JP2013187960A - Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device - Google Patents

Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device Download PDF

Info

Publication number
JP2013187960A
JP2013187960A JP2012049630A JP2012049630A JP2013187960A JP 2013187960 A JP2013187960 A JP 2013187960A JP 2012049630 A JP2012049630 A JP 2012049630A JP 2012049630 A JP2012049630 A JP 2012049630A JP 2013187960 A JP2013187960 A JP 2013187960A
Authority
JP
Japan
Prior art keywords
charge
voltage
battery
discharge
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012049630A
Other languages
Japanese (ja)
Inventor
Hirofumi Takahashi
宏文 高橋
Reo Kobayashi
玲緒 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012049630A priority Critical patent/JP2013187960A/en
Priority to PCT/JP2013/054109 priority patent/WO2013133017A1/en
Publication of JP2013187960A publication Critical patent/JP2013187960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for more appropriately controlling charge and discharge of a lithium ion secondary battery, and a charge and discharge control device.SOLUTION: A method for controlling a lithium ion secondary battery comprises: a step S101 of acquiring information for the lithium ion secondary battery; a step S102 of determining a deterioration state of the lithium ion secondary battery on the basis of the information acquired in the step S101; a step S104 of selecting a relation between a charge state and a battery voltage corresponding to the deterioration state determined in the step S102 among relations between the charge state and battery voltage in the deterioration states stored in advance; and a step S105 of changing at least one of a charge upper-limit voltage and a discharge lower-limit voltage on the basis of the relation between the charge state and battery voltage selected in the step S104.

Description

リチウムイオン二次電池(以下、適宜「電池」と言う)は、高エネルギ密度化及び高出力密度化が可能な電池として、例えば船舶、鉄道、自動車(電気自動車、ハイブリッド電気自動車等)、電子機器、定置型の蓄電システム等において広く利用されている。また、風力、太陽光等の自然エネルギを利用して発電した電力を電池に蓄えたり、系統からの電力を蓄えたりする技術が家庭用にも産業用にも注目されている。さらには、IT(Information Technology)技術を利用したスマートグリッド(次世代送電網)においても、電池を利用した技術が注目されている。   Lithium ion secondary batteries (hereinafter referred to as “batteries” where appropriate) are, for example, ships, railroads, automobiles (electric cars, hybrid electric cars, etc.), electronic devices as batteries capable of increasing energy density and output density. It is widely used in stationary power storage systems. In addition, technologies for storing electric power generated by using natural energy such as wind power and sunlight in a battery and storing electric power from the grid are attracting attention for both home and industrial use. Furthermore, in a smart grid (next-generation power transmission network) using IT (Information Technology) technology, a technology using a battery is attracting attention.

近年、船舶、鉄道、自動車等に搭載される電池において、さらなる高エネルギ密度化及び長寿命化が特に要求されている。これに伴って、電池自体の性能のみならず、電池の充放電制御も含めた使用方法の最適化が要求されている。そこで、これに関連する技術として、例えば特許文献1に記載の技術が知られている。   In recent years, there has been a particular demand for higher energy density and longer life in batteries mounted on ships, railways, automobiles, and the like. Accordingly, not only the performance of the battery itself but also the optimization of the usage method including the charge / discharge control of the battery is required. Therefore, for example, a technique described in Patent Document 1 is known as a related technique.

特開2005−253287号公報JP 2005-253287 A

リチウムイオン二次電池においては、使用に伴い電池容量の減少及び内部抵抗の増加等の経時劣化が生じる。そのため、初期状態の電池と同様の条件で使用し続けると、電池の経時劣化によって、使用可能なエネルギ量(充放電範囲)が減少することがある。そこで、充放電範囲を拡大することが考えられる。しかしながら、無秩序に充放電範囲を拡大すると、リチウムイオン二次電池の過充電及び過放電の原因となり得る。電池の過充電及び過放電が生じると、電池の劣化がいっそう進行し、寿命が短くなる。   In a lithium ion secondary battery, deterioration with time such as a decrease in battery capacity and an increase in internal resistance occurs with use. Therefore, if the battery is continuously used under the same conditions as the battery in the initial state, the usable energy amount (charge / discharge range) may decrease due to the deterioration of the battery over time. Therefore, it is conceivable to expand the charge / discharge range. However, when the charge / discharge range is randomly expanded, overcharge and overdischarge of the lithium ion secondary battery can be caused. When the battery is overcharged and overdischarged, the battery further deteriorates and the life is shortened.

本発明はこのような事情に鑑みて為されたものであり、リチウムイオン二次電池のより適切な充放電制御方法及び充放電制御装置を提供することにある。   This invention is made | formed in view of such a situation, and is providing the more suitable charge / discharge control method and charge / discharge control apparatus of a lithium ion secondary battery.

本発明者らは前記課題を解決するべく鋭意検討した結果、電池の劣化状態に応じて電池の充放電範囲を制御することにより前記課題を解決できることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by controlling the charge / discharge range of the battery according to the deterioration state of the battery, and have completed the present invention.

本発明によれば、リチウムイオン二次電池のより適切な充放電制御方法及び充放電制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the more suitable charge / discharge control method and charge / discharge control apparatus of a lithium ion secondary battery can be provided.

本実施形態の充放電制御装置を示すブロック図及び予め記憶された充放電カーブである。It is the block diagram which shows the charging / discharging control apparatus of this embodiment, and the charging / discharging curve memorize | stored previously. 本実施形態の充放電制御方法を示すフローチャートである。It is a flowchart which shows the charging / discharging control method of this embodiment. 充電上限電圧を劣化状態に応じて変更することを説明する図である。It is a figure explaining changing a charge upper limit voltage according to a deterioration state. 実施例における電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the battery in an Example. 実施例における電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the battery in an Example. 実施例における電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the battery in an Example. 実施例における電池の製造方法を説明する図である。It is a figure explaining the manufacturing method of the battery in an Example. 実施例において得られた、各劣化状態に対応するSOCと電圧との関係である。It is the relationship between SOC and voltage corresponding to each deterioration state obtained in the example. 実施例において得られた、各劣化状態に対応するSOCと電圧変化との関係である。It is the relationship between SOC corresponding to each deterioration state and voltage change obtained in the Example. 実施例において得られた、各劣化状態に対応する容量維持率と50%SOC電圧との関係である。It is the relationship between the capacity | capacitance maintenance factor corresponding to each deterioration state and 50% SOC voltage which were obtained in the Example. 実施例において得られた、各劣化状態に対応する抵抗上昇率と50%SOC電圧との関係である。It is the relationship between the resistance increase rate corresponding to each deterioration state and 50% SOC voltage obtained in the examples.

以下、図面を適宜参照しながら、本発明を実施するための形態(本実施形態)を説明する。はじめに、本実施形態の充放電制御装置の構成を説明し、次に、この充放電制御装置を用いた充放電制御方法を説明する。   Hereinafter, a form for carrying out the present invention (this embodiment) will be described with reference to the drawings as appropriate. First, the structure of the charge / discharge control apparatus of this embodiment is demonstrated, and the charge / discharge control method using this charge / discharge control apparatus is demonstrated.

<充放電制御装置>
本実施形態の充放電制御装置(充放電制御装置100)は、図1に示すように、リチウムイオン二次電池(電池)11に対して適用されるものである。即ち、充放電制御装置100は、リチウムイオンを吸蔵放出可能な正極(図示しない)と、リチウムイオンを吸蔵放出可能な負極(図示しない)と、リチウム塩(図示しない)と、を含むリチウムイオン二次電池の充放電を制御するものである。具体的には、充放電制御装置100は、電池情報取得部12と、劣化状態判定部13と、充放電カーブ選択部(関係選択部、充放電電圧変更部)14と、記憶部15と、制御信号送信部16と、を備えて構成される。
<Charge / discharge control device>
The charge / discharge control apparatus (charge / discharge control apparatus 100) of this embodiment is applied with respect to the lithium ion secondary battery (battery) 11 as shown in FIG. That is, the charge / discharge control apparatus 100 includes a positive electrode (not shown) capable of occluding and releasing lithium ions, a negative electrode (not shown) capable of occluding and releasing lithium ions, and a lithium salt (not shown). It controls charging / discharging of the secondary battery. Specifically, the charge / discharge control device 100 includes a battery information acquisition unit 12, a deterioration state determination unit 13, a charge / discharge curve selection unit (relation selection unit, charge / discharge voltage change unit) 14, a storage unit 15, And a control signal transmission unit 16.

なお、充放電制御装置100は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)等を備え、ROMに展開されている所定のプログラムがCPUによって実行されることにより具現化される。   The charge / discharge control device 100 includes, for example, a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a hard disk drive (HDD), and the like, and a predetermined program developed in the ROM. Is implemented by the CPU.

電池情報取得部12は、電池11の端子電圧(以下、単に「電圧」或いは「電池電圧」と言う)、電池11に通流する電流、及び電池11における充放電時間を取得するものである。即ち、電池情報取得部12は、電池11についての情報を取得するものである。電池11の電池電圧測定の具体的な手段としては、例えば電圧計(図示しない)が挙げられる。また、電池11に通流する電流測定の具体的な手段としては、例えば電流計(図示しない)が挙げられる。さらに、電池11における充放電時間測定としては、例えばタイマ(図示しない)等が挙げられる。   The battery information acquisition unit 12 acquires a terminal voltage of the battery 11 (hereinafter simply referred to as “voltage” or “battery voltage”), a current flowing through the battery 11, and a charge / discharge time in the battery 11. That is, the battery information acquisition unit 12 acquires information about the battery 11. Specific means for measuring the battery voltage of the battery 11 includes, for example, a voltmeter (not shown). Moreover, as a specific means for measuring the current flowing through the battery 11, for example, an ammeter (not shown) can be cited. Furthermore, examples of the charge / discharge time measurement in the battery 11 include a timer (not shown).

即ち、電池情報取得部12は、例えば電圧計、電流計及びタイマに接続されてなる。そして、電池情報取得部12は、電池11に関する各情報を、例えば前記した各手段を用いて取得するようになっている。そして、取得した情報は、後記する劣化状態判定部13に電気信号として送信されるようになっている。   That is, the battery information acquisition unit 12 is connected to, for example, a voltmeter, an ammeter, and a timer. And the battery information acquisition part 12 acquires each information regarding the battery 11, for example using each above-mentioned means. The acquired information is transmitted as an electrical signal to a deterioration state determination unit 13 described later.

劣化状態判定部13は、電池情報取得部12からの電池情報に基づき、電池11の劣化状態(劣化の度合)を判定するものである。即ち、劣化状態判定部13は、電池情報取得部12が取得した情報(電池情報)に基づいて電池11の劣化状態を判定するものである。   The deterioration state determination unit 13 determines the deterioration state (degree of deterioration) of the battery 11 based on the battery information from the battery information acquisition unit 12. That is, the deterioration state determination unit 13 determines the deterioration state of the battery 11 based on the information (battery information) acquired by the battery information acquisition unit 12.

