JP2003132959A - Method for deciding degradation of secondary battery used for power source system, and power source system using the same - Google Patents

Method for deciding degradation of secondary battery used for power source system, and power source system using the same

Info

Publication number
JP2003132959A
JP2003132959A JP2001326250A JP2001326250A JP2003132959A JP 2003132959 A JP2003132959 A JP 2003132959A JP 2001326250 A JP2001326250 A JP 2001326250A JP 2001326250 A JP2001326250 A JP 2001326250A JP 2003132959 A JP2003132959 A JP 2003132959A
Authority
JP
Japan
Prior art keywords
secondary battery
power source
power supply
output
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001326250A
Other languages
Japanese (ja)
Inventor
Kiichi Koike
喜一 小池
Shinichi Arisaka
伸一 有坂
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001326250A priority Critical patent/JP2003132959A/en
Publication of JP2003132959A publication Critical patent/JP2003132959A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately device degradation of a secondary battery of a power source system provided with a secondary battery which supplies the output from an independent power source to a load and stores a surplus output of the independent power source, while supplying a shortfall if the output of the independent power source is insufficient for the load, and to provide a power source system capable of assuring power supply from the secondary battery even if the secondary battery degrades to some extent. SOLUTION: There are provided a means for detecting SOC (state of charge) of a secondary battery, a means for detecting a discharge current of the secondary battery, and a means for detecting a discharge voltage of the secondary battery. The degradation of the secondary battery is decided based on relationship between the SOC, discharge current, and discharge voltage of the secondary battery. If degradation is admitted, the controlled lower-limit value of the SOC is raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池等の独立型
電源を用いて負荷に電力を供給する電源システムに関
し、特に出力平準化用の二次電池を備えた電源システム
における二次電池の劣化判定方法およびそれを用いた電
源システムの技術に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system for supplying electric power to a load by using an independent power supply such as a fuel cell, and particularly to deterioration of a secondary battery in a power supply system including a secondary battery for output leveling. The present invention relates to a determination method and a power supply system technology using the determination method.

【0002】[0002]

【従来の技術】燃料電池等の独立型電源を用いた電源シ
ステムとして、例えば特開昭50−116925号公報
に示されたものが知られている。これらの電源システム
では図4に示したように、二次電池41を燃料電池42
に接続し、この燃料電池42の出力電力よりも負荷43
の負荷電力が増大した時に、一時的に放電スイッチ44
を閉じ二次電池41より負荷43に電力を供給したり、
反対に負荷43の電力が減少する時に生じる燃料電池4
2の余剰電力を二次電池41にDC−DCコンバーター
等の充電制御手段45を介して蓄電することにより、シ
ステムの発電効率を向上させている。46は電力変換装
置であり、負荷43が必要とする電力形態により燃料電
池42の出力が電力変換装置46を介して負荷43に接
続される。
2. Description of the Related Art As a power supply system using an independent power supply such as a fuel cell, for example, one disclosed in Japanese Patent Laid-Open No. 50-116925 is known. In these power supply systems, as shown in FIG.
Connected to the load 43 than the output power of the fuel cell 42.
When the load power of the
Closed to supply power from the secondary battery 41 to the load 43,
On the contrary, the fuel cell 4 produced when the electric power of the load 43 decreases
By storing the surplus power of 2 in the secondary battery 41 via the charge control means 45 such as a DC-DC converter, the power generation efficiency of the system is improved. Reference numeral 46 denotes a power converter, and the output of the fuel cell 42 is connected to the load 43 via the power converter 46 depending on the form of power required by the load 43.

【0003】このような二次電池は、劣化して劣化末期
になるに従って活物質の劣化により放電時間が短くなる
とともに内部抵抗も上昇するので初期に比べて放電の電
圧も低下する。
In such a secondary battery, the discharge time is shortened and the internal resistance is increased due to the deterioration of the active material as it deteriorates to the end of deterioration, so that the discharge voltage is also decreased as compared with the initial stage.

【0004】このため前記したような電源システムで
は、二次電池41の劣化状態を測定し劣化判定するため
に、放電時の二次電池電圧を放電電圧検出手段47で検
出し、この放電電圧を基に劣化判定電圧−放電電圧比較
手段48で比較して、劣化判定電圧以下に低下した時に
劣化と判定し、劣化表示手段49を用いて使用者に二次
電池の劣化を告知することが一般的に行われ、また劣化
判定の精度を向上させるために、電池温度や放電電流値
で劣化判定値を補正する方法等も提案されている。
Therefore, in the power supply system as described above, in order to measure the deterioration state of the secondary battery 41 and judge the deterioration, the secondary battery voltage at the time of discharging is detected by the discharge voltage detecting means 47, and this discharge voltage is detected. In general, the deterioration determination voltage / discharge voltage comparison means 48 compares the values with each other, and when the voltage drops below the deterioration determination voltage, it is determined as deterioration, and the deterioration display means 49 is used to notify the user of the deterioration of the secondary battery. In order to improve the accuracy of the deterioration determination, a method of correcting the deterioration determination value with the battery temperature or the discharge current value has been proposed.

【0005】ところが、余剰電力を蓄電池に効率よく蓄
電するためには蓄電池を部分充電状態で維持する必要が
ある。また、蓄電池は常に充電・放電を受けるためにそ
の充電状態(以下、SOCと云う)は一定ではない。こ
のような状況において単に放電電圧を測定するだけでは
蓄電池の劣化状態を正確に判定することは困難であっ
た。
However, in order to efficiently store the surplus power in the storage battery, it is necessary to maintain the storage battery in a partially charged state. In addition, since the storage battery is constantly charged and discharged, its state of charge (hereinafter referred to as SOC) is not constant. In such a situation, it is difficult to accurately determine the deterioration state of the storage battery by simply measuring the discharge voltage.

