JP2013188769A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2013188769A
JP2013188769A JP2012055530A JP2012055530A JP2013188769A JP 2013188769 A JP2013188769 A JP 2013188769A JP 2012055530 A JP2012055530 A JP 2012055530A JP 2012055530 A JP2012055530 A JP 2012055530A JP 2013188769 A JP2013188769 A JP 2013188769A
Authority
JP
Japan
Prior art keywords
heat exchanger
brazing
manufacturing
peeling
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012055530A
Other languages
English (en)
Inventor
Yutaka Hayashi
豊 林
Hidefumi Otsuka
英史 大塚
Soichi Nishimura
聡一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012055530A priority Critical patent/JP2013188769A/ja
Publication of JP2013188769A publication Critical patent/JP2013188769A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】熱交換器表面に均質で高品質な表面処理被膜を形成し、表面に付着した水の排水性を高めることで、表面への着霜を抑制することができる熱交換器の製造方法を提供する。
【解決手段】構成部材同士をロウ材で固定するロウ付け工程S12と、ロウ付け工程S12後に熱交換器Aの表面に付着したロウ材を剥離液を用いて剥離する剥離工程S14と、熱交換器の表面に水の付着を抑制する表面処理を行う表面処理工程S16、S18、S19とを含む熱交換器の製造方法。
【選択図】図2

Description

本発明は、内部を流れる冷媒と外気との間の熱交換を効率よく行うための熱交換器に関するものである。
カーエアコンや建物用の空気調和機のヒートポンプは室外側ユニットに、内部を流れる冷媒と外気との熱交換を行う熱交換器を備えている。この手の熱交換器として、複数のヘッダパイプを、内部に冷媒流路を備えた複数の偏平チューブで連通させるとともに、前記偏平チューブの間にフィンを配置したパラレルフロー型の熱交換器がある。前記熱交換器では、前記フィンの間隔を狭くすることで、熱交換効率の向上が図られている。
例えば、前記空気調和機において、冬季の暖房運転を実施したとき、室外側ユニットに搭載された熱交換器には低温の冷媒が流入する。前記熱交換器に低温の冷媒が流入すると、前記熱交換器のフィン表面に霜が形成される(着霜する)。前記フィンに着霜することで前記フィンの隙間が狭くなり、フィンの隙間を通る空気の抵抗(通風抵抗)が増大する。これにより、前記フィンの間を通過する空気の量が減少し、前記熱交換器における冷媒と空気との熱交換効率が低下する。結果として、前記空気調和機の暖房運転能力の低下を引き起こす。
このような、前記熱交換器への着霜による前記空気調和機の暖房運転能力の低下を抑制するため(又は着霜により低下した熱交換器の熱交換効率を向上させるため)、前記空気調和機では付着した霜を除去するための除霜運転が定期的に実施されている。前記除霜運転を行うことで、前記熱交換器への着霜を予防したり、付着した霜を除去したりすることができる。これにより、前記フィンの隙間の通風抵抗の増大を抑制し、前記空気調和機の暖房能力低下を抑制することができる。
前記空気調和機において、冬季暖房時における除霜運転は、暖房運転と逆運転、すなわち、冷房運転を行い、室外側ユニットの熱交換器に温かい冷媒を流入させ、霜を溶している。
前記空気調和機によって除霜運転のやり方が異なるが、通常の空気調和機では除霜運転を行っている間、暖房運転が休止したり、暖房能力が低下したりする。また、このような、除霜運転時の暖房運転の停止や能力の低下によって、暖房に対する快感度も低下する。その上、前記パラレルフロー型熱交換器は従来型熱交換器よりも熱交換効率が高く、着霜及び除霜運転による熱交換効率の変動が従来型に比べて大きくなる。