劣化状態を判定するために、本実施形態において、劣化状態判定部13は、電池11の電圧、電流及び充放電時間に基づき、電池11の電池容量及び電池11の内部抵抗を算出するようになっている。具体的には、電池11の電池容量は、取得した電流と充放電時間を乗することにより算出される。また、電池11の内部抵抗は、取得した電圧変化を電流で除することにより算出される。   In this embodiment, in order to determine the deterioration state, the deterioration state determination unit 13 calculates the battery capacity of the battery 11 and the internal resistance of the battery 11 based on the voltage, current, and charge / discharge time of the battery 11. ing. Specifically, the battery capacity of the battery 11 is calculated by multiplying the acquired current and charge / discharge time. Further, the internal resistance of the battery 11 is calculated by dividing the acquired voltage change by the current.

そして、劣化状態判定部13は、算出された電池11の電池容量及び内部抵抗に基づき、電池11の劣化状態を判定するようになっている。具体的には、本実施形態においては、算出された電池容量及び内部抵抗に基づき、4つの劣化の状態(劣化状態1〜劣化状態4)に分別されるようになっている。この場合、劣化の度合としては、「劣化状態1」の場合が最も小さく、「劣化状態4」の場合が最も大きい。   The deterioration state determination unit 13 determines the deterioration state of the battery 11 based on the calculated battery capacity and internal resistance of the battery 11. Specifically, in the present embodiment, the battery is classified into four deterioration states (degradation state 1 to deterioration state 4) based on the calculated battery capacity and internal resistance. In this case, the degree of degradation is the smallest in the “degraded state 1” and the largest in the “degraded state 4”.

即ち、詳細は後記するが、例えば算出された電池容量がC1〜C2の範囲にあれば「劣化状態1」、C2〜C3の範囲にあれば「劣化状態2」、C3〜C4の範囲にあれば「劣化状態3」、C4〜C5の範囲にあれば「劣化状態4」のように判定されるようになっている。また、例えば算出された内部抵抗がR1〜R2の範囲にあれば「劣化状態1」、R2〜R3の範囲にあれば「劣化状態2」、R3〜R4の範囲にあれば「劣化状態3」、R4〜R5の範囲にあれば「劣化状態4」のように判定されるようになっている。なお、C1〜C5及びR1〜R5は、図示はしないが、実験等によって予め決定されて記憶されている値である。   That is, details will be described later. For example, if the calculated battery capacity is in the range of C1 to C2, “deterioration state 1”, if it is in the range of C2 to C3, “deterioration state 2”, and in the range of C3 to C4. For example, “deterioration state 3” and if it is in the range of C4 to C5, the determination is made as “deterioration state 4”. Further, for example, if the calculated internal resistance is in the range of R1 to R2, “deterioration state 1”, if it is in the range of R2 to R3, “deterioration state 2”, and if in the range of R3 to R4, “deterioration state 3”. If it is in the range of R4 to R5, it is determined as “deterioration state 4”. In addition, although not shown, C1 to C5 and R1 to R5 are values that are determined and stored in advance through experiments or the like.

この時、算出された電池容量に基づく劣化状態と、算出された内部抵抗に基づく劣化状態とが異なっていることがある。このような場合、本実施形態においては、劣化の度合が小さいほうを採用するものとする。例えば、電池容量に基づくと「劣化状態3」と判定され、内部抵抗に基づくと「劣化状態2」と判定された場合、充放電カーブ選択部14に送信される劣化状態は「劣化状態2」となる。このようにすることで、充電上限電圧及び放電下限電圧(いずれも後記する)の変更回数を最小限にして、制御の煩雑さを避けることができる。また、複数の劣化状態があった場合には、それらに基づいて、速やかに変更を行ってもよい。このようにすることで、特に応答性の高い制御を行うことができる。なお、前記においては、劣化の度合が小さいものを採用したが、これに限られるものではない。   At this time, the deterioration state based on the calculated battery capacity may differ from the deterioration state based on the calculated internal resistance. In such a case, in this embodiment, the one with the smaller degree of deterioration is adopted. For example, when it is determined as “deterioration state 3” based on the battery capacity and “deterioration state 2” is determined based on the internal resistance, the deterioration state transmitted to the charge / discharge curve selection unit 14 is “deterioration state 2”. It becomes. By doing so, it is possible to minimize the number of times of changing the charge upper limit voltage and the discharge lower limit voltage (both will be described later) and to avoid the complexity of the control. Further, when there are a plurality of deterioration states, the change may be made promptly based on them. By doing in this way, control with especially high responsiveness can be performed. In addition, although the thing with a small degree of deterioration was employ | adopted in the above, it is not restricted to this.

即ち、本実施形態においては、劣化状態1〜劣化状態4に対応する、予め記憶された複数の充放電カーブを用いて、電池11の充放電制御が行われるようになっている。そして、判定の結果得られた劣化状態は、劣化状態判定部13によって、後記する充放電カーブ選択部14に送信されるようになっている。   That is, in the present embodiment, charge / discharge control of the battery 11 is performed using a plurality of pre-stored charge / discharge curves corresponding to the deterioration state 1 to the deterioration state 4. The deterioration state obtained as a result of the determination is transmitted by the deterioration state determination unit 13 to a charge / discharge curve selection unit 14 described later.

充放電カーブ選択部14は、予め実験等により決定されて記憶部15に記憶された充放電カーブのうち、劣化状態判定部13から受信された電池11の劣化状態に応じた充放電カーブを選択するものである。即ち、予め記憶された、劣化状態における充電状態(SOC;State of Charge)及び電池電圧の関係(本実施形態においては充放電カーブ)のうち、劣化状態判定部13が判定した劣化状態に対応する充電状態及び電池電圧の関係を選択するものである。   The charge / discharge curve selection unit 14 selects a charge / discharge curve according to the deterioration state of the battery 11 received from the deterioration state determination unit 13 among the charge / discharge curves determined in advance through experiments or the like and stored in the storage unit 15. To do. That is, it corresponds to the deterioration state determined by the deterioration state determination unit 13 in the relationship between the state of charge (SOC) and the battery voltage (charge / discharge curve in the present embodiment) stored in advance. The relationship between the state of charge and the battery voltage is selected.

ここで、本実施形態における「充放電カーブ」とは、横軸を充電状態(SOC)、縦軸を電池電圧Vとしたグラフのことである。このようなグラフとしては、例えば図1(b)に示すグラフ等が挙げられる。このように、予め記憶された、劣化状態における充放電カーブは、劣化状態の電池11における充放電可能な充電上限電圧及び放電下限電圧のうちの少なくとも一方を含んでなる。そして、充放電カーブは、本実施形態においては、以下の式(1)で表される関係式により定義されるものである。従って、図1(b)においては、初期状態及び4つの劣化状態毎に式(1)による定義式が決定されてグラフ化されていることになる。図1(b)の詳細は後記する。   Here, the “charge / discharge curve” in the present embodiment is a graph in which the horizontal axis indicates the state of charge (SOC) and the vertical axis indicates the battery voltage V. Examples of such a graph include the graph shown in FIG. Thus, the charge / discharge curve in the deteriorated state stored in advance includes at least one of the charge upper limit voltage and the discharge lower limit voltage that can be charged / discharged in the deteriorated battery 11. And in this embodiment, a charging / discharging curve is defined by the relational expression represented by the following formula | equation (1). Therefore, in FIG. 1B, the definition formula according to the formula (1) is determined and graphed for each of the initial state and the four deterioration states. Details of FIG. 1B will be described later.

Figure 2013187960
(式(1)中、nは3以上の整数、aは定数、xは前記リチウムイオン二次電池の充電状態を表す変数である。)
Figure 2013187960
(In Formula (1), n is an integer greater than or equal to 3, ak is a constant, x is a variable showing the charge condition of the said lithium ion secondary battery.)

このような次数の大きい定義式を用いることにより、より精度よく充放電が制御可能となる。   By using such a definition equation having a large order, charge / discharge can be controlled more accurately.

なお、充放電カーブとしては、理想的には間欠充電又は間欠放電により得られる、所謂SOC−OCV(開回路電圧;Open Circuit Voltage)カーブを用いることが好ましい。しかしながら、本実施例では、充電時又は放電時の速度が十分に低い場合(例えば50分の1(0.02)CA程度)には、このような低い速度での充電又は放電時に得られる充電カーブ又は放電カーブ(即ち充放電カーブ)を、前記SOC−OCVカーブと看做すことができると考えた。また、充電時又は放電時の速度が速い場合でも、SOC−OCVカーブとの誤差を考慮することにより、本実施形態を同様に適用できる。このような誤差は、例えば実験等により決定することができる。   As the charge / discharge curve, it is preferable to use a so-called SOC-OCV (Open Circuit Voltage) curve which is ideally obtained by intermittent charge or intermittent discharge. However, in this embodiment, when the speed at the time of charging or discharging is sufficiently low (for example, about 1/50 (0.02) CA), charging obtained at the time of charging or discharging at such a low speed is performed. It was considered that a curve or a discharge curve (that is, a charge / discharge curve) can be regarded as the SOC-OCV curve. Further, even when the speed at the time of charging or discharging is fast, the present embodiment can be similarly applied by taking into consideration an error from the SOC-OCV curve. Such an error can be determined by, for example, experiments.

図1(b)に示すグラフは、本発明者らの検討により得られた、電池11の初期状態のSOC−Vグラフ、及び劣化状態1〜劣化状態4のSOC−Vグラフである。ただし、図1(b)に示すグラフは、本実施形態を説明するためにいずれも模式的に示したものであり、現実のグラフの形状と必ずしも一致するものではない。   The graph shown in FIG. 1B is an SOC-V graph in the initial state of the battery 11 and an SOC-V graph in the deteriorated state 1 to the deteriorated state 4 obtained by the study of the present inventors. However, the graphs shown in FIG. 1B are all schematically shown in order to explain the present embodiment, and do not necessarily match the actual graph shape.

図1(b)に示すように、電池11においては、初期状態から劣化が進行すると、同じSOCであっても、Vが変化する。詳細は後記するが、図9に示すように、Vの変化は、SOCが40%〜90%程度の時に顕著なものとなる。   As shown in FIG. 1B, in the battery 11, when the deterioration proceeds from the initial state, V changes even with the same SOC. Although details will be described later, as shown in FIG. 9, the change in V becomes significant when the SOC is about 40% to 90%.

電池を効率よく使用するためには、充放電制御の対象物である電池がどのような劣化状態(即ち劣化の度合)にあるのかを正確に判定することと、当該劣化状態に合わせて充放電を適切に制御する指針(パラメータ)の決定との2つが主に重要となる。このような事情に鑑み、本発明者らは、劣化によるVの変化量(増加量)が、電池容量や内部抵抗のような電池の基本性能と強く相関することを見出した。また、本発明者らは、電池11の劣化により、SOCとVとの関係が変化することも見出した。   In order to use the battery efficiently, it is necessary to accurately determine the deterioration state (that is, the degree of deterioration) of the battery that is the target of charge / discharge control, and charge / discharge according to the deterioration state. Two important points are the determination of a guideline (parameter) for appropriately controlling the parameters. In view of such circumstances, the present inventors have found that the amount of change (increase) in V due to deterioration strongly correlates with basic battery performance such as battery capacity and internal resistance. The inventors have also found that the relationship between SOC and V changes due to deterioration of the battery 11.

