the two connection terminals 7 and cured in a state where the conductive particles are crushed by heating or ultraviolet irradiation. Thereby, the anisotropic conductive film 3 electrically and mechanically connects the printed wiring board 1 and the flexible substrate 2.

異方性導電フィルム3は、例えば図3に示すように、膜形成樹脂、熱硬化性樹脂、潜在性硬化剤、シランカップリング剤等を含有する通常のバインダー樹脂8(接着剤)に導電性粒子9が分散されてなり、この熱硬化性接着材組成物がベースフィルム10上に塗布されることによりフィルム状に成型されたものである。   For example, as shown in FIG. 3, the anisotropic conductive film 3 is conductive to a normal binder resin 8 (adhesive) containing a film-forming resin, a thermosetting resin, a latent curing agent, a silane coupling agent, and the like. The particles 9 are dispersed, and the thermosetting adhesive composition is applied onto the base film 10 to be formed into a film shape.

ベースフィルム10は、例えば、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等にシリコーン等の剥離剤を塗布してなる。   The base film 10 is formed, for example, by applying a release agent such as silicone to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like.

バインダー樹脂8に含有される膜形成樹脂としては、平均分子量が10000〜80000程度の樹脂が好ましい。膜形成樹脂としては、エポキシ樹脂、変形エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の各種の樹脂が挙げられる。中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂が特に好ましい。   The film forming resin contained in the binder resin 8 is preferably a resin having an average molecular weight of about 10,000 to 80,000. Examples of the film forming resin include various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin. Among these, phenoxy resin is particularly preferable from the viewpoint of film formation state, connection reliability, and the like.

熱硬化性樹脂としては、特に限定されず、例えば、市販のエポキシ樹脂、アクリル樹脂等が挙げられる。   It does not specifically limit as a thermosetting resin, For example, a commercially available epoxy resin, an acrylic resin, etc. are mentioned.

エポキシ樹脂としては、特に限定されないが、例えば、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。これらは単独でも、2種以上の組み合わせであってもよい。   The epoxy resin is not particularly limited. For example, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin. Naphthol type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin and the like. These may be used alone or in combination of two or more.

アクリル樹脂としては、特に制限はなく、目的に応じてアクリル化合物、液状アクリレート等を適宜選択することができる。例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレート等を挙げることができる。なお、アクリレートをメタクリレートにしたものを用いることもできる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   There is no restriction | limiting in particular as an acrylic resin, According to the objective, an acrylic compound, liquid acrylate, etc. can be selected suitably. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, dimethylol tricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy- 1,3-diacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclo Examples include decanyl acrylate, tris (acryloxyethyl) isocyanurate, urethane acrylate, and epoxy acrylate. In addition, what made acrylate the methacrylate can also be used. These may be used individually by 1 type and may use 2 or more types together.

潜在性硬化剤としては、特に限定されないが、例えば、加熱硬化型、UV硬化型等の各種硬化剤が挙げられる。潜在性硬化剤は、通常では反応せず、熱、光、加圧等の用途に応じて選択される各種のトリガにより活性化し、反応を開始する。熱活性型潜在性硬化剤の活性化方法には、加熱による解離反応などで活性種(カチオンやアニオン、ラジカル)を生成する方法、室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法、モレキュラーシーブ封入タイプの硬化剤を高温で溶出して硬化反応を開始する方法、マイクロカプセルによる溶出・硬化方法等が存在する。熱活性型潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミン塩、ジシアンジアミド等や、これらの変性物があり、これらは単独でも、2種以上の混合体であってもよい。中でも、マイクロカプセル型イミダゾール系潜在性硬化剤が好適である。   The latent curing agent is not particularly limited, and examples thereof include various curing agents such as a heat curing type and a UV curing type. The latent curing agent does not normally react, but is activated by various triggers selected according to applications such as heat, light, and pressure, and starts the reaction. The activation method of the thermal activation type latent curing agent includes a method of generating active species (cation, anion, radical) by a dissociation reaction by heating, etc., and it is stably dispersed in the epoxy resin near room temperature, and epoxy at high temperature There are a method of initiating a curing reaction by dissolving and dissolving with a resin, a method of initiating a curing reaction by eluting a molecular sieve encapsulated type curing agent at a high temperature, and an elution / curing method using microcapsules. Thermally active latent curing agents include imidazole, hydrazide, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, etc., and modified products thereof. The above mixture may be sufficient. Among these, a microcapsule type imidazole-based latent curing agent is preferable.

シランカップリング剤としては、特に限定されないが、例えば、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。シランカップリング剤を添加することにより、有機材料と無機材料との界面における接着性が向上される。   Although it does not specifically limit as a silane coupling agent, For example, an epoxy type, an amino type, a mercapto sulfide type, a ureido type etc. can be mentioned. By adding the silane coupling agent, the adhesion at the interface between the organic material and the inorganic material is improved.

導電性粒子9としては、異方性導電フィルム3において使用されている公知の何れの導電性粒子を挙げることができる。導電性粒子9としては、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、或いは、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面に金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を挙げることができる。   Examples of the conductive particles 9 include any known conductive particles used in the anisotropic conductive film 3. Examples of the conductive particles 9 include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, gold, metal oxide, carbon, graphite, glass, ceramic, Examples thereof include those in which the surface of particles such as plastic is coated with metal, or those in which the surface of these particles is further coated with an insulating thin film. In the case where the surface of the resin particle is coated with metal, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, a divinylbenzene resin, a styrene resin, and the like. Can be mentioned.

なお、異方性導電フィルム3は、取り扱いの容易さ、保存安定性等の見地から、ベースフィルム10が積層された面とは反対の面側にカバーフィルムを設ける構成としてもよい。また、異方性導電フィルム3の形状は、特に限定されないが、例えば、図3に示すように、巻取リール12に巻回可能な長尺テープ形状とし、所定の長さだけカットして使用することができる。   In addition, the anisotropic conductive film 3 is good also as a structure which provides a cover film in the surface opposite to the surface where the base film 10 was laminated | stacked from viewpoints of the ease of handling, storage stability, etc. The shape of the anisotropic conductive film 3 is not particularly limited. For example, as shown in FIG. 3, the anisotropic conductive film 3 has a long tape shape that can be wound around the take-up reel 12, and is cut by a predetermined length. can do.