そのため、前記パラレルフロー型の熱交換器を空気調和機の室外側ユニットに用いる場合、冬季暖房運転時のフィンの表面への着霜を遅らせること(着霜抑制、すなわち、除霜回数の低減)及びフィンの表面に付着した霜の除去を素早く行うこと(除霜時間短縮)が重要である。
前記熱交換器のフィン表面の着霜を抑制するため、例えば、特開2011−94873号公報に記載の方法が提案されている。特開2011−94873号公報には、フィンの表面を親水化し、前記フィンの表面に水滴が付着し、前記フィンの間に水滴ブリッジが形成されるのを抑制する方法が提案されている。
特許平6−213534号公報 特開2011−94873号公報
前記パラレルフロー型熱交換器は、主にアルミニウム材料のみで構成される場合が多い。その製造は、一般的に、アルミニウム板の片面又は両面にロウ材をクラッドしたブレージングシートを用い、冷媒経路を付与された偏平チューブやロール形成により加工されたコルゲート型のフィン、ヘッダパイプなどを製造する。そして、複数のヘッダパイプを複数本の偏平チューブで接続し、前記複数本の偏平チューブの間にコルゲート型のフィンを配置することで熱交換器の形状に組み付ける。
その後、熱交換器の形状を保ったまま専用冶具で固定し、加熱することで、各部材をロウ付けにて固定する。以上のような製造工程で製造されるため、熱交換器の表面には大量のロウ材フラックスの残渣が付着している。すなわち、前記ロウ付け後の熱交換器の表面は、ロウ材フラックスの残渣によって不規則な凹凸形状となっている。このため、前記熱交換器に親水性を付与するための表面処理を実施すると、形成された親水性を有する膜の均一性を阻害する原因となる。また、ロウ材フラックスは臭気が強く、臭気性の観点からも問題となる場合が多い。
そこで本発明は、熱交換器表面に均質で高品質な表面処理被膜を形成し、表面に付着した水の排水性を高めることで、表面への着霜を抑制することができる熱交換器の製造方法を提供することを目的とする。
上記目的を達成するために本発明は、内部を流れる冷媒と外気との間で熱交換を行う熱交換器の製造方法であって、構成部材同士をロウ材で固定するロウ付け工程と、前記ロウ付け工程後に前記熱交換器の表面に付着したロウ材を剥離液を用いて剥離する剥離工程と、前記熱交換器の表面に水の付着を抑制する表面処理を行う表面処理工程とを含むことを特徴とする熱交換器の製造方法を提供する。
この構成によると、熱交換器表面に付着したロウ材フラックスを除去することで、表面の凹凸を最小にすることができる。これにより、表面処理膜の膜性状や性能のばらつきを抑えることができ、高品質な表面処理膜を形成することができる。このことから、熱交換器の表面に付着する水の排水性を向上させることが可能である。また、ロウ材フラックス残渣を剥離することで、ロウ材フラックス残渣が持つ特有の臭気などを除去することができる。特に、本発明にかかる熱交換器を冷却庫の蒸発器として用いる場合の冷却庫内部や、空気調和機の室内側ユニットの熱交換器として用いる場合の居室内での異臭を抑制することができる。
上記構成において、前記剥離工程で用いる剥離液がアルカリ性溶液であってもよい。このように、前記剥離液として、アルカリ性溶液を用いることで、表面に形成される自然酸化膜を除去することができる。このことから、ロウ材フラックスをきれいに除去することができ、それだけ、高品質な表面処理膜を形成することができる。このことから、熱交換器の表面に付着する水の排水性を向上させることが可能である。
上記構成において、前記剥離工程で前記剥離液が蒸発しないように加熱してもよい。アルカリ性の剥離液を任意温度に加熱することで、ロウ材剥離のための反応速度を向上することができ、処理タクトタイムを短縮することができる。
上記構成において、前記剥離工程の前に、前記熱交換器の表面を洗浄する洗浄工程を備えていてもよい。このように、前記剥離工程の前に表面を洗浄することで、剥離液の内部に異物が混入するのを抑制することが可能である。これにより、剥離液の性質が変化したり、濃度が変化したりするのを抑制し、剥離工程を確実に行うことができる。
上記構成において、前記剥離工程の後に、前記熱交換器の表面を洗浄する洗浄工程を含んでいてもよい。この構成によると、前記フィン等の表面に残ったアルカリ性の剥離液を除去することで、ロウ材を剥離するための反応が過剰に進行し、表面状態が不均一になることを抑制することができる。また、表面に付着した汚れなどを除去し、清浄な表面で、次工程の表面処理を行うことができ、表面処理膜の膜性状や性能のばらつきを抑えることができ、高品質な表面処理膜を形成することができる。
本発明によると、熱交換器表面に均質で高品質な表面処理被膜を形成し、表面に付着した水の排水性を高めることで、表面への着霜を抑制することができる熱交換器の製造方法を提供することができる。