即ち、電池容量や内部抵抗のような量的な性能因子と、SOC及びVの関係のような電池の質的な性能因子との関連が見出された。これらの知見に基づいて本実施形態の充放電制御を行うことにより、無秩序な充放電範囲の拡大に陥ることなく、劣化した電池でも適切な制御が可能になる。   That is, a relationship has been found between quantitative performance factors such as battery capacity and internal resistance and qualitative performance factors of the battery such as the relationship between SOC and V. By performing the charge / discharge control of this embodiment based on these findings, it is possible to appropriately control even a deteriorated battery without falling into a disorderly charge / discharge range.

充放電カーブ選択部14は、選択した充放電カーブに基づき、充電可能な上限電圧(充電上限電圧)及び放電可能な下限電圧(放電下限電圧)を決定するものでもある。即ち、充放電カーブ選択部14が選択した充電状態及び電池電圧の関係(本実施形態においては充放電カーブ)に基づき、充電上限電圧及び放電下限電圧のうちの少なくとも一方を変更するものでもある。   The charging / discharging curve selection part 14 determines the upper limit voltage (charge upper limit voltage) which can be charged, and the lower limit voltage (discharge lower limit voltage) which can be discharged based on the selected charge / discharge curve. That is, based on the relationship between the charge state and the battery voltage selected by the charge / discharge curve selection unit 14 (charge / discharge curve in the present embodiment), at least one of the charge upper limit voltage and the discharge lower limit voltage is changed.

充電上限電圧及び放電下限電圧の具体的な決定方法は、図2を参照しながら後記する。そして、このようにして決定された充電上限電圧及び放電下限電圧は、充放電カーブ選択部14によって、後記する制御信号送信部16に送信されるようになっている。また、充放電カーブ選択部14が受信した電池11の劣化状態は、記憶部15に記憶されるようにもなっている。   A specific method of determining the charge upper limit voltage and the discharge lower limit voltage will be described later with reference to FIG. The charge upper limit voltage and the discharge lower limit voltage thus determined are transmitted by the charge / discharge curve selection unit 14 to the control signal transmission unit 16 described later. In addition, the deterioration state of the battery 11 received by the charge / discharge curve selection unit 14 is stored in the storage unit 15.

制御信号送信部16は、受信した前記の充電上限電圧及び放電下限電圧を、電池11の充放電を制御するコントローラ11aに送信するものである。コントローラ11aは、電池11に印加する電圧及び通流する電流を制御するものである。即ち、コントローラ11aは、制御信号送信部16から受信した(即ち、充放電制御装置100により決定された)充電下限電圧及び放電下限電圧となるように、電池11への通電を行うようになっている。   The control signal transmission unit 16 transmits the received charge upper limit voltage and discharge lower limit voltage to the controller 11 a that controls charging / discharging of the battery 11. The controller 11a controls the voltage applied to the battery 11 and the flowing current. That is, the controller 11a energizes the battery 11 so that the charging lower limit voltage and the discharging lower limit voltage received from the control signal transmission unit 16 (that is, determined by the charge / discharge control device 100) are obtained. Yes.

<充放電制御方法>
次に、図1に示した充放電制御装置100による電池11の充放電制御方法を、図2を参照しながら説明する。本実施形態の充放電制御方法は、リチウムイオンを吸蔵放出可能な正極と、リチウムイオンを吸蔵放出可能な負極と、リチウム塩と、を含むリチウムイオン二次電池の充放電を制御する方法である。
<Charging / discharging control method>
Next, a charge / discharge control method of the battery 11 by the charge / discharge control apparatus 100 shown in FIG. 1 will be described with reference to FIG. The charge / discharge control method of this embodiment is a method for controlling charge / discharge of a lithium ion secondary battery including a positive electrode capable of occluding and releasing lithium ions, a negative electrode capable of occluding and releasing lithium ions, and a lithium salt. .

はじめに、電池情報取得部12は、電池11についての情報(電池情報;電池電圧、電流及び充放電時間)を取得する(ステップS101;電池情報取得ステップ)。そして、電池情報取得部12は、取得した電池11の電池情報を、劣化状態判定部13に送信する。   First, the battery information acquisition part 12 acquires the information (battery information; battery voltage, electric current, and charging / discharging time) about the battery 11 (step S101; battery information acquisition step). Then, the battery information acquisition unit 12 transmits the acquired battery information of the battery 11 to the deterioration state determination unit 13.

劣化状態判定部13は、受信した電池11の電圧及び電流に基づき、電池11の電池容量及び内部抵抗を算出する。そして、算出された電池容量及び内部抵抗に基づいて、電池11の劣化状態を判定する(ステップS102;劣化状態判定ステップ)。即ち、劣化状態判定部13は、ステップS101において取得された情報に基づいて電池11の劣化状態を判定する。   The deterioration state determination unit 13 calculates the battery capacity and internal resistance of the battery 11 based on the received voltage and current of the battery 11. Then, based on the calculated battery capacity and internal resistance, the deterioration state of the battery 11 is determined (step S102; deterioration state determination step). That is, the deterioration state determination unit 13 determines the deterioration state of the battery 11 based on the information acquired in step S101.

この判定に際して、電池容量に基づいて判定された劣化状態と、内部抵抗に基づいて判定された劣化状態とが異なる場合には、前記のように、本実施形態においては、劣化の度合が軽度な方を採用するものとする。そして、判定により得られた劣化状態は、劣化状態判定部13により、充放電カーブ選択部14に送信される。   In this determination, when the deterioration state determined based on the battery capacity is different from the deterioration state determined based on the internal resistance, in the present embodiment, the degree of deterioration is light as described above. Shall be adopted. Then, the deterioration state obtained by the determination is transmitted to the charge / discharge curve selection unit 14 by the deterioration state determination unit 13.

次に、充放電カーブ選択部14は、受信した劣化状態が、所定時間経過前における電池11の劣化状態から変化したか否かを判定する(ステップS103)。なお、1回目のフローにおいては、「所定時間経過前における電池11の劣化状態」は、電池11の「初期状態」(即ち電池製造直後;図1(b)参照)となる。そして、劣化状態が変化していれば(ステップS103のYes方向)、充放電カーブ選択部14は、変化後の劣化状態に対応する充放電カーブを、記憶部15から読み出して選択する(ステップS104;関係選択ステップ)。即ち、充放電カーブ選択部14は、予め記憶された、劣化状態における充電状態及び電池電圧(本実施形態においては充放電カーブ)の関係のうち、ステップS102において判定された劣化状態に対応する充電状態及び電池電圧の関係を選択する。   Next, the charge / discharge curve selection unit 14 determines whether or not the received deterioration state has changed from the deterioration state of the battery 11 before the predetermined time has elapsed (step S103). In the first flow, the “deterioration state of the battery 11 before elapse of a predetermined time” is the “initial state” of the battery 11 (that is, immediately after the battery is manufactured; see FIG. 1B). If the deterioration state has changed (Yes in step S103), the charge / discharge curve selection unit 14 reads out and selects the charge / discharge curve corresponding to the deterioration state after the change from the storage unit 15 (step S104). ; Relationship selection step). That is, the charge / discharge curve selection unit 14 stores the charge corresponding to the deterioration state determined in step S102 out of the relationship between the charge state in the deterioration state and the battery voltage (charge / discharge curve in the present embodiment) stored in advance. Select the relationship between state and battery voltage.

一方で、劣化状態が変化していなければ(ステップS103のNo方向)、充放電カーブ選択部14は所定時間待機する(ステップS106)。その後、充放電カーブ選択部14は、ステップS101〜S103が再度行われるように電池情報取得部12に信号を送信する。   On the other hand, if the deterioration state has not changed (No direction of step S103), the charge / discharge curve selection unit 14 waits for a predetermined time (step S106). Thereafter, the charge / discharge curve selection unit 14 transmits a signal to the battery information acquisition unit 12 so that steps S101 to S103 are performed again.

変化後の劣化状態に対応する充放電カーブの選択後(前記したステップS104)、充電上限電圧及び放電下限電圧の変更が行われる(ステップS105;充放電電圧変更ステップ)。即ち、充放電カーブ選択部14は、ステップS104において選択された充電状態及び電池電圧の関係(本実施形態においては充放電カーブ)に基づき、充電上限電圧及び放電下限電圧のうちの少なくとも一方を変更する。   After the charge / discharge curve corresponding to the changed deterioration state is selected (step S104 described above), the charge upper limit voltage and the discharge lower limit voltage are changed (step S105; charge / discharge voltage change step). That is, the charge / discharge curve selection unit 14 changes at least one of the upper limit charge voltage and the lower limit discharge voltage based on the relationship between the charge state and the battery voltage selected in step S104 (charge / discharge curve in the present embodiment). To do.

具体的には、ステップS105においては、充放電カーブ選択部14が変更後の充電上限電圧及び放電下限電圧を決定する。そして、充放電カーブ選択部14は、当該充電上限電圧及び放電下限電圧になる信号を送信するように、制御信号送信部16に指示する。これにより、制御信号送信部16がコントローラ11aに対して制御信号を送信し、電池11の充放電電圧の充電上限電圧及び放電下限電圧が変更される。   Specifically, in step S105, the charge / discharge curve selection unit 14 determines the charge upper limit voltage and the discharge lower limit voltage after the change. Then, the charge / discharge curve selection unit 14 instructs the control signal transmission unit 16 to transmit a signal that becomes the charge upper limit voltage and the discharge lower limit voltage. Thereby, the control signal transmission part 16 transmits a control signal with respect to the controller 11a, and the charge upper limit voltage and the discharge lower limit voltage of the charge / discharge voltage of the battery 11 are changed.

より具体的な変更方法としては、充電上限電圧を変更する場合には、変更前の充電上限電圧を、劣化状態の電池11における充電可能な充電上限電圧に近づけるように変更し、放電下限電圧を変更する場合には、変更前の放電下限電圧を、劣化状態の電池11における放電可能な放電下限電圧に近づけるように変更する。   As a more specific change method, when changing the charge upper limit voltage, the charge upper limit voltage before the change is changed so as to approach the charge upper limit voltage that can be charged in the deteriorated battery 11, and the discharge lower limit voltage is changed. When changing, the discharge lower limit voltage before the change is changed to be close to the dischargeable lower limit voltage in the deteriorated battery 11.

