JP5348987B2 - How to detect battery deterioration - Google Patents

How to detect battery deterioration Download PDF

Info

Publication number
JP5348987B2
JP5348987B2 JP2008249361A JP2008249361A JP5348987B2 JP 5348987 B2 JP5348987 B2 JP 5348987B2 JP 2008249361 A JP2008249361 A JP 2008249361A JP 2008249361 A JP2008249361 A JP 2008249361A JP 5348987 B2 JP5348987 B2 JP 5348987B2
Authority
JP
Japan
Prior art keywords
battery
deterioration degree
deterioration
degree
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008249361A
Other languages
Japanese (ja)
Other versions
JP2010078530A (en
Inventor
豊 山内
茂人 為実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008249361A priority Critical patent/JP5348987B2/en
Publication of JP2010078530A publication Critical patent/JP2010078530A/en
Application granted granted Critical
Publication of JP5348987B2 publication Critical patent/JP5348987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect always accurately deterioration of a battery without storing a count value so as to detect a deterioration degree. <P>SOLUTION: In this detection method of the deterioration degree of a battery, the deterioration degree SOH (State of Health) is operated from the first deterioration degree SOH 1 acquired from a change value of a full charge capacity of the battery 1, the second deterioration degree SOH 2 acquired from a discharge internal resistance of the battery 1, and the third deterioration degree SOH 3 from a charge internal resistance of the battery 1. Thus, since the deterioration degree SOH is detected from the full charge capacity, the charge internal resistance, and the discharge internal resistance of the battery, the deterioration degree of the battery is detected accurately from an initial period to an end period without storing a count value such as a current or a temperature. Since the deterioration degree is detected from both internal resistances of the charge internal resistance and the discharge internal resistance in addition to the full charge capacity, a residual capacity in the end period is detected extremely accurately. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電池の劣化度の検出方法に関し、とくに電動車両を走行させる電源装置に内蔵される電池の劣化度の検出に最適な電池の劣化度の検出方法に関する。   The present invention relates to a method for detecting the degree of deterioration of a battery, and more particularly to a method for detecting the degree of deterioration of a battery that is optimal for detecting the degree of deterioration of a battery built in a power supply device that drives an electric vehicle.

電池の劣化度は100%〜0%で表され、劣化しない電池の劣化度は100%、劣化して使用できなくなった電池の劣化度は0%となる。ハイブリッドカー等の電動車両に搭載される電池は、時間経過や充放電を繰り返すにしたがって劣化する。劣化した電池は、出力電力が小さくなる。出力が小さくなった電池は、ハイブリッドカーのエンジンを始動できなくなり、また、加速特性などが低下する。この用途に使用される電池は、最大出力電力から劣化度が特定される。劣化度を検出して、電池の寿命を推定できる。たとえば、5年後の劣化度を50%とする電池は、同じ充放電特性で使用して、その後、5年間使用できることが推定できる。しかしながら、4年後に劣化度が20%に劣化する電池は、1年に20%の割合で劣化するので、劣化度が0%になるまでに、その後、約1年しか使用できないことが推定できる。このことから、電池の劣化度を検出し、劣化度から電池の充放電電力をコントロールして電池の寿命を特定の期間に制御できる。ただ、このことを実現するために、電池の劣化度を正確に検出することが大切となる。   The degree of deterioration of the battery is represented by 100% to 0%, the degree of deterioration of the battery that does not deteriorate is 100%, and the degree of deterioration of the battery that has deteriorated and cannot be used is 0%. A battery mounted on an electric vehicle such as a hybrid car deteriorates as time passes or charging / discharging is repeated. A deteriorated battery has low output power. A battery whose output is reduced cannot start the engine of the hybrid car, and the acceleration characteristics are deteriorated. The battery used for this purpose has a degree of deterioration specified from the maximum output power. The battery life can be estimated by detecting the degree of deterioration. For example, it can be estimated that a battery having a degradation degree of 50% after 5 years can be used for the next 5 years using the same charge / discharge characteristics. However, since batteries that deteriorate to 20% after 4 years deteriorate at a rate of 20% per year, it can be estimated that the battery can only be used for about 1 year thereafter until the degree of deterioration reaches 0%. . From this, it is possible to detect the degree of deterioration of the battery, control the charge / discharge power of the battery from the degree of deterioration, and control the life of the battery in a specific period. However, in order to realize this, it is important to accurately detect the deterioration degree of the battery.

電池の劣化度を内部抵抗から判定する方法は、特許文献1に記載される。しかしながら、内部抵抗から電池の劣化度を判定する方式は、内部抵抗が大きくなる終期以外では正確に判定できない欠点がある。この弊害を解消する方法が特許文献2に記載される。特許文献2の方法は、満充電状態から所定の放電電圧値までの放電可能電力量である現容量を放電電圧Vおよび放電量Ahに基づいて演算し、この現容量と、電池の初期時の満充電状態からの上記所定の放電電圧値までの放電可能電力量である初期容量との割合として電池の劣化度を算出する。   A method for determining the degree of deterioration of the battery from the internal resistance is described in Patent Document 1. However, the method of determining the degree of deterioration of the battery from the internal resistance has a drawback that it cannot be accurately determined except at the end when the internal resistance increases. A method for solving this problem is described in Patent Document 2. The method of Patent Document 2 calculates a current capacity, which is the amount of electric power that can be discharged from a fully charged state to a predetermined discharge voltage value, based on the discharge voltage V and the discharge amount Ah. The degree of deterioration of the battery is calculated as a ratio with the initial capacity that is the amount of electric power that can be discharged from the fully charged state up to the predetermined discharge voltage value.