本発明にかかる熱交換器の製造方法で製造した熱交換器の概略図である。 本発明にかかる熱交換器の製造方法の一例を示すフローチャートである。 本発明にかかる熱交換器の製造方法に含まれる洗浄工程を示す図である。 本発明にかかる熱交換器の製造方法に含まれる剥離工程を示す図である。 熱交換器のロウ材フラックス残渣の剥離前後の表面状態を示す図である。 親水性塗料塗布工程時の親水性塗料の塗布膜厚と塗布液量との関係を示すグラフである。 本発明にかかる熱交換器の製造方法にて製造した熱交換器の排水性評価を示すグラフである。
以下に本発明の実施形態について図面を参照して説明する。図1は本発明にかかる熱交換器の製造方法で製造した熱交換器の概略図である。以下の説明では、図1における、水平方向をX方向、垂直方向をY方向として説明する。熱交換器Aは、内部に流れる熱媒(冷媒)と外部の流体(ここでは、空気)との間で熱の交換を効率よく行うための装置である。例えば、熱交換器Aを凝縮器として用いる場合、冷媒の熱を外部の空気に放出し、蒸発器として用いる場合、外部の空気の熱を冷媒に渡す。
図1に示す熱交換器Aは、2本のヘッダパイプ(第1ヘッダパイプ1、第2ヘッダパイプ2)と、その間に配置される複数の偏平チューブ3と、複数の偏平チューブ3の間に配置されたフィン4とを備えている。なお、2本のヘッダパイプ1、2及び偏平チューブ3は冷媒が流動可能な管形状に形成されており、冷媒流動管体を構成している)。
熱交換器Aでは、上述の通り、内部の冷媒と外部の空気との間の熱交換を効率よく行うための装置であり、熱伝導性が高いことが要求されている。そのため、熱交換器Aにおいて、第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4は、高い熱伝導性を有し、安価、加工性が高い等のメリットを有しているアルミニウム又はアルミニウム合金で作製されている。
なお、熱交換器Aを構成する材料は、アルミニウム、アルミニウム合金に限定されるものではなく、金、銀、銅等、熱伝導性が高く、加工が容易な材料を用いることも可能である。また、それぞれの部材は、その部材によって、要求される性能、強度、加工性、熱伝導性等が異なる場合があり、その場合、それぞれの部材を適切な材料で作製してもよい。この場合、熱交換器Aは、異種の材料で形成された構成となる場合もある。
図1に示す熱交換器Aでは、第1ヘッダパイプ1及び第2ヘッダパイプ2は内部に冷媒が流れる冷媒流路を備えており、Y方向に延びると共にX方向に間隔を置いて平行に配置されている。第1ヘッダパイプ1及び第2ヘッダパイプ2は、それぞれ、異なる配管に接続されており、一方の配管を介して冷媒が熱交換器Aに供給され、熱交換器Aで熱交換したのちの冷媒が他方の配管を介して外部に送られる。
複数の偏平チューブ3はX方向に延び、Y方向に所定間隔で配列されている。偏平チューブ3は金属(ここではアルミニウム)を押出成型した細長い管体であり、内部に冷媒を流通させる冷媒流路が形成されている。図1に示すように、偏平チューブ3は、図1の奥行方向に幅広くなるように配置されており、Y方向の厚みが薄い。そして、偏平チューブ3は、断面形状及び断面面積が等しい冷媒流路が図1の奥行き方向に複数個並んだ構成である。
そして、偏平チューブ3は、一方の端部(図1中左側)で第1ヘッダパイプ1と、他方の端部(図中右側)で第2ヘッダパイプ2と接続している。すなわち、熱交換器Aに流入した冷媒は、偏平チューブ3の冷媒流路を通って第1ヘッダパイプ1から第2ヘッダパイプ2に、或いはその逆に流れる。
そして、熱交換器Aでは、隣り合う偏平チューブ3同士の間にフィン4が配置される。図1に示すように、フィン4は、平板を波型(コルゲート形状)に形成した部材であり、波型の各稜部は偏平チューブ3と接触するように配置されている。
熱交換器Aにおいて、第1ヘッダパイプ1、第2ヘッダパイプ2と偏平チューブ3、偏平チューブ3とフィン4とは、ロウ付け処理によって接着されている。
第1ヘッダパイプ1及び第2ヘッダパイプ2と偏平チューブ3とがロウ付けによって接続されることで、接続部から冷媒の漏れを抑制することができる。また、偏平チューブ3とフィン4とが接続されていることで、偏平チューブ3の内部を流れる冷媒とフィン4と接触する空気との間で効率よく熱交換することができる。また、フィン4が、波型であることで、空気の接触面積を広くすることができる。