ここで、充電上限電圧及び放電下限電圧について説明する。一例として、リチウムイオン二次電池が、SOC25%〜75%の範囲で使用される場合を取り上げる。ただし、SOCはユーザによって定義される値であり、実測できるものではない。そのため、初期状態の充放電カーブを用い、例えば25%及び75%に対応する電圧を指標に、充放電が制御される。具体的には例えば、SOCが25%〜75%の範囲で使用される電池においては、放電下限電圧はSOC25%に対応する電圧であり、充電上限電圧はSOC75%に対応する電圧になる。   Here, the charge upper limit voltage and the discharge lower limit voltage will be described. As an example, a case where a lithium ion secondary battery is used in the range of SOC 25% to 75% is taken up. However, the SOC is a value defined by the user and cannot be actually measured. Therefore, charge / discharge is controlled using the charge / discharge curve in the initial state and using, for example, voltages corresponding to 25% and 75% as an index. Specifically, for example, in a battery used in an SOC range of 25% to 75%, the discharge lower limit voltage is a voltage corresponding to SOC 25%, and the charge upper limit voltage is a voltage corresponding to SOC 75%.

しかしながら、前記したように、電池の劣化が進行すると、同じSOCであっても、それに対応する電圧が変化(増加)する(図1(b)参照)。そのため、電池が劣化しているにも関らず、一定の充電上限電圧及び放電下限電圧で充放電が行われると、実際の電池の状態が全く考慮されない充放電が行われる。これにより、電池の寿命が短くなることがある。また、電池の使用可能な設計電池容量を、十分に使用できないことがある。   However, as described above, as the battery deteriorates, the corresponding voltage changes (increases) even with the same SOC (see FIG. 1B). Therefore, even if the battery is deteriorated, when charging / discharging is performed at a constant charging upper limit voltage and discharging lower limit voltage, charging / discharging is performed in which the actual battery state is not considered at all. This may shorten the battery life. Moreover, the design battery capacity which can use a battery may not fully be used.

そこで、電池の劣化状態に応じて、充電上限電圧及び放電下限電圧の変更が行われる。この点について、図3を参照しながら、具体的に説明する。図3には、初期状態及び劣化状態1の充放電カーブにおける、SOC50%〜100%部分のグラフを拡大して示している。図3に示すように、初期状態では、SOC70%に対応する電圧はV1である。一方、劣化が進行して劣化状態1になったとき、SOC70%に対応する電圧はV2に増加する。   Therefore, the charge upper limit voltage and the discharge lower limit voltage are changed according to the deterioration state of the battery. This point will be specifically described with reference to FIG. FIG. 3 shows an enlarged graph of the SOC 50% to 100% portion in the charge / discharge curves of the initial state and the deteriorated state 1. As shown in FIG. 3, in the initial state, the voltage corresponding to SOC 70% is V1. On the other hand, when the deterioration progresses to the deterioration state 1, the voltage corresponding to SOC 70% increases to V2.

電池の劣化状態を考慮せず、初期状態のままとしてSOC70%まで充電を行う場合、充電上限電圧はV1で一定になる。従って、電池が劣化した場合(劣化状態1の場合)であっても、充電上限電圧はV1で一定であるため、この電圧で充電を終えてしまうと、SOCは55%までしか上昇しないことになる。即ち、電池の充電可能なSOCの上限にはまだ余裕があるにも関らず、充電が終了してしまうことになる。   When charging to SOC 70% in the initial state without considering the deterioration state of the battery, the charging upper limit voltage is constant at V1. Accordingly, even when the battery is deteriorated (in the case of deterioration state 1), the upper limit voltage for charging is constant at V1, and therefore, when the charging is finished at this voltage, the SOC increases only to 55%. Become. That is, the charging ends even though the upper limit of the SOC of the battery that can be charged still has room.

そこで、このような事態を避けるべく、充電上限電圧を変更する。即ち、図3に示すように、劣化が劣化状態1に変化した場合には、これに伴って充電上限電圧もV2に変化させる。この時、充電上限電圧は必ずしもV2にする必要は無く、V2に近づけるように充電上限電圧を変更してもよい。このようにすることにより、SOC55%で充電が終了することなく、初期状態と同じSOC70%程度まで充電することができる。即ち、電池が劣化しても、使用可能な電池容量の減少を避けることができる。   Therefore, in order to avoid such a situation, the charge upper limit voltage is changed. That is, as shown in FIG. 3, when the deterioration changes to the deterioration state 1, the charging upper limit voltage is also changed to V2 accordingly. At this time, the charge upper limit voltage is not necessarily set to V2, and the charge upper limit voltage may be changed so as to approach V2. By doing in this way, it can charge to about 70% of SOC same as an initial state, without complete | finishing charge by SOC55%. That is, even if the battery deteriorates, it is possible to avoid a decrease in usable battery capacity.

なお、図3においては、図示の簡略化のために初期状態及び劣化状態1のグラフのみを示したが、他の劣化状態においても同様である。また、説明の簡略化のために充電上限電圧の変更のみを説明したが、放電下限電圧の変更についても同様にして変更可能である。   In FIG. 3, only the graphs of the initial state and the deterioration state 1 are shown for the sake of simplification, but the same applies to other deterioration states. Further, for the sake of simplification of explanation, only the change of the charge upper limit voltage has been described, but the change of the discharge lower limit voltage can be similarly changed.

<その他>
以上、本実施形態の充放電制御方法及び充放電制御装置について説明したが、前記実施形態が適用可能なリチウムイオン二次電池としては、リチウムイオンを吸蔵放出可能な正極と、リチウムイオンを吸蔵放出可能な負極と、リチウム塩と、を含むものであれば、その具体的な構成は特に限定されない。例えば、電池は、非水電解液を用いる電池であってもよいし、リチウムイオンポリマーを含む電池あってもよい。また、電池は、固体電解質を含む電池であってもよいし、イオン液体を含む電池であってもよい。セパレータも、必要に応じて用いればよい。
<Others>
As described above, the charge / discharge control method and the charge / discharge control apparatus according to the present embodiment have been described. As the lithium ion secondary battery to which the embodiment can be applied, a positive electrode capable of occluding and releasing lithium ions, and occluding and releasing lithium ions. The specific configuration is not particularly limited as long as it includes a possible negative electrode and a lithium salt. For example, the battery may be a battery using a non-aqueous electrolyte or a battery containing a lithium ion polymer. Further, the battery may be a battery including a solid electrolyte or a battery including an ionic liquid. A separator may also be used as necessary.

また、本実施形態においては、電池電圧を常に監視し、充電上限電圧と放電下限電圧との範囲から電圧が逸脱した場合には、充放電を停止させる信号を出力したり、異常を通知する信号を出力したりすることが好ましい。そして、このような場合、劣化状態が変更された場合には、前記信号を出力する電圧(閾値)が併せて変更されることがより好ましい。   In the present embodiment, the battery voltage is constantly monitored, and when the voltage deviates from the range between the charge upper limit voltage and the discharge lower limit voltage, a signal for stopping charge / discharge is output or a signal notifying the abnormality Is preferably output. In such a case, when the deterioration state is changed, it is more preferable that the voltage (threshold value) for outputting the signal is also changed.

そこで、充放電制御装置100は、電池11の充放電時、電池11の電圧が所定の電圧に達したことを検出した際に信号を出力する信号出力部(図示しない)を備える。そして、前記信号出力部により検出される所定の電圧が、充電上限電圧及び放電下限電圧の少なくとも一方とするようになっている。即ち、電池11の電圧が充電上限電圧を超えた場合(即ち過充電の場合)には、信号出力部が異常を知らせる信号を出力するようになっている。また、電池11の電圧が放電下限電圧を下回った場合(即ち過放電の場合)には、信号出力部が異常を知らせる信号を出力するようになっている。   Therefore, the charge / discharge control device 100 includes a signal output unit (not shown) that outputs a signal when it is detected that the voltage of the battery 11 has reached a predetermined voltage when the battery 11 is charged / discharged. The predetermined voltage detected by the signal output unit is at least one of a charge upper limit voltage and a discharge lower limit voltage. That is, when the voltage of the battery 11 exceeds the charging upper limit voltage (that is, in the case of overcharging), the signal output unit outputs a signal notifying abnormality. In addition, when the voltage of the battery 11 falls below the discharge lower limit voltage (that is, in the case of overdischarge), the signal output unit outputs a signal notifying the abnormality.

さらには、前記信号出力部は、充放電カーブ選択部14による充電上限電圧及び放電下限電圧のうちの少なくとも一方の変更時に、前記信号を出力する際の所定の電圧(充電上限電圧及び放電下限電圧)を変更するようにもなっている。なお、この所定の電圧は充電上限電圧及び放電下限電圧に限定されず、充電上限電圧及び放電下限電圧に近い電圧を閾値とするようにしてもよい。   Furthermore, the signal output unit is configured to output a predetermined voltage (charge upper limit voltage and discharge lower limit voltage) when outputting the signal when at least one of the charge upper limit voltage and the discharge lower limit voltage is changed by the charge / discharge curve selection unit 14. ) Is also changing. Note that the predetermined voltage is not limited to the charge upper limit voltage and the discharge lower limit voltage, and a voltage close to the charge upper limit voltage and the discharge lower limit voltage may be used as a threshold value.

さらに、前記の実施形態は、本発明の要旨を逸脱しない範囲で任意に変更して実施可能である。   Furthermore, the above-described embodiment can be arbitrarily modified and implemented without departing from the gist of the present invention.

例えば、電池11の劣化状態を判定するために、電池情報取得部12は、電池情報として電圧、電流及び充放電時間を測定しているが、電池11の劣化状態が判定できれば、電池情報としてはこれらに何ら制限されない。   For example, in order to determine the deterioration state of the battery 11, the battery information acquisition unit 12 measures the voltage, current, and charge / discharge time as the battery information. If the deterioration state of the battery 11 can be determined, the battery information includes There is no limitation to these.

さらに、前記実施形態においては、劣化状態の判定にあたって、電池情報に基づいて電池容量及び内部抵抗を算出している。しかしながら、算出される値は何れか一方のみであってもよい。即ち、例えば電池容量のみを用いて劣化状態を判定する場合には、容量維持率(劣化後の電池容量を、初期状態の電池容量で除して得られる値)が所定の値以下になった場合に、劣化状態を変更すればよい。ただし、より精度のよい制御という観点からは、両者とも用いて劣化状態の判定を行うことが好ましい。   Furthermore, in the embodiment, when determining the deterioration state, the battery capacity and the internal resistance are calculated based on the battery information. However, only one of the calculated values may be used. That is, for example, when determining the deterioration state using only the battery capacity, the capacity maintenance rate (value obtained by dividing the battery capacity after deterioration by the battery capacity in the initial state) has become a predetermined value or less. In this case, the deterioration state may be changed. However, from the viewpoint of more accurate control, it is preferable to use both to determine the deterioration state.

