JP2007250825A - Connection structure of substrate and its manufacturing method - Google Patents

Connection structure of substrate and its manufacturing method Download PDF

Info

Publication number
JP2007250825A
JP2007250825A JP2006072271A JP2006072271A JP2007250825A JP 2007250825 A JP2007250825 A JP 2007250825A JP 2006072271 A JP2006072271 A JP 2006072271A JP 2006072271 A JP2006072271 A JP 2006072271A JP 2007250825 A JP2007250825 A JP 2007250825A
Authority
JP
Japan
Prior art keywords
substrate
connection terminals
insulating member
connection
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006072271A
Other languages
Japanese (ja)
Inventor
Masaaki Motai
正明 甕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epson Imaging Devices Corp
Original Assignee
Epson Imaging Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Imaging Devices Corp filed Critical Epson Imaging Devices Corp
Priority to JP2006072271A priority Critical patent/JP2007250825A/en
Publication of JP2007250825A publication Critical patent/JP2007250825A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection structure of a substrate capable of surely separating conductive particles between connection terminals even if an anisotropic conductive adhesive is applied entirely to a terminal part, and to provide its manufacturing method. <P>SOLUTION: The connection structure of a substrate makes a plurality of connection terminals 11 of a first substrate 10 face a plurality of connection terminals 21 of a second substrate 20, and electrically connects the first and second substrates 10 and 20 via an adhesive 30 containing conductive particles 31. The structure is equipped with protruding insulation members 40 having peaks 40a continuously formed between the plurality of connection terminals 21 of the second substrate 20. The members 40 are placed to correspond to between the plurality of opposite connection terminals 11 of the first substrate 10. The conductive particles 31 of the adhesive 30 are separated by the peaks 40a of the member 40 between the connection terminals in the direction of substrate planes of the first and second substrates 10 and 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2つの基板にそれぞれ形成された接続端子同士を対向させ、導電性粒子を含む接着剤を介在させて電気的に接続する際に、基板の基板面方向の接続端子間でショートするのを防ぐことができる基板の接続構造及びその製造方法に関する。   In the present invention, when connection terminals formed on two substrates are opposed to each other and electrically connected via an adhesive containing conductive particles, a short circuit occurs between the connection terminals in the substrate surface direction of the substrate. The present invention relates to a substrate connection structure and a method for manufacturing the same.

一般に、液晶装置、EL装置等の電気光学装置は、液晶又はEL等といった電気光学物質を基板間に配置して液晶パネルやELパネル等のパネル構造を形成し、さらに、当該パネル構造に対して駆動用ICや必要な電子部品などを実装する。また、駆動用ICなどの実装後に、さらに液晶パネルに対して電源回路部品やLED回路部品等の電子部品を接続するためのフレキシブル基板を接続することも行われている。   In general, an electro-optical device such as a liquid crystal device or an EL device forms a panel structure such as a liquid crystal panel or an EL panel by arranging an electro-optical material such as liquid crystal or EL between substrates, and further, with respect to the panel structure. Mount drive ICs and necessary electronic components. Further, after mounting a driving IC or the like, a flexible substrate for connecting an electronic component such as a power circuit component or an LED circuit component to the liquid crystal panel is also connected.

例えば、液晶装置を構成する一対の基板のうち、スイッチ素子を搭載した素子基板には、その基板端部に接続端子が形成され、この接続端子に対してポリイミド樹脂等をベースフィルムに用いたフレキシブル基板の配線、又は、ICパッドが、ACF(異方性導電フィルム)等の導電性粒子を含む接着剤を用いて、電気的に接続される。   For example, of a pair of substrates constituting a liquid crystal device, an element substrate on which a switch element is mounted has a connection terminal formed at the end of the substrate, and a polyimide film or the like is used as a base film for the connection terminal. The wiring of the substrate or the IC pad is electrically connected using an adhesive containing conductive particles such as ACF (anisotropic conductive film).

従来の基板の接続構造としては、例えば特許文献1に、フレキシブル基板とリジッド基板の異方性導電接着剤による接続に関して、リジッド基板の接続端子間に設けられた凸状絶縁体を対向するフレキシブル基板の接続端子間に設けられた貫通孔に挿入し、異方性導電接着剤でフレキシブル基板の接続端子とリジッド基板の接続端子を加熱加圧して電気的に接続するプリント配線基板の接続構造が開示されている。   As a conventional substrate connection structure, for example, in Patent Document 1, regarding a connection between a flexible substrate and a rigid substrate using an anisotropic conductive adhesive, a flexible substrate facing a convex insulator provided between connection terminals of a rigid substrate is provided. A printed wiring board connection structure is disclosed in which a flexible printed circuit board connection terminal and a rigid circuit board connection terminal are electrically connected by being inserted into through holes provided between the connection terminals and heated and pressurized with an anisotropic conductive adhesive. Has been.

また、特許文献2には、TAB式半導体装置やフレキシブルテープ等のリード間にリードの厚みより厚い凸部を設け、凹部であるリードと、もう一方の基板のパターンとを各種接合材料により接続し、接続後はTAB式半導体装置やフレキシブルテープ等のリードがもう一方の基板に設けたパターンに挿入されて、フレキシブルテープ等のリードと基板に設けたパターンとの間に位置ずれを防ぎ、かつ接続後において異方性導電接着剤に含まれる導電性粒子がリード間にも分散することによってリード間での電気的なショートを防止することが記載されている。
特開2001−24300号公報 特開平5−74850号公報
In Patent Document 2, a convex portion thicker than the thickness of the lead is provided between the leads of a TAB type semiconductor device or a flexible tape, and the lead that is the concave portion and the pattern of the other substrate are connected by various bonding materials. After connection, leads such as TAB type semiconductor device and flexible tape are inserted into the pattern provided on the other substrate to prevent misalignment between the leads such as flexible tape and the pattern provided on the substrate Later, it is described that the conductive particles contained in the anisotropic conductive adhesive are dispersed between the leads to prevent electrical short-circuiting between the leads.
JP 2001-24300 A JP-A-5-74850

しかしながら、特許文献1は、接続端子間に設けられ凸状絶縁体の形状が、矩形体、四角錐台、台形体またはそれらの階段状の形状をしているために、凸状絶縁体上に異方性導電接着剤中の導電性粒子が乗ってしまい、接続端子間が完全に遮断されないために端子間ショートを引き起こす可能性がある。また、フレキシブル基板の貫通孔により接続端子間が完全に遮断されない構成となるために端子間ショートを引き起こす可能性がある。   However, Patent Document 1 discloses that the shape of the convex insulator provided between the connection terminals is a rectangular body, a truncated pyramid, a trapezoidal body, or a stepped shape thereof. Since the conductive particles in the anisotropic conductive adhesive get on and the connection terminals are not completely blocked, there is a possibility of causing a short circuit between the terminals. In addition, since the connection terminals are not completely blocked by the through holes of the flexible substrate, there is a possibility of causing a short circuit between the terminals.

また、特許文献2は、接続端子の凹部のみに異方性導電接着剤を塗布し、接着剤の塗布を接続端子部のみに限定しているため、製造工程における接着剤塗布のための作業数が増えコスト高になる。   In addition, since Patent Document 2 applies an anisotropic conductive adhesive only to the concave portion of the connection terminal and limits the application of the adhesive only to the connection terminal portion, the number of operations for applying the adhesive in the manufacturing process. Increases cost.