【0006】また、蓄電池のSOCはある範囲内で制御
されるが、蓄電池の劣化がある程度進行した状態でSO
Cが制御下限値にある場合は、蓄電池から十分な電力を
供給できなくなることがあった。
[0006] Further, the SOC of the storage battery is controlled within a certain range, but when the deterioration of the storage battery has progressed to some extent, the SO
When C is at the control lower limit value, sufficient electric power may not be supplied from the storage battery.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記したよう
な独立型電源からの出力を負荷に供給し、この独立型電
源の余剰出力を蓄電するとともに、前記独立型電源の出
力が負荷に対して不足する場合にはその不足電力を供給
する二次電池を備え、この二次電池のSOCが所定の範
囲内で制御される電源システムにおいて、二次電池の劣
化判定を正確に行うとともに、二次電池の劣化がある程
度まで進行しても二次電池からの負荷への電力供給を確
保し得る電源システムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention supplies the output from an independent power source as described above to a load, stores the surplus output of this independent power source, and outputs the output of the independent power source to the load. In a power supply system in which a secondary battery that supplies the insufficient power is provided and the SOC of the secondary battery is controlled within a predetermined range, deterioration of the secondary battery can be accurately determined, and An object of the present invention is to provide a power supply system capable of ensuring the supply of electric power to the load from the secondary battery even if the deterioration of the secondary battery progresses to some extent.

【0008】[0008]

【課題を解決するための手段】前記した課題を解決する
ために、本発明の請求項1記載に係る発明は、独立型電
源からの出力を負荷に供給し、前記独立型電源の余剰出
力を蓄電するとともに、前記独立型電源の出力が負荷に
対して不足する場合にはその不足電力を供給する二次電
池を備えていて、前記二次電池のSOCが所定の範囲内
で制御される電源システムにおいて、前記二次電池のS
OCを検出する手段と、前記二次電池の放電電流を検出
する手段と、前記二次電池の放電電圧を検出する手段と
を具備し、前記二次電池のSOCと前記二次電池の放電
電流と前記二次電池の放電電圧との関係に基いて二次電
池の劣化判定を行うことを特徴とする電源システムに用
いる二次電池の劣化判定方法を示すものである。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention supplies an output from a stand-alone power source to a load, and outputs a surplus output of the stand-alone power source. A power supply that stores a power and has a secondary battery that supplies the insufficient power when the output of the independent power supply is insufficient for the load, and the SOC of the secondary battery is controlled within a predetermined range. In the system, the S of the secondary battery
The secondary battery has a means for detecting an OC, a means for detecting a discharge current of the secondary battery, and a means for detecting a discharge voltage of the secondary battery, and the SOC of the secondary battery and the discharge current of the secondary battery. And a discharge voltage of the secondary battery, the deterioration determination of the secondary battery is performed, and the deterioration determination method of the secondary battery used in the power supply system is shown.

【0009】また、本発明の請求項2記載に係る発明
は、独立型電源からの出力を負荷に供給し、前記独立型
電源の余剰出力を蓄電するとともに、前記独立型電源の
出力が負荷に対して不足する場合にはその不足電力を供
給する二次電池を備えた電源システムにおいて、前記二
次電池のSOCを検出する手段と、前記二次電池を所定
期間毎に所定電流で所定時間放電する手段と、前記二次
電池の放電電圧を検出する手段とを具備し、前記二次電
池のSOCと前記二次電池の放電電圧との関係に基いて
二次電池の劣化判定を行うことを特徴とする電源システ
ムに用いる二次電池の劣化判定方法を示すものである。
According to a second aspect of the present invention, the output from the independent power source is supplied to the load, the surplus output of the independent power source is stored, and the output of the independent power source is applied to the load. In the case of a shortage, in the power supply system including a secondary battery that supplies the insufficient power, means for detecting the SOC of the secondary battery, and discharging the secondary battery at a predetermined current for a predetermined time at predetermined intervals. And a means for detecting the discharge voltage of the secondary battery, the deterioration determination of the secondary battery based on the relationship between the SOC of the secondary battery and the discharge voltage of the secondary battery. It shows a method of determining deterioration of a secondary battery used in a characteristic power supply system.

【0010】さらに、本発明の請求項3記載に係る発明
は、独立型電源からの出力を負荷に供給し、前記独立型
電源の余剰出力を蓄電するとともに、前記独立型電源の
出力が負荷に対して不足する場合にはその不足電力を供
給する二次電池を備え、前記二次電池のSOCが所定の
範囲内で制御される電源システムにおいて、前記二次電
池のSOCを検出する手段と、前記二次電池の放電電流
を検出する手段と、前記二次電池の放電電圧を検出する
手段とを具備し、前記二次電池のSOCと前記二次電池
の放電電流と前記二次電池の放電電圧との関係に基いて
設定された判定電圧よりも検出された前記二次電池の放
電電圧が低い場合に前記二次電池のSOCの制御下限値
を上昇させることを特徴とする電源システムを示すもの
である。
Further, in the invention according to claim 3 of the present invention, the output from the independent power source is supplied to the load, the surplus output of the independent power source is stored, and the output of the independent power source is applied to the load. In the power supply system, which is provided with a secondary battery that supplies the insufficient power when insufficient, and means for detecting the SOC of the secondary battery in a power supply system in which the SOC of the secondary battery is controlled within a predetermined range, A discharge current of the secondary battery, and a discharge voltage of the secondary battery, the SOC of the secondary battery, the discharge current of the secondary battery, and the discharge of the secondary battery. 1 shows a power supply system characterized by increasing a control lower limit value of SOC of a secondary battery when a detected discharge voltage of the secondary battery is lower than a determination voltage set based on a relationship with a voltage. It is a thing.