また、例えば、記憶部15に記憶された充放電カーブのうち、4つの劣化状態が記憶された例に本実施形態を説明したが、3つ以下の劣化状態が記憶されてもよく、5つ以上の劣化状態が記憶されていてもよい。ただし、より多くの劣化状態が記憶されることにより、より精度よく充電上限電圧及び放電下限電圧を変更可能になる。そのため、劣化状態は、できるだけ多く予め記憶されることが好ましい。   For example, although the present embodiment has been described in an example in which four deterioration states are stored in the charge / discharge curve stored in the storage unit 15, three or less deterioration states may be stored. The above deterioration state may be stored. However, by storing more deterioration states, the charge upper limit voltage and the discharge lower limit voltage can be changed more accurately. Therefore, it is preferable to store as many deterioration states as possible.

また、例えば、前記の実施形態においては、劣化状態の指標として充放電カーブ(グラフ;SOCとVとの関係式)を用いているが、充電上限電圧及び放電下限電圧のみが用いられるようにしてもよい。即ち、劣化状態の指標として、充電上限電圧及び放電下限電圧の両者の値のみを用いて、劣化状態を規定してもよい。これにより、記憶部15の記憶容量を減少でき、処理を簡素化することができる。   Further, for example, in the above-described embodiment, a charge / discharge curve (graph; relational expression between SOC and V) is used as an indicator of the deterioration state, but only the charge upper limit voltage and the discharge lower limit voltage are used. Also good. That is, the deterioration state may be defined using only the values of both the upper limit charge voltage and the lower discharge limit voltage as indicators of the deterioration state. Thereby, the memory capacity of the memory | storage part 15 can be reduced and a process can be simplified.

さらに、例えば、前記した実施形態においては、充電上限電圧及び放電下限電圧の両方を変更しているが、何れか一方のみを変更するようにしてもよい。例えば、劣化状態が変化しても充電上限電圧又は放電下限電圧の変化量が小さい場合、変化量の小さい方については変更しなくてもよい。さらには、変化量がともに小さければ、両方とも変更しないことも可能である(この場合は、図2のステップS103のNo方向に進む)。これらにより、処理を簡素化することができる。   Furthermore, for example, in the above-described embodiment, both the charge upper limit voltage and the discharge lower limit voltage are changed, but only one of them may be changed. For example, if the change amount of the charge upper limit voltage or the discharge lower limit voltage is small even if the deterioration state changes, the smaller change amount may not be changed. Furthermore, if both the change amounts are small, it is possible to not change both (in this case, the process proceeds in the No direction in step S103 in FIG. 2). As a result, the processing can be simplified.

また、例えば、図2を参照しながら説明したステップS106における所定の時間は任意に設定可能である。ただし、より精度よく制御を行うという観点から、前記所定の時間は短いことが好ましい。また、所定の時間で特定せず、例えば電池11の充放電回数で特定するようにしてもよい。   Further, for example, the predetermined time in step S106 described with reference to FIG. 2 can be arbitrarily set. However, from the viewpoint of performing control with higher accuracy, the predetermined time is preferably short. Moreover, you may make it identify with the frequency | count of charging / discharging of the battery 11, for example, without specifying with predetermined time.

次に、実施例を挙げて本実施形態をより具体的に説明する。   Next, the present embodiment will be described more specifically with reference to examples.

<リチウムイオン二次電池の作製>
ロッキングチェア型のリチウムイオン二次電池を作製した。
<Production of lithium ion secondary battery>
A rocking chair type lithium ion secondary battery was produced.

・正極
正極活物質としての層状LiMO(Mは、Ni0.5Co0.2Mn0.3を表す)と、導電材としてアセチレンブラックと、結着材としてのポリフッ化ビニリデン(PVdF)とが重量比で93:4:3となるようにN−メチルピロリドン(NMP)を溶媒として混合し、正極合剤スラリーを調製した。そして、この正極合剤スラリーを厚さ15μmのアルミニウム箔に塗布し、大気中で乾燥した。乾燥して得られた正極をロールプレスにより成型し、45mm×70mmに集電箔露出部(図4を参照しながら後記する)を加えた形状に切断して正極を作製した。
· Layered LiMO 2 as the positive electrode the positive electrode active material (M represents Ni 0.5 Co 0.2 Mn 0.3) and, with acetylene black as a conductive material, polyvinylidene fluoride as a binder and (PVdF) Was mixed with N-methylpyrrolidone (NMP) as a solvent so that the weight ratio was 93: 4: 3 to prepare a positive electrode mixture slurry. And this positive mix slurry was apply | coated to 15-micrometer-thick aluminum foil, and it dried in air | atmosphere. The positive electrode obtained by drying was molded by a roll press, and cut into a shape in which a collector foil exposed portion (described later with reference to FIG. 4) was added to 45 mm × 70 mm to produce a positive electrode.

・負極
黒鉛と、結着材としてのカルボキシメチルセルロース(CMC)と、スチレン・ブタジエンゴム(SBR)とが重量比で98:1:1となるように水を溶媒として混合し、負極合剤スラリーを調製した。そして、この負極合剤スラリーを厚さ10μmの銅箔に塗布し、大気中で乾燥した。乾燥して得られた負極をロールプレスにより成型し、45mm×70mmに集電箔露出部(図4を参照しながら後記する)を加えた形状に切断して負極を作製した。
-Negative electrode Graphite, carboxymethyl cellulose (CMC) as a binder, and styrene-butadiene rubber (SBR) were mixed with water as a solvent so that the weight ratio was 98: 1: 1, and a negative electrode mixture slurry was prepared. Prepared. And this negative mix slurry was apply | coated to the 10-micrometer-thick copper foil, and it dried in air | atmosphere. The negative electrode obtained by drying was molded by a roll press and cut into a shape obtained by adding a current collector foil exposed portion (described later with reference to FIG. 4) to 45 mm × 70 mm to produce a negative electrode.

・セパレータ
セパレータは、ポリプロピレン、ポリエチレン、ポリプロピレンが3層に積層された総厚み0.03mmのセパレータを用いた。2枚のセパレータで正極を挟み込み、周辺3辺を熱溶着させて袋状にして用いた。
・電解液
電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:2で混合した有機溶媒に、1.0mol/Lになるようにリチウムヘキサフルオロホスフェート(LiPF)を溶解させたものを用いた。
-Separator The separator used was a separator having a total thickness of 0.03 mm in which polypropylene, polyethylene, and polypropylene were laminated in three layers. The positive electrode was sandwiched between two separators, and three sides were thermally welded to form a bag.
Electrolyte solution As an electrolyte solution, lithium hexafluorophosphate (LiPF 6) was added to an organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 so as to be 1.0 mol / L. ) Was used.

そして、袋状セパレータ3に収納された正極1及び負極2を積層して積層体を得た。そして、この積層体において、外部に露出している正極1及び負極2の部分(集電箔露出部)に、それぞれ、正極端子5及び負極端子6を超音波溶接にて接続し、図4に示す電極体4を得た。次に、図5に示すように、2枚の熱溶着可能なシート7の間に電極体4を配設し、シート7の電解液注入箇所以外の部分を熱溶着させることで、図6に示す電極配設容器9を得た。   And the positive electrode 1 and the negative electrode 2 which were accommodated in the bag-shaped separator 3 were laminated | stacked, and the laminated body was obtained. And in this laminated body, the positive electrode terminal 5 and the negative electrode terminal 6 were connected to the part (current collector foil exposed part) of the positive electrode 1 and the negative electrode 2 exposed to the outside by ultrasonic welding, respectively, and FIG. The electrode body 4 shown was obtained. Next, as shown in FIG. 5, the electrode body 4 is disposed between the two heat-weldable sheets 7, and portions other than the electrolyte solution injection portion of the sheet 7 are heat-welded, so that FIG. The electrode placement container 9 shown was obtained.

そして、この電極配設容器9内に前記の電解液を注入した。電解液注入後、開口部を熱溶着することで図7に示す電池11を作製した。そして、封止後8時間の電解液含浸時間を設け、その後、4.2V−2.5Vの電圧範囲を0.5CAの電流値で3サイクル充放電させて、以下の試験に供する電池11を完成させた。   And the said electrolyte solution was inject | poured in this electrode arrangement | positioning container 9. FIG. After injecting the electrolytic solution, the opening 11 was thermally welded to produce the battery 11 shown in FIG. Then, an electrolytic solution impregnation time of 8 hours is provided after sealing, and then the battery 11 subjected to the following test is charged and discharged for 3 cycles at a current value of 0.5 CA at a voltage range of 4.2 V to 2.5 V. Completed.

<サイクル負荷試験時の電池性能及び放電カーブの取得>
完成した電池11において、電池容量及び内部抵抗(電池容量)並びに50分の1(0.02)CAでの放電カーブについてのデータを取得した。その後、2CAの電流値でSOC25%〜75%の範囲を連続して充放電させるサイクル負荷試験を施した。所定のサイクル数(500回)を経過するごとに電池容量、内部抵抗及び50分の1CAでの放電カーブを取得し、劣化状態ごとの電池性能及び放電カーブを蓄積した。これらの蓄積は合計4回行った。なお、本実施例中では「50分の1CAでの放電カーブ」は、放電速度が十分に遅いため、前記した「SOC−OCVカーブ」と看做すこととする。
<Acquisition of battery performance and discharge curve during cycle load test>
In the completed battery 11, data on the battery capacity and internal resistance (battery capacity) and the discharge curve at 1/50 (0.02) CA were obtained. Thereafter, a cycle load test was performed in which a range of SOC 25% to 75% was continuously charged / discharged at a current value of 2CA. Each time a predetermined number of cycles (500 times) passed, battery capacity, internal resistance, and a discharge curve at 1/50 CA were acquired, and the battery performance and discharge curve for each deterioration state were accumulated. These accumulations were performed a total of 4 times. In this embodiment, the “discharge curve at 1/50 CA” is regarded as the “SOC-OCV curve” because the discharge rate is sufficiently slow.

初期状態、及びサイクル負荷試験開始後各回に取得された放電カーブを図8に示す。図8において、劣化状態1は1000サイクル後に取得された放電カーブ、劣化状態2は2000サイクル後に取得された放電カーブ、劣化状態3は3000サイクル後に取得された放電カーブ、及び劣化状態4は4000サイクル後に取得された放電カーブを表している。以下、他のグラフについても同様とする。図8に示すように、劣化が進行する(即ち、劣化状態末尾の数字が大きい。以下同じ)ほど、電圧が概ね上昇していることが分かる。   FIG. 8 shows the initial state and the discharge curve obtained each time after starting the cycle load test. In FIG. 8, the deterioration state 1 is a discharge curve acquired after 1000 cycles, the deterioration state 2 is a discharge curve acquired after 2000 cycles, the deterioration state 3 is a discharge curve acquired after 3000 cycles, and the deterioration state 4 is 4000 cycles. The discharge curve acquired later is represented. Hereinafter, the same applies to other graphs. As shown in FIG. 8, it can be seen that the voltage generally increases as the deterioration progresses (that is, the number at the end of the deterioration state is large. The same applies hereinafter).