そこで、本発明は上記の問題に鑑み、異方性導電接着剤を端子部全体に塗布しても、接続端子間で導電性粒子同士を確実に分離することができる基板の接続構造及びその製造方法を提供することを目的とするものである。   Therefore, in view of the above problems, the present invention provides a substrate connection structure that can reliably separate conductive particles between connection terminals even when an anisotropic conductive adhesive is applied to the entire terminal portion, and its manufacture. It is intended to provide a method.

本発明による基板の接続構造は、第1の基板の複数の接続端子と第2の基板の複数の接続端子を対向させて導電性粒子を含む接着剤で電気的に接続する基板の接続構造において、 前記第2の基板の前記複数の接続端子間には、連続的に頂部が形成された凸状絶縁部材が設けられ、該凸状絶縁部材は対向する前記第1の基板の前記複数の接続端子間に対応して配置され、前記接着剤の導電性粒子が前記凸状絶縁部材の前記頂部によって前記第1,第2の基板の基板面方向の接続端子間で分離されることを特徴とする。 A substrate connection structure according to the present invention is a substrate connection structure in which a plurality of connection terminals of a first substrate and a plurality of connection terminals of a second substrate are opposed to each other and electrically connected with an adhesive containing conductive particles. A convex insulating member having a continuous top is formed between the plurality of connection terminals of the second substrate, and the convex insulating member is connected to the plurality of connections of the first substrate facing each other. The conductive particles of the adhesive are arranged correspondingly between the terminals, and are separated between the connection terminals in the substrate surface direction of the first and second substrates by the tops of the convex insulating members. To do.

本発明によるこのような構成によれば、第2の基板の基板面方向の接続端子間に連続的に頂部が形成された凸状絶縁部材が設けられているので、導電性粒子を含む接着剤としてACF(異方性導電フィルム)等のフィルム状の接着剤を介在させる構成とすれば、凸状絶縁部材の連続的に形成された頂部が謂わば分水嶺の役割をして、接着剤の導電性粒子を基板の基板面方向の接続端子間で分離することが容易となり、基板面方向の接続端子間でのショートを防ぐのに効果的である。   According to such a configuration of the present invention, since the convex insulating member having the top continuously formed between the connection terminals in the substrate surface direction of the second substrate is provided, the adhesive containing conductive particles If a film-like adhesive such as ACF (anisotropic conductive film) is interposed, the continuously formed top of the convex insulating member functions as a so-called water divide, and the conductive of the adhesive This makes it easy to separate the conductive particles between the connection terminals in the substrate surface direction of the substrate, and is effective in preventing a short circuit between the connection terminals in the substrate surface direction.

本発明において、前記凸状絶縁部材の前記頂部は、前記第1の基板の前記接続端子間の基板面に当接していることを特徴とする。
このような構成によれば、凸状絶縁部材の頂部によって、接着剤の導電性粒子をより効果的に、第1,第2の基板の基板面方向の接続端子間で分離することが可能となる。
In the present invention, the top portion of the convex insulating member is in contact with the substrate surface between the connection terminals of the first substrate.
According to such a configuration, the conductive particles of the adhesive can be more effectively separated between the connection terminals in the substrate surface direction of the first and second substrates by the top of the convex insulating member. Become.

本発明において、前記凸状絶縁部材は、三角柱形状であり、前記頂部は該三角柱形状の稜線部であることを特徴とする。
このような構成によれば、凸状絶縁部材の三角柱形状の稜線部は先端が尖っているので、接着剤の導電性粒子を更により効果的に、第1,第2の基板の基板面方向の接続端子間で分離することが可能となる。
In the present invention, the convex insulating member has a triangular prism shape, and the top portion is a ridge line portion of the triangular prism shape.
According to such a configuration, since the ridge line portion of the triangular prism shape of the convex insulating member has a sharp tip, the conductive particles of the adhesive are more effectively applied to the substrate surface direction of the first and second substrates. It is possible to separate the connection terminals.

本発明において、前記第2の基板は液晶装置を構成する基板であって、前記凸状絶縁部材は、該液晶装置を構成する絶縁膜材料を用いて作成されたものであることを特徴とする。
このような構成によれば、液晶装置を製造するときに使用する樹脂材料を利用して凸状絶縁部材を作成することができるので、製造工程の簡略化及び凸状絶縁部材を構成するための製造コストを少なくすることができる。
In the present invention, the second substrate is a substrate constituting a liquid crystal device, and the convex insulating member is formed by using an insulating film material constituting the liquid crystal device. .
According to such a configuration, since the convex insulating member can be created using the resin material used when manufacturing the liquid crystal device, the manufacturing process is simplified and the convex insulating member is configured. Manufacturing cost can be reduced.

本発明において、前記凸状絶縁部材は、硬度の低い絶縁材料であることを特徴とする。
このような構成によれば、第1の基板と第2の基板とを圧着すべく力を加えたときに、凸状絶縁部材が硬度の低い材料で形成されているために、凸状絶縁部材の頂部の高さのばらつきを吸収し易くすることが可能となり、第1の基板の接続端子と第2の基板の接続端子間で、接着剤に含まれる導電性粒子を潰し易くなる。
In the present invention, the convex insulating member is an insulating material having low hardness.
According to such a configuration, since the convex insulating member is formed of a material having low hardness when a force is applied to press-bond the first substrate and the second substrate, the convex insulating member It becomes possible to easily absorb the variation in the height of the top of the conductive material, and it becomes easy to crush the conductive particles contained in the adhesive between the connection terminal of the first substrate and the connection terminal of the second substrate.

本発明において、前記凸状絶縁部材は、複数の絶縁材料を積層した構造であることを特徴とする。
このような構成によれば、液晶装置を製造するときに使用する絶縁性樹脂材料と同時に形成し、一層で凸状絶縁部材の高さがたりない場合、その他に液晶装置を製造するときに使用する樹脂材料を同時に積層して凸状絶縁部材を所定の高さにすることができるので、製造工程の簡略化及び凸状絶縁部材を構成するための製造コストを少なくすることができる。
In the present invention, the convex insulating member has a structure in which a plurality of insulating materials are laminated.
According to such a configuration, it is formed at the same time as the insulating resin material used when manufacturing the liquid crystal device, and when the height of the convex insulating member does not reach one layer, it is used when manufacturing other liquid crystal devices. Since the convex insulating member can be made to have a predetermined height by simultaneously laminating the resin materials to be manufactured, the manufacturing process can be simplified and the manufacturing cost for configuring the convex insulating member can be reduced.

本発明において、前記凸状絶縁部材の前記頂部を含む先端部は、硬度の低い絶縁材料であることを特徴とする。
このような構成によれば、前述の凸状絶縁部材を複数の絶縁材料を積層して構成する際に、先端部はなるべく硬度の低い材料、状態とすることで、導電性粒子の潰れ不足を防ぐことが可能となる。
In this invention, the front-end | tip part containing the said top part of the said convex-shaped insulating member is an insulating material with low hardness, It is characterized by the above-mentioned.
According to such a configuration, when the above-described convex insulating member is formed by laminating a plurality of insulating materials, the tip portion is made of a material and a state having a hardness as low as possible so that the conductive particles are not crushed. It becomes possible to prevent.