【0011】また、本発明の請求項4記載に係る発明
は、独立型電源からの出力を負荷に供給し、前記独立型
電源の余剰出力を蓄電するとともに、前記独立型電源の
出力が負荷に対して不足する場合にはその不足電力を供
給する二次電池を備えた電源システムにおいて、前記二
次電池のSOCを検出する手段と、前記二次電池を所定
期間毎に所定電流で所定時間放電する手段と、前記二次
電池の放電電圧を検出する手段とを具備し、前記二次電
池のSOCと前記二次電池の放電電圧との関係に基いて
設定された判定電圧よりも検出された前記二次電池の放
電電圧が低い場合に前記二次電池のSOCの制御下限値
を上昇させることを特徴とする電源システムを示すもの
である。
According to a fourth aspect of the present invention, the output from the independent power source is supplied to the load, the surplus output of the independent power source is stored, and the output of the independent power source is applied to the load. In the case of a shortage, in the power supply system including a secondary battery that supplies the insufficient power, means for detecting the SOC of the secondary battery, and discharging the secondary battery at a predetermined current for a predetermined time at predetermined intervals. And a means for detecting the discharge voltage of the secondary battery, the detection voltage being detected based on the relationship between the SOC of the secondary battery and the discharge voltage of the secondary battery. The power supply system is characterized in that the control lower limit value of the SOC of the secondary battery is increased when the discharge voltage of the secondary battery is low.

【0012】さらに、本発明の請求項5記載に係る発明
は、請求項3または4の構成を備えた電源システムにお
いてSOCの制御下限値が所定の値まで上昇した時点で
前記二次電池の交換時期を告知する手段を備えた電源シ
ステムを示すものである。
Further, in the invention according to claim 5 of the present invention, in the power supply system having the structure of claim 3 or 4, the secondary battery is replaced when the SOC control lower limit value rises to a predetermined value. 1 shows a power supply system including means for notifying the time.

【0013】また、本発明の請求項6記載に係る発明
は、請求項1または2に記載した二次電池の劣化判定方
法において燃料電池を独立型電源に適用することを示す
ものである。
Further, the invention according to claim 6 of the present invention shows that the fuel cell is applied to an independent power source in the method for determining deterioration of a secondary battery according to claim 1 or 2.

【0014】そして、本発明の請求項7記載に係る発明
は、請求項3ないし5に記載のいずれかの構成を備えた
電源システムにおいて独立型電源として燃料電池を用い
るものである。
The invention according to claim 7 of the present invention uses a fuel cell as an independent power supply in a power supply system having any one of the structures according to claims 3 to 5.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は本発明の実施の形態による電源シス
テムの構成を示すブロック図であり、独立型電源として
燃料電池を用いた例を示す。
FIG. 1 is a block diagram showing the configuration of a power supply system according to an embodiment of the present invention, showing an example in which a fuel cell is used as an independent power supply.

【0017】燃料電池1の出力は負荷2が必要とする電
力形態により、必要に応じて電力変換装置3を介して負
荷2に接続される。負荷2が交流電力を要求する場合に
は電力変換装置3としてインバーター装置、負荷2が直
流電力を要求する場合には電力変換装置3としてDC−
DCコンバーター装置が用いられる。
The output of the fuel cell 1 is connected to the load 2 through the power conversion device 3 as needed depending on the form of power required by the load 2. When the load 2 requests AC power, an inverter device is used as the power converter 3, and when the load 2 requests DC power, the power converter 3 is DC-.
A DC converter device is used.

【0018】そして二次電池4の出力は電力変換装置3
に入力されており、燃料電池1の出力が負荷2に対して
不足する場合には二次電池4からの出力を電力変換装置
3を介して負荷2に供給される。
The output of the secondary battery 4 is the power converter 3
When the output of the fuel cell 1 is insufficient for the load 2, the output from the secondary battery 4 is supplied to the load 2 via the power conversion device 3.

【0019】燃料電池1の出力の一部はDC−DCコン
バーター等で構成される充電制御手段5を介して二次電
池4に接続される。そして二次電池4は燃料電池1の出
力により規定のSOCに充電される。ここでのSOCは
例えば60%〜80%(二次電池が完全充電状態にある
場合のSOCを100%とする)に充電制御され、燃料
電池1の出力に余剰が生じた場合に、この余剰の出力は
二次電池4に蓄電され、二次電池4のSOCは一時的に
増加する。
A part of the output of the fuel cell 1 is connected to the secondary battery 4 via the charging control means 5 composed of a DC-DC converter or the like. Then, the secondary battery 4 is charged to the specified SOC by the output of the fuel cell 1. The SOC here is controlled to be, for example, 60% to 80% (SOC when the secondary battery is in a fully charged state is 100%), and when the output of the fuel cell 1 has a surplus, this surplus is generated. Is stored in the secondary battery 4, and the SOC of the secondary battery 4 temporarily increases.

【0020】本発明において二次電池4の充放電電流を
電流センサー6を介して充放電電流検出・電気量積算手
段7で検出した後、積算電気量を算出し、この値から二
次電池4のSOCをSOC算出手段8により算出する。
In the present invention, the charging / discharging current of the secondary battery 4 is detected by the charging / discharging current detecting / electrical amount integrating means 7 through the current sensor 6, and then the integrated electrical amount is calculated, and the secondary battery 4 is calculated from this value. SOC is calculated by the SOC calculating means 8.