また、各SOCにおける初期状態の電圧と劣化状態1〜4の電圧との差分(電圧変化)を図9に示す。図9に示すように、初期状態からの差分は、劣化が進行するほど、大きくなることが分かる。特に、SOCが60%の時には、他のSOCと比較して特に差分が大きくなっていた。   Further, FIG. 9 shows the difference (voltage change) between the voltage in the initial state and the voltage in the deterioration states 1 to 4 in each SOC. As shown in FIG. 9, it can be seen that the difference from the initial state increases as the deterioration progresses. In particular, when the SOC was 60%, the difference was particularly large compared to other SOCs.

さらに、電池容量の維持率(容量維持率)と、50%SOCとなる電圧(50%SOC電圧)との関係を、劣化状態毎に表したものが図10である。また、内部抵抗の上昇率(抵抗上昇率)と、50%SOCとなる電圧(50%SOC電圧)との関係を、劣化状態毎に表したものが図11である。図10に示すように、劣化が進行すると、容量維持率は低下し、50%SOC電圧が上昇することがわかる。特に、劣化が劣化状態4まで進行すると、電池容量は、初期状態の電池容量の75%まで減少していた。また、図11に示すように、劣化が進行すると、抵抗上昇率が上昇し、50%SOC電圧も上昇することがわかる。   Furthermore, FIG. 10 shows the relationship between the battery capacity maintenance rate (capacity maintenance rate) and the voltage (50% SOC voltage) at which 50% SOC is obtained for each deterioration state. FIG. 11 shows the relationship between the rate of increase in internal resistance (resistance increase rate) and the voltage (50% SOC voltage) at which 50% SOC is obtained for each deterioration state. As shown in FIG. 10, it can be seen that as the deterioration progresses, the capacity retention rate decreases and the 50% SOC voltage increases. In particular, when the deterioration progresses to the deterioration state 4, the battery capacity is reduced to 75% of the battery capacity in the initial state. Further, as shown in FIG. 11, it can be seen that as the deterioration progresses, the resistance increase rate increases and the 50% SOC voltage also increases.

初期状態における放電カーブの式(SOCとVとの関係式)を、以下の式(2)に示す。また、劣化状態4における放電カーブの式を、以下の式(3)に示す。なお、以下の式(2)及び式(3)はいずれも、実験値を最小二乗法により近似して得られたものである。   The following equation (2) shows the equation of the discharge curve in the initial state (relational equation between SOC and V). Further, the equation of the discharge curve in the deteriorated state 4 is shown in the following equation (3). In addition, both the following formulas (2) and (3) are obtained by approximating experimental values by the least square method.

初期状態 : V=24.21y6-83.20y5+108.9y4-66.82y3+19.44y2-1.833y+3.485 (2)
劣化状態4: V=-3.194y6+13.86y5-23.08y4+18.79y3-7.393y2+1.869y+3.329 (3)
ただし、yは電池11の充電状態(SOC)を表す変数であり、以下の式(4)を満たす値である。

Figure 2013187960
Initial state: V = 24.21y 6 -83.20y 5 + 108.9y 4 -66.82y 3 + 19.44y 2 -1.833y + 3.485 (2)
Degradation state 4: V = -3.194y 6 + 13.86y 5 -23.08y 4 + 18.79y 3 -7.393y 2 + 1.869y + 3.329 (3)
However, y is a variable representing the state of charge (SOC) of the battery 11, and is a value satisfying the following formula (4).
Figure 2013187960

なお、前記の式(1)及び式(2)はいずれも6次式であるが、3次以上(即ち、前記式(1)におけるnが3以上)とすることで、良好な近似を行うことができた。   Although both the above formulas (1) and (2) are 6th order, good approximation is performed by setting them to the 3rd order or higher (that is, n in the above formula (1) is 3 or higher). I was able to.

<実施例1及び2並びに比較例1及び2>
作製した電池11において、使用するSOC範囲を25%〜75%程度としたときの充電上限電圧、放電下限電圧及び使用可能なSOC範囲(ΔSOC)を、以下の表1に示す。各実施例及び各比較例のSOCに関し、上段が使用するSOCの上限値、下段が使用するSOCの下限値である。
<Examples 1 and 2 and Comparative Examples 1 and 2>
Table 1 below shows the charge upper limit voltage, the discharge lower limit voltage, and the usable SOC range (ΔSOC) when the SOC range used is about 25% to 75%. Regarding the SOC of each example and each comparative example, the upper limit value of the SOC used by the upper stage and the lower limit value of the SOC used by the lower stage.

Figure 2013187960
Figure 2013187960

表1において、実施例1は、75%SOC電圧と25%SOC電圧とを両方とも初期状態から劣化状態4に変更した場合である。即ち、充電上限電圧を3.877Vから3.917Vに変更するととともに、放電下限電圧を3.548Vから3.550Vに変更したものである。   In Table 1, Example 1 is a case where both the 75% SOC voltage and the 25% SOC voltage are changed from the initial state to the deteriorated state 4. That is, the charge upper limit voltage is changed from 3.877V to 3.917V, and the discharge lower limit voltage is changed from 3.548V to 3.550V.

また、実施例2は、75%SOC電圧を初期状態から劣化状態4の値の方向へと変更し、25%SOC電圧を劣化状態4に変更した場合である。即ち、充電上限電圧を3.877Vから3.899Vに変更するととともに、放電下限電圧を3.548Vから3.550Vに変更したものである。   In the second embodiment, the 75% SOC voltage is changed from the initial state toward the value of the deterioration state 4, and the 25% SOC voltage is changed to the deterioration state 4. That is, the charge upper limit voltage is changed from 3.877 V to 3.899 V, and the discharge lower limit voltage is changed from 3.548 V to 3.550 V.

さらに、比較例1は、初期状態の値から変更しなかった場合である。即ち、充電上限電圧及び放電下限電圧の両方とも変更していないものである。   Furthermore, the comparative example 1 is a case where it did not change from the value of an initial state. That is, neither the charge upper limit voltage nor the discharge lower limit voltage is changed.

また、比較例2は、75%SOC電圧を初期から変更せず、初期と同じ使用可能SOC範囲になるように放電下限電圧を変更した場合である。即ち、充電上限電圧を変更せず、放電下限電圧を3.548Vから3.528Vに変更したものである。   In Comparative Example 2, the 75% SOC voltage is not changed from the initial stage, and the discharge lower limit voltage is changed so as to be in the same usable SOC range as the initial stage. That is, the discharge lower limit voltage is changed from 3.548V to 3.528V without changing the charge upper limit voltage.

表1に示すように、初期状態での75%SOC電圧が3.877V、25%SOC電圧が3.548Vであった。一方で、劣化状態4では、それぞれ3.917V及び3.550Vであった。   As shown in Table 1, the 75% SOC voltage in the initial state was 3.877 V, and the 25% SOC voltage was 3.548 V. On the other hand, in the deterioration state 4, they were 3.917V and 3.550V, respectively.

このように、75%SOC電圧の変化が特に大きいため、少なくとも75%SOC電圧を3.877Vから3.917Vへ近づく方向、即ち電圧を上昇させる方向に変更するのが好ましい。そこで、実施例1及び2に示すように、75%SOC電圧を変更している。変更に際して、実施例1では、劣化状態4の充電上限電圧そのものに変更している。また、実施例2では、劣化状態4の充電上限電圧そのものではないが、当該充電上限電圧に近づくように充電上限電圧を変更している。これらのように変更することにより、充電上限電圧を変更しなかった比較例1と比べて、使用可能なSOC範囲(ΔSOC)が拡げることができる。   As described above, since the change in the 75% SOC voltage is particularly large, it is preferable to change at least the 75% SOC voltage in a direction approaching 3.877V to 3.917V, that is, in a direction of increasing the voltage. Therefore, as shown in Examples 1 and 2, the 75% SOC voltage is changed. In the change, in the first embodiment, the charge upper limit voltage itself in the deteriorated state 4 is changed. Moreover, in Example 2, although it is not the charge upper limit voltage itself of the degradation state 4, the charge upper limit voltage is changed so that the said charge upper limit voltage may be approached. By changing as described above, the usable SOC range (ΔSOC) can be expanded as compared with Comparative Example 1 in which the charging upper limit voltage is not changed.

しかも、このような範囲の拡張に際して、充電上限電圧時のSOC及び放電下限電圧時のSOCのいずれにおいても、予め設計されたSOC使用範囲(25%〜75%)に含まれている。従って、過充電及び過放電が生じることなく、使用可能なSOC範囲を拡げることができる。   In addition, when the range is expanded, both the SOC at the time of the charge upper limit voltage and the SOC at the time of the discharge lower limit voltage are included in the SOC use range (25% to 75%) designed in advance. Therefore, the usable SOC range can be expanded without causing overcharge and overdischarge.

一方で、比較例2においては、放電下限電圧時のSOCが20.6%であった。これは、予め設計されたSOC使用範囲(25%〜75%)から逸脱しており、過放電が生じたことを示している。従って、劣化を考慮せずに使用可能範囲を初期状態と同程度にしようとすると、過放電が生じることがわかった。   On the other hand, in Comparative Example 2, the SOC at the discharge lower limit voltage was 20.6%. This deviates from the SOC design range (25% to 75%) designed in advance, indicating that overdischarge has occurred. Accordingly, it has been found that overdischarge occurs when an attempt is made to make the usable range comparable to the initial state without considering deterioration.

<実施例3及び4並びに比較例3>
作製した電池において、使用するSOC範囲を30%〜70%程度としたときの充電上限電圧、放電下限電圧及び使用可能なSOC範囲(ΔSOC)を、以下の表2に示す。各実施例及び比較例のSOCに関し、上段が使用するSOCの上限値、下段が使用するSOCの下限値である。
<Examples 3 and 4 and Comparative Example 3>
Table 2 below shows the charge upper limit voltage, the discharge lower limit voltage, and the usable SOC range (ΔSOC) when the SOC range to be used is about 30% to 70%. Regarding the SOC of each example and comparative example, the upper limit value of the SOC used by the upper stage and the lower limit value of the SOC used by the lower stage.

Figure 2013187960
Figure 2013187960

表2において、実施例3は、70%SOC電圧と30%SOC電圧とを両方とも初期状態から劣化状態4に変更した場合である。即ち、充電上限電圧を3.820Vから3.872Vに変更するととともに、放電下限電圧を3.578Vから3.576Vに変更したものである。   In Table 2, Example 3 is a case where both the 70% SOC voltage and the 30% SOC voltage are changed from the initial state to the deteriorated state 4. That is, the charge upper limit voltage is changed from 3.820V to 3.872V, and the discharge lower limit voltage is changed from 3.578V to 3.576V.

また、実施例4は、70%SOC電圧を初期状態から劣化状態4に変更し、30%SOC電圧を変更しなかった場合である。即ち、充電上限電圧を3.820Vから3.872Vに変更するととともに、放電下限電圧を3.578Vに維持したものである。   In the fourth embodiment, the 70% SOC voltage is changed from the initial state to the deteriorated state 4 and the 30% SOC voltage is not changed. That is, the charge upper limit voltage is changed from 3.820V to 3.872V, and the discharge lower limit voltage is maintained at 3.578V.