熱交換器Aは、第1ヘッダパイプ1と第2ヘッダパイプ2との間で冷媒を流通させるとき、偏平チューブ3を介して冷媒が流通する。偏平チューブ3を通過するとき、冷媒は外部の空気と熱交換を行う。例えば、熱交換器Aを蒸発器として用いる場合、偏平チューブ3を流通する冷媒は、外部の空気より熱を奪う。このとき、偏平チューブ3が波型のフィン4と接触しているので、冷媒は偏平チューブ3と直接接触している空気以外にもフィン4と接触している空気との間でも熱交換を行う。
熱交換器Aは、空気調和機に用いられる熱サイクルの室外側ユニットの熱交換器(蒸発器)や冷却庫の冷却装置の蒸発器として用いられる。このとき、熱交換器Aの表面の温度が外部の空気の露点よりも低くなると、熱交換器Aの表面に結露が発生する。さらに、熱交換器Aの表面の温度がさらに低くなると、結露した水分が凍結し霜が発生する(着霜する)。熱交換器Aはこの結露水及び(又は)着霜を抑制し、熱交換効率を高めている。以下の説明では、熱交換器Aを空気調和機の室外側ユニットの熱交換器を例に説明する。
空気調和機を寒冷期に暖房運転する場合、熱交換器Aの内部に流れる冷媒の温度は外気に比べて低くなる。熱交換器Aに低温の冷媒が流入すると、第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4の表面が露点以下の温度となり、表面に結露が発生する。そして、熱交換器Aの表面温度が結露(すなわち、水)の凝固点以下となると、表面に付着した結露が凍結し霜が付着(着霜)する。このような着霜が発生すると、フィン4の隙間が霜で埋まり、空気の流れが阻害される。これにより、熱交換器Aの熱交換効率が低下し、暖房性能が低下する。
熱交換器Aでは、着霜を抑制する着霜防止用処理として、第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4の表面に親水性膜を形成している。
次に熱交換器Aの製造について説明する。熱交換器Aの製造では、ロウ付け工程を容易に実施するため、アルミニウム板の片面又は両面にロウ材をクラッドしたブレージングシートを用いて各部材を作製し、組み立てたのち加熱することでロウ付けを行っている。つまり、上述した第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4は、ブレージングシートを加工することで成形されている。
第1ヘッダパイプ1、第2ヘッダパイプ2及び偏平チューブ3は内部に冷媒が流通するので、片面にロウ材がクラッドされたブレージングシートを用いて成形している。このとき、ロウ材がクラッドされた面が外面となるように、すなわち、ロウ材がクラッドされていない面で冷媒流路を形成している。また、フィン4は折り曲げの稜部で偏平チューブ3と接触し、その部分でロウ付けされるので、両面にロウ材がクラッドされたブレージングシートを用いて成形している。
そして、第1ヘッダパイプ1と第2ヘッダパイプ2とを複数本の偏平チューブ3で接続し、偏平チューブ3の間にフィン4を配置して、熱交換器の形状を組み立てる。その後、熱交換器の形状を保ったまま専用冶具で固定し、加熱する。これにより、表面のロウ材が溶融すると共に、温度が低下することで、各部材をロウ付けにて固定し、熱交換器を製造する。そのため、熱交換器の表面には大量のロウ材フラックスの残渣が付着している。
つまり、ロウ付け工程後の熱交換器Aの表面には、ロウ材のフラックスの残渣が全面的に付着しており、表面に凹凸が形成されている。ロウ材フラックスの残渣が付着している状態で親水性膜を形成すると、ロウ材フラックスの凹凸によって親水性膜の表面にも凹凸が形成される。凹凸がある親水性膜では、親水性膜の性能が十分に発揮できず、着霜を抑制する効果を十分に得ることが難しい。そのため、本発明にかかる熱交換器の製造方法では、表面処理を実行する前に、熱交換器Aの表面に残っているロウ材フラックスの剥離を行う。
以下に本発明にかかる熱交換器の製造方法について図面を参照して説明する。図2は本発明にかかる熱交換器の製造方法の一例を示すフローチャートである。まず、ブレージングシートで形成された、第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4を予め決められた形状に組み立てる(組み立て工程:ステップS11)。熱交換器Aの組み立てが完了すると、組み立てられた熱交換器Aを治具に取り付け、加熱することでロウ付けを行う(ロウ付け工程:ステップS12)。
熱交換器Aのロウ材フラックスを剥離する前に、熱交換器Aの表面に付着した汚れ、油脂成分、埃等の異物を除去するため、熱交換器Aの洗浄を行う(洗浄工程:ステップS13)。図3は本発明にかかる熱交換器の製造方法に含まれる洗浄工程を示す図である。洗浄工程S13では、成形後の熱交換器を洗浄液が充填された容器内に熱交換器を浸漬させ、引き上げ、乾燥させる、いわゆる、ディップコート法が採用されている。