本発明による基板の接続構造の製造方法は、第1の基板の複数の接続端子と第2の基板の複数の接続端子とを対向させて導電性粒子を含む接着剤で電気的に接続する基板の接続構造の製造方法において、前記第2の基板の前記接続端子間に、該接続端子が設けられた基板表面からの高さ方向に連続した頂部を有する構造体を作成し、前記接続端子と前記構造体に対応する連続した領域に前記導電性粒子を含む接着剤を配置して介在させた状態で前記第1の基板を前記第2の基板に配置して押圧することで、前記構造体の前記頂部により前記第1,第2の基板の基板面方向の接続端子間で前記接着剤の導電性粒子を分離及び遮断することを特徴とする。 The substrate connection structure manufacturing method according to the present invention is a substrate in which a plurality of connection terminals of a first substrate and a plurality of connection terminals of a second substrate are opposed to each other and electrically connected with an adhesive containing conductive particles. In the manufacturing method of the connection structure, a structure having a top portion continuous in the height direction from the substrate surface provided with the connection terminals is formed between the connection terminals of the second substrate, and the connection terminals By placing and pressing the first substrate on the second substrate in a state where the adhesive containing the conductive particles is disposed and interposed in a continuous region corresponding to the structure, the structure The conductive particles of the adhesive are separated and blocked between the connection terminals in the substrate surface direction of the first and second substrates by the top portion of the first and second substrates.

本発明によるこのような方法によれば、第2の基板の基板面方向の接続端子間に連続的に頂部が形成された凸状絶縁部材が形成されるので、導電性粒子を含む接着剤としてACF(異方性導電フィルム)等のフィルム状の接着剤を介在させる方法を採れば、凸状絶縁部材の連続的に形成された頂部が謂わば分水嶺の役割をして、接着剤の導電性粒子を基板の基板面方向の接続端子間で分離することが容易となり、基板面方向の接続端子間でのショートを防ぐのに効果的である。   According to such a method of the present invention, since the convex insulating member having the top continuously formed between the connection terminals in the substrate surface direction of the second substrate is formed, the adhesive containing conductive particles is used. If a film-like adhesive such as ACF (anisotropic conductive film) is used, the continuously formed top of the convex insulating member functions as a so-called water basin, and the conductivity of the adhesive It becomes easy to separate the particles between the connection terminals in the substrate surface direction of the substrate, which is effective in preventing a short circuit between the connection terminals in the substrate surface direction.

発明の実施の形態について図面を参照して説明する。
[第1の実施形態]
図1は本発明の第1の実施形態の基板の接続構造を示す側断面図である。
Embodiments of the invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 is a side sectional view showing a substrate connection structure according to a first embodiment of the present invention.

図1において、基板の接続構造は、フレキシブルテープやICチップなどの第1の基板10と、第1の基板10の一方の面の一部に形成された複数の接続端子11と、ガラス基板などの第2の基板20と、第2の基板20の一方の面の一部に形成された複数の接続端子21と、前記第2の基板の複数の接続端子21の基板面方向(接続端子の配列方向)の接続端子間における基板面に設けられた凸状絶縁部材40と、導電性粒子31を絶縁性接着剤32に分散させた異方性導電接着剤30と、を備えている。   In FIG. 1, the substrate connection structure includes a first substrate 10 such as a flexible tape or an IC chip, a plurality of connection terminals 11 formed on a part of one surface of the first substrate 10, a glass substrate, and the like. The second substrate 20, the plurality of connection terminals 21 formed on a part of one surface of the second substrate 20, and the substrate surface direction of the plurality of connection terminals 21 of the second substrate (of the connection terminals) A convex insulating member 40 provided on the substrate surface between the connection terminals in the arrangement direction) and an anisotropic conductive adhesive 30 in which the conductive particles 31 are dispersed in the insulating adhesive 32 are provided.

前記第2の基板20としては、例えば液晶装置を構成する、互いに対向配置される一対の基板の一の基板(例えばTFT素子などが形成された素子基板)である。この基板20の端部に導出されている複数の接続端子21に対して、第1の基板10としてのフレキシブルテープの配線や駆動用ICチップのパッドが前記異方性導電接着剤30を用いて導電接続されている。   The second substrate 20 is, for example, one substrate (for example, an element substrate on which a TFT element or the like is formed) that constitutes a liquid crystal device and is opposed to each other. With respect to the plurality of connection terminals 21 led out to the end portion of the substrate 20, flexible tape wiring as a first substrate 10 and pads of a driving IC chip are formed using the anisotropic conductive adhesive 30. Conductive connection.

前記凸状絶縁部材40の形状は、図示の図面手前から奧行き方向に連続的に頂部(換言すれば稜線部)40aが形成された角柱(例えば三角柱)形状を有しており、凸状絶縁部材40の頂部40aが対向する第1の基板10の基板面方向(接続端子の配列方向)の接続端子11間に設けられたスペース(空隙)に位置し、前記異方性導電接着剤30の導電性粒子31が凸状絶縁部材40の頂部40aによって第1,第2の基板10,20の基板面方向の接続端子間で分離されている。   The shape of the convex insulating member 40 has a prismatic shape (for example, a triangular prism) in which a top portion (in other words, a ridge line portion) 40a is formed continuously in the direction from the front of the drawing. The top 40a of the member 40 is positioned in a space (gap) provided between the connection terminals 11 in the substrate surface direction (connection terminal arrangement direction) of the first substrate 10 facing the member 40, and the anisotropic conductive adhesive 30 The conductive particles 31 are separated between the connection terminals in the substrate surface direction of the first and second substrates 10 and 20 by the top 40 a of the convex insulating member 40.

そして、第2の基板20の接続端子21に対して第1の基板10の接続端子11が対向するようにして異方性導電接着剤30を挟んで圧着接続される。このとき、第1の基板10の接続端子11と第2の基板20の接続端子21の間に、前記異方性導電接着剤30の導電性粒子31が挟まれた状態となって接着されているために、上下の接続端子11,21間は導電性粒子31にて電気的に導通(導電接続)される。   Then, the connection terminal 11 of the first substrate 10 is opposed to the connection terminal 21 of the second substrate 20 by pressure-bonding with the anisotropic conductive adhesive 30 interposed therebetween. At this time, the conductive particles 31 of the anisotropic conductive adhesive 30 are sandwiched and bonded between the connection terminals 11 of the first substrate 10 and the connection terminals 21 of the second substrate 20. For this reason, the conductive particles 31 are electrically connected (conductive connection) between the upper and lower connection terminals 11 and 21.

このような構成によれば、第2の基板20の接続端子21間に連続的に頂部40aが形成された凸状絶縁部材40が設けられているので、導電性粒子31を含む接着剤30として異方性導電フィルム(ACF)等のフィルム状の接着剤を介在させて圧着接続する構成とすれば、凸状絶縁部材40の連続的に形成された頂部40aが謂わば分水嶺の役割をして、接着剤30の導電性粒子31を基板面方向の接続端子間で分離することが容易となり、基板面方向の接続端子間でのショートを防ぐのに有効である。   According to such a configuration, since the convex insulating member 40 in which the top portion 40a is continuously formed between the connection terminals 21 of the second substrate 20 is provided, the adhesive 30 including the conductive particles 31 is provided. If a film-like adhesive such as an anisotropic conductive film (ACF) is used for pressure connection, the continuously formed top portion 40a of the convex insulating member 40 functions as a so-called water divide. It is easy to separate the conductive particles 31 of the adhesive 30 between the connection terminals in the substrate surface direction, which is effective in preventing a short circuit between the connection terminals in the substrate surface direction.