また、上述の実施の形態では、接着剤として、バインダー樹脂8に適宜導電性粒子9を含有した熱硬化性樹脂組成物をフィルム状に成形した接着フィルムを例に説明したが、本発明に係る接着剤は、これに限定されず、例えばバインダー樹脂8のみからなる絶縁性接着剤層と導電性粒子9を含有したバインダー樹脂8からなる導電性粒子含有層とを積層した構成とすることができる。また、接着剤は、このようなフィルム成形されてなる導電性接着フィルムに限定されず、バインダー樹脂組成物に導電性粒子9が分散された導電性接着ペーストとしてもよい。本発明に係る接着剤は、上述したいずれの形態をも包含するものである。   Moreover, although the above-mentioned embodiment demonstrated as an example the adhesive film which shape | molded the thermosetting resin composition which contained the electroconductive particle 9 in the binder resin 8 suitably as an adhesive agent, it concerns on this invention. An adhesive agent is not limited to this, For example, it can be set as the structure which laminated | stacked the insulating adhesive layer which consists only of binder resin 8, and the electroconductive particle content layer which consists of binder resin 8 containing the electroconductive particle 9. FIG. . Moreover, an adhesive agent is not limited to the electroconductive adhesive film formed by such a film formation, It is good also as an electroconductive adhesive paste by which the electroconductive particle 9 was disperse | distributed to the binder resin composition. The adhesive according to the present invention includes any of the forms described above.

[絶縁性構造体]
本発明が適用されたプリント配線板1は、図4に示すように、隣り合う端子部6間に、絶縁性構造体20が設けられている。絶縁性構造体20は、例えばソルダーレジストからなり、断面視で底部幅より頂部幅が狭い形状、例えば図4(a)に示す半球状、図5に示す三角形状、あるいは図6に示す台形状をなす。また、絶縁性構造体20は、図2に示すように、接続端子7の形成方向に沿って連続して形成されている。
[Insulating structure]
As shown in FIG. 4, the printed wiring board 1 to which the present invention is applied is provided with an insulating structure 20 between adjacent terminal portions 6. The insulating structure 20 is made of, for example, a solder resist, and has a shape in which the top width is narrower than the bottom width in a sectional view, for example, a hemispherical shape shown in FIG. 4A, a triangular shape shown in FIG. 5, or a trapezoidal shape shown in FIG. Make. Moreover, the insulating structure 20 is continuously formed along the formation direction of the connection terminal 7 as shown in FIG.

絶縁性構造体20は、プリント配線板1の隣り合う端子部6,6間や、プリント配線板1の隣り合う接続端子7,7間の短絡を防止するものである。すなわち、絶縁性構造体20は、図4(b)に示すように、異方性導電フィルム3を介してフレキシブル基板2がプリント配線板1に熱加圧されることにより接続されると、フレキシブル基板2の隣り合う接続端子7,7間に頂部20aが位置される。また、絶縁性構造体20は、断面視で底部幅より頂部幅が狭い形状を有し、フレキシブル基板2を介して上方から熱加圧されることにより、頂部20a付近の導電性粒子9を頂部20aの形状に沿って左右に分離させる。これにより、絶縁性構造体20は、隣り合う端子部6,6間や隣り合う接続端子7,7間に導電性粒子が連なることを防止することができ、端子部6,6間や接続端子7,7間の短絡を防止することができる。   The insulating structure 20 prevents a short circuit between adjacent terminal portions 6 and 6 of the printed wiring board 1 or between adjacent connection terminals 7 and 7 of the printed wiring board 1. That is, as shown in FIG. 4B, the insulating structure 20 is flexible when the flexible substrate 2 is connected to the printed wiring board 1 through the anisotropic conductive film 3 by being hot-pressed. The top portion 20 a is positioned between the connection terminals 7 and 7 adjacent to each other on the substrate 2. Further, the insulating structure 20 has a shape in which the top width is narrower than the bottom width in a cross-sectional view, and is thermally pressed from above through the flexible substrate 2, whereby the conductive particles 9 near the top 20a are Separating left and right along the shape of 20a. Thereby, the insulating structure 20 can prevent a conductive particle from continuing between the adjacent terminal parts 6 and 6 or between the adjacent connection terminals 7 and 7, and between the terminal parts 6 and 6 or the connection terminal. 7 and 7 can be prevented from being short-circuited.

また、絶縁性構造体20は、対向するプリント配線板1とフレキシブル基板2の端子部6と接続端子7の各高さの合計よりも高い高さを有することが好ましい。これにより、絶縁性構造体20は、プリント配線板1とフレキシブル基板2の接続厚みを規制するストッパーとして機能し、端子部6と接続端子7とによって導電性粒子9を潰しすぎることを防止することができる。   Moreover, it is preferable that the insulating structure 20 has a height higher than the total height of the opposing printed wiring board 1, the terminal portion 6 of the flexible substrate 2, and the connection terminal 7. Thereby, the insulating structure 20 functions as a stopper for regulating the connection thickness between the printed wiring board 1 and the flexible substrate 2, and prevents the conductive particles 9 from being crushed too much by the terminal portions 6 and the connection terminals 7. Can do.

すなわち、図7(a)に示すように、絶縁性構造体20が端子部6の高さH1及び接続端子7の高さH2の合計高さよりも高い高さH3を有することにより(H1+H2<H3)、フレキシブル基板2がプリント配線板1に熱加圧された場合に、絶縁性構造体20によって端子部6と接続端子7との距離が規制される。これにより、FOB実装部5内における端子部6や接続端子7の高さのバラツキや、加熱押圧ヘッドの熱加圧面の面精度、あるいは緩衝材の厚み公差等により、加熱押圧ヘッドの押圧力にバラツキが生じた場合にも、圧力過剰による導電性粒子9の潰れすぎを防止することができる。   That is, as shown in FIG. 7A, the insulating structure 20 has a height H3 higher than the total height of the height H1 of the terminal portion 6 and the height H2 of the connection terminal 7 (H1 + H2 <H3). ), When the flexible substrate 2 is thermally pressed to the printed wiring board 1, the distance between the terminal portion 6 and the connection terminal 7 is regulated by the insulating structure 20. As a result, the pressing force of the heating and pressing head can be reduced due to variations in the height of the terminal portion 6 and the connection terminal 7 in the FOB mounting portion 5, the surface accuracy of the heating and pressing surface of the heating and pressing head, or the thickness tolerance of the buffer material. Even when variations occur, it is possible to prevent the conductive particles 9 from being crushed too much due to excessive pressure.