図3に示すように、熱交換器Aをディップ容器Dp1内に満たされた洗浄液Wpに浸漬させる。これにより、熱交換器Aの表面に付着した汚れや油脂成分、埃等の異物を除去する。洗浄液Wpとしては、例えば、純水や上水などが挙げられる。また、この際の浸漬時間は、表面に付着している汚れの程度に基づいて決定される。なお、本実施形態では、洗浄液Wpは純水で、5分間浸漬させている。
また、図3に示すように、汚れや油脂成分、埃等の異物を取り除く効果を高めるため、ディップ容器Dp1には、の内部の洗浄液Wpを撹拌する撹拌装置Sqを備えている。本実施形態では撹拌装置Sqとして超音波発振機を用いているが、これに限定されるものではなく、撹拌装置Sqとして、例えば、スターラー、ディップ容器Dp1の底部から気泡を吹き込み、洗浄効果を高めるもの等、洗浄液Wpを撹拌する構成を広く採用することができる。
熱交換器Aの洗浄液Wpへの浸漬が終了したのち、エアブローなどを用いて、熱交換器Aの表面に付着した洗浄液Wpの除去を行う。このように、洗浄液Wpを除去することで、後述の剥離工程で用いる、剥離液が希釈されるのを抑制し、剥離工程の精度低下を抑えることができる。
洗浄工程S13で、熱交換器Aの表面の異物を取り除いた後、ロウ材のフラックス残渣の剥離を行う(剥離工程:ステップS14)。図4は本発明にかかる熱交換器の製造方法に含まれる剥離工程を示す図である。剥離工程では、図4で示すように、熱交換器Aはディップ容器Dp2内に満たされた剥離液Ppに浸漬させる。熱交換器Aが十分に浸る程度の剥離液Ppが充填されたディップ容器Dp2に、熱交換器Aを浸漬させる。そして、ディップ容器Dp2には、剥離液Ppを蒸発しない程度に加熱する加熱装置Htが備えられている。加熱装置Htで剥離液Ppを加熱することで、剥離液Ppの反応性が高くなりロウ材フラックスの剥離が促進される。
アルミ製熱交換器Aの表面に付着しているロウ材のフラックス残渣は、例えば、アルミナなどのアルミ系合金の酸化物から構成されている。そのため、ロウ材フラックスの剥離は、中性溶液やアルカリ性の剥離液に熱交換器Aを浸漬させることで行う。アルカリ性の剥離液として、例えばNaOH水溶液やKOH水溶液などを使用することができる。剥離液の濃度、熱交換器Aの剥離液Ppへの浸漬時間については、付着しているロウ材の厚さや処理タクトタイム或いは剥離の度合い(どの程度剥離するか)に基づいて決定される。なお、本実施形態では、ロウ付け後の熱交換器Aのロウ材フラックスの厚みが5μL±2μmとし、剥離液Ppとして、0.1mol/LのNaOH水溶液を用いている。また、剥離液Ppの温度及び浸漬時間は前述したように決定されるものであり、本実施形態では、剥離液Ppの温度は70℃、浸漬時間は2分とした。
剥離液Ppへの浸漬完了後、熱交換器Aに付着している剥離液Ppを除去するため、図3に示す洗浄工程と同条件で洗浄を行う(洗浄工程:ステップS15)。熱交換器Aの表面の洗浄を行うことで、フィン4等の表面に残った剥離液Ppを除去できる。これにより、ロウ材を剥離するための反応が過剰に進行し、熱交換器Aの表面状態が荒れる(不均一になる)のを抑制することができる。なお、剥離液Ppを十分に除去可能な場合、ステップS15の洗浄工程は、省略してもよい。
熱交換器Aのロウ材フラックス残渣の剥離前後の表面状態について説明する。図5はロウ材フラックス残渣の剥離前後の表面状態を示す図である。表面の状態は接触式の段差測定器を用いて測定を行っている。測定は、熱交換器Aのフィン4上に設定した任意の10点で測定し、その平均を求めた。測定は、3mmの範囲にて行った。図5に示すように、ロウ材フラックス残渣の剥離前には±6μm程度のばらつきがある。一方で、上述の洗浄工程及び剥離工程を実施したことで、フィン4の表面の凹凸が0.1μm以下となっている。これにより、熱交換器Aのフィン4から、ロウ材フラックス残渣が除去され、ほとんどなくなっていることが分かる。これにより、熱交換器の表面処理を行う前に、表面に膜ムラ等が少なく均一で高品質な表面処理被膜(親水性の膜)を形成する下地処理が可能となっていることがわかる。
熱交換器Aはアルミニウムで形成されるものであり、使用環境によっては、腐食等が発生しやすい場合もある。そこで、図2に示すように、熱交換器Aの製造工程では、第1ヘッダパイプ1、第2ヘッダパイプ2、偏平チューブ3及びフィン4の腐食、錆を抑制するため、耐食性及び(又は)耐錆性に優れた下地を形成する(下地処理工程:ステップS16)。上述のようにロウ付けフラックス残渣を除去することで、下地を精度良く作成することが可能である。