【0021】ここでSOCはある制御幅、例えば前記し
たような範囲で制御される。SOCの上限制御(上記例
では90%)は例えば充電制御手段5により二次電池4
の充電電圧値を制御することにより行われる。SOCの
下限制御はSOC算出手段8により得られたSOC値信
号が充電制御手段5に入力され、充電制御手段5により
SOCを上昇するように二次電池4が充電されることに
より行われる。
Here, the SOC is controlled within a certain control range, for example, within the above-mentioned range. The SOC upper limit control (90% in the above example) is performed by, for example, the charging control means 5 by the secondary battery 4
It is performed by controlling the charging voltage value of. The lower limit control of the SOC is performed by inputting the SOC value signal obtained by the SOC calculating means 8 to the charging control means 5 and charging the secondary battery 4 by the charging control means 5 so as to increase the SOC.

【0022】本発明においては二次電池4の劣化判定を
図2に示したようなフローで行う。すなわち、前記した
ように充放電電流検出・電気量積算手段7により充放電
電流検出(ステップS1)、充放電電流積算(ステップ
S2)が行われた後、これらの値からSOC算出手段8
により、二次電池4のSOCが算出される(ステップS
3)。算出されたSOC値が規定値内にあるかどうかを
判定し、規定値内にない場合、例えばSOC下限値より
も低くなる場合には充電制御手段5により、ある一定電
気量を強制的に充電することによってSOC値を増加さ
せる。また、SOCが上限値に到達した場合には充電制
御手段5での充電を停止したり、二次電池4から負荷2
に電力を供給することによってSOC値を下降制御する
(ステップS5)。
In the present invention, the deterioration judgment of the secondary battery 4 is carried out by the flow shown in FIG. That is, as described above, after the charge / discharge current detection / electricity integration means 7 has performed the charge / discharge current detection (step S1) and the charge / discharge current integration (step S2), the SOC calculation means 8 is calculated from these values.
Thus, the SOC of the secondary battery 4 is calculated (step S
3). Whether or not the calculated SOC value is within the specified value is determined, and when the calculated SOC value is not within the specified value, for example, when it becomes lower than the SOC lower limit value, the charging control means 5 forcibly charges a certain constant amount of electricity. To increase the SOC value. Further, when the SOC reaches the upper limit value, the charging by the charging control means 5 is stopped, or the secondary battery 4 loads the load 2
The SOC value is controlled to be lowered by supplying electric power to (step S5).

【0023】SOC値が規定範囲内における場合には、
二次電池4が放電中であるかどうかを判定するステップ
S6を経て、二次電池4が放電にある場合に以降の劣化
判定に入る。
When the SOC value is within the specified range,
If the secondary battery 4 is in the discharging state, the subsequent deterioration determination is started through step S6 for determining whether the secondary battery 4 is discharging.

【0024】すなわち、充放電電流検出・電気量積算手
段7で得た放電電流値Idと放電電圧検出手段9により
ステップS7で放電電圧値Vdを得る。ここでステップ
S3で得られたSOC値からSOC値毎に設定された放
電電流値Id−判定放電電圧テーブルVsを参照し(ス
テップS8)、実測の放電電圧値Vdとこの判定放電電
圧VsとをステップS9において比較する。これらのデ
ータテーブルの参照と比較はSOC別データテーブル参
照・放電電圧比較手段10によって行われる。
That is, the discharge current value Id obtained by the charging / discharging current detecting / electricity integrating means 7 and the discharge voltage detecting means 9 obtain the discharge voltage value Vd in step S7. Here, the discharge current value Id-determination discharge voltage table Vs set for each SOC value is referenced from the SOC value obtained in step S3 (step S8), and the actually measured discharge voltage value Vd and this determination discharge voltage Vs are compared. The comparison is made in step S9. The reference and comparison of these data tables are performed by the SOC-specific data table reference / discharge voltage comparison means 10.

【0025】そして判定放電電圧Vsよりも実測の放電
電圧値Vdが低下した時点で二次電池4の劣化であると
判定する(ステップS10)。この劣化判定が一度なさ
れた場合に劣化表示手段11により二次電池4の劣化表
示を行うこともできるが、劣化判定が連続して複数回行
われた場合にはじめて劣化表示を行うのがよい。
Then, when the measured discharge voltage value Vd is lower than the judgment discharge voltage Vs, it is judged that the secondary battery 4 is deteriorated (step S10). When the deterioration determination is made once, the deterioration display means 11 can display the deterioration of the secondary battery 4, but it is preferable to display the deterioration display only when the deterioration determination is continuously made a plurality of times.

【0026】このような本発明の電源システムに用いる
二次電池の劣化によれば二次電池のSOCが変化しても
その二次電池の正確な劣化判定を行うことができる。
According to the deterioration of the secondary battery used in the power supply system of the present invention, it is possible to accurately judge the deterioration of the secondary battery even if the SOC of the secondary battery changes.