したがって、プリント配線板1とフレキシブル基板2との接続構造体は、図7(b)に示すように、熱加圧工程の終了後の温度や湿度等の環境変化や、基板同士の接続構造体の経年変化等により、接続領域のバインダー樹脂8が膨張し、端子部6と接続端子7とが離間した場合にも、導電性粒子9が弾力を失うことなく、端子部6と接続端子7との離間に追従する。これにより、この接続構造体は、端子部6と接続端子7との導通不良を防止することができる。   Accordingly, the connection structure between the printed wiring board 1 and the flexible substrate 2 is, as shown in FIG. 7B, an environmental change such as temperature and humidity after the end of the thermal pressurization process, or a connection structure between the substrates. Even when the binder resin 8 in the connection region expands due to secular change or the like, and the terminal portion 6 and the connection terminal 7 are separated from each other, the conductive particles 9 do not lose elasticity, and the terminal portion 6 and the connection terminal 7 Follow the separation. Thereby, this connection structure can prevent the conduction | electrical_connection defect of the terminal part 6 and the connection terminal 7. FIG.

また、プリント配線板1とフレキシブル基板2との接続構造体は、導電性粒子9が潰れすぎるまで押し込まれることがないため、端子部6と接続端子7との間のバインダー樹脂8も不足することなく、接続信頼性を維持することができる。   Moreover, since the connection structure of the printed wiring board 1 and the flexible substrate 2 is not pushed in until the conductive particles 9 are crushed too much, the binder resin 8 between the terminal portion 6 and the connection terminal 7 is also insufficient. Connection reliability can be maintained.

さらに、絶縁性構造体20は、端子部6と接続端子7の各高さに、導電性粒子9の平均粒径を加えた高さよりも低くすることが好ましい。これにより、絶縁性構造体20は、高さが高くなりすぎて、端子部6と接続端子7とによって導電性粒子9を挟持し得なくなる事態を防止することができる。   Furthermore, the insulating structure 20 is preferably made lower than the height obtained by adding the average particle diameter of the conductive particles 9 to the heights of the terminal portion 6 and the connection terminal 7. Thereby, the insulating structure 20 can prevent the situation where the height becomes too high and the conductive particles 9 cannot be held between the terminal portion 6 and the connection terminal 7.

なお、絶縁性構造体20は、プリント配線板1のFOB実装部5に形成された全ての端子部6,6間の領域に形成してもよいが、特にプリント配線板1とフレキシブル基板2との高さ調整が必要な部位、例えば配列された複数の端子部6のうち、両端に形成された端子部6,6間の領域のみ、あるいは端子部6の疎密がある場合に端子部6のまばらな領域のみに形成するようにしてもよい。   The insulating structure 20 may be formed in a region between all the terminal portions 6 and 6 formed in the FOB mounting portion 5 of the printed wiring board 1, but in particular, the printed wiring board 1 and the flexible substrate 2. Of the terminal portion 6, for example, only in the region between the terminal portions 6, 6 formed at both ends of the plurality of arranged terminal portions 6, or when the terminal portion 6 is dense or dense. You may make it form only in a sparse area | region.

また、絶縁性構造体20は、プリント配線板1側のみに形成する他にも、フレキシブル基板2側に形成してもよい。この場合、プリント配線板1とフレキシブル基板2のいずれか一方に形成してもよく、両方に形成し、互いに対向して形成された絶縁性構造体20を突き合わせるようにしてもよく、あるいは端子部6,6間と接続端子7,7間に交互に形成してもよい。   Moreover, the insulating structure 20 may be formed on the flexible substrate 2 side in addition to being formed only on the printed wiring board 1 side. In this case, it may be formed on one of the printed wiring board 1 and the flexible substrate 2, may be formed on both, and the insulating structures 20 formed so as to face each other may be abutted, or terminals. You may form alternately between the parts 6 and 6 and between the connection terminals 7 and 7. FIG.

[絶縁性構造体の製造方法]
次いで、絶縁性構造体20の形成工程について説明する。絶縁性構造体20は、ソルダーレジスト等の絶縁性の光硬化性樹脂を用いて形成され、図8に示すように、端子部6や他の配線パターンが形成されたプリント配線板1に回路パターンを保護する絶縁膜となるソルダーレジストを形成する工程と同工程で形成することができる。また、絶縁性構造体20は、プリント配線板1に回路パターンを保護するソルダーレジスト膜を形成する工程において同時に形成することができる。
[Insulating structure manufacturing method]
Next, a process for forming the insulating structure 20 will be described. The insulating structure 20 is formed using an insulating photocurable resin such as a solder resist, and as shown in FIG. 8, a circuit pattern is formed on the printed wiring board 1 on which the terminal portion 6 and other wiring patterns are formed. It can form in the same process as the process of forming the soldering resist used as the insulating film which protects. Further, the insulating structure 20 can be formed simultaneously in the process of forming a solder resist film for protecting the circuit pattern on the printed wiring board 1.

具体的に、図8(a)に示すように、プリント配線板1に公知の手法によって端子部6や他の配線パターンを形成する。次いで、図8(b)に示すように、液状ソルダーレジスト30をプリント配線板1の全面に亘って塗布し、プレキュアを行う。プレキュアは、液状ソルダーレジストが塗布されたプリント配線板1を、例えば80℃の熱で、20〜30分程度加熱した後、乾燥させることにより行う。   Specifically, as shown in FIG. 8A, terminal portions 6 and other wiring patterns are formed on the printed wiring board 1 by a known method. Next, as shown in FIG. 8B, a liquid solder resist 30 is applied over the entire surface of the printed wiring board 1, and precure is performed. Precure is performed by heating the printed wiring board 1 coated with the liquid solder resist, for example, with heat of 80 ° C. for about 20 to 30 minutes, and then drying.