本実施形態において、凸状絶縁部材40の頂部40aは、第1の基板10の接続端子11間の基板面に接触(当接)することが好ましい。凸状絶縁部材(例えば三角柱)40の高さは、(接続端子11の高さ)+(接続端子21の高さ)+(潰された導電性粒子の高さ)とすることが望ましい。
このような構成にすれば、凸状絶縁部材40の頂部40aによって、接着剤30の導電性粒子31をより効果的に、第1,第2の基板10,20の基板面方向の接続端子間で分離することが可能となる。
In the present embodiment, the top portion 40 a of the convex insulating member 40 is preferably in contact (contact) with the substrate surface between the connection terminals 11 of the first substrate 10. The height of the convex insulating member (for example, triangular prism) 40 is desirably (the height of the connection terminal 11) + (the height of the connection terminal 21) + (the height of the crushed conductive particles).
With this configuration, the conductive particles 31 of the adhesive 30 are more effectively transferred between the connection terminals in the substrate surface direction of the first and second substrates 10 and 20 by the top portion 40a of the convex insulating member 40. It becomes possible to separate with.

また、本実施形態において、凸状絶縁部材40は、三角柱形状とし、頂部40aは該三角柱形状の稜線部であることが好ましい。
このような構成にすれば、凸状絶縁部材40の三角柱形状の稜線部は先端の断面形状が尖っているので、接着剤30の導電性粒子31を更により効果的に、第1,第2の基板10,20の基板面方向の接続端子間で分離することが可能となる。
Moreover, in this embodiment, it is preferable that the convex insulating member 40 has a triangular prism shape, and the top portion 40a is a ridge line portion of the triangular prism shape.
With such a configuration, the triangular prism-shaped ridge line portion of the convex insulating member 40 has a sharp cross-sectional shape at the tip, so that the conductive particles 31 of the adhesive 30 can be more effectively and effectively separated from each other. It is possible to separate the connection terminals in the substrate surface direction of the substrates 10 and 20.

本実施形態において、凸状絶縁部材40は、第2の基板20が液晶装置の一方の基板(素子基板又は対向基板)である場合に、該基板に形成される絶縁膜材料を用いて作成されたものであることが好ましい。
このような構成にすれば、液晶装置を製造するときに使用する樹脂材料を使用して凸状絶縁部材を作成することができる。
In this embodiment, when the second substrate 20 is one substrate (element substrate or counter substrate) of the liquid crystal device, the convex insulating member 40 is created using an insulating film material formed on the substrate. It is preferable that
With such a configuration, the convex insulating member can be created using the resin material used when manufacturing the liquid crystal device.

具体的には、凸状絶縁部材40としては、カラーフィルター、貝柱状スペーサー、オーバーレーヤー等、液晶装置を製造するときに使用する絶縁性樹脂材料を使用し、これらの部材と同時に形成することが最も好ましい。
前記カラーフィルターは、通常、液晶装置における対向基板に作成されるものであり、対向基板側に凸状絶縁部材をカラーフィルターと同じ材料で同時に作成する際に有用である。
前記貝柱状スペーサーは、液晶装置において、素子基板とこれに対向して配置される対向基板間に液晶が封入されるセルをシール材を用いて形成する際に、基板の変形によってセルの厚み方向の空間が変形するのを防止するために支柱として設けられるものである。この貝柱状スペーサーは、貝柱状スペーサーを液晶装置の素子基板に設ける際に、凸状絶縁部材を例えば素子基板側に貝柱状スペーサーと同じ材料で同時に作成する際に有用である。
Specifically, as the convex insulating member 40, an insulating resin material used when manufacturing a liquid crystal device, such as a color filter, a scallop-shaped spacer, an overlayer, or the like, can be used and formed simultaneously with these members. Most preferred.
The color filter is usually formed on a counter substrate in a liquid crystal device, and is useful when simultaneously forming a convex insulating member on the counter substrate side using the same material as the color filter.
In the liquid crystal device, the shell-shaped spacer is formed by using a sealing material to form a cell in which liquid crystal is sealed between an element substrate and a counter substrate disposed to face the element substrate. It is provided as a support column to prevent the space from deforming. This scallop-shaped spacer is useful when a scallop-shaped spacer is provided on the element substrate of the liquid crystal device, and at the same time, for example, the convex insulating member is formed on the element substrate side simultaneously with the same material as the scallop-shaped spacer.

前記オーバーレーヤーは、液晶装置において、画素電極とその両側の各信号線との間隔が夫々狭いため、表示品位の低下及び透過率の低下等を防止して高品位な表示を得るために設けられる絶縁膜である。特に、画素電極と、データ線及びTFDのような素子とを絶縁膜たるオーバーレイヤーを介して絶縁できる。このオーバーレーヤーは、オーバーレーヤーを液晶装置の素子基板に設ける際に、凸状絶縁部材を同じ素子基板側にオーバーレーヤーと同じ材料で同時に作成する際に有用である。
本実施形態において、凸状絶縁部材40は、硬度の低い絶縁材料であることが好ましい。
このような構成にすれば、凸状絶縁部材40をなるべく硬度の低い材料とすることにより、第1の基板10を第2の基板20に対して押圧したときに、凸状絶縁部材の頂部の高さばらつきを吸収し易くすることが可能となり、押圧力が接着剤30に伝わり導電性粒子31が第1の基板10の接続端子11と第2の基板20の接続端子21間で潰れ易くなる。
The overlayer is provided in the liquid crystal device in order to obtain a high-quality display by preventing a decrease in display quality and a decrease in transmittance because the distance between the pixel electrode and each signal line on both sides thereof is narrow. It is an insulating film. In particular, it is possible to insulate the pixel electrode from the data line and the element such as TFD through an overlayer as an insulating film. This overlayer is useful when the overlay is provided on the element substrate of the liquid crystal device, and the convex insulating member is simultaneously formed on the same element substrate side with the same material as the overlayer.
In the present embodiment, the convex insulating member 40 is preferably an insulating material having low hardness.
With such a configuration, the convex insulating member 40 is made of a material having as low a hardness as possible, so that when the first substrate 10 is pressed against the second substrate 20, the top of the convex insulating member is formed. The variation in height can be easily absorbed, and the pressing force is transmitted to the adhesive 30 so that the conductive particles 31 are easily crushed between the connection terminal 11 of the first substrate 10 and the connection terminal 21 of the second substrate 20. .