【0027】また、前記したように劣化判定を行う放電
(ステップS6)は二次電池4の放電を検出して行うこ
とも可能であるが、ステップS6に変えて一定電流での
判定放電を一定時間行うことも可能である。この場合に
放電電流は一定であるので、ステップS8においてSO
C値毎に設定された放電電流値Id−判定放電電圧テー
ブルVsのデータ量を少なくすることができる利点が生
じる。例えば判定放電での放電電流値を20Aと一定と
した場合には図3で示したような劣化状態別の放電電圧
とSOCグラフデータをテーブルとして有していればよ
い。また、当然、電池温度によってこれらのテーブル値
は変化するので、温度測定手段を設けて、温度によるテ
ーブル値補正を行えばより一層判定精度を高めることが
できる。
The discharge for determining deterioration (step S6) can be performed by detecting the discharge of the secondary battery 4 as described above. However, instead of step S6, the determination discharge at a constant current is fixed. It is also possible to do it on time. In this case, since the discharge current is constant, the SO
There is an advantage that the amount of data of the discharge current value Id-determination discharge voltage table Vs set for each C value can be reduced. For example, when the discharge current value in the determination discharge is constant at 20 A, it is sufficient to have the discharge voltage and SOC graph data for each deterioration state as shown in FIG. 3 as a table. Of course, since these table values change depending on the battery temperature, the determination accuracy can be further improved by providing the temperature measuring means and correcting the table values by the temperature.

【0028】また、SOCが規定値内にある場合に判定
を行うのではなく、SOC規定値内のさらに狭いSOC
領域を設定し、SOCがこの領域内にある時にのみ判定
を行うこともできる。この場合においてもステップS8
におけるSOC値毎に設定された放電電流値Id−判定
放電電圧テーブルVsのデータ量を少なくすることもで
きる。
Further, the determination is not made when the SOC is within the specified value, but the narrower SOC within the specified SOC value is used.
It is also possible to set a region and make a decision only when the SOC is in this region. Even in this case, step S8
It is also possible to reduce the amount of data of the discharge current value Id-determination discharge voltage table Vs set for each SOC value in.

【0029】また、この判定を行うSOC領域を複数設
定することもできる。例えばSOCが50%〜90%の
範囲内で制御されている場合に第1のSOC領域を50
%〜60%、第2のSOC領域を80%〜90%に設定
し、それぞれの領域においてのみ判定を行うように設定
する。また、それぞれの領域での劣化判定の論理積で劣
化判定するのか、あるいは劣化判定の論理和で劣化判定
するのかを選択することも可能になる。
It is also possible to set a plurality of SOC regions for making this determination. For example, when the SOC is controlled within the range of 50% to 90%, the first SOC region is set to 50%.
% To 60%, the second SOC region is set to 80% to 90%, and the determination is made only in each region. Further, it is possible to select whether to perform the deterioration determination based on the logical product of the deterioration determinations in each area or to perform the deterioration determination based on the logical sum of the deterioration determinations.

【0030】さらに判定時のSOC値に応じて判定放電
電流を変化させることも可能である。この場合には判定
時のSOC値が低くなるに従い、判定放電電流を小さく
すること、反対に判定時のSOC値が高くなるに従い、
判定放電電流を大きくすることが好ましい。SOCが制
御下限値にある場合に大きな電流で放電した場合にはS
OCが制御下限値を割り込む場合もあるほか、SOCが
低いため、劣化状態にかかわらず、急激に放電電圧が低
くなり、判定精度が低下するためである。また、SOC
が高い領域にある場合に、低いSOC領域で適した小電
流で放電しても放電電圧の低下は少なく、判定精度が低
下するからである。従って、判定時のSOC値の上昇に
伴い、判定放電電流値を増加させるように制御すれば、
より精度の高い劣化判定を行うことができる。
Further, it is possible to change the judgment discharge current according to the SOC value at the time of judgment. In this case, as the SOC value at the time of determination becomes lower, the determination discharge current is made smaller, and conversely, as the SOC value at the time of determination becomes higher,
It is preferable to increase the judgment discharge current. If the SOC is at the control lower limit and a large current is discharged, S
This is because the OC may fall below the control lower limit value, and because the SOC is low, the discharge voltage sharply decreases regardless of the deterioration state, and the determination accuracy decreases. Also, SOC
This is because, in the high range, the discharge voltage does not decrease much even if discharged with a small current suitable for the low SOC range, and the determination accuracy decreases. Therefore, if the control is performed so that the determination discharge current value increases as the SOC value increases during determination,
It is possible to perform deterioration determination with higher accuracy.

【0031】上記した本発明による電源システムの二次
電池の劣化判定方法により二次電池の劣化を検出した場
合にSOCの制御下限値を上昇させる制御手段を用いて
本発明による電源システムを構成することができる。
The power supply system according to the present invention is configured using the control means for increasing the SOC control lower limit value when the deterioration of the secondary battery is detected by the above-described secondary battery deterioration determination method of the power supply system according to the present invention. be able to.

【0032】前記したように、燃料電池1の余剰出力を
蓄電するために、SOC値は100%未満の状態で制御
される。ところが負荷2の電力量が増大し、燃料電池1
の出力が負荷電力量に対して不足する場合には二次電池
4からの出力が負荷2に供給される。二次電池4の容量
劣化が進行した状態でなおかつ、SOC値を100%未
満で制御しているので、二次電池4の放電容量が低下
し、負荷2への供給時間が短くなってしまう。上記した
本発明の劣化判定方法によって、二次電池4が劣化した
と判定された場合、前記したようにSOC値の制御下限
値を増加させることによって、負荷2への供給時間を確
保できる電源システムを得ることができる。
As described above, in order to store the surplus output of the fuel cell 1, the SOC value is controlled to be less than 100%. However, the electric power of the load 2 increases and the fuel cell 1
Is insufficient for the load electric energy, the output from the secondary battery 4 is supplied to the load 2. Since the SOC value is controlled to be less than 100% while the capacity deterioration of the secondary battery 4 is progressing, the discharge capacity of the secondary battery 4 is reduced and the supply time to the load 2 is shortened. When it is determined by the above-described deterioration determination method of the present invention that the secondary battery 4 has deteriorated, the power supply system that can secure the supply time to the load 2 by increasing the control lower limit value of the SOC value as described above. Can be obtained.