特許文献2の方法は、初期の劣化度を、内部抵抗による方法よりも正確に検出できるが、終期の劣化度を正確に検出するのが難しい。さらに、この欠点を解消することを目的として、電池の電流、温度からカウントされる第1の劣化度SOH1と、電池の内部抵抗から得られる第2の劣化度SOH2の両方から電池の劣化度SOHを演算する方法が開発されている。(特許文献3参照)
特開平8−254573号公報 特開2000−131404号公報 特開2008−122165号公報
The method of Patent Document 2 can detect the initial degree of deterioration more accurately than the method using the internal resistance, but it is difficult to accurately detect the final degree of deterioration. Furthermore, in order to eliminate this drawback, the battery deterioration degree SOH is calculated from both the first deterioration degree SOH1 counted from the battery current and temperature and the second deterioration degree SOH2 obtained from the internal resistance of the battery. A method for computing the above has been developed. (See Patent Document 3)
JP-A-8-254573 JP 2000-131404 A JP 2008-122165 A

特許文献3の検出方法は、電池の初期と終期の劣化度を正確に検出できる特徴がある。しかしながら、この方法は、第1の劣化度SOH1を検出するために、電池の電流、温度のカウント値を不揮発性メモリに記憶することから、このメモリが故障すると第1の劣化度SOH1を正確に検出できなくなって、劣化度SOHの検出精度が低下する欠点がある。電池の電流、温度のカウント値から検出される劣化度SOH1と、電池の内部抵抗から得られる劣化度SOH2の両方から劣化度SOHを演算するからである。   The detection method of Patent Document 3 has a feature that it can accurately detect the initial and final deterioration levels of a battery. However, in this method, since the battery current and temperature count values are stored in the non-volatile memory in order to detect the first deterioration degree SOH1, the first deterioration degree SOH1 is accurately determined if the memory fails. There is a drawback that the detection accuracy of the deterioration degree SOH is lowered because the detection becomes impossible. This is because the deterioration degree SOH is calculated from both the deterioration degree SOH1 detected from the battery current and temperature count values and the deterioration degree SOH2 obtained from the internal resistance of the battery.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、劣化度を検出するためにカウント値を記憶することなく、つねに電池の劣化を正確に検出できる電池の劣化度の検出方法を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a battery deterioration degree detection method that can always accurately detect battery deterioration without storing a count value in order to detect the deterioration degree.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の電池の劣化度の検出方法は、電池1の満充電容量の変化値から得られる第1の劣化度SOH1と、電池1の放電内部抵抗から得られる第2の劣化度SOH2と、電池1の充電内部抵抗から得られる第3の劣化度SOH3とから劣化度SOHを演算する。   The battery deterioration degree detection method of the present invention includes a first deterioration degree SOH1 obtained from a change value of the full charge capacity of the battery 1, a second deterioration degree SOH2 obtained from a discharge internal resistance of the battery 1, and a battery. The degree of deterioration SOH is calculated from the third degree of deterioration SOH3 obtained from one charging internal resistance.

以上の検出方法は、電池の満充電容量と、充電内部抵抗及び放電内部抵抗から劣化度SOHを検出するので、従来のように電流や温度などのカウント値を記憶することなく、初期から終期まで正確に電池の劣化度を検出できる特徴がある。とくに、以上の方法は、満充電容量に加えて、充電内部抵抗と放電内部抵抗の両方の内部抵抗から劣化度を検出するので、終期の残容量を極めて正確に検出できる特徴がある。   The above detection method detects the degree of deterioration SOH from the full charge capacity of the battery, the charge internal resistance and the discharge internal resistance, so that the count value such as current and temperature is not memorized as in the prior art, from the initial stage to the final stage. There is a feature that can accurately detect the degree of deterioration of the battery. In particular, the above method is characterized in that the degree of deterioration is detected from the internal resistances of both the charge internal resistance and the discharge internal resistance in addition to the full charge capacity, so that the remaining capacity at the end can be detected very accurately.

本発明の電池の劣化度の検出方法は、以下の式で電池1の劣化度SOHを演算することができる。
劣化度SOH=ウェイト1×第1の劣化度SOH1
+ウェイト2×第2の劣化度SOH2
+ウェイト3×第3の劣化度SOH3
ただし、ウェイト1+ウェイト2+ウェイト3=1である。
この検出方法は、ウェイト1とウェイト2とウェイト3の比率を変更して、正確に劣化度SOHを判定できる。
The battery deterioration degree detection method of the present invention can calculate the deterioration degree SOH of the battery 1 by the following equation.
Deterioration degree SOH = weight 1 × first deterioration degree SOH1
+ Weight 2 × second deterioration degree SOH2
+ Weight 3 x third deterioration degree SOH3
However, weight 1 + weight 2 + weight 3 = 1.
This detection method can accurately determine the degree of degradation SOH by changing the ratio of weight 1, weight 2, and weight 3.

本発明の電池の劣化度の検出方法は、電池1の内部抵抗が大きくなるにしたがって、ウェイト2とウェイト3を大きくすることができる。
この検出方法は、内部抵抗が小さいときから大きくなるまで、劣化度SOHを正確に判定できる。
In the method for detecting the degree of deterioration of the battery according to the present invention, the weight 2 and the weight 3 can be increased as the internal resistance of the battery 1 increases.
This detection method can accurately determine the degree of degradation SOH from when the internal resistance is small until it increases.

本発明の電池の劣化度の検出方法は、出力電力が最低出力電力となる状態における電池1の劣化度SOHを0%とすることができる。
この検出方法は、電池の劣化度SOHから出力電力を正確に判定できる。
According to the method for detecting the degree of deterioration of the battery of the present invention, the degree of deterioration SOH of the battery 1 in a state where the output power becomes the minimum output power can be set to 0%.
This detection method can accurately determine the output power from the battery degradation degree SOH.

さらに、本発明の電池の劣化度の検出方法は、電池1の充電内部抵抗が最高値となるときの電池1の第2の劣化度SOH2を0%とすることができる。   Furthermore, the battery deterioration degree detection method of the present invention can set the second deterioration degree SOH2 of the battery 1 when the charging internal resistance of the battery 1 reaches the maximum value to 0%.

さらにまた、本発明の電池の劣化度の検出方法は、電池1の放電内部抵抗が最高値となるときの電池1の第3の劣化度SOH3を0%とすることができる。   Furthermore, according to the method for detecting the degree of deterioration of the battery of the present invention, the third degree of deterioration SOH3 of the battery 1 when the discharge internal resistance of the battery 1 reaches the maximum value can be set to 0%.