さらに、比較例1は、初期状態の値から変更しなかった場合である。即ち、充電上限電圧及び放電下限電圧の両方とも変更していないものである。   Furthermore, the comparative example 1 is a case where it did not change from the value of an initial state. That is, neither the charge upper limit voltage nor the discharge lower limit voltage is changed.

表2に示すように、初期状態での70%SOC電圧が3.820V、30%SOC電圧が3.578Vであった。一方で、劣化状態4では、それぞれ3.872V及び3.576Vであった。   As shown in Table 2, the 70% SOC voltage in the initial state was 3.820V, and the 30% SOC voltage was 3.578V. On the other hand, in the deterioration state 4, they were 3.872V and 3.576V, respectively.

このように、70%SOC電圧の変化が特に大きいため、少なくとも70%SOC電圧を3.820Vから3.872Vへ近づく方向、即ち電圧を上昇させる方向に変更することが好ましい。そこで、実施例3及び4に示すように、70%SOC電圧を変更している。変更に際して、劣化状態4の充電上限電圧そのものに変更している。このように変更することにより、充電上限電圧を変更しなかった比較例3と比べて、使用可能なSOC範囲(ΔSOC)を拡げることができる。   As described above, since the change in the 70% SOC voltage is particularly large, it is preferable to change at least the 70% SOC voltage in a direction approaching 3.820V to 3.872V, that is, a direction in which the voltage is increased. Therefore, as shown in Examples 3 and 4, the 70% SOC voltage is changed. At the time of the change, the charge upper limit voltage itself in the deterioration state 4 is changed. By changing in this way, the usable SOC range (ΔSOC) can be expanded as compared with Comparative Example 3 in which the charging upper limit voltage is not changed.

しかも、このような範囲の拡張に際して、充電上限電圧時のSOC及び放電下限電圧時のSOCのいずれにおいても、予め設計されたSOC使用範囲(30%〜70%)に含まれている(実施例3及び4)。従って、過充電及び過放電が生じることなく、使用可能なSOC範囲を拡げることができる。   In addition, when the range is expanded, both the SOC at the time of the charge upper limit voltage and the SOC at the time of the discharge lower limit voltage are included in the SOC use range (30% to 70%) designed in advance (Example) 3 and 4). Therefore, the usable SOC range can be expanded without causing overcharge and overdischarge.

一方で、比較例3においては、充電上限電圧時のSOCが64.1%であった。これは、予め設計されたSOC使用範囲の上限値(70%)に対してまだ余裕があることを示している。従って、比較例3においては、予め設計されたSOC使用範囲を十分に利用することができていない。   On the other hand, in Comparative Example 3, the SOC at the time of the charging upper limit voltage was 64.1%. This indicates that there is still a margin with respect to the upper limit value (70%) of the SOC usage range designed in advance. Therefore, in the comparative example 3, the SOC use range designed beforehand cannot be fully utilized.

以上、実施例を挙げて説明したように、本発明によれば、リチウムイオン二次電池のより適切な充放電制御方法及び充放電制御装置を提供することができる。なお、前記の実施例は特定のSOC範囲の場合についてのみ記載したが、SOCとVとの関係値のテーブル又は関係式を用いることにより、任意のSOC範囲に対して同様の計算を行い、劣化に伴う電圧の変更方向を定めることができる。   As described above, as described with reference to the examples, according to the present invention, it is possible to provide a more appropriate charge / discharge control method and charge / discharge control device for a lithium ion secondary battery. In the above embodiment, only the case of a specific SOC range is described. However, by using a table or a relational expression of relation values between SOC and V, the same calculation is performed for any SOC range, and deterioration occurs. It is possible to determine the direction of voltage change associated with.

1 正極
2 負極
3 袋状セパレータ
4 電極体
5 正極端子
6 負極端子
7 熱溶着シート
8 熱溶着部
10 電池
11a コントローラ
12 電池情報取得部
13 劣化状態判定部
14 充放電カーブ選択部
15 記憶部
16 制御信号送信部
100 充放電制御装置

DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Bag-like separator 4 Electrode body 5 Positive electrode terminal 6 Negative electrode terminal 7 Thermal welding sheet 8 Thermal welding part 10 Battery 11a Controller 12 Battery information acquisition part 13 Degradation state determination part 14 Charging / discharging curve selection part 15 Storage part 16 Control Signal transmission unit 100 Charge / discharge control device

Claims (9)

リチウムイオンを吸蔵放出可能な正極と、リチウムイオンを吸蔵放出可能な負極と、リチウム塩と、を含むリチウムイオン二次電池の充放電を制御する方法であって、
前記リチウムイオン二次電池についての情報を取得する電池情報取得ステップと、
前記電池情報取得ステップにおいて取得された情報に基づいて前記リチウムイオン二次電池の劣化状態を判定する劣化状態判定ステップと、
予め記憶された、劣化状態における充電状態及び電池電圧の関係のうち、前記劣化状態判定ステップにおいて判定された劣化状態に対応する充電状態及び電池電圧の関係を選択する関係選択ステップと、
前記関係選択ステップにおいて選択された充電状態及び電池電圧の関係に基づき、充電上限電圧及び放電下限電圧のうちの少なくとも一方を変更する充放電電圧変更ステップと、
を有する
ことを特徴とする、リチウムイオン二次電池の充放電制御方法。
A method for controlling charging and discharging of a lithium ion secondary battery comprising a positive electrode capable of occluding and releasing lithium ions, a negative electrode capable of occluding and releasing lithium ions, and a lithium salt,
A battery information acquisition step of acquiring information about the lithium ion secondary battery;
A deterioration state determination step of determining a deterioration state of the lithium ion secondary battery based on the information acquired in the battery information acquisition step;
A relationship selection step of selecting a relationship between the charge state and the battery voltage corresponding to the deterioration state determined in the deterioration state determination step among the relationship between the charge state and the battery voltage in the deterioration state stored in advance;
A charge / discharge voltage changing step for changing at least one of the upper limit charge voltage and the lower discharge limit voltage based on the relationship between the state of charge and the battery voltage selected in the relationship selection step;
The charge / discharge control method of a lithium ion secondary battery characterized by having.
前記劣化状態判定ステップにおいて、
劣化状態の判定が、前記リチウムイオン二次電池の電池容量及び内部抵抗のうちの少なくとも一方を用いて行われる
ことを特徴とする、請求項1に記載のリチウムイオン二次電池の充放電制御方法。
In the deterioration state determining step,
The charge / discharge control method for a lithium ion secondary battery according to claim 1, wherein the deterioration state is determined using at least one of a battery capacity and an internal resistance of the lithium ion secondary battery. .
予め記憶された、劣化状態における充電状態及び電池電圧の関係は、劣化状態の前記リチウムイオン二次電池における充放電可能な充電上限電圧及び放電下限電圧のうちの少なくとも一方を含む
ことを特徴とする、請求項1又は2に記載のリチウムイオン二次電池の充放電制御方法。
The relationship between the charge state and the battery voltage in the deteriorated state stored in advance includes at least one of a charge upper limit voltage and a discharge lower limit voltage of the lithium ion secondary battery in the deteriorated state. The charge / discharge control method of the lithium ion secondary battery according to claim 1 or 2.
前記充放電電圧変更ステップにおいて、
充電上限電圧を変更する場合には、変更前の充電上限電圧を、劣化状態の前記リチウムイオン二次電池における充電可能な充電上限電圧に近づけるように変更し、
放電下限電圧を変更する場合には、変更前の放電下限電圧を、劣化状態の前記リチウムイオン二次電池における放電可能な放電下限電圧に近づけるように変更する
ことを特徴とする、請求項3に記載のリチウムイオン二次電池の充放電制御方法。
In the charge / discharge voltage changing step,
When changing the charging upper limit voltage, change the charging upper limit voltage before the change so as to approach the charging upper limit voltage that can be charged in the deteriorated lithium ion secondary battery,
When the discharge lower limit voltage is changed, the discharge lower limit voltage before the change is changed so as to approach the dischargeable lower limit voltage in the deteriorated lithium ion secondary battery. The charge / discharge control method of the lithium ion secondary battery as described.
予め記憶された、劣化状態における充電状態及び電池電圧の関係が、下記式(1)で表される関係式により定義される
ことを特徴とする、請求項1〜4の何れか1項に記載のリチウムイオン二次電池の充放電制御方法。
Figure 2013187960
(式(1)中、nは3以上の整数、aは定数、xは前記リチウムイオン二次電池の充電状態を表す変数である。)
The relation between the state of charge and the battery voltage in the deteriorated state stored in advance is defined by a relational expression represented by the following formula (1). Charge / discharge control method for lithium ion secondary battery.
Figure 2013187960
(In Formula (1), n is an integer greater than or equal to 3, ak is a constant, x is a variable showing the charge condition of the said lithium ion secondary battery.)
リチウムイオンを吸蔵放出可能な正極と、リチウムイオンを吸蔵放出可能な負極と、リチウム塩と、を含むリチウムイオン二次電池の充放電を制御する装置であって、
前記リチウムイオン二次電池についての情報を取得する電池情報取得部と、
前記電池情報取得部が取得した情報に基づいて前記リチウムイオン二次電池の劣化状態を判定する劣化状態判定部と、
予め記憶された、劣化状態における充電状態及び電池電圧の関係のうち、前記劣化状態判定部が判定した劣化状態に対応する充電状態及び電池電圧の関係を選択する関係選択部と、
前記関係選択部が選択した充電状態及び電池電圧の関係に基づき、充電上限電圧及び放電下限電圧のうちの少なくとも一方を変更する充放電電圧変更部と、
を有する
ことを特徴とする、リチウムイオン二次電池の充放電制御装置。
A device for controlling charge / discharge of a lithium ion secondary battery comprising a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, and a lithium salt,
A battery information acquisition unit for acquiring information about the lithium ion secondary battery;
A deterioration state determination unit that determines a deterioration state of the lithium ion secondary battery based on the information acquired by the battery information acquisition unit;
A relationship selection unit that selects a relationship between the charge state and the battery voltage corresponding to the deterioration state determined by the deterioration state determination unit from among the relationship between the charge state and the battery voltage in the deterioration state stored in advance;
Based on the relationship between the state of charge and the battery voltage selected by the relationship selection unit, a charge / discharge voltage change unit that changes at least one of the charge upper limit voltage and the discharge lower limit voltage;
The charge / discharge control apparatus of a lithium ion secondary battery characterized by having.
前記リチウムイオン二次電池の充放電時、前記リチウムイオン二次電池の電圧が所定の電圧に達したことを検出した際に信号を出力する信号出力部を備える
ことを特徴とする、請求項6に記載のリチウムイオン二次電池の充放電制御装置。
7. A signal output unit for outputting a signal when detecting that the voltage of the lithium ion secondary battery has reached a predetermined voltage during charging / discharging of the lithium ion secondary battery. Charge-discharge control apparatus of the lithium ion secondary battery as described in 2.
前記信号出力部により検出される所定の電圧が、充電上限電圧及び放電下限電圧の少なくとも一方である
ことを特徴とする、請求項7に記載のリチウムイオン二次電池の充放電制御装置。
The charge / discharge control device for a lithium ion secondary battery according to claim 7, wherein the predetermined voltage detected by the signal output unit is at least one of a charge upper limit voltage and a discharge lower limit voltage.
前記信号出力部は、前記充放電電圧変更部による充電上限電圧及び放電下限電圧のうちの少なくとも一方の変更時に、信号を出力する際の所定の電圧を変更する
ことを特徴とする、請求項7又は8に記載のリチウムイオン二次電池の充放電制御装置。
The signal output unit changes a predetermined voltage when outputting a signal when at least one of a charge upper limit voltage and a discharge lower limit voltage is changed by the charge / discharge voltage change unit. Or the charging / discharging control apparatus of the lithium ion secondary battery of 8.
JP2012049630A 2012-03-06 2012-03-06 Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device Pending JP2013187960A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012049630A JP2013187960A (en) 2012-03-06 2012-03-06 Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device
PCT/JP2013/054109 WO2013133017A1 (en) 2012-03-06 2013-02-20 Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049630A JP2013187960A (en) 2012-03-06 2012-03-06 Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device