【0033】さらにこの本発明の電源システムにおい
て、二次電池4の劣化がさらに進行し、SOC値の制御
下限値がある程度まで上昇すると、燃料電池1からの余
剰出力の蓄電効率が大幅に低下し、電源システムの効率
を低下してしまう。従って、SOC値の制御下限値があ
るしきい値まで上昇した場合には、二次電池4の交換を
使用者に告知するよう、表示ランプを点灯する等の表示
手段を設けることが好ましい。この表示手段として劣化
表示手段11を用いることもできる。
Further, in the power supply system of the present invention, when the deterioration of the secondary battery 4 further progresses and the control lower limit value of the SOC value rises to a certain degree, the storage efficiency of the surplus output from the fuel cell 1 significantly decreases. , Reduces the efficiency of the power supply system. Therefore, it is preferable to provide display means such as turning on a display lamp so as to notify the user of the replacement of the secondary battery 4 when the control lower limit value of the SOC value rises to a certain threshold value. The deterioration display means 11 can also be used as this display means.

【0034】さらに独立型電源としては一定出力を得る
には効率がよいが、出力を急激に増減させるにはあまり
適していない燃料電池やガスタービン発電機を適用する
ことが好ましい。
Further, as an independent power source, it is preferable to apply a fuel cell or a gas turbine generator, which is efficient for obtaining a constant output, but is not very suitable for rapidly increasing or decreasing the output.

【0035】[0035]

【発明の効果】前記したように、本発明によれば、燃料
電池等の独立型電源からの出力を負荷に供給し、この独
立型電源の余剰出力を蓄電するとともに、前記独立型電
源の出力が負荷に対して不足する場合にはその不足電力
を供給する二次電池を備えた電源システムにおいて、二
次電池の劣化判定を精度よく行うことができる。また二
次電池の劣化程度に応じてSOC制御下限値を増大させ
て、二次電池の劣化がある程度まで進行しても二次電池
から電力供給を確保し得るとともに、さらに劣化が進行
した場合には二次電池の交換を使用者に告知できる電源
システムを得ることができるものであり、本発明は工業
上、極めて有用である。
As described above, according to the present invention, the output from the stand-alone power source such as a fuel cell is supplied to the load, the surplus output of the stand-alone power source is stored, and the output of the stand-alone power source is stored. Is insufficient for the load, the deterioration of the secondary battery can be accurately determined in the power supply system including the secondary battery that supplies the insufficient power. Further, by increasing the SOC control lower limit value according to the degree of deterioration of the secondary battery, it is possible to secure the power supply from the secondary battery even if the deterioration of the secondary battery progresses to a certain degree, and when the deterioration further progresses. Can obtain a power supply system capable of notifying the user of the replacement of the secondary battery, and the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施の形態の電源システムを示
すブロック図
FIG. 1 is a block diagram showing a power supply system according to an embodiment of the present invention.

【図2】本発明による一実施の形態の電源システムに用
いる二次電池の劣化判定方法を示すフローチャート
FIG. 2 is a flowchart showing a method of determining deterioration of a secondary battery used in the power supply system according to the embodiment of the present invention.

【図3】劣化状態別の二次電池放電5秒目電圧とSOC
値との関係を示す図
FIG. 3 Secondary battery discharge 5 seconds voltage and SOC by deterioration state
Diagram showing the relationship with values

【図4】従来例による電源システムを示すブロック図FIG. 4 is a block diagram showing a conventional power supply system.

【符号の説明】[Explanation of symbols]

1,42 燃料電池 2,43 負荷 3,46 電力変換装置 4,41 二次電池 5,45 充電制御手段 6 電流センサー 7 充放電電流検出・電気量積算手段 8 SOC算出手段 9,47 放電電圧検出手段 10 SOC別データテーブル参照・放電電圧比較手段 11,49 劣化表示手段 44 放電スイッチ 48 劣化判定電圧−放電電圧比較手段 1,42 Fuel cell 2,43 load 3,46 Power converter 4,41 Secondary battery 5,45 Charge control means 6 current sensor 7 Charge / Discharge Current Detection / Electricity Accumulation Means 8 SOC calculation means 9,47 Discharge voltage detection means 10 SOC-specific data table reference / discharge voltage comparison means 11,49 Degradation display means 44 discharge switch 48 Deterioration determination voltage-discharge voltage comparison means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神保 裕行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G016 CB12 CB21 CB22 CB31 CB32 CC02 CC04 CC06 CC07 CC13 CC23 CD01 CE01 5G003 AA05 BA01 DA07 DA18 EA08 5H030 AA06 AS03 AS18 BB08 BB22 DD02 DD06 FF42 FF44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Jimbo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 2G016 CB12 CB21 CB22 CB31 CB32                       CC02 CC04 CC06 CC07 CC13                       CC23 CD01 CE01                 5G003 AA05 BA01 DA07 DA18 EA08                 5H030 AA06 AS03 AS18 BB08 BB22                       DD02 DD06 FF42 FF44