さらに、本発明の電池の劣化度の検出方法は、第1の検出タイミング(t1)と第2の検出タイミング(t2)において、充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)を演算し、さらに、第1の検出タイミング(t1)における電池の第1の開放電圧(VOCV1)と第2の検出タイミング(t2)における電池の第2の開放電圧(VOCV2)を検出して、検出される第1の開放電圧(VOCV1)から電池の第1の残容量(SOC1[%])を判定すると共に、第2の開放電圧(VOCV2)から電池の第2の残容量(SOC2[%])を判定し、判定した第1の残容量(SOC1[%])と第2の残容量(SOC2[%])の差から残容量の変化率(δS[%])を演算し、演算した電池の容量変化値(δAh)及び残容量の変化率(δS[%])から現在の満充電容量(Ahf)を演算して第1の劣化度SOH1を検出することができる。 Furthermore, the method for detecting the degree of deterioration of the battery according to the present invention is based on the integrated value of the charging current and discharging current of the battery to be charged / discharged at the first detection timing (t1) and the second detection timing (t2). The capacity change value (δAh) is calculated, and further, the first open circuit voltage (VOCV1) of the battery at the first detection timing (t1) and the second open circuit voltage (VOCV2) of the battery at the second detection timing (t2). ) To determine the first remaining capacity (SOC1 [%]) of the battery from the detected first open-circuit voltage (VOCV1) and the second open-circuit voltage (VOCV2) The remaining capacity (SOC2 [%]) is determined, and the change rate (δS [%]) of the remaining capacity from the difference between the determined first remaining capacity (SOC1 [%]) and the second remaining capacity (SOC2 [%]). ) And the calculated battery capacity change The current full charge capacity ( Ahf ) can be calculated from the value (δAh) and the rate of change of the remaining capacity (δS [%]) to detect the first deterioration degree SOH1.

さらに、本発明の電池の劣化度の検出方法は、互いに直列に接続してなる各々の素電池11の劣化度SOHを検出し、最低の劣化度SOHを電池1の劣化度SOHと判定することができる。   Furthermore, in the method for detecting the degree of deterioration of the battery according to the present invention, the degree of deterioration SOH of each unit cell 11 connected in series is detected, and the lowest degree of deterioration SOH is determined as the degree of deterioration SOH of the battery 1. Can do.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の劣化度の検出方法を例示するものであって、本発明は電池の劣化度の検出方法を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify battery deterioration level detection methods for embodying the technical idea of the present invention, and the present invention uses battery deterioration level detection methods as follows. Not specified. Further, this specification does not limit the members shown in the claims to the members of the embodiments.

図1は、本発明の電池の劣化度の検出方法に使用する電源装置のブロック図である。この図は、ハイブリッドカーに搭載される電池1の劣化度を判定するブロック図を示している。本発明は、劣化度を検出する電池の用途を特定するものではないが、ハイブリッドカーや電気自動車、あるいはその他の電動車両に搭載される電池の劣化度の検出に最適である。   FIG. 1 is a block diagram of a power supply device used in the method for detecting the degree of battery deterioration according to the present invention. This figure shows a block diagram for determining the degree of deterioration of the battery 1 mounted in the hybrid car. The present invention does not specify the use of the battery for detecting the degree of deterioration, but is most suitable for detecting the degree of deterioration of a battery mounted on a hybrid car, an electric vehicle, or other electric vehicles.

電池1は、リチウムイオン二次電池またはリチウムポリマー電池である。リチウムイオン電池やリチウムポリマー電池は、残容量に対する電圧変化が大きく、満充電容量を正確に検出して劣化度も正確に検出できる。ただ、本発明の検出方法は、劣化度を検出する電池をリチウムイオン電池やリチウムポリマー電池には特定しない。電池は、ニッケル水素電池やニッケルカドミウム電池などの充電できる全ての電池とすることができる。電池1は、ひとつまたは複数の充電できる素電池11を直列または並列に接続している。素電池11を直列に接続している電池1は、各々の素電池11の劣化度を検出して、最低の劣化度を電池1の劣化度とする。   The battery 1 is a lithium ion secondary battery or a lithium polymer battery. Lithium ion batteries and lithium polymer batteries have a large voltage change with respect to the remaining capacity, and can accurately detect the full charge capacity and accurately detect the degree of deterioration. However, the detection method of the present invention does not specify a battery for detecting the degree of deterioration as a lithium ion battery or a lithium polymer battery. The battery can be any rechargeable battery such as a nickel metal hydride battery or a nickel cadmium battery. The battery 1 has one or a plurality of rechargeable unit cells 11 connected in series or in parallel. In the battery 1 in which the unit cells 11 are connected in series, the degree of deterioration of each unit cell 11 is detected, and the lowest degree of deterioration is set as the degree of deterioration of the battery 1.

電池1は、車両の走行用のモータ6に電力を供給して放電され、また、発電機7で充電されて、残容量が約50%の付近に保持される。電池1の劣化度SOH(State of Health)は、判定回路2で検出される。判定回路2は、電池1の劣化度SOHを検出するために、電池1に流れる充放電の電流を検出する電流検出回路3と、電池1の温度を検出する温度センサ4と、電池1の電圧を検出する電圧検出回路5とを接続している。   The battery 1 is discharged by supplying electric power to the motor 6 for running the vehicle, and is charged by the generator 7 so that the remaining capacity is maintained in the vicinity of about 50%. The deterioration level SOH (State of Health) of the battery 1 is detected by the determination circuit 2. The determination circuit 2 includes a current detection circuit 3 that detects a charge / discharge current flowing through the battery 1, a temperature sensor 4 that detects the temperature of the battery 1, and a voltage of the battery 1 in order to detect the deterioration degree SOH of the battery 1. Is connected to a voltage detection circuit 5 for detecting