次に、図2乃至図4を参照して、図1の基板の接続構造の製造方法について説明する。図2(a)は組み立て前の分解断面図、図2(b)は組み立て後の断面図である。
図2(a)に示すように、第2の基板20において同じ基板上の図示しない複数の配線にそれぞれ接続して設けられる複数の接続端子21を作成した後、この第2の基板20の基板面方向の複数の接続端子21間に、高さ方向に連続的に頂部(換言すれば稜線部)40aを持った構造体としての凸状絶縁部材40を形成する。その後に、第2の基板20の上に異方性導電接着剤30を介在させて、前記第1の基板10を配置し、加熱した状態で、第1の基板10を第2の基板20に対して押圧する。これによって、図2(b)に示すように、前記凸状絶縁部材40の頂部40aにより、第1,第2の基板10,20の基板面方向の接続端子間で異方性導電接着剤30の導電性粒子31を分離(絶縁)し、かつ上下の接続端子11,21間での導電(導通)接続、及び、第1,第2の基板10,20間での接着がなされる。
Next, a method for manufacturing the substrate connection structure of FIG. 1 will be described with reference to FIGS. 2A is an exploded cross-sectional view before assembly, and FIG. 2B is a cross-sectional view after assembly.
As shown in FIG. 2A, after the plurality of connection terminals 21 provided on the second substrate 20 to be connected to a plurality of wirings (not shown) on the same substrate are formed, the substrate of the second substrate 20 is formed. A convex insulating member 40 is formed as a structure having a top portion (in other words, a ridge line portion) 40a continuously between the plurality of connection terminals 21 in the surface direction in the height direction. Thereafter, the first substrate 10 is placed on the second substrate 20 with the anisotropic conductive adhesive 30 interposed therebetween, and the first substrate 10 is heated to the second substrate 20 in a heated state. Press against. Accordingly, as shown in FIG. 2B, the anisotropic conductive adhesive 30 is formed between the connection terminals in the substrate surface direction of the first and second substrates 10 and 20 by the top 40a of the convex insulating member 40. The conductive particles 31 are separated (insulated), and the conductive (conductive) connection between the upper and lower connection terminals 11 and 21 and the adhesion between the first and second substrates 10 and 20 are performed.

図3は、図2(a)の製造工程を説明するもので、第2の基板20に対して、フィルム状の異方性導電接着剤30(2点鎖線にて示す)を配置した状態の平面図を示している。第2の基板20に形成された複数の接続端子21間には、三角柱形状の凸状絶縁部材40が設けられている。三角柱形状の凸状絶縁部材40は配線方向に長く延びており、凸状絶縁部材40の長さは接続端子21の配線方向の長さよりも長く形成されている。第2の基板20の複数の接続端子21のそれぞれに対応して第1の基板10(図示せず)の複数の接続端子11(点線にて示す)が配置されている。   FIG. 3 illustrates the manufacturing process of FIG. 2A, in which a film-like anisotropic conductive adhesive 30 (indicated by a two-dot chain line) is disposed on the second substrate 20. A plan view is shown. A convex insulating member 40 having a triangular prism shape is provided between the plurality of connection terminals 21 formed on the second substrate 20. The triangular prism-shaped convex insulating member 40 extends long in the wiring direction, and the length of the convex insulating member 40 is longer than the length of the connection terminal 21 in the wiring direction. A plurality of connection terminals 11 (shown by dotted lines) of the first substrate 10 (not shown) are arranged corresponding to each of the plurality of connection terminals 21 of the second substrate 20.

図4は、前記凸状絶縁部材40を第2の基板20上に形成する方法の一例を示す側面図である。凸状絶縁部材40をフォトリフグラフィ工程と呼ばれる方法で形成する場合について説明する。
まず、第2の基板20の表面上に例えば紫外線(UV)に感光する感光性樹脂材料40Aをフォトレジストとして塗布する。次に、三角柱形状の立体パターンを感光性樹脂材料40Aの厚さ方向(上下方向)に形成するために、紫外線光が照射される面上の場所によって光の透過率が異なっているグレーマスクと呼ばれる光量調節用マスク50を用意し、この光量調節用マスク50を第2の基板20の表面上に塗着されている感光性樹脂材料40の上方に配置し、紫外線(UV)をマスク50の上から均等に照射する。これによって、マスク50の光透過率パターンに対応して感光性樹脂材料40Aを感光させる。次に、現像工程に移行し、露光部の感光性樹脂材料40Aを溶剤で溶かし、未露光部のパターンを残すことによって、マスク50に応じたパターンが感光性樹脂材料40Aに転写される。これによって、例えばポジ型の現像では、凸状絶縁部材40の露光量が多い所ほど溶剤で除去され易く、露光量の少ない所ほど溶剤で除去されにくいので、マスク50の光透過率パターンによって三角柱形状の凸状絶縁部材40が形成される。
FIG. 4 is a side view showing an example of a method for forming the convex insulating member 40 on the second substrate 20. A case where the convex insulating member 40 is formed by a method called a photolithography process will be described.
First, for example, a photosensitive resin material 40A that is sensitive to ultraviolet rays (UV) is applied on the surface of the second substrate 20 as a photoresist. Next, in order to form a triangular prism-shaped three-dimensional pattern in the thickness direction (vertical direction) of the photosensitive resin material 40A, a gray mask having different light transmittances depending on the place on the surface irradiated with ultraviolet light A so-called light quantity adjustment mask 50 is prepared, and this light quantity adjustment mask 50 is disposed above the photosensitive resin material 40 coated on the surface of the second substrate 20, and ultraviolet rays (UV) are applied to the mask 50. Irradiate evenly from above. Thus, the photosensitive resin material 40A is exposed in accordance with the light transmittance pattern of the mask 50. Next, the process proceeds to a developing step, where the photosensitive resin material 40A in the exposed area is dissolved with a solvent, and the pattern in the unexposed area is left, whereby the pattern corresponding to the mask 50 is transferred to the photosensitive resin material 40A. Thus, for example, in positive development, the higher the exposure amount of the convex insulating member 40 is, the easier it is to be removed with the solvent, and the lower exposure amount is the harder it is to be removed with the solvent. A convex insulating member 40 having a shape is formed.

このような方法によれば、第2の基板20の基板面方向の接続端子21間に連続的に頂部40aが形成された凸状絶縁部材40が形成されるので、導電性粒子を含む接着剤として異方性導電フィルム(ACF)等のフィルム状の接着剤を介在させて圧着接続する方法とすれば、凸状絶縁部材40の連続的に形成された頂部40aが謂わば分水嶺の役割をして、接着剤30の導電性粒子31を基板面方向の接続端子間で分離することが容易となり、基板面方向の接続端子間でのショートを防ぐのに効果的である。   According to such a method, since the convex insulating member 40 in which the top portions 40a are continuously formed between the connection terminals 21 in the substrate surface direction of the second substrate 20 is formed, the adhesive containing conductive particles As a method of crimping and connecting with a film-like adhesive such as an anisotropic conductive film (ACF), the continuously formed top portion 40a of the convex insulating member 40 functions as a so-called water divide. Thus, it becomes easy to separate the conductive particles 31 of the adhesive 30 between the connection terminals in the substrate surface direction, which is effective in preventing a short circuit between the connection terminals in the substrate surface direction.