次いで、図8(c)に示すように、露光を行う。露光は、マスク(ネガフィルム)31を通してプリント配線板1に対して紫外線等の光線を照射することにより行う。紫外線が当たった部分はソルダーレジスト30が硬化する。その後、図8(d)に示すように、現像を行う。現像は、希アルカリ水溶液等の現像液で未硬化のソルダーレジスト30をエッチングして、洗い流すことにより行う。最後にポストキュアを行う。ポストキュアは、プリント配線板1を例えば150℃の熱で、50〜60分程度加熱し、プリント配線板1上に残ったソルダーレジスト30を完全に硬化させ、これによりソルダーレジスト30のパターン形成が完了する。   Next, as shown in FIG. 8C, exposure is performed. The exposure is performed by irradiating the printed wiring board 1 with light rays such as ultraviolet rays through a mask (negative film) 31. The solder resist 30 is hardened in the portion exposed to the ultraviolet rays. Thereafter, development is performed as shown in FIG. The development is performed by etching and washing away the uncured solder resist 30 with a developer such as a dilute alkaline aqueous solution. Finally, post cure is performed. Post-cure heats the printed wiring board 1 with, for example, 150 ° C. for about 50 to 60 minutes to completely cure the solder resist 30 remaining on the printed wiring board 1, thereby forming a pattern of the solder resist 30. Complete.

ここで、断面視で半円状の絶縁性構造体20は、図9に示すように、未硬化の液状ソルダーレジスト30を端子部6,6間に塗布後、端子部6,6間距離の80%以下の幅の開口部を有するマスクを通じて、平行に入射する紫外光による硬化処理を行った後に、推奨現像時間より50%以上長い現像時間にてエッチングを行うことにより形成する。これにより絶縁性構造体20は、現像時間が通常よりも長いために、露光部の一部も現像液に侵食され、その結果、断面視で上面の両角部が取れ、断面半円状に仕上がる。   Here, as shown in FIG. 9, the semicircular insulating structure 20 in a cross-sectional view has a distance between the terminal portions 6, 6 after the uncured liquid solder resist 30 is applied between the terminal portions 6, 6. After performing a curing process using ultraviolet light incident in parallel through a mask having an opening having a width of 80% or less, etching is performed for a development time longer than the recommended development time by 50% or more. As a result, since the development time of the insulating structure 20 is longer than usual, a part of the exposed portion is also eroded by the developer, and as a result, both corners of the upper surface are taken in a sectional view and finished in a semicircular cross section. .

また、断面視で三角形状の絶縁性構造体20は、図10に示すように、未硬化の液状ソルダーレジスト30を端子部6,6間に塗布後、端子部6,6間距離の10%以下の幅の開口部32を有するマスク31を通じて、拡散光による紫外光Lで硬化処理を行った後に、エッチングを行うことにより形成する。これにより絶縁性構造体20は、マスク31の開口部32が狭く、また拡散光を用いているため、断面視で三角形状に仕上がる。   Further, as shown in FIG. 10, the insulating structure 20 having a triangular shape in a cross-sectional view has an uncured liquid solder resist 30 applied between the terminal portions 6 and 6, and then 10% of the distance between the terminal portions 6 and 6. It forms by etching, after performing the hardening process with the ultraviolet light L by diffused light through the mask 31 which has the opening part 32 of the following width | variety. As a result, the insulating structure 20 is finished in a triangular shape in sectional view because the opening 32 of the mask 31 is narrow and diffused light is used.

また、断面視で半円状の絶縁性構造体20は、図11に示すように、未硬化の液状ソルダーレジスト30を端子部6,6間に塗布後、端子部6,6間距離の50%以下の幅の開口部32を有するマスク31を通じて、平行に入射する紫外光Lによる硬化処理を行った後に、推奨現像時間より50%以下の短い現像時間にてエッチングを行うことにより形成する。これにより絶縁性構造体20は、マスク31の開口部32が若干狭いために上面の幅が狭まる。また、絶縁性構造体20は、現像時間が通常よりも短いために、下部が通常よりも除去されにくくなる。その結果、絶縁性構造体20は、断面視で台形状に仕上がる。   In addition, as shown in FIG. 11, the semi-circular insulating structure 20 in cross-sectional view is obtained by applying an uncured liquid solder resist 30 between the terminal portions 6 and 6 and then a distance 50 between the terminal portions 6 and 6. After performing a curing process using ultraviolet light L incident in parallel through a mask 31 having an opening 32 having a width of not more than%, etching is performed in a developing time shorter than 50% by the recommended developing time. As a result, the insulating structure 20 has a narrow upper surface because the opening 32 of the mask 31 is slightly narrow. Further, since the insulating structure 20 has a shorter development time than usual, the lower part is less likely to be removed than usual. As a result, the insulating structure 20 is finished in a trapezoidal shape in a cross-sectional view.

このように、絶縁性構造体20は、光照射による硬化時の光源選択(平行光、あるいは拡散光)、マスクの開口部の大きさ、現像処理の強弱(現像時間等)によって目的の形状に形成することができる。   As described above, the insulating structure 20 has a desired shape depending on the light source selection (parallel light or diffused light) at the time of curing by light irradiation, the size of the opening of the mask, and the strength of development processing (development time, etc.). Can be formed.

絶縁性構造体20が形成されたプリント配線板1には、FOG実装部5に異方性導電フィルム3が仮貼りされる。異方性導電フィルム3は、バインダー樹脂8が形成された面をFOG実装部5に貼着し、ベースフィルム10の上から加熱押圧ヘッドによって、バインダー樹脂8が流動性を示すが熱硬化を開始しない温度で、低圧、短時間で熱加圧することによって行う。   The anisotropic conductive film 3 is temporarily attached to the FOG mounting portion 5 on the printed wiring board 1 on which the insulating structure 20 is formed. The anisotropic conductive film 3 has the surface on which the binder resin 8 is formed adhered to the FOG mounting portion 5, and the binder resin 8 exhibits fluidity from the top of the base film 10 by a heating and pressing head, but starts thermosetting. This is done by heat-pressing at a low pressure and in a short time at a temperature that does not.