車両側は、電池1から供給される電力をモータ6に供給し、また発電機7の電力を電池1に供給する双方向電力変換装置8を備える。双方向電力変換装置8は、電池1の直流電力を三相の交流電力に変換してモータ6に供給し、発電機7から出力される交流を直流に変換して電池1に供給する。この双方向電力変換装置8は、制御回路9で制御されて、電池1からモータ6への供給電力と、発電機7から電池1への充電電力をコントロールする。制御回路9は、電源装置側の判定回路2から通信回線10を介して伝送される電池1の劣化度SOHを考慮して、双方向電力変換装置8をコントロールする。電池1の劣化度SOHが予想される正常状態にあるとき、制御回路9は双方向電力変換装置8を正常モードでコントロールする。ただ、電池1の劣化度SOHが予想される正常状態よりも小さい、すなわち劣化が甚だしいとき、制御回路9は双方向電力変換装置8を正常モードよりも充放電の電力を小さくする制限モードでコントロールする。反対に、電池1の劣化度SOHが予想される正常状態よりも大きい、すなわち劣化が少ないときは、制御回路9は双方向電力変換装置8を正常モードよりも充放電の電力を大きくする加速モード、あるいは正常モードでコントロールする。このように、制御回路9が双方向電力変換装置8を介して、モータ6や発電機7の出力をコントロールすることで、電池1の寿命を目標年度に近づけることができる。   The vehicle side includes a bidirectional power converter 8 that supplies electric power supplied from the battery 1 to the motor 6 and supplies electric power from the generator 7 to the battery 1. The bidirectional power converter 8 converts the DC power of the battery 1 into three-phase AC power and supplies it to the motor 6, and converts the AC output from the generator 7 into DC and supplies it to the battery 1. The bidirectional power converter 8 is controlled by the control circuit 9 to control the power supplied from the battery 1 to the motor 6 and the charging power from the generator 7 to the battery 1. The control circuit 9 controls the bidirectional power conversion device 8 in consideration of the deterioration degree SOH of the battery 1 transmitted from the determination circuit 2 on the power supply device side via the communication line 10. When the deterioration degree SOH of the battery 1 is in the expected normal state, the control circuit 9 controls the bidirectional power converter 8 in the normal mode. However, when the degree of deterioration SOH of the battery 1 is smaller than the expected normal state, that is, when the deterioration is severe, the control circuit 9 controls the bidirectional power converter 8 in the limit mode that makes the charge / discharge power smaller than the normal mode. To do. On the other hand, when the deterioration degree SOH of the battery 1 is larger than the expected normal state, that is, when the deterioration is small, the control circuit 9 causes the bidirectional power converter 8 to increase the charge / discharge power more than the normal mode. Or control in normal mode. As described above, the control circuit 9 controls the output of the motor 6 and the generator 7 via the bidirectional power conversion device 8, whereby the life of the battery 1 can be brought close to the target year.

判定回路2は、電池1の劣化度を検出して、検出される劣化度SOHを通信回線10を介して車両側の制御回路9に伝送する。判定回路2は、電池1の満充電容量から検出される第1の劣化度SOH1と、電池1の放電内部抵抗から得られる第2の劣化度SOH2と、充電内部抵抗から得られる第3の劣化度SOH3から劣化度SOHを演算する。この判定回路2は、以下の式で電池1の劣化度SOHを演算する。
劣化度SOH=ウェイト1×第1の劣化度SOH1
+ウェイト2×第2の劣化度SOH2
+ウェイト3×第3の劣化度SOH3
ただし、ウェイト1+ウェイト2+ウェイト3=1である。
The determination circuit 2 detects the degree of deterioration of the battery 1 and transmits the detected degree of deterioration SOH to the vehicle-side control circuit 9 via the communication line 10. The determination circuit 2 includes a first deterioration degree SOH1 detected from the full charge capacity of the battery 1, a second deterioration degree SOH2 obtained from the discharge internal resistance of the battery 1, and a third deterioration obtained from the charge internal resistance. The deterioration degree SOH is calculated from the degree SOH3. The determination circuit 2 calculates the deterioration degree SOH of the battery 1 using the following equation.
Deterioration degree SOH = weight 1 × first deterioration degree SOH1
+ Weight 2 × second deterioration degree SOH2
+ Weight 3 x third deterioration degree SOH3
However, weight 1 + weight 2 + weight 3 = 1.

ウェイト1とウェイト2とウェイト3は、図2のグラフに示すように、電池1の内部抵抗によって特定する。この図は、横軸を電池の放電内部抵抗と充電内部抵抗の平均値の相対値として、縦軸にウェイト1とウェイト2とウェイト3を示している。ただし、この図は、電池1の劣化度SOHを0%とする状態、いいかえると寿命の尽きた電池1の内部抵抗を100としている。この図に示すように、電池1の劣化が進んで劣化度SOHが小さくなるにしたがって、ウェイト1を小さく、ウェイト2とウェイト3を大きくする。電池1は、充電内部抵抗と放電内部抵抗が大きくなって劣化が進んだ状態では、内部抵抗が劣化度SOHを正確に特定するからである。また、図2は、放電内部抵抗と充電内部抵抗の平均値に対するウェイト2とウェイト3とを同じ値としているが、ウェイト2とウェイト3は、放電内部抵抗と充電内部抵抗に対して、各々最適な値とすることができる。   Weight 1, weight 2, and weight 3 are specified by the internal resistance of battery 1, as shown in the graph of FIG. In this figure, the horizontal axis is the relative value of the average value of the discharge internal resistance and the charge internal resistance of the battery, and the weight 1, weight 2 and weight 3 are shown on the vertical axis. However, in this figure, the internal resistance of the battery 1 whose lifetime has been exhausted is set to 100 in a state where the degradation degree SOH of the battery 1 is 0%. As shown in this figure, as the deterioration of the battery 1 progresses and the deterioration degree SOH decreases, the weight 1 is decreased and the weights 2 and 3 are increased. This is because, in the battery 1, the internal resistance accurately specifies the deterioration degree SOH in a state in which the deterioration has progressed due to the increase in the charging internal resistance and the discharging internal resistance. In FIG. 2, the weight 2 and the weight 3 with respect to the average value of the discharge internal resistance and the charge internal resistance are set to the same value, but the weight 2 and the weight 3 are optimal for the discharge internal resistance and the charge internal resistance, respectively. It can be set to any value.

以上の方法は、電池1の内部抵抗からウェイト1とウェイト2とウェイト3を特定する。ただ、本発明の検出方法は、電池1の放電内部抵抗と充電内部抵抗から特定される第2の劣化度SOH2と第3の劣化度SOH3から、ウェイト1〜ウェイト3を特定し、あるいは第1〜第3の劣化度から判定される劣化度SOHからウェイト1〜ウェイト3を特定することもできる。この場合も、劣化度SOHが小さくなる、いいかえると寿命末期に近づくにしたがって、ウェイト1を小さくしてウェイト2とウェイト3を大きくする。   In the above method, the weight 1, the weight 2, and the weight 3 are specified from the internal resistance of the battery 1. However, the detection method of the present invention specifies weight 1 to weight 3 from the second deterioration degree SOH2 and the third deterioration degree SOH3 specified from the discharge internal resistance and the charge internal resistance of the battery 1, or the first It is also possible to specify weight 1 to weight 3 from the degree of deterioration SOH determined from the third degree of deterioration. Also in this case, the degree of deterioration SOH decreases, in other words, as the end of life is approached, the weight 1 is decreased and the weights 2 and 3 are increased.