[第2の実施形態]
図5は本発明の第2の実施形態の基板の接続構造を示す断面図である。
図5において、図1と異なる点は、図1では凸状絶縁部材40は一種類の樹脂材料を使用していたのに対して、図5では複数(図では3つ)種類の樹脂材料41,42,43を使用し、これらの複数の絶縁性の樹脂材料41,42,43を積層した構造としたものである。その他の構成は、図1と同様である。
[Second Embodiment]
FIG. 5 is a cross-sectional view showing a substrate connection structure according to a second embodiment of the present invention.
5 differs from FIG. 1 in that the convex insulating member 40 uses one type of resin material in FIG. 1, whereas a plurality (three in the figure) of resin materials 41 in FIG. , 42, and 43, and a plurality of insulating resin materials 41, 42, and 43 are laminated. Other configurations are the same as those in FIG.

具体的には、凸状絶縁体は三角柱形状であれば、カラーフィルター、貝柱状スペーサー、オーバーレーヤー等の積層構造でもよい。
このような構成にすれば、凸状絶縁部材40を複数の絶縁材料を積層したものとすることにより、このような構成によれば、液晶装置を製造するときに使用する絶縁性樹脂材料と同時に形成し、一層で凸状絶縁部材の高さがたりない場合、その他に液晶装置を製造するときに使用する樹脂材料を同時に積層して凸状絶縁部材を所定の高さにすることができるので、製造工程の簡略化及び凸状絶縁部材を構成するための製造コストを少なくすることができる。
Specifically, as long as the convex insulator has a triangular prism shape, it may have a laminated structure such as a color filter, a scallop spacer, and an overlayer.
According to such a configuration, the convex insulating member 40 is formed by laminating a plurality of insulating materials. According to such a configuration, the insulating resin material used when manufacturing the liquid crystal device is simultaneously provided. If the convex insulating member is not formed in one layer, the resin material used when manufacturing the liquid crystal device can be laminated simultaneously to make the convex insulating member have a predetermined height. The manufacturing process for simplifying the manufacturing process and forming the convex insulating member can be reduced.

本実施形態において、積層構造とした凸状絶縁部材40の頂部40aを含む先端部は、硬度の低い絶縁材料であることが好ましい。
このような構成にすれば、前述の凸状絶縁部材40を複数の絶縁膜材料を積層して構成する際に、先端部はなるべく硬度の低い材料、状態とすることにより、頂部の高さばらつきによる導電性粒子の潰れ不足を防ぐことができる。凸状絶縁部材40の先端部をなるべく硬度の低い材料とすることにより、第1の基板10を第2の基板20に対して押圧したときに凸状絶縁部材40の頂部40aが弾力的に基板面に接触し、押圧力が接着剤30に伝わり導電性粒子31が第1の基板10の接続端子11と第2の基板20の接続端子21間で潰れ易くなる。
In this embodiment, it is preferable that the front-end | tip part containing the top part 40a of the convex-shaped insulating member 40 made into the laminated structure is an insulating material with low hardness.
With such a configuration, when the above-described convex insulating member 40 is formed by laminating a plurality of insulating film materials, the tip portion is made of a material and state having as low a hardness as possible, so that the height of the top portion varies. It is possible to prevent the conductive particles from being insufficiently crushed. By making the tip part of the convex insulating member 40 as low a hardness as possible, when the first substrate 10 is pressed against the second substrate 20, the top 40 a of the convex insulating member 40 is elastically a substrate. The pressing force is transmitted to the adhesive 30 and the conductive particles 31 are easily crushed between the connection terminals 11 of the first substrate 10 and the connection terminals 21 of the second substrate 20.

次に、以上述べた基板の接続構造が適用される電気光学装置の一例である、駆動回路内蔵型のTFTアクティブマトリクス駆動方式の液晶装置について説明する。図6は、素子基板をその上に形成された各構成要素と共に対向基板の側から見た平面図であり、図7は、図6のH−H’断面図である。
図6及び図7において、本実施の形態に係る液晶装置では、素子基板110と、対向基板120と、が対向配置されている。素子基板110は、図1乃至図5の第2の基板20に対応している。
素子基板110と対向基板120との間に液晶層150が封入されており、素子基板110と対向基板120とは、画像表示領域110aの周囲に位置するシール領域に設けられたシール材152により相互に接着されている。シール材152は、両基板を貼り合わせるために、例えば熱硬化樹脂、熱及び光硬化樹脂、光硬化樹脂、紫外線硬化樹脂等からなり、製造プロセスにおいて素子基板110上に塗布された後、加熱、加熱及び光照射、光照射、紫外線照射等により硬化させられたものである。
Next, a driving circuit built-in type TFT active matrix driving type liquid crystal device, which is an example of an electro-optical device to which the above-described substrate connection structure is applied, will be described. FIG. 6 is a plan view of the element substrate viewed from the side of the counter substrate together with each component formed thereon, and FIG. 7 is a cross-sectional view taken along the line HH ′ of FIG.
6 and 7, in the liquid crystal device according to the present embodiment, the element substrate 110 and the counter substrate 120 are arranged to face each other. The element substrate 110 corresponds to the second substrate 20 in FIGS. 1 to 5.
A liquid crystal layer 150 is sealed between the element substrate 110 and the counter substrate 120, and the element substrate 110 and the counter substrate 120 are mutually connected by a sealing material 152 provided in a seal region located around the image display region 110 a. It is glued to. The sealing material 152 is made of, for example, a thermosetting resin, heat and photo-curing resin, photo-curing resin, UV-curing resin, or the like to bond the two substrates together. It is cured by heating, light irradiation, light irradiation, ultraviolet irradiation or the like.

このようなシール材152中には、両基板間の間隔(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が混合されている。或いは、例えば大型の液晶装置では、素子基板側に設けた貝柱状スペーサーによってセル内における両基板間の間隔を所定値とするようにしてもよい。
対向基板120の4隅には、上下導通材106が設けられており、素子基板110に設けられた上下導通端子と対向基板120に設けられた対向電極121との間で電気的な導通をとる。
In such a sealing material 152, a gap material such as glass fiber or glass beads for mixing the distance between the substrates (inter-substrate gap) to a predetermined value is mixed. Alternatively, for example, in a large liquid crystal device, the interval between the two substrates in the cell may be set to a predetermined value by a shell-shaped spacer provided on the element substrate side.
Vertical conduction members 106 are provided at the four corners of the counter substrate 120, and electrical conduction is established between the vertical conduction terminals provided on the element substrate 110 and the counter electrode 121 provided on the counter substrate 120. .

図6及び図7において、シール材152が配置されたシール領域の内側に並行して、画像表示領域110aを規定する遮光性の周辺遮光膜153が対向基板120側に設けられている。周辺遮光膜153は素子基板110側に設けても良いことは言うまでもない。画像表示領域の周辺に広がる周辺領域のうち、シール材152が配置されたシール領域の外側部分には、データ線駆動回路101及び外部回路接続端子102が素子基板110の一辺に沿って設けられており、走査線駆動回路104が、この一辺に隣接する2辺に沿って設けられている。外部回路接続端子102は、図1乃至図5の接続端子21に対応している。この外部回路接続端子102には、図1乃至図5での第1の基板10に相当するフレキシブル基板(図示せず)の配線部の端子部分が異方性導電接着剤で接続される。
更に素子基板110の残る一辺には、画像表示領域110aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が設けられている。
6 and 7, a light-shielding peripheral light-shielding film 153 that defines the image display region 110a is provided on the counter substrate 120 side in parallel with the inside of the seal region where the sealant 152 is disposed. Needless to say, the peripheral light shielding film 153 may be provided on the element substrate 110 side. The data line driving circuit 101 and the external circuit connection terminal 102 are provided along one side of the element substrate 110 on the outer side of the seal area where the sealant 152 is arranged, in the peripheral area extending around the image display area. The scanning line driving circuit 104 is provided along two sides adjacent to the one side. The external circuit connection terminal 102 corresponds to the connection terminal 21 in FIGS. A terminal portion of a wiring portion of a flexible substrate (not shown) corresponding to the first substrate 10 in FIGS. 1 to 5 is connected to the external circuit connection terminal 102 with an anisotropic conductive adhesive.
Further, on the remaining side of the element substrate 110, a plurality of wirings 105 are provided for connecting between the scanning line driving circuits 104 provided on both sides of the image display region 110a.