次いで、異方性導電フィルム3が仮貼りされたFOB実装部5上にフレキシブル基板2が載置される。このとき、フレキシブル基板2は、接続端子7が所定の端子部6上に載置されるようにアライメント調整が行われる。そして、フレキシブル基板2の上から、バインダー樹脂8の硬化温度に加温された加熱押圧ヘッドによって、所定の圧力及び所定の時間だけ、熱加圧される。これにより、異方性導電フィルム3は、バインダー樹脂8が、流動化して端子部6と接続端子7との間から流出するとともに、導電性粒子9が端子部6と接続端子7とに挟持され、この状態で硬化する。これにより、プリント配線板1とフレキシブル基板2とが電気的、機械的に接続された接続構造体が製造される。   Next, the flexible substrate 2 is placed on the FOB mounting portion 5 on which the anisotropic conductive film 3 is temporarily attached. At this time, the flexible substrate 2 is subjected to alignment adjustment so that the connection terminal 7 is placed on the predetermined terminal portion 6. And it heat-presses for a predetermined | prescribed pressure and predetermined | prescribed time from the flexible substrate 2 with the heating press head heated to the curing temperature of the binder resin 8. FIG. Thereby, in the anisotropic conductive film 3, the binder resin 8 is fluidized and flows out from between the terminal portion 6 and the connection terminal 7, and the conductive particles 9 are sandwiched between the terminal portion 6 and the connection terminal 7. It hardens in this state. Thereby, a connection structure in which the printed wiring board 1 and the flexible substrate 2 are electrically and mechanically connected is manufactured.

なお、上記では接続構造体としてプリント配線板1にフレキシブル基板2を接続した場合を例に説明したが、本発明は、FOB実装に限られず、互いにACF接続される少なくとも一方の電子部品に絶縁性構造体が形成された接続構造体、例えばフレキシブル基板同士が接続された接続構造体や、リジッド基板やフレキシブル基板にICチップ等が実装された接続構造体に適用することができる。   In the above description, the case where the flexible substrate 2 is connected to the printed wiring board 1 as the connection structure has been described as an example. However, the present invention is not limited to the FOB mounting, and the insulating structure is not limited to at least one electronic component connected to each other by ACF. The present invention can be applied to a connection structure in which a structure is formed, for example, a connection structure in which flexible substrates are connected to each other, or a connection structure in which an IC chip or the like is mounted on a rigid substrate or a flexible substrate.

次いで、本発明の実施例について説明する。本実施例では、隣り合う端子部間に絶縁性構造体を形成したプリント配線板を用意し、それぞれにACFを介してフレキシブル基板を接続した接続構造体サンプルを形成した。そして、各接続構造体サンプルについて、端子部間におけるショートの発生率を測定した。   Next, examples of the present invention will be described. In this example, a printed wiring board in which an insulating structure was formed between adjacent terminal portions was prepared, and a connection structure sample in which a flexible substrate was connected to each via an ACF was formed. And about each connection structure sample, the incidence rate of the short circuit between terminal parts was measured.

実施例及び比較例に係るプリント配線板は、日立化成工業株式会社製:MCL−E−67を使用した。このプリント配線板は、FR−4グレードのガラスエポキシ基材であり、Ni/Auめっきが施された厚さ18μmのCu配線が、400μmピッチ(L/S=1/1)で形成されている。   The printed wiring board which concerns on an Example and a comparative example used Hitachi Chemical Co., Ltd. product: MCL-E-67. This printed wiring board is an FR-4 grade glass epoxy base material, and Cu wiring of 18 μm thickness plated with Ni / Au is formed at a pitch of 400 μm (L / S = 1/1). .

実施例及び比較例に係るフレキシブル基板は、新日鐵化学株式会社製:SC12−25−00CEを使用した。このフレキシブル基板は、ポリイミド基材に、Ni/Auめっきが施された厚さ12μmのCu配線が、400μmピッチ(L/S=1/1)で形成されている。   The flexible substrate which concerns on an Example and a comparative example used Nippon Steel Chemical Co., Ltd. product: SC12-25-00CE. In this flexible substrate, Cu wiring having a thickness of 12 μm on which a Ni / Au plating is applied is formed on a polyimide substrate at a pitch of 400 μm (L / S = 1/1).

実施例及び比較例に係るプリント配線板に形成される絶縁性構造体は、太陽インキ製造株式会社製ソルダーレジスト:PSR−4000 BL01を使用し、図8に示すフォトリソグラフィによるエッチングプロセスによって所定の形状に形成した。なお、露光器として、平行光はオーク製作所製:EXM−1201を使用し、拡散光はオーク製作所製:HMW−680を使用した。露光量は、いずれも300mJ/cmである。また、現像機として、山縣機械社製リッタースプレーマシンを使用した。現像液は、30℃の1質量%炭酸ナトリウム水溶液を、スプレー圧力0.2MPaでスプレーした。 The insulating structure formed on the printed wiring board according to the example and the comparative example uses a solder resist manufactured by Taiyo Ink Manufacturing Co., Ltd .: PSR-4000 BL01, and has a predetermined shape by an etching process by photolithography shown in FIG. Formed. In addition, as an exposure device, the collimated light used: Oak Manufacturing Co., Ltd .: EXM-1201, and the diffused light used: Oak Manufacturing Co., Ltd .: HMW-680. The exposure amount is 300 mJ / cm 2 in all cases. Further, a Ritter spray machine manufactured by Yamagata Machinery Co., Ltd. was used as a developing machine. The developer was sprayed with a 1 mass% sodium carbonate aqueous solution at 30 ° C. at a spray pressure of 0.2 MPa.

実施例1では、断面視で半円状の絶縁性構造体を形成したプリント配線板を用いた。実施例1に係る絶縁性構造体は、高さAが40μm、頂部幅Bが0μm、底部幅Cが120μmである。   In Example 1, a printed wiring board on which a semicircular insulating structure was formed in a cross-sectional view was used. The insulating structure according to Example 1 has a height A of 40 μm, a top width B of 0 μm, and a bottom width C of 120 μm.