さらに、判定回路2は、第1の劣化度SOH1を以下の式で判定する。
第1の劣化度SOH1(%)=
100×[現在の満充電容量(Ahf)−終期の満充電容量(Ahe)]/
[初期の満充電容量(Ahs)−終期の満充電容量(Ahe)]
Furthermore, the determination circuit 2 determines the first deterioration degree SOH1 by the following equation.
First degradation degree SOH1 (%) =
100 × [current full charge capacity (Ahf) −term full charge capacity (Ahe)] /
[Initial full charge capacity (Ahs)-final full charge capacity (Ahe)]

たとえば、初期の満充電容量(Ahs)が5[Ah]、終期の満充電容量(Ahe)を2.5[Ah]とする電池の現在の満充電容量(Ahf)が3.75[Ah]であると、前記の式から劣化度SOHは以下の式で、50%と演算される。
劣化度SOH=100×[5−3.75]/[5−2.5]=50%
For example, when the initial full charge capacity (Ahs) is 5 [Ah] and the final full charge capacity (Ahe) is 2.5 [Ah], the current full charge capacity (Ahf) of the battery is 3.75 [Ah]. If it is, the deterioration degree SOH is calculated as 50% by the following equation from the above equation.
Deterioration degree SOH = 100 × [5-3.75] / [5-2.5] = 50%

判定回路2は、電池1の現在の満充電容量(Ahf)を、以下の方法で検出する。
図3に示すように、第1の検出タイミング(t)と第2の検出タイミング(t)との間において、充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(δAh)を演算する。さらに、第1の検出タイミング(t)における電池の第1の開放電圧(VOCV1)と第2の検出タイミング(t)における電池の第2の開放電圧(VOCV2)を検出して、検出される第1の開放電圧(VOCV1)から電池の第1の残容量(SOC[%])を判定すると共に、第2の開放電圧(VOCV2)から電池の第2の残容量(SOC[%])を判定する。開放電圧(VOCV)に対する残容量(SOC)は、あらかじめ測定して記憶している。判定される第1の残容量(SOC[%])と第2の残容量(SOC[%])の差から残容量の変化率(δS[%])を演算する。以上のようにして検出される残容量の変化率(δS[%])と容量変化値(δAh)から、下記の式で電池の現在の満充電容量(Ahf)を演算することができる。
満充電容量(Ahf)=δAh/(δS/100)
The determination circuit 2 detects the current full charge capacity (Ahf) of the battery 1 by the following method.
As shown in FIG. 3, between the first detection timing (t 1 ) and the second detection timing (t 2 ), the battery capacity change from the integrated value of the charging current and discharging current of the charged / discharged battery. The value (δAh) is calculated. Further, the first open circuit voltage (V OCV1 ) of the battery at the first detection timing (t 1 ) and the second open circuit voltage (V OCV2 ) of the battery at the second detection timing (t 2 ) are detected, The first remaining capacity (SOC 1 [%]) of the battery is determined from the detected first open circuit voltage (V OCV1 ), and the second remaining capacity ( B OCV2 ) of the battery is determined from the second open circuit voltage (V OCV2 ). SOC 2 [%]) is determined. The remaining capacity (SOC) with respect to the open circuit voltage (V OCV ) is measured and stored in advance. The rate of change of the remaining capacity (δS [%]) is calculated from the difference between the determined first remaining capacity (SOC 1 [%]) and the second remaining capacity (SOC 2 [%]). From the remaining capacity change rate (δS [%]) and the capacity change value (δAh) detected as described above, the current full charge capacity (Ahf) of the battery can be calculated by the following equation.
Full charge capacity (Ahf) = δAh / (δS / 100)

以上の方法で電池の満充電容量(Ahf)を検出する方法は、たとえば第1の検出タイミング(t)を、車両のメインスイッチであるイグニッションスイッチをオンに切り換える所定のタイミングであって、電池の負荷電流を遮断するタイミングとし、第2の検出タイミング(t)を、イグニッションスイッチをオフに切り換えた後とする。また、第1の検出タイミング(t)と第2の検出タイミング(t)の間を一定の時間とし、あるいは又、第1の検出タイミング(t)の後、容量変化値(δAh)が所定の値になったタイミングを第2の検出タイミング(t)とすることで、現在の満充電容量(Ahf)をより正確に検出することができる。 The method of detecting the full charge capacity (Ahf) of the battery by the above method is, for example, the first detection timing (t 1 ) at a predetermined timing for turning on the ignition switch that is the main switch of the vehicle. And the second detection timing (t 2 ) is after the ignition switch is turned off. Further, a constant time is set between the first detection timing (t 1 ) and the second detection timing (t 2 ), or, after the first detection timing (t 1 ), the capacitance change value (δAh). By setting the timing when becomes a predetermined value as the second detection timing (t 2 ), the current full charge capacity (Ahf) can be detected more accurately.

さらに、判定回路2は、電池1の放電内部抵抗と充電内部抵抗を検出し、放電内部抵抗から第2の劣化度SOH2を、充電内部抵抗から第3の劣化度SOH3を判定する。内部抵抗(R)を有する電池1の等価回路を図4に示す。この等価回路の電池1を充放電して、電流Iと出力電圧VLを検出すると図5と図6に示すようになる。図5において、電池の電流−電圧特性を示すラインAの傾きから放電内部抵抗(Rd)が演算され、図6において、電池の電流−電圧特性を示すラインBの傾きから充電内部抵抗(Rc)が演算される。   Furthermore, the determination circuit 2 detects the discharge internal resistance and the charge internal resistance of the battery 1, and determines the second deterioration degree SOH2 from the discharge internal resistance and the third deterioration degree SOH3 from the charge internal resistance. An equivalent circuit of the battery 1 having the internal resistance (R) is shown in FIG. When the battery 1 of this equivalent circuit is charged and discharged and the current I and the output voltage VL are detected, the result is as shown in FIGS. In FIG. 5, the discharge internal resistance (Rd) is calculated from the slope of the line A indicating the current-voltage characteristics of the battery. In FIG. 6, the charge internal resistance (Rc) is calculated from the slope of the line B indicating the current-voltage characteristics of the battery. Is calculated.

電池1の開放電圧をVoとし、放電電流Idのときに電圧をVLとすれば、
VL=Vo−Rd×Id
この式から、放電内部抵抗(Rd)は
Rd=(Vo−VL)/Id で演算される。
If the open voltage of the battery 1 is Vo and the voltage is VL at the discharge current Id,
VL = Vo−Rd × Id
From this equation, the discharge internal resistance (Rd) is calculated as Rd = (Vo−VL) / Id.