図7において、素子基板110上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の画素電極109a上に、配向膜が形成されている。他方、対向基板120上には、対向電極121の他、最上層部分に配向膜が形成されている。また、液晶層150は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。   In FIG. 7, on the element substrate 110, an alignment film is formed on the pixel electrode 109a after the pixel switching TFT, the scanning line, the data line, and the like are formed. On the other hand, on the counter substrate 120, in addition to the counter electrode 121, an alignment film is formed in the uppermost layer portion. The liquid crystal layer 150 is made of, for example, a liquid crystal in which one or several types of nematic liquid crystals are mixed, and takes a predetermined alignment state between the pair of alignment films.

本実施の形態では、周辺遮光膜153下にある素子基板110上の領域に、図示しないサンプリング回路が設けられている。サンプリング回路は、画像信号線上の画像信号をデータ線駆動回路101から供給されるサンプリング回路駆動信号に応じてサンプリングしてデータ線に供給するように構成されている。   In the present embodiment, a sampling circuit (not shown) is provided in a region on the element substrate 110 below the peripheral light shielding film 153. The sampling circuit is configured to sample the image signal on the image signal line in accordance with the sampling circuit drive signal supplied from the data line drive circuit 101 and supply the sampled signal to the data line.

本発明に係る電気光学装置は、アクティブマトリクス(TFT、TFD)駆動方式の液晶装置だけではなく、パッシブマトリクス型の液晶装置にも同様に適用することが可能である。また、液晶装置だけでなく、エレクトロルミネッセンス(EL)装置、有機エレクトロルミネッセンス装置、プラズマディスブレイ装置、電気泳動ディスプレイ装置、電子放出素子を用いた装置(Field Emission Display 及び Surface-Conduction Electron-Emitter Display等)などの各種の電気光学装置においても本発明を同様に適用することが可能である。   The electro-optical device according to the present invention can be similarly applied not only to an active matrix (TFT, TFD) driving type liquid crystal device but also to a passive matrix type liquid crystal device. In addition to liquid crystal devices, electroluminescence (EL) devices, organic electroluminescence devices, plasma display devices, electrophoretic display devices, devices using electron-emitting devices (Field Emission Display and Surface-Conduction Electron-Emitter Display, etc.) The present invention can be similarly applied to various electro-optical devices such as).

なお、本発明は、基板に回路素子を形成する表示用デバイス、例えばLCOS(Liquid
Crysta1 On Silicon)などにも適用可能である。LCOSでは素子基板として単結晶シリコン基板を用い、画素や周辺回路に用いるスイッチング素子としてトランジスタを単結晶シリコン基板に形成する。また、画素には反射型の画素電極を用い、画素電極の下層に画素の各素子を形成する。
Note that the present invention relates to a display device for forming a circuit element on a substrate, such as an LCOS (Liquid
(Crysta1 On Silicon). In LCOS, a single crystal silicon substrate is used as an element substrate, and a transistor is formed on a single crystal silicon substrate as a switching element used for a pixel or a peripheral circuit. In addition, a reflective pixel electrode is used for the pixel, and each element of the pixel is formed under the pixel electrode.

本発明の第1の実施形態の基板の接続構造を示す断面図。Sectional drawing which shows the connection structure of the board | substrate of the 1st Embodiment of this invention. 図1の基板の接続構造の製造方法を説明する断面図。Sectional drawing explaining the manufacturing method of the connection structure of the board | substrate of FIG. 図2(a)の製造工程を説明するもので、第2の基板に対して、フィルム状の異方性導電接着剤を配置した状態の平面図。FIG. 3 is a plan view illustrating a state in which a film-like anisotropic conductive adhesive is disposed on a second substrate, illustrating the manufacturing process of FIG. 凸状絶縁部材を第2の基板上に形成する方法の一例を示す側面図。The side view which shows an example of the method of forming a convex-shaped insulation member on a 2nd board | substrate. 本発明の第2の実施形態の基板の接続構造を示す断面図。Sectional drawing which shows the connection structure of the board | substrate of the 2nd Embodiment of this invention. 液晶装置における素子基板をその上に形成された各構成要素と共に対向基板の側から見た平面図。The top view which looked at the element substrate in a liquid crystal device from the counter substrate side with each component formed on it. 図6のH−H’断面図。H-H 'sectional drawing of FIG.

符号の説明Explanation of symbols

10…第1の基板、11,21…接続端子、20…第2の基板、30…異方性導電接着剤、31…導電性粒子、40…凸状絶縁部材、40a…頂部。   DESCRIPTION OF SYMBOLS 10 ... 1st board | substrate, 11, 21 ... Connection terminal, 20 ... 2nd board | substrate, 30 ... Anisotropic conductive adhesive, 31 ... Conductive particle | grains, 40 ... Convex-shaped insulation member, 40a ... Top part.

Claims (8)