なお、この下地処理工程は上述したように、耐食性、耐錆性などに優れた被膜を形成することを目的としているが、例えば、熱交換器を構成する金属に十分な耐食性、耐錆性を有している場合や耐食性、耐錆性が不要である場合、省略してもよい。また、疎水性膜、親水性膜が形成されやすいような下地を形成することを目的としてもよい。
下地処理工程について、詳しく説明する。下地処理工程は、熱交換器を下地処理材料が充填された容器内に熱交換器を浸漬させ、引き上げ、乾燥させることで表面に被膜を形成する(ディップコート法)。本発明にかかる熱交換器の製造方法では、下地処理剤Ucとして化成処理剤(日本パーカライジング製)を利用している。なお、下地処理剤は化成処理剤に限定されるものではない。
このとき、下地処理工程では、熱交換器Aの表面に耐食性に必要な膜厚(ここでは、100nm)の下地膜が形成されるように、熱交換器Aの下地処理剤に浸漬する時間を調整している。この下地処理の時間は、下地膜の膜厚と下地処理剤への浸漬時間との関係に基づいて、必要な膜厚となる浸漬時間を決定している。上述しているように、熱交換器Aには、膜厚100nmの下地膜を形成する。そのため、下地処理工程では、下地膜の膜厚が100nmとなる時間、すなわち、2分間、下地処理剤Ucに浸漬させている。これにより、熱交換器Aの表面には、ジルコニア系の酸化被膜が下地膜として形成される。
そして、熱交換器Aに下地処理を施した後、下地膜の表面の洗浄や表面に付着した下地処理剤を除去するため、洗浄を行う(洗浄工程:ステップS17)。洗浄工程では、洗浄剤として上水、純水等が利用される。洗浄工程は上述と同じ方法であり、詳細は省略する。
第1ヘッダパイプ1、第2ヘッダパイプ2及び偏平チューブ3及びフィン4の表面に親水性の塗料(SX−01:関西ペイント株式会社)を塗布する(親水性塗料塗布工程:ステップS18)。なお、親水性塗料は上述のものに限定されるものではない。
この親水性塗料の塗布工程は、下処理工程と同様、親水性塗料が溜められた容器内に、成形後の熱交換器Aを浸漬する。熱交換器Aに形成される親水性塗料の塗布膜厚は、浸漬後、引き上げた熱交換器の表面に付着した親水性塗料の液量にて決定される。つまり、この液量を適切に調整することで、親水性塗料の塗布膜厚を調整できる。
そのため、予め基準となるような材料で親水性塗料を塗布し、その時の付着液量と塗布膜厚との関係を調べる。本発明にかかる熱交換器Aの製造工程では、表面積25cm2のアルミニウム板材を親水性塗料(密度1.2g/mm3に浸漬させ、アルミニウム板材に付着した付着液量と塗布膜厚の関係を決める(図6参照)。
熱交換器A表面への親水性塗料の付着液量の調整は、塗布処理前の熱交換器の重量を測定し、塗布処理後の重量との差分と表面処理塗料に含有されている基材の密度より膜厚を算出する。つまり、図6のグラフ(テーブル)を参照して、親水性塗料の中に浸漬させた後の熱交換器Aに付着している付着液量を、所定の塗布膜厚(ここでは、0.1μm)となるように調整する。なお、親水性塗料の付着液量は、親水性塗料の内部からの引き上げ時間、遠心分離機などの液除去装置を用いて行う。
熱交換器Aの親水性塗料の付着液量を調整した後に、乾燥装置内に導入し親水性塗料を乾燥させて膜化する(膜化工程:ステップS19)。親水性塗料としては、熱硬化性、光硬化性等がありいずれの性質を備えた塗料を用いても構わない。乾燥装置は、親水性塗料として熱硬化性の塗料を用いている場合、親水性塗料を加熱する乾燥装置であり、光硬化性の塗料を用いている場合、親水性塗料の硬化に必要な波長の光を照射する乾燥装置である。なお、熱交換器Aの製造工程では、用いられている親水性塗料に対応した乾燥装置が用いられる。
本発明にかかる熱交換器の製造方法では、親水性塗料として熱硬化性(140℃、30分加熱にて膜化する仕様)の塗料を用いており、その塗料仕様通りの乾燥を実施できる乾燥装置を用いている。
以上のようにして、表面に親水性の膜が形成された熱交換器Aが形成される。この、本発明にかかる熱交換器の製造方法で製造した熱交換器Aの保水性の評価実験を行った。以下に、実験結果に基づいて説明を行う。
図7は本発明にかかる熱交換器の製造方法にて製造した熱交換器の排水性評価を示すグラフである。図7に示すグラフは縦軸が保水率、横軸が経過時間である。そして、本発明の熱交換器の製造方法との比較のため、ロウ付けフラックス残渣を剥離していない熱交換器の表面に親水性膜を形成したものを示している。なお、剥離処理を行った熱交換器を本実施例、剥離処理を行っていない熱交換器を従来例として説明する。