Publications (1)

Publication Number Publication Date
JP2013187960A true JP2013187960A (en) 2013-09-19

Family

ID=49116500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049630A Pending JP2013187960A (en) 2012-03-06 2012-03-06 Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device

Country Status (2)

Country Link
JP (1) JP2013187960A (en)
WO (1) WO2013133017A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103283A (en) * 2013-11-21 2015-06-04 日産自動車株式会社 Controller of battery module and state discrimination method of battery module
JP2016096105A (en) * 2014-11-17 2016-05-26 プライムアースEvエナジー株式会社 Battery for vehicle controller, battery for vehicle control method and method of determining lower limit voltage
JP5948518B1 (en) * 2016-02-04 2016-07-06 本田技研工業株式会社 Power storage device, transport device having the power storage device, failure determination method, and failure determination program
JP2016167368A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Control device for secondary battery
JP2016170885A (en) * 2015-03-11 2016-09-23 プライムアースEvエナジー株式会社 Battery control device, battery control method and lower limit voltage determining method
JP2017168328A (en) * 2016-03-16 2017-09-21 東京電力ホールディングス株式会社 Apparatus for controlling charged state
KR20180031206A (en) * 2016-09-19 2018-03-28 주식회사 엘지화학 Battery management system and method for protecting a battery from over-discharge
JP2018113258A (en) * 2017-01-12 2018-07-19 ストアドット リミテッド Extension of cycle life of quick charge lithium ion battery
JP2018147827A (en) * 2017-03-08 2018-09-20 株式会社東芝 Charge and discharge control device, service condition creation device, program and power storage system
US10193195B2 (en) 2015-09-09 2019-01-29 Kabushiki Kaisha Toshiba Charging condition control apparatus and battery pack
JPWO2018062394A1 (en) * 2016-09-29 2019-08-08 株式会社Gsユアサ Storage device SOC estimation device, power storage device, and storage device SOC estimation method
JP2020079764A (en) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 Secondary-battery state determination method
JP2020518965A (en) * 2017-12-18 2020-06-25 エルジー・ケム・リミテッド Battery charge management device and method
WO2020158932A1 (en) * 2019-02-01 2020-08-06 株式会社東芝 Storage battery management device and method
JP2020171120A (en) * 2019-04-03 2020-10-15 トヨタ自動車株式会社 Charging method of secondary battery
CN115642328A (en) * 2022-12-26 2023-01-24 深圳先进储能材料国家工程研究中心有限公司 Nickel-hydrogen charge-discharge upper and lower limit voltage control method and system in mixed storage
KR20230060650A (en) * 2021-10-28 2023-05-08 (주)대한시스템 A Battery Pack Managing System

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617264B2 (en) * 2015-03-09 2019-12-11 国立大学法人九州大学 Mononuclear iron complexes and organic synthesis reactions using them
JP7486130B2 (en) 2019-07-09 2024-05-17 パナソニックIpマネジメント株式会社 Management device and vehicle power supply system
CN115149595A (en) * 2021-03-31 2022-10-04 宁德新能源科技有限公司 Method for charging and discharging battery, electronic device, and storage medium
JP2023002286A (en) * 2021-06-22 2023-01-10 本田技研工業株式会社 Power storage device controller, power storage device control system, and power storage device control method
CN114618799A (en) * 2022-03-18 2022-06-14 合肥学院 Method for improving consistency of lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754254B2 (en) * 1999-11-26 2006-03-08 三洋電機株式会社 Battery charge / discharge control method
JP4449240B2 (en) * 2001-03-26 2010-04-14 トヨタ自動車株式会社 Battery capacity judgment device
JP2003132959A (en) * 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd Method for deciding degradation of secondary battery used for power source system, and power source system using the same
JP5401003B2 (en) * 2006-01-27 2014-01-29 シャープ株式会社 Solar power system
JP2010200574A (en) * 2009-02-27 2010-09-09 Panasonic Corp Self-diagnosis circuit and power supply
US9263773B2 (en) * 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103283A (en) * 2013-11-21 2015-06-04 日産自動車株式会社 Controller of battery module and state discrimination method of battery module
JP2016096105A (en) * 2014-11-17 2016-05-26 プライムアースEvエナジー株式会社 Battery for vehicle controller, battery for vehicle control method and method of determining lower limit voltage
JP2016167368A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Control device for secondary battery
JP2016170885A (en) * 2015-03-11 2016-09-23 プライムアースEvエナジー株式会社 Battery control device, battery control method and lower limit voltage determining method
US10193195B2 (en) 2015-09-09 2019-01-29 Kabushiki Kaisha Toshiba Charging condition control apparatus and battery pack
JP5948518B1 (en) * 2016-02-04 2016-07-06 本田技研工業株式会社 Power storage device, transport device having the power storage device, failure determination method, and failure determination program
JP2017138241A (en) * 2016-02-04 2017-08-10 本田技研工業株式会社 Power storage device, transportation apparatus having power storage device, failure determination method, and failure determination program
JP2017168328A (en) * 2016-03-16 2017-09-21 東京電力ホールディングス株式会社 Apparatus for controlling charged state
KR20180031206A (en) * 2016-09-19 2018-03-28 주식회사 엘지화학 Battery management system and method for protecting a battery from over-discharge
KR102564716B1 (en) * 2016-09-19 2023-08-07 주식회사 엘지에너지솔루션 Battery management system and method for protecting a battery from over-discharge
JP7172599B2 (en) 2016-09-29 2022-11-16 株式会社Gsユアサ SOC ESTIMATION DEVICE FOR ELECTRICAL STORAGE ELEMENT, ELECTRICAL STORAGE DEVICE, SOC ESTIMATION METHOD FOR ELECTRICAL STORAGE ELEMENT
JPWO2018062394A1 (en) * 2016-09-29 2019-08-08 株式会社Gsユアサ Storage device SOC estimation device, power storage device, and storage device SOC estimation method
JP2018113258A (en) * 2017-01-12 2018-07-19 ストアドット リミテッド Extension of cycle life of quick charge lithium ion battery
JP7059016B2 (en) 2017-01-12 2022-04-25 ストアドット リミテッド Increased cycle life of fast-charging lithium-ion batteries
JP2018147827A (en) * 2017-03-08 2018-09-20 株式会社東芝 Charge and discharge control device, service condition creation device, program and power storage system
US11397217B2 (en) 2017-12-18 2022-07-26 Lg Energy Solution, Ltd. Battery charging management apparatus and meihod
JP2020518965A (en) * 2017-12-18 2020-06-25 エルジー・ケム・リミテッド Battery charge management device and method
JP7020706B2 (en) 2017-12-18 2022-02-16 エルジー・ケム・リミテッド Battery charge management system and method
JP2020079764A (en) * 2018-11-14 2020-05-28 トヨタ自動車株式会社 Secondary-battery state determination method
JP7174327B2 (en) 2018-11-14 2022-11-17 トヨタ自動車株式会社 Method for determining state of secondary battery
JP2020125936A (en) * 2019-02-01 2020-08-20 株式会社東芝 Storage battery management device and method
GB2591368A (en) * 2019-02-01 2021-07-28 Toshiba Kk Storage battery management device and method
US11549987B2 (en) 2019-02-01 2023-01-10 Kabushiki Kaisha Toshiba Storage battery management device and method
WO2020158932A1 (en) * 2019-02-01 2020-08-06 株式会社東芝 Storage battery management device and method
GB2591368B (en) * 2019-02-01 2023-08-16 Toshiba Kk Storage battery management device and method
JP7346034B2 (en) 2019-02-01 2023-09-19 株式会社東芝 Storage battery management device and method
JP2020171120A (en) * 2019-04-03 2020-10-15 トヨタ自動車株式会社 Charging method of secondary battery
KR20230060650A (en) * 2021-10-28 2023-05-08 (주)대한시스템 A Battery Pack Managing System
KR102558268B1 (en) * 2021-10-28 2023-07-24 (주)대한시스템 A Battery Pack Managing System
CN115642328A (en) * 2022-12-26 2023-01-24 深圳先进储能材料国家工程研究中心有限公司 Nickel-hydrogen charge-discharge upper and lower limit voltage control method and system in mixed storage

Also Published As

Publication number Publication date
WO2013133017A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013133017A1 (en) Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller
US9935477B2 (en) Charge/discharge control method and charge/discharge control apparatus for lithium ion battery
JP5315369B2 (en) Abnormally charged state detection device and inspection method for lithium secondary battery
JP5940145B2 (en) Secondary battery system, secondary battery deterioration state judgment method
US9678167B2 (en) Degradation speed estimation method, and degradation speed estimation device, of lithium-ion battery
JP6235251B2 (en) Secondary battery system
CN106463794B (en) Secondary battery monitoring device and method for predicting battery capacity of secondary battery
US20160204639A1 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2014222603A (en) Inspection method for battery
JP2011113688A (en) Method for detecting condition of secondary battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP2012003863A (en) Method and device for detecting lithium dendrite precipitation
JP2011257314A (en) Method for determining deterioration of secondary battery and control system for secondary battery
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
JP6171821B2 (en) Power storage device having life determination function, and battery life determination method
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6090750B2 (en) Power storage device
JP2017116336A (en) Battery system
WO2017179347A1 (en) Secondary battery system
CN116724440A (en) Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery
JP2013254644A (en) Lithium ion secondary battery control system, battery system, and mobile entity and power storage system incorporating the same
US20230015417A1 (en) Management method of secondary battery, charge method of secondary battery, management device of secondary battery, management system of secondary battery, electrode group, and unit battery
Gope et al. Electro-Thermal Mapping of LFP Cells for Designing EV Battery Packs
JP2022086167A (en) Lithium-ion secondary battery control method