実施例2では、断面視で三角形状の絶縁性構造体を形成したプリント配線板を用いた。実施例2に係る絶縁性構造体は、高さAが40μm、頂部幅Bが0μm、底部幅Cが120μmである。   In Example 2, a printed wiring board having a triangular insulating structure formed in a cross-sectional view was used. The insulating structure according to Example 2 has a height A of 40 μm, a top width B of 0 μm, and a bottom width C of 120 μm.

実施例3では、断面視で台形状の絶縁性構造体を形成したプリント配線板を用いた。実施例3に係る絶縁性構造体は、高さAが40μm、頂部幅Bが100μm、底部幅Cが120μmである。   In Example 3, a printed wiring board in which a trapezoidal insulating structure was formed in a cross-sectional view was used. The insulating structure according to Example 3 has a height A of 40 μm, a top width B of 100 μm, and a bottom width C of 120 μm.

比較例1では、断面視で矩形状の絶縁性構造体を形成したプリント配線板を用いた。実施例1に係る絶縁性構造体は、高さAが40μm、頂部幅Bが120μm、底部幅Cが120μmである。   In Comparative Example 1, a printed wiring board on which a rectangular insulating structure was formed in a sectional view was used. The insulating structure according to Example 1 has a height A of 40 μm, a top width B of 120 μm, and a bottom width C of 120 μm.

Figure 2013207115
Figure 2013207115

表1に示すように、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を有する実施例1〜3では、ショート発生率が0〜0.5%であったのに対して、断面視で矩形状の絶縁性構造体を有する比較例では、ショート発生率が1%であった。   As shown in Table 1, in Examples 1 to 3 having an insulating structure in which the top width is narrower than the bottom width in a cross-sectional view, the occurrence rate of short circuit was 0 to 0.5%. On the other hand, in the comparative example having a rectangular insulating structure in a cross-sectional view, the short-circuit occurrence rate was 1%.

これは、実施例では、断面視で底部幅より頂部幅が狭い形状を有しているため、フレキシブル基板を介して上方から熱加圧されることにより、頂部付近の導電性粒子を頂部の形状に沿って左右に分離させることができ、隣り合う端子部間や隣り合う接続端子間に導電性粒子が連なることを防止することができたためである。   In this embodiment, since the top width is narrower than the bottom width in cross-sectional view, the conductive particles near the top are formed into the shape of the top by being heat-pressed from above via a flexible substrate. This is because the conductive particles can be prevented from being continuous between the adjacent terminal portions or between the adjacent connection terminals.

一方、比較例では、頂部に沿って導電性粒子が連なり、ショート発生率が上昇してしまった。   On the other hand, in the comparative example, conductive particles continued along the top, and the occurrence rate of short circuit increased.

1 プリント配線板、2 フレキシブル基板、3 異方性導電フィルム、5 FOB実装部、6 端子部、7 接続端子、8 バインダー樹脂、9 導電性粒子、10 ベースフィルム、12 巻取リール、20 絶縁性構造体、20a 頂部、30 ソルダーレジスト、31 マスク、32 開口部 DESCRIPTION OF SYMBOLS 1 Printed wiring board, 2 Flexible substrate, 3 Anisotropic conductive film, 5 FOB mounting part, 6 Terminal part, 7 Connection terminal, 8 Binder resin, 9 Conductive particle, 10 Base film, 12 Take-up reel, 20 Insulation Structure, 20a top, 30 solder resist, 31 mask, 32 opening

Claims (19)