排水性能は下記方法にて測定している。まず、乾燥状態の本実施例及び従来例の熱交換器Aの重量をそれぞれ測定する。そして、本発明及び従来例の熱交換器を上水で満たされた容器内に浸漬させ、水中より引き上げたときの重量を測定する。その後、この重量を初期重量とし、乾燥状態の熱交換器重量をそれぞれ差し引くことで、初期の保水重量を算出する。次に、引き上げた状態からの経過時間毎に重量を測定し、乾燥状態での熱交換器重量を差し引き、各経過時間での保水量を算出する。なお、各経過時間における保水の度合いを示すため、保水量を初期保水量で除し、保水率として標準化を行っている。つまり、経過時間ごとの保水率(各経過時間の保水量/初期保水量×100)を確認することで、排水性能の評価を行っている。
図7に示すように、本実施形態の熱交換器の製造方法で製造した熱交換器Aは、従来例の熱交換器に比べて保水量が低い。これは、ロウ材を剥離することで、表面の凹凸が小さくなり、親水性膜の表面が平滑な被膜になったためであると考えられる。
以上のように、本実施の形態で説明した熱交換器の製造方法を用いることで、表面の特性ばらつきを小さくし熱交換器の表面処理による効果を向上することができる。
上述のように本発明にかかる熱交換器の製造方法を用いて製造した熱交換器によると、熱交換器の表面に水が溜まりにくい。これにより、この水が凍って付着する着霜も起こりにくく、着霜による熱交換効率の低下を抑制することができる。また、霜がついたとしても、熱交換器が取り付けられている熱サイクルによる除霜運転に要する時間を短縮化することが可能である。これにより、熱サイクルの効率の低下を抑制し、消費電力の削減、すなわち、省エネルギー化することが可能である。
さらに、上述の実施形態では、熱交換器として、パラレルフロー型の熱交換器を例に説明しているが、これに限定されるものではない。また、上述の実施形態において、ロウ材フラックスを除去したのちの表面処理として、親水性膜を形成するものを例に挙げているが、これに限定されるものではなく、疎水性膜を形成するものであってもよいし、親水性膜及び疎水性膜の両方を形成するものであってもよい。
以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また本発明の実施形態は、発明の趣旨を逸脱しない限り、種々の改変を加えることが可能である。
本発明にかかる熱交換器は、自動車や居室の空気調和機、冷却庫、乾燥機等、熱サイクルを利用して、熱を発生させる装置の冷媒に熱を吸収させる吸熱側の熱交換器として利用することが可能である。
A 熱交換器
1 第1ヘッダパイプ
2 第2ヘッダパイプ
3 偏平チューブ
4 フィン

Claims (5)

  1. 内部を流れる冷媒と外気との間で熱交換を行う熱交換器の製造方法であって、
    構成部材同士をロウ材で固定するロウ付け工程と、
    前記ロウ付け工程後に前記熱交換器の表面に付着したロウ材を剥離液を用いて剥離する剥離工程と、
    前記熱交換器の表面に水の付着を抑制する表面処理を行う表面処理工程とを含むことを特徴とする熱交換器の製造方法。
  2. 前記剥離工程で用いる剥離液がアルカリ性溶液である請求項1に記載の熱交換器の製造方法。
  3. 前記剥離工程において、前記剥離液が蒸発しないように加熱する請求項1又は請求項2に記載の熱交換器の製造方法。
  4. 前記剥離工程の前に、前記熱交換器の表面を洗浄する洗浄工程を含む請求項1から請求項3のいずれかに記載の熱交換器の製造方法。
  5. 前記剥離工程の後に、前記熱交換器の表面を洗浄する洗浄工程を含む請求項1から請求項4のいずれかに記載の熱交換器の製造方法。
JP2012055530A 2012-03-13 2012-03-13 熱交換器 Pending JP2013188769A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055530A JP2013188769A (ja) 2012-03-13 2012-03-13 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055530A JP2013188769A (ja) 2012-03-13 2012-03-13 熱交換器

Publications (1)

Publication Number Publication Date
JP2013188769A true JP2013188769A (ja) 2013-09-26

Family

ID=49389593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055530A Pending JP2013188769A (ja) 2012-03-13 2012-03-13 熱交換器

Country Status (1)

Country Link