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 独立型電源からの出力を負荷に供給し、
前記独立型電源の余剰出力を蓄電するとともに、前記独
立型電源の出力が負荷に対して不足する場合にはその不
足電力を供給する二次電池を備えていて、前記二次電池
の充電状態が所定の範囲内で制御される電源システムに
おいて、前記二次電池の充電状態を検出する手段と、前
記二次電池の放電電流を検出する手段と、前記二次電池
の放電電圧を検出する手段とを具備し、前記二次電池の
充電状態と前記二次電池の放電電流と前記二次電池の放
電電圧との関係に基いて前記二次電池の劣化判定を行う
ことを特徴とする電源システムに用いる二次電池の劣化
判定方法。
1. An output from an independent power source is supplied to a load,
While accumulating the surplus output of the independent power source, when the output of the independent power source is insufficient for the load, a secondary battery that supplies the insufficient power is provided, and the state of charge of the secondary battery is In a power supply system controlled within a predetermined range, means for detecting a state of charge of the secondary battery, means for detecting a discharge current of the secondary battery, and means for detecting a discharge voltage of the secondary battery. A power supply system characterized by performing deterioration determination of the secondary battery based on the relationship between the state of charge of the secondary battery, the discharge current of the secondary battery, and the discharge voltage of the secondary battery. Deterioration determination method for secondary battery used.
【請求項2】 独立型電源からの出力を負荷に供給し、
前記独立型電源の余剰出力を蓄電するとともに、前記独
立型電源の出力が負荷に対して不足する場合にはその不
足電力を供給する二次電池を備えた電源システムにおい
て、前記二次電池の充電状態を検出する手段と、前記二
次電池を所定期間毎に所定電流で所定時間放電する手段
と、前記二次電池の放電電圧を検出する手段とを具備
し、前記二次電池の充電状態と前記二次電池の放電電圧
との関係に基いて前記二次電池の劣化判定を行うことを
特徴とする電源システムに用いる二次電池の劣化判定方
法。
2. An output from an independent power source is supplied to a load,
Charging the secondary battery in a power supply system including a secondary battery that stores the surplus output of the independent power source and supplies the insufficient power when the output of the independent power source is insufficient for a load. A state detecting means, a means for discharging the secondary battery at a predetermined current for a predetermined time every predetermined period, and a means for detecting a discharge voltage of the secondary battery, and a charging state of the secondary battery A method for determining deterioration of a secondary battery used in a power supply system, comprising determining deterioration of the secondary battery based on a relationship with a discharge voltage of the secondary battery.
【請求項3】 独立型電源からの出力を負荷に供給し、
前記独立型電源の余剰出力を蓄電するとともに、前記独
立型電源の出力が負荷に対して不足する場合にはその不
足電力を供給する二次電池を備え、前記二次電池の充電
状態が所定の範囲内で制御される電源システムにおい
て、前記二次電池の充電状態を検出する手段と、前記二
次電池の放電電流を検出する手段と、前記二次電池の放
電電圧を検出する手段とを具備し、前記二次電池の充電
状態と前記二次電池の放電電流と前記二次電池の放電電
圧との関係に基いて設定された判定電圧よりも検出され
た前記二次電池の放電電圧が低い場合に前記二次電池の
充電状態の制御下限値を上昇させることを特徴とする電
源システム。
3. An output from an independent power source is supplied to a load,
A secondary battery is provided which stores the surplus output of the independent power source and supplies the insufficient power when the output of the independent power source is insufficient for the load, and the state of charge of the secondary battery is predetermined. In a power supply system controlled within a range, means for detecting the state of charge of the secondary battery, means for detecting a discharge current of the secondary battery, and means for detecting a discharge voltage of the secondary battery However, the discharge voltage of the secondary battery detected is lower than the determination voltage set based on the relationship between the state of charge of the secondary battery, the discharge current of the secondary battery, and the discharge voltage of the secondary battery. In some cases, the power supply system is characterized by increasing the control lower limit value of the state of charge of the secondary battery.
【請求項4】 独立型電源からの出力を負荷に供給し、
前記独立型電源の余剰出力を蓄電するとともに、前記独
立型電源の出力が負荷に対して不足する場合にはその不
足電力を供給する二次電池を備えた電源システムにおい
て、前記二次電池の充電状態を検出する手段と、前記二
次電池を所定期間毎に所定電流で所定時間放電する手段
と、前記二次電池の放電電圧を検出する手段とを具備
し、前記二次電池の充電状態と前記二次電池の放電電圧
との関係に基いて設定された判定電圧よりも検出された
前記二次電池の放電電圧が低い場合に前記二次電池の充
電状態の制御下限値を上昇させることを特徴とする電源
システム。
4. An output from an independent power source is supplied to a load,
Charging the secondary battery in a power supply system including a secondary battery that stores the surplus output of the independent power source and supplies the insufficient power when the output of the independent power source is insufficient for a load. A state detecting means, a means for discharging the secondary battery at a predetermined current for a predetermined time every predetermined period, and a means for detecting a discharge voltage of the secondary battery, and a charging state of the secondary battery To raise the control lower limit value of the state of charge of the secondary battery when the discharge voltage of the secondary battery detected is lower than the determination voltage set based on the relationship with the discharge voltage of the secondary battery. Characteristic power supply system.
【請求項5】 前記充電状態の制御下限値が所定の値ま
で上昇した時点で前記二次電池の交換時期を告知する手
段を備えたことを特徴とする請求項3または4に記載の
電源システム。
5. The power supply system according to claim 3, further comprising means for notifying the replacement time of the secondary battery when the lower limit control value of the state of charge rises to a predetermined value. .
【請求項6】 前記独立型電源として燃料電池を用いる
ことを特徴とする請求項1または2に記載の電源システ
ムに用いる二次電池の劣化判定方法。
6. The method for determining deterioration of a secondary battery used in a power supply system according to claim 1, wherein a fuel cell is used as the independent power supply.
【請求項7】 前記独立型電源として燃料電池を用いる
ことを特徴とする請求項3ないし5のいずれかに記載の
電源システム。
7. The power supply system according to claim 3, wherein a fuel cell is used as the independent power supply.
JP2001326250A 2001-10-24 2001-10-24 Method for deciding degradation of secondary battery used for power source system, and power source system using the same Pending JP2003132959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326250A JP2003132959A (en) 2001-10-24 2001-10-24 Method for deciding degradation of secondary battery used for power source system, and power source system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326250A JP2003132959A (en) 2001-10-24 2001-10-24 Method for deciding degradation of secondary battery used for power source system, and power source system using the same