複数の接続端子が配列された電子部品同士が、導電性接着剤を介して上記接続端子同士が接続された接続構造体において、
少なくとも一方の電子部品には、隣り合う上記接続端子間に、絶縁性構造体が形成され、
上記絶縁性構造体は、断面視で底部幅より上部幅が幅狭に形成されている接続構造体。
In the connection structure in which the connection parts are connected to each other through a conductive adhesive between the electronic components in which a plurality of connection terminals are arranged,
In at least one electronic component, an insulating structure is formed between the adjacent connection terminals,
The insulating structure is a connection structure in which an upper width is narrower than a bottom width in a cross-sectional view.
上記絶縁性構造体は、対向する上記電子部品の両接続端子高さの合計よりも高く、上記両接続端子高さの合計と上記導電性接着剤に含有されている導電性粒子の平均粒径とを足した高さよりも低い請求項1記載の接続構造体。   The insulating structure is higher than the total height of both connection terminals of the opposing electronic components, and the average particle diameter of the conductive particles contained in the total height of both connection terminals and the conductive adhesive The connection structure according to claim 1, wherein the connection structure is lower than a height obtained by adding together. 上記絶縁性構造体は、断面視で三角形状をなす請求項1又は請求項2に記載の接続構造体。   The connection structure according to claim 1, wherein the insulating structure has a triangular shape in a cross-sectional view. 上記絶縁性構造体は、断面視で台形状をなす請求項1又は請求項2に記載の接続構造体。   The connection structure according to claim 1, wherein the insulating structure has a trapezoidal shape in a cross-sectional view. 上記絶縁性構造体は、断面視で半円形状をなす請求項1又は請求項2に記載の接続構造体。   The connection structure according to claim 1, wherein the insulating structure has a semicircular shape in a cross-sectional view. 上記絶縁性構造体は、複数の上記接続端子が配列された端子領域の端部に形成された上記接続端子間に形成されている請求項1又は請求項2に記載の接続構造体。   The connection structure according to claim 1 or 2, wherein the insulating structure is formed between the connection terminals formed at an end portion of a terminal region in which the plurality of connection terminals are arranged. 上記絶縁性構造体は、複数の上記接続端子が配列された端子領域に形成された全ての上記接続端子間に形成されている請求項1又は請求項2に記載の接続構造体。   The connection structure according to claim 1, wherein the insulating structure is formed between all the connection terminals formed in a terminal region in which a plurality of the connection terminals are arranged. 複数の接続端子が配列された電子部品同士が、導電性接着剤を介して上記接続端子同士が接続された接続構造体の製造方法において、
少なくとも一方の電子部品の隣り合う上記接続端子間に、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成し、
上記電子部品同士を、上記導電性接着剤を介して上記接続端子同士を対向させて加圧するとともに、上記接着剤を硬化させて、電気的、機械的に接続する接続構造体の製造方法。
In the manufacturing method of the connection structure in which the electronic components in which the plurality of connection terminals are arranged are connected to each other via the conductive adhesive,
Between the adjacent connection terminals of at least one electronic component, an insulating structure is formed in which the top width is narrower than the bottom width in cross-sectional view,
A manufacturing method of a connection structure in which the electronic components are pressed against each other with the connection terminals facing each other via the conductive adhesive, and the adhesive is cured to be electrically and mechanically connected.
上記絶縁性構造体は、光硬化性樹脂を用いて形成されている請求項8記載の接続構造体の製造方法。   The method for manufacturing a connection structure according to claim 8, wherein the insulating structure is formed using a photocurable resin. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の80%以下の幅の開口部を有するマスクを通じて、光による硬化処理を行った後に、推奨現像時間より50%以上長い現像時間にてエッチングを行うことにより形成する請求項9記載の接続構造体の製造方法。   The insulating structure is obtained by applying an uncured photocurable resin between the connection terminals and then performing a curing process with light through a mask having an opening having a width of 80% or less of the distance between the connection terminals. The method for producing a connection structure according to claim 9, wherein the connection structure is formed by etching at a development time longer than 50% by a recommended development time. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の10%以下の幅の開口部を有するマスクを通じて、拡散光による硬化処理を行った後に、エッチングを行うことにより形成する請求項9記載の接続構造体の製造方法。   The insulating structure was subjected to curing treatment with diffused light through a mask having an opening having a width of 10% or less of the distance between the connection terminals after applying an uncured photocurable resin between the connection terminals. The method for manufacturing a connection structure according to claim 9, wherein the connection structure is formed by performing etching later. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の50%以下の幅の開口部を有するマスクを通じて、光による硬化処理を行った後に、推奨現像時間より50%以下の現像時間にてエッチングを行うことにより形成する請求項9記載の接続構造体の製造方法。   The insulating structure is obtained by applying an uncured photocurable resin between the connection terminals and then performing a curing process with light through a mask having an opening having a width of 50% or less of the distance between the connection terminals. The method for producing a connection structure according to claim 9, wherein the connection structure is formed by etching at a development time of 50% or less from the recommended development time. 隣接して配列された複数の接続端子と、
隣り合う複数の上記接続端子の間に形成され、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体とを備え、
導電性接着剤を介して、上記接続端子が他の電子部品に形成された接続端子に接続される電子部品。
A plurality of connection terminals arranged adjacent to each other;
An insulating structure formed between a plurality of adjacent connection terminals, the upper width being narrower than the bottom width in a cross-sectional view,
An electronic component in which the connection terminal is connected to a connection terminal formed on another electronic component via a conductive adhesive.
隣接して配列された複数の接続端子を形成し、
隣り合う複数の上記接続端子の間に断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成する電子部品の製造方法。
Forming a plurality of connection terminals arranged adjacent to each other;
An electronic component manufacturing method for forming an insulating structure in which an upper width is narrower than a bottom width in a cross-sectional view between a plurality of adjacent connection terminals.
上記絶縁性構造体は、光硬化性樹脂を用いて形成されている請求項14記載の電子部品の製造方法。   The method of manufacturing an electronic component according to claim 14, wherein the insulating structure is formed using a photocurable resin. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の80%以下の幅の開口部を有するマスクを通じて、光による硬化処理を行った後に、推奨現像時間より50%以上長い現像時間にてエッチングを行うことにより形成する請求項15記載の電子部品の製造方法。   The insulating structure is obtained by applying an uncured photocurable resin between the connection terminals and then performing a curing process with light through a mask having an opening having a width of 80% or less of the distance between the connection terminals. The method of manufacturing an electronic component according to claim 15, wherein the electronic component is formed by etching at a development time longer than 50% by a recommended development time. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の10%以下の幅の開口部を有するマスクを通じて、拡散光による硬化処理を行った後に、エッチングを行うことにより形成する請求項15記載の電子部品の製造方法。   The insulating structure was subjected to curing treatment with diffused light through a mask having an opening having a width of 10% or less of the distance between the connection terminals after applying an uncured photocurable resin between the connection terminals. The method of manufacturing an electronic component according to claim 15, which is formed by performing etching later. 上記絶縁性構造体は、未硬化の光硬化性樹脂を上記接続端子間に塗布後、該接続端子間距離の50%以下の幅の開口部を有するマスクを通じて、光による硬化処理を行った後に、推奨現像時間より50%以下の現像時間にてエッチングを行うことにより形成する請求項15記載の電子部品の製造方法。   The insulating structure is obtained by applying an uncured photocurable resin between the connection terminals and then performing a curing process with light through a mask having an opening having a width of 50% or less of the distance between the connection terminals. The method of manufacturing an electronic component according to claim 15, wherein the electronic component is formed by etching with a development time of 50% or less from the recommended development time. 複数の接続端子が配列された電子部品同士を、導電性接着剤を介して接続する接続方法において、
少なくとも一方の電子部品の隣り合う上記接続端子間に、断面視で底部幅より上部幅が幅狭に形成されている絶縁性構造体を形成し、
上記電子部品同士を、上記導電性接着剤を介して上記接続端子同士を対向させて加圧するとともに、上記導電性接着剤を硬化させて、電気的、機械的に接続する電子部品の接続方法。
In a connection method for connecting electronic components in which a plurality of connection terminals are arranged via a conductive adhesive,
Between the adjacent connection terminals of at least one electronic component, an insulating structure is formed in which the top width is narrower than the bottom width in cross-sectional view,
A method for connecting electronic parts, wherein the electronic parts are pressed with the connection terminals facing each other via the conductive adhesive, and the conductive adhesive is cured and electrically and mechanically connected.
JP2012075110A 2012-03-28 2012-03-28 Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component Pending JP2013207115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075110A JP2013207115A (en) 2012-03-28 2012-03-28 Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075110A JP2013207115A (en) 2012-03-28 2012-03-28 Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component