第1の基板の複数の接続端子と第2の基板の複数の接続端子を対向させて導電性粒子を含む接着剤で電気的に接続する基板の接続構造において、
前記第2の基板の前記複数の接続端子間には、連続的に頂部が形成された凸状絶縁部材が設けられ、該凸状絶縁部材は対向する前記第1の基板の前記複数の接続端子間に対応して配置され、前記接着剤の導電性粒子が前記凸状絶縁部材の前記頂部によって前記第1,第2の基板の基板面方向の接続端子間で分離されることを特徴とする基板の接続構造。
In the substrate connection structure in which the plurality of connection terminals of the first substrate and the plurality of connection terminals of the second substrate are opposed to each other and electrically connected with an adhesive containing conductive particles,
A convex insulating member having a continuous top is provided between the plurality of connection terminals of the second substrate, and the convex insulating member is the plurality of connection terminals of the first substrate facing each other. And the conductive particles of the adhesive are separated between the connection terminals in the substrate surface direction of the first and second substrates by the tops of the convex insulating members. Board connection structure.
前記凸状絶縁部材の前記頂部は、前記第1の基板の前記接続端子間の基板面に当接していることを特徴とする請求項1に記載の基板の接続構造。   The board connection structure according to claim 1, wherein the top portion of the convex insulating member is in contact with a board surface between the connection terminals of the first board. 前記凸状絶縁部材は、三角柱形状であり、前記頂部は該三角柱形状の稜線部であることを特徴とする請求項1又は2に記載の基板の接続構造。  The board connection structure according to claim 1, wherein the convex insulating member has a triangular prism shape, and the top portion is a ridge line portion of the triangular prism shape. 前記第2の基板は液晶装置を構成する基板であって、前記凸状絶縁部材は、該液晶装置を構成する絶縁膜材料を用いて作成されたものであることを特徴とする請求項1〜3のいずれか1つに記載の基板の接続構造。   The said 2nd board | substrate is a board | substrate which comprises a liquid crystal device, Comprising: The said convex-shaped insulation member is produced using the insulating film material which comprises this liquid crystal device. 4. The substrate connection structure according to any one of 3 above. 前記凸状絶縁部材は、硬度の低い絶縁材料であることを特徴とする請求項1〜4のいずれか1つに記載の基板の接続構造。   The board connection structure according to claim 1, wherein the convex insulating member is an insulating material having low hardness. 前記凸状絶縁部材は、複数の絶縁材料を積層した構造であることを特徴とする請求項1〜4のいずれか1つに記載の基板の接続構造。   The board connection structure according to claim 1, wherein the convex insulating member has a structure in which a plurality of insulating materials are laminated. 前記凸状絶縁部材の前記頂部を含む先端部は、硬度の低い絶縁材料であることを特徴とする請求項6に記載の基板の接続構造。   The connecting structure for a substrate according to claim 6, wherein a tip portion including the top portion of the convex insulating member is an insulating material having low hardness. 第1の基板の複数の接続端子と第2の基板の複数の接続端子とを対向させて導電性粒子を含む接着剤で電気的に接続する基板の接続構造の製造方法において、
前記第2の基板の前記接続端子間に、該接続端子が設けられた基板表面からの高さ方向に連続した頂部を有する構造体を作成し、前記接続端子と前記構造体に対応する連続した領域に前記導電性粒子を含む接着剤を配置して介在させた状態で前記第1の基板を前記第2の基板に配置して押圧することで、前記構造体の前記頂部により前記第1,第2の基板の基板面方向の接続端子間で前記接着剤の導電性粒子を分離及び遮断することを特徴とする基板の接続構造の製造方法。
In the method for manufacturing a substrate connection structure in which a plurality of connection terminals of the first substrate and a plurality of connection terminals of the second substrate are opposed to each other and electrically connected with an adhesive containing conductive particles,
A structure having a top portion continuous in the height direction from the surface of the substrate on which the connection terminal is provided is created between the connection terminals of the second substrate, and the structure corresponding to the connection terminal and the structure is continuous. By placing and pressing the first substrate on the second substrate in a state where the adhesive containing the conductive particles is disposed and interposed in the region, the top portion of the structure causes the first, A method for manufacturing a substrate connection structure, comprising separating and blocking conductive particles of the adhesive between connection terminals in a substrate surface direction of a second substrate.
JP2006072271A 2006-03-16 2006-03-16 Connection structure of substrate and its manufacturing method Withdrawn JP2007250825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072271A JP2007250825A (en) 2006-03-16 2006-03-16 Connection structure of substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072271A JP2007250825A (en) 2006-03-16 2006-03-16 Connection structure of substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007250825A true JP2007250825A (en) 2007-09-27

Family

ID=38594796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072271A Withdrawn JP2007250825A (en) 2006-03-16 2006-03-16 Connection structure of substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007250825A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281269A (en) * 2006-04-10 2007-10-25 Nec Corp Mounting structure of electronic part, and its manufacturing method
EP2229041A1 (en) 2009-03-13 2010-09-15 Sumitomo Electric Industries, Ltd. Structure of connecting printed wiring boards, method of connecting printed wiring boards, and adhesive having anisotropic conductivity
JP2011114226A (en) * 2009-11-27 2011-06-09 Nitto Denko Corp Wiring circuit structure, and method of manufacturing semiconductor device using the structure
WO2012056995A1 (en) * 2010-10-27 2012-05-03 シャープ株式会社 Circuit module, circuit board, circuit device and method for manufacturing circuit module
JP2013207115A (en) * 2012-03-28 2013-10-07 Dexerials Corp Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281269A (en) * 2006-04-10 2007-10-25 Nec Corp Mounting structure of electronic part, and its manufacturing method
EP2229041A1 (en) 2009-03-13 2010-09-15 Sumitomo Electric Industries, Ltd. Structure of connecting printed wiring boards, method of connecting printed wiring boards, and adhesive having anisotropic conductivity
US8507803B2 (en) 2009-03-13 2013-08-13 Sumitomo Electric Industries, Ltd. Structure of connecting printed wiring boards, method of connecting printed wiring boards, and adhesive having anisotropic conductivity
JP2011114226A (en) * 2009-11-27 2011-06-09 Nitto Denko Corp Wiring circuit structure, and method of manufacturing semiconductor device using the structure
CN102130093A (en) * 2009-11-27 2011-07-20 日东电工株式会社 Wiring circuit structure and manufacturing method for semiconductor device using the structure
CN102130093B (en) * 2009-11-27 2016-01-20 日东电工株式会社 Wired circuit structure and use the manufacture method of semiconductor device of this structure
WO2012056995A1 (en) * 2010-10-27 2012-05-03 シャープ株式会社 Circuit module, circuit board, circuit device and method for manufacturing circuit module
JP2013207115A (en) * 2012-03-28 2013-10-07 Dexerials Corp Connection structure and manufacturing method of the same, electronic component and manufacturing method of the same, connection method of electronic component

Similar Documents

Publication Publication Date Title
US6573957B1 (en) Liquid crystal display device
US6771348B2 (en) Displaying substrate and liquid crystal display device having the same
US6542374B1 (en) Circuit board, method for manufacturing the circuit board, and display device and electronic equipment employing the circuit board
US8319109B2 (en) Electro-optical device and electronic apparatus
WO2010018759A1 (en) Flexible substrate and electric circuit structure
US8016181B2 (en) Method of producing electro-optical device using anisotropic conductive adhesive containing conductive particles to bond terminal portions and electro-optical device
JP6862380B2 (en) Display device and manufacturing method of display device
JP3025256B1 (en) Mounting method of TCP film on display panel
KR20170025816A (en) Liquid crystal display device
US10437117B2 (en) Liquid-crystal display device
KR20110067970A (en) Display substrate and method of manufacturing the same
JP2007250825A (en) Connection structure of substrate and its manufacturing method
KR20120049707A (en) Method for fabricating liquid crystal panel
US20050185127A1 (en) Method of manufacturing liquid crystal display
WO2016157399A1 (en) Liquid crystal panel and liquid crystal display device
JP5332219B2 (en) Manufacturing method of electro-optical device
JP2005167274A (en) Semiconductor device, method for manufacturing same, and liquid crystal display device
JP5619439B2 (en) Mounting structure, electro-optical device, mounting component, and manufacturing method of mounting structure
KR20150092692A (en) Display device and method of manufacturing the same
JP4577375B2 (en) Electro-optical device and electronic apparatus
JP2002344097A (en) Mounting substrate and display device having the same
JP4100315B2 (en) Manufacturing method of electro-optical device
KR20070072127A (en) Liquid crystal display device
JP3760624B2 (en) Liquid crystal display device and electronic device using the same
JP3656488B2 (en) Semiconductor device, semiconductor device mounting method, and electro-optical device manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602