また、電池1の開放電圧をVoとし、充電電流Icのときに電圧をVLとすれば、
VL=Vo+Rc×Ic
この式から、充電内部抵抗(Rc)は
Rc=(VL−Vo)/Ic で演算される。
Also, if the open voltage of the battery 1 is Vo and the voltage is VL at the charging current Ic,
VL = Vo + Rc × Ic
From this equation, the charging internal resistance (Rc) is calculated by Rc = (VL−Vo) / Ic.

電池1の放電内部抵抗と充電内部抵抗に対する電池の第2の劣化度SOH2と第3の劣化度SOH3はあらかじめ測定されて、判定回路2のLUTに記憶され、あるいは判定回路2は、放電内部抵抗と充電内部抵抗に対する第2の劣化度SOH2と第3の劣化度SOH3を関数として記憶している。LUTに記憶され、あるいは関数として記憶される、放電内部抵抗と充電内部抵抗に対する第2の劣化度SOH2と第3の劣化度SOH3は図7に示す値とする。この図から、たとえば、電池の放電内部抵抗や充電内部抵抗が300mΩであるとき、第2の劣化度SOH2と第3の劣化度SOH3は60%とする。さらに、電池1の放電内部抵抗や充電内部抵抗が最高値となるときの第2の劣化度SOHと第3の劣化度SOH3を0%とする。図7は、わかりやすくするために、放電内部抵抗と充電内部抵抗に対する第2の劣化度SOH2と第3の劣化度SOH3とを同じ値としているが、放電内部抵抗と充電内部抵抗に対する第2の劣化度SOH2と第3の劣化度SOH3は、現実に使用される電池を測定して、各々最適な値とすることができる。   The second deterioration degree SOH2 and the third deterioration degree SOH3 of the battery with respect to the discharge internal resistance and the charge internal resistance of the battery 1 are measured in advance and stored in the LUT of the determination circuit 2, or the determination circuit 2 And the second deterioration degree SOH2 and the third deterioration degree SOH3 with respect to the charging internal resistance are stored as functions. The second deterioration degree SOH2 and the third deterioration degree SOH3 with respect to the discharge internal resistance and the charge internal resistance, which are stored in the LUT or stored as a function, are values shown in FIG. From this figure, for example, when the discharge internal resistance and the charge internal resistance of the battery are 300 mΩ, the second deterioration degree SOH2 and the third deterioration degree SOH3 are set to 60%. Further, the second deterioration degree SOH and the third deterioration degree SOH3 when the discharge internal resistance and the charge internal resistance of the battery 1 reach the maximum values are set to 0%. In FIG. 7, for the sake of simplicity, the second deterioration degree SOH2 and the third deterioration degree SOH3 with respect to the discharge internal resistance and the charge internal resistance are set to the same value. The deterioration degree SOH2 and the third deterioration degree SOH3 can be set to optimum values by measuring a battery actually used.

判定回路2は、以上の方法で第1の劣化度SOH1と第2の劣化度SOH2と第3の劣化度SOH3を演算し、演算された第1の劣化度SOH1と第2の劣化度SOH2と第3の劣化度SOH3から、ウェイト1とウェイト2とウェイト3を特定して、電池の劣化度SOHを判定する。判定回路2が、劣化度SOHを演算するフローチャートを図8に示す。   The determination circuit 2 calculates the first deterioration degree SOH1, the second deterioration degree SOH2, and the third deterioration degree SOH3 by the above method, and calculates the calculated first deterioration degree SOH1 and second deterioration degree SOH2. The weight 1, weight 2, and weight 3 are specified from the third deterioration degree SOH3, and the battery deterioration degree SOH is determined. FIG. 8 shows a flowchart in which the determination circuit 2 calculates the deterioration degree SOH.

[n=1のステップ]
このステップで、判定回路2は電池の現在の満充電容量(Ahf)を検出して、検出される満充電容量(Ahf)から第1の劣化度SOH1を判定する。第1の劣化度SOH1は、以下の式で検出される。
第1の劣化度SOH1(%)=
100×[現在の満充電容量(Ahf)−終期の満充電容量(Ahe)]/
[初期の満充電容量(Ahs)−終期の満充電容量(Ahe)]
以上の式において、初期の満充電容量(Ahs)と終期の満充電容量(Ahe)はあらかじめ特定されている。
[Step of n = 1]
In this step, the determination circuit 2 detects the current full charge capacity (Ahf) of the battery, and determines the first deterioration level SOH1 from the detected full charge capacity (Ahf). The first deterioration degree SOH1 is detected by the following equation.
First degradation degree SOH1 (%) =
100 × [current full charge capacity (Ahf) −term full charge capacity (Ahe)] /
[Initial full charge capacity (Ahs)-final full charge capacity (Ahe)]
In the above formula, the initial full charge capacity (Ahs) and the final full charge capacity (Ahe) are specified in advance.