Publications (1)

Publication Number Publication Date
JP2003132959A true JP2003132959A (en) 2003-05-09

Family

ID=19142659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326250A Pending JP2003132959A (en) 2001-10-24 2001-10-24 Method for deciding degradation of secondary battery used for power source system, and power source system using the same

Country Status (1)

Country Link
JP (1) JP2003132959A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113939A2 (en) * 2003-06-23 2004-12-29 Yazaki Corporation Method and apparatus for judging deterioration of battery
CN100423406C (en) * 2005-04-21 2008-10-01 三星Sdi株式会社 Power supply apparatus using fuel cell and method of controlling the same
JP2009176491A (en) * 2008-01-23 2009-08-06 Honda Motor Co Ltd Fuel cell power supply
JP2010164329A (en) * 2009-01-13 2010-07-29 Hitachi Vehicle Energy Ltd Battery control device
JP2012137297A (en) * 2010-12-24 2012-07-19 Yazaki Corp Battery degradation detecting apparatus
WO2013133017A1 (en) * 2012-03-06 2013-09-12 株式会社日立製作所 Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller
JP2017019417A (en) * 2015-07-10 2017-01-26 永興電機工業株式会社 Vehicle hydraulic device with battery degradation determination
KR20170048537A (en) * 2014-09-04 2017-05-08 지티이 코포레이션 Method and apparatus for displaying electricity quantity of battery, and electronic device
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113939A2 (en) * 2003-06-23 2004-12-29 Yazaki Corporation Method and apparatus for judging deterioration of battery
WO2004113939A3 (en) * 2003-06-23 2005-03-03 Yazaki Corp Method and apparatus for judging deterioration of battery
CN100423406C (en) * 2005-04-21 2008-10-01 三星Sdi株式会社 Power supply apparatus using fuel cell and method of controlling the same
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
JP2009176491A (en) * 2008-01-23 2009-08-06 Honda Motor Co Ltd Fuel cell power supply
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2010164329A (en) * 2009-01-13 2010-07-29 Hitachi Vehicle Energy Ltd Battery control device
US8583389B2 (en) 2009-01-13 2013-11-12 Hitachi Vehicle Energy, Ltd. Battery control device
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
JP2012137297A (en) * 2010-12-24 2012-07-19 Yazaki Corp Battery degradation detecting apparatus
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
WO2013133017A1 (en) * 2012-03-06 2013-09-12 株式会社日立製作所 Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
KR102353446B1 (en) 2014-09-04 2022-01-19 지티이 코포레이션 Method and apparatus for displaying electricity quantity of battery, and electronic device
KR20170048537A (en) * 2014-09-04 2017-05-08 지티이 코포레이션 Method and apparatus for displaying electricity quantity of battery, and electronic device
US10317470B2 (en) 2014-09-04 2019-06-11 Zte Corporation Method and device for displaying SOC of battery, and electronic equipment thereof
EP3190425A4 (en) * 2014-09-04 2017-09-27 ZTE Corporation Method and apparatus for displaying electricity quantity of battery, and electronic device
JP2017019417A (en) * 2015-07-10 2017-01-26 永興電機工業株式会社 Vehicle hydraulic device with battery degradation determination
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices

Similar Documents

Publication Publication Date Title
JP2003132959A (en) Method for deciding degradation of secondary battery used for power source system, and power source system using the same
JP4068444B2 (en) Battery charge state reset method for hybrid electric vehicle
JP5772965B2 (en) Non-aqueous secondary battery control device and control method
KR101820807B1 (en) Refresh charging method of battery assembly composed of lead-acid battery and charging device
JP5348987B2 (en) How to detect battery deterioration
US20100066379A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
JP2003132960A (en) Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
JP5509152B2 (en) Power storage system
JP2010093875A (en) Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery
JP2004222427A (en) Charge control device, battery management system, battery pack, and impairment determination method of rechargeable battery by them
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
JPH0652903A (en) Battery monitor for monitoring of operating parameter of battery
JP4753636B2 (en) Power management system and management method thereof
WO2008072436A1 (en) Secondary battery deterioration judging device and backup power supply
JP2016014588A (en) Battery management device
US8180508B2 (en) Electricity storage control apparatus and method of controlling electricity storage
JP4055565B2 (en) Storage battery control method
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP3865189B2 (en) Self-powered electric vehicle battery control method
KR101189122B1 (en) Apparatus and method for recycling and charging simultaneously a battery
JP2010252594A (en) Power-storage device
JP2006187117A (en) Device and method for controlling charge/discharge for battery pack
JP2002048848A (en) Remaining capacity detector for accumulator
JP3794359B2 (en) Charging method of control valve type lead acid battery for electric vehicle
JP2004200129A (en) Device and method for controlling discharge of lead storage battery