Publications (1)

Publication Number Publication Date
JP2013207115A true JP2013207115A (en) 2013-10-07

Family

ID=49525899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075110A Pending JP2013207115A (en) 2012-03-28 2012-03-28 Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component

Country Status (1)

Country Link
JP (1) JP2013207115A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061369A1 (en) * 2015-10-07 2017-04-13 株式会社村田製作所 Resin substrate and resin substrate manufacturing method
CN109949703A (en) * 2019-03-26 2019-06-28 京东方科技集团股份有限公司 Flexible display substrates, display panel, display device and production method
WO2020133260A1 (en) * 2018-12-28 2020-07-02 深圳市柔宇科技有限公司 Fpc capable of improving aggregation of conductive particles, conductive bonding structure, and touch sensor
JP2020123631A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
JP2021007138A (en) * 2019-06-28 2021-01-21 エルジー ディスプレイ カンパニー リミテッド Electronic device and manufacturing method thereof, and display device and manufacturing method thereof
CN112639599A (en) * 2018-12-28 2021-04-09 深圳市柔宇科技股份有限公司 Connection substrate for improving aggregation of conductive particles, conductive combination structure and touch sensor
WO2022196265A1 (en) * 2021-03-19 2022-09-22 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power source apparatus, and multilayer substrate production method
KR20240049298A (en) 2021-08-16 2024-04-16 가부시끼가이샤 레조낙 Adhesive sheet and manufacturing method thereof, winding body, and manufacturing method of connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273490A (en) * 2002-03-12 2003-09-26 Sharp Corp Board-joining structure and electronic equipment having the same
JP2007250825A (en) * 2006-03-16 2007-09-27 Epson Imaging Devices Corp Connection structure of substrate and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273490A (en) * 2002-03-12 2003-09-26 Sharp Corp Board-joining structure and electronic equipment having the same
JP2007250825A (en) * 2006-03-16 2007-09-27 Epson Imaging Devices Corp Connection structure of substrate and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061369A1 (en) * 2015-10-07 2017-04-13 株式会社村田製作所 Resin substrate and resin substrate manufacturing method
CN112640588A (en) * 2018-12-28 2021-04-09 深圳市柔宇科技股份有限公司 FPC (flexible printed circuit), conductive combination structure and touch sensor for improving aggregation of conductive particles
CN112639599A (en) * 2018-12-28 2021-04-09 深圳市柔宇科技股份有限公司 Connection substrate for improving aggregation of conductive particles, conductive combination structure and touch sensor
WO2020133260A1 (en) * 2018-12-28 2020-07-02 深圳市柔宇科技有限公司 Fpc capable of improving aggregation of conductive particles, conductive bonding structure, and touch sensor
JP2020123631A (en) * 2019-01-29 2020-08-13 Dic株式会社 Flexible wiring board
CN109949703A (en) * 2019-03-26 2019-06-28 京东方科技集团股份有限公司 Flexible display substrates, display panel, display device and production method
CN109949703B (en) * 2019-03-26 2021-08-06 京东方科技集团股份有限公司 Flexible display substrate, display panel, display device and manufacturing method
US11937444B2 (en) 2019-03-26 2024-03-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display substrate having first and second bonding regions, display panel, display device, and manufacturing method
JP2021007138A (en) * 2019-06-28 2021-01-21 エルジー ディスプレイ カンパニー リミテッド Electronic device and manufacturing method thereof, and display device and manufacturing method thereof
JP7397589B2 (en) 2019-06-28 2023-12-13 エルジー ディスプレイ カンパニー リミテッド Electronic device and its manufacturing method, and display device and its manufacturing method
WO2022196265A1 (en) * 2021-03-19 2022-09-22 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power source apparatus, and multilayer substrate production method
JP2022144502A (en) * 2021-03-19 2022-10-03 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power supply, and manufacturing method of multilayer substrate
KR20240049298A (en) 2021-08-16 2024-04-16 가부시끼가이샤 레조낙 Adhesive sheet and manufacturing method thereof, winding body, and manufacturing method of connection structure

Similar Documents

Publication Publication Date Title
JP6637470B2 (en) Anisotropic conductive film, connection structure, and method for manufacturing connection structure
JP2013207115A (en) Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component
US10501661B2 (en) Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
JP6289831B2 (en) Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector
US11139629B2 (en) Method for manufacturing electrically conductive adhesive film, electrically conductive adhesive film, and method for manufacturing connector
JP6344888B2 (en) Connection body manufacturing method, electronic component connection method, connection structure
JP2010251337A (en) Anisotropic conductive film, method for manufacturing the same and connection structure
JP2017175093A (en) Electronic component, connection body, and method of designing electronic component
JP5608426B2 (en) Method for manufacturing anisotropic conductive film
JP6297381B2 (en) Method for manufacturing adhesive film, film winding body, and connection body
JP6769721B2 (en) Design methods for electronic components, anisotropic connection structures, and electronic components
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP6000612B2 (en) Connection structure manufacturing method, connection method, and connection structure
JP6329669B2 (en) Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector
JP6370562B2 (en) CONNECTION MANUFACTURING METHOD, FLEXIBLE BOARD CONNECTION METHOD, CONNECTION BODY AND FLEXIBLE SUBSTRATE
JP6434210B2 (en) Electronic component, connecting body, manufacturing method of connecting body, and connecting method of electronic component
WO2016114381A1 (en) Connecting structure
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
WO2013146479A1 (en) Method for manufacturing connector, method for connecting electronic component, connecting member, and method for manufacturing connecting member
JP2014107305A (en) Manufacturing method of connection structure, connection structure, and connection method
JP6177642B2 (en) Connection film, connection structure, method for manufacturing connection structure, connection method
JP2013201351A (en) Manufacturing method of connection body, connection method of connection member, and connection body
JP2019021947A (en) Electronic component, connection body, manufacturing method of connection body, and connection method of electronic component
JP2014120581A (en) Manufacturing method of connection structure, connection method and connection structure
JP2015170647A (en) Method of manufacturing connection body, connection method for electronic component, and connection body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412