[n=2のステップ]
このステップで、判定回路2は、放電している電池の電流と電圧から放電内部抵抗を演算し、充電している電池の電流と電圧から放電内部抵抗を演算する。このとき、温度によるフィルタリングをして、測定精度を高くする。放電内部抵抗と充電内部抵抗が温度により変化するからである。温度によるフィルタリングは、電池の放電内部抵抗及び充電内部抵抗を検出するときの電池温度を検出し、検出される温度を関数として設定温度における内部抵抗に変換する。内部抵抗をフィルタリングする判定回路2は、温度に対する内部抵抗の変化を、関数として、あるいはLUTに記憶している。この記憶値から、内部抵抗を設定温度の内部抵抗にフィルタリングして補正する。
[n=3のステップ]
さらに、判定回路2は、記憶しているLUTや関数に基づいて、放電内部抵抗から第2の劣化度SOH2を、充電内部抵抗から第3の劣化度SOH3を演算する。
[n=4のステップ]
このステップで、判定回路2は、ウェイト1とウェイト2とウェイト3を特定する。ウェイト1とウェイト2とウェイト3は、図2から特定する。
[n=5のステップ]
判定回路2は、ウェイト1及び第1の劣化度SOH1と、ウェイト2及び第2の劣化度SOH2と、ウェイト3と第3の劣化度SOH3から電池1の劣化度SOHを演算する。判定回路2は、以下の式で劣化度SOHを演算する。
劣化度SOH=ウェイト1×第1の劣化度SOH1
+ウェイト2×第2の劣化度SOH2
+ウェイト3×第3の劣化度SOH3
[Step of n = 2]
In this step, the determination circuit 2 calculates the discharge internal resistance from the current and voltage of the battery being discharged, and calculates the discharge internal resistance from the current and voltage of the battery being charged. At this time, filtering by temperature is performed to increase measurement accuracy. This is because the discharge internal resistance and the charge internal resistance change with temperature. The filtering by temperature detects the battery temperature when detecting the discharge internal resistance and the charge internal resistance of the battery, and converts the detected temperature into an internal resistance at a set temperature as a function. The determination circuit 2 that filters the internal resistance stores the change of the internal resistance with respect to the temperature as a function or in the LUT. From this stored value, the internal resistance is filtered and corrected to the internal resistance at the set temperature.
[Step n = 3]
Further, the determination circuit 2 calculates the second deterioration degree SOH2 from the discharge internal resistance and the third deterioration degree SOH3 from the charge internal resistance based on the stored LUT and function.
[Step n = 4]
In this step, the determination circuit 2 specifies weight 1, weight 2, and weight 3. Weight 1, weight 2, and weight 3 are specified from FIG.
[Step n = 5]
The determination circuit 2 calculates the deterioration degree SOH of the battery 1 from the weight 1 and the first deterioration degree SOH1, the weight 2 and the second deterioration degree SOH2, and the weight 3 and the third deterioration degree SOH3. The determination circuit 2 calculates the deterioration degree SOH using the following equation.
Deterioration degree SOH = weight 1 × first deterioration degree SOH1
+ Weight 2 × second deterioration degree SOH2
+ Weight 3 x third deterioration degree SOH3

判定回路2は、以上のようにして電池1の劣化度SOHを判定し、判定された劣化度SOHを通信回線10を介して車両側の制御回路9に伝送する。   The determination circuit 2 determines the deterioration degree SOH of the battery 1 as described above, and transmits the determined deterioration degree SOH to the vehicle-side control circuit 9 via the communication line 10.

判定回路2は、出力電力が最低出力電力となる状態における電池1の劣化度SOHを0%とする。このような劣化度SOHを検出することにより、電池1の寿命を知ることができる。また、各劣化度SOHにおける各種のパラメータ、たとえば、その劣化度SOHにおける電圧と電池容量(SOC)との関係、その劣化度SOHにおける満充電容量(Ahf)等を予め保存しておき、判定、検出されたその時点における劣化度SOHに応じて、このような保存されたパラメータを利用することができる。   The determination circuit 2 sets the degree of deterioration SOH of the battery 1 to 0% when the output power is the minimum output power. By detecting such a deterioration degree SOH, the life of the battery 1 can be known. Further, various parameters in each deterioration degree SOH, for example, the relationship between the voltage and the battery capacity (SOC) in the deterioration degree SOH, the full charge capacity (Ahf) in the deterioration degree SOH, etc. are stored in advance, and Such stored parameters can be used according to the detected degree of degradation SOH at that time.

電動車両は、多数の素電池11を直列に接続して、電池1の出力電圧を高くしている。この電池1の劣化度は、各々の素電池11の劣化度を検出して、劣化度が最低となる素電池11の劣化度を電池1の劣化度とする。   In the electric vehicle, a large number of unit cells 11 are connected in series to increase the output voltage of the battery 1. The degree of deterioration of the battery 1 is determined by detecting the degree of deterioration of each unit cell 11 and setting the degree of deterioration of the unit cell 11 having the lowest degree of deterioration as the degree of deterioration of the battery 1.

本発明の一実施例にかかる電池の劣化度の検出方法に使用する電源装置のブロック図である。It is a block diagram of the power supply device used for the detection method of the deterioration degree of the battery concerning one Example of this invention. 内部抵抗の相対値に対するウェイト1とウェイト2とウェイト3を示すグラフである。It is a graph which shows the weight 1, the weight 2, and the weight 3 with respect to the relative value of internal resistance. 電池の現在の満充電容量(Ahf)を検出する原理を示す図である。It is a figure which shows the principle which detects the present full charge capacity (Ahf) of a battery. 内部抵抗を有する電池の等価回路を示す図である。It is a figure which shows the equivalent circuit of the battery which has internal resistance. 電池の放電時における電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic at the time of discharge of a battery. 電池の充電時における電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic at the time of charge of a battery. 内部抵抗に対する劣化度SOH2、SOH3を示すグラフである。It is a graph which shows deterioration degree SOH2 and SOH3 with respect to internal resistance. 判定回路が劣化度SOHを演算するフローチャートである。It is a flowchart in which the determination circuit calculates the deterioration degree SOH.

符号の説明Explanation of symbols

1…電池
2…判定回路
3…電流検出回路
4…温度センサ
5…電圧検出回路
6…モータ
7…発電機
8…双方向電力変換装置
9…制御回路
10…通信回線
11…素電池
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Determination circuit 3 ... Current detection circuit 4 ... Temperature sensor 5 ... Voltage detection circuit 6 ... Motor 7 ... Generator 8 ... Bidirectional power converter 9 ... Control circuit 10 ... Communication line 11 ... Unit cell

Claims (7)