JP (1) JP2013188769A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326381A (ja) * 1989-06-23 1991-02-04 Nippon Parkerizing Co Ltd アルミニウム製熱交換器及びその製造方法
JPH11131254A (ja) * 1997-10-24 1999-05-18 Nippon Parkerizing Co Ltd アルミニウム含有金属材料の表面処理方法
US6488989B1 (en) * 1997-08-14 2002-12-03 Henkel Corporation Hydrophilicizing surfaces, especially aluminum
JP2004229539A (ja) * 2003-01-29 2004-08-19 Ochiai Cutlery Mfg Co Ltd 手持ち式刈り取り機の刈刃停止装置
US20080145542A1 (en) * 2006-12-15 2008-06-19 Ford Global Technologies, Llc Method for preparing a brazed surface for receiving a coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326381A (ja) * 1989-06-23 1991-02-04 Nippon Parkerizing Co Ltd アルミニウム製熱交換器及びその製造方法
US6488989B1 (en) * 1997-08-14 2002-12-03 Henkel Corporation Hydrophilicizing surfaces, especially aluminum
JPH11131254A (ja) * 1997-10-24 1999-05-18 Nippon Parkerizing Co Ltd アルミニウム含有金属材料の表面処理方法
JP2004229539A (ja) * 2003-01-29 2004-08-19 Ochiai Cutlery Mfg Co Ltd 手持ち式刈り取り機の刈刃停止装置
US20080145542A1 (en) * 2006-12-15 2008-06-19 Ford Global Technologies, Llc Method for preparing a brazed surface for receiving a coating

Similar Documents

Publication Publication Date Title
JP5392371B2 (ja) 熱交換器のフィン、熱交換器および空気調和装置
WO2016119365A1 (zh) 板管复合换热型蒸发式冷凝器
US2514469A (en) Method of fabricating heat exchangers
CN101101163B (zh) 冰箱用热交换器及其制造方法
WO2017017789A1 (ja) 熱交換器及び冷凍サイクル装置
JPS62272099A (ja) アルミニウム製熱交換器及びその製造方法
JP2009092262A (ja) 熱交換器
JP2019095089A (ja) フィンアンドチューブ型熱交換器及びその製造方法
JP2013190169A (ja) 熱交換器
WO2016119364A1 (zh) 板管复合换热片及其制作方法
JP6529749B2 (ja) 熱交換器、及び熱交換器の製造方法
JP2013188769A (ja) 熱交換器
JPS6045776B2 (ja) 積層型エバポレ−タ
JP5897953B2 (ja) 熱交換器の製造方法
JP6552629B2 (ja) 熱交換器及び空気調和機
JP2008089230A (ja) フィンアンドチューブ型熱交換器
JP2019203675A (ja) 放熱装置及び当該放熱装置を備える燃料電池コジェネレーションシステム
JP2014014740A (ja) 表面処理装置
JP2017150756A (ja) 熱交換器およびフィンの製造方法
JP2013190170A (ja) 熱交換器
JP6029876B2 (ja) 熱交換器の表面処理方法
JP5939679B2 (ja) 熱交換器の表面処理方法
CN209181321U (zh) 板管复合换热型蒸发式冷水机组
CN219956241U (zh) 一种具有复合结构翅片的换热器
JP2014029236A (ja) 熱交換器の表面処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301