電池の満充電容量の変化値から得られる第1の劣化度SOH1と、電池の放電内部抵抗から得られる第2の劣化度SOH2と、電池の充電内部抵抗から得られる第3の劣化度SOH3とから劣化度SOHを演算する電池の劣化度の検出方法であって、
以下の式で電池の劣化度SOHを演算する請求項1に記載される電池の劣化度の検出方法。
劣化度SOH=ウェイト1×第1の劣化度SOH1
+ウェイト2×第2の劣化度SOH2
+ウェイト3×第3の劣化度SOH3
ただし、ウェイト1+ウェイト2+ウェイト3=1である。
A first deterioration degree SOH1 obtained from the change value of the full charge capacity of the battery, a second deterioration degree SOH2 obtained from the discharge internal resistance of the battery, and a third deterioration degree SOH3 obtained from the charge internal resistance of the battery, A method for detecting the degree of deterioration of a battery that calculates the degree of deterioration SOH from
The battery deterioration degree detection method according to claim 1, wherein the battery deterioration degree SOH is calculated by the following equation.
Deterioration degree SOH = weight 1 × first deterioration degree SOH1
+ Weight 2 × second deterioration degree SOH2
+ Weight 3 x third deterioration degree SOH3
However, weight 1 + weight 2 + weight 3 = 1.
内部抵抗が大きくなるにしたがって、ウェイト2とウェイト3を大きくする請求項に記載される電池の劣化度の検出方法。 According to the internal resistance increases, the detection method of the deterioration degree of the battery as described in claim 1 to increase the weight 2 and the weight 3. 出力電力が最低出力電力となる状態における電池の劣化度SOHを0%とする請求項1に記載される電池の劣化度の検出方法。   The battery deterioration degree detection method according to claim 1, wherein the battery deterioration degree SOH in a state where the output power becomes the minimum output power is set to 0%. 電池の充電内部抵抗が最高値となるときの電池の第2の劣化度SOH2を0%とする請求項1に記載される電池の劣化度の検出方法。   The battery deterioration degree detection method according to claim 1, wherein the second deterioration degree SOH2 of the battery when the charging internal resistance of the battery reaches a maximum value is 0%. 電池の放電内部抵抗が最高値となるときの電池の第3の劣化度SOH3を0%とする請求項1に記載される電池の劣化度の検出方法。   The battery deterioration degree detection method according to claim 1, wherein the third deterioration degree SOH3 of the battery when the discharge internal resistance of the battery reaches a maximum value is 0%. 第1の検出タイミングと第2の検出タイミングにおいて、充放電される電池の充電電流と放電電流の積算値から電池の容量変化値(Ah)を演算し、
さらに、第1の検出タイミングにおける電池の第1の開放電圧と第2の検出タイミングにおける電池の第2の開放電圧を検出して、検出される第1の開放電圧から電池の第1の残容量(%)を判定すると共に、第2の開放電圧から電池の第2の残容量(%)を判定し、判定した第1の残容量(%)と第2の残容量(%)の差から残容量の変化率(%)を演
算し、
演算した電池の容量変化値(Ah)及び残容量の変化率(%)から現在の満充電容量(Ah)を演算して第1の劣化度SOH1を検出する請求項1に記載される電池の劣化度の検出方法。
In the first detection timing and the second detection timing, the battery capacity change value (Ah) is calculated from the integrated value of the charging current and discharging current of the battery to be charged / discharged,
Further, the first open voltage of the battery at the first detection timing and the second open voltage of the battery at the second detection timing are detected, and the first remaining capacity of the battery is detected from the detected first open voltage. (%) And the second remaining capacity (%) of the battery from the second open circuit voltage, and the difference between the determined first remaining capacity (%) and second remaining capacity (%) Shows the rate of change in remaining capacity (%)
Calculate
2. The battery according to claim 1, wherein the first deterioration degree SOH <b> 1 is detected by calculating a current full charge capacity (Ah) from the calculated battery capacity change value (Ah) and remaining capacity change rate (%) . Degradation detection method.
互いに直列に接続してなる各々の素電池の劣化度SOHを検出し、最低の劣化度SOHを電池の劣化度SOHと判定する請求項1に記載される電池の劣化度の検出方法。
The battery deterioration degree detection method according to claim 1, wherein the deterioration degree SOH of each unit cell connected in series with each other is detected, and the lowest deterioration degree SOH is determined as the battery deterioration degree SOH.
JP2008249361A 2008-09-27 2008-09-27 How to detect battery deterioration Expired - Fee Related JP5348987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249361A JP5348987B2 (en) 2008-09-27 2008-09-27 How to detect battery deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249361A JP5348987B2 (en) 2008-09-27 2008-09-27 How to detect battery deterioration

Publications (2)

Publication Number Publication Date
JP2010078530A JP2010078530A (en) 2010-04-08
JP5348987B2 true JP5348987B2 (en) 2013-11-20

Family

ID=42209142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249361A Expired - Fee Related JP5348987B2 (en) 2008-09-27 2008-09-27 How to detect battery deterioration

Country Status (1)

Country Link
JP (1) JP5348987B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537236B2 (en) 2010-04-13 2014-07-02 トヨタ自動車株式会社 Lithium ion secondary battery deterioration determination device and deterioration determination method
DE102010038646A1 (en) * 2010-07-29 2012-02-02 Robert Bosch Gmbh Method and device for estimating the performance of at least one battery unit of a rechargeable battery
WO2014027389A1 (en) * 2012-08-13 2014-02-20 日立ビークルエナジー株式会社 Cell control device and secondary cell system
KR102177721B1 (en) * 2014-03-20 2020-11-11 현대모비스 주식회사 Apparatus and Method for estimating deterioration of battery pack
KR102205293B1 (en) * 2014-04-18 2021-01-20 삼성전자주식회사 A method and device to calibrate error from estimation of batter life
JP6565446B2 (en) * 2014-09-30 2019-08-28 株式会社Gsユアサ Battery deterioration determination device, battery deterioration determination method, and vehicle
CN105676134B (en) * 2016-01-08 2018-07-13 中国第一汽车股份有限公司 A kind of SOH evaluation methods of vehicle lithium-ion power battery
CN105891730B (en) * 2016-06-24 2018-09-28 安徽江淮汽车集团股份有限公司 A kind of computational methods of automobile power cell capacity
CN106199450A (en) * 2016-08-16 2016-12-07 成都市和平科技有限责任公司 A kind of battery health evaluation system and method
JP6718350B2 (en) * 2016-09-28 2020-07-08 株式会社ケーヒン Voltage detector
JP6852469B2 (en) * 2017-03-07 2021-03-31 三菱自動車エンジニアリング株式会社 Battery controller, program
JP2018169284A (en) * 2017-03-30 2018-11-01 日立オートモティブシステムズ株式会社 Device and method for controlling storage battery
JP6791002B2 (en) * 2017-05-10 2020-11-25 トヨタ自動車株式会社 Deterioration estimation device for secondary batteries
KR101979536B1 (en) * 2018-01-23 2019-05-16 충남대학교산학협력단 Resistance-based soh estimation method for serial-connected battery pack
JP7115294B2 (en) * 2018-12-24 2022-08-09 株式会社デンソー battery device
CN111812531B (en) * 2019-04-11 2023-04-07 东莞新能安科技有限公司 Battery state detection method, device and storage medium
JP7173492B2 (en) * 2019-07-25 2022-11-16 日新電機株式会社 DETERMINATION DEVICE, POWER SUPPLY SYSTEM INCLUDING DETERMINATION DEVICE, AND DETERMINATION METHOD
CN112034371B (en) * 2020-08-28 2022-10-18 厦门科灿信息技术有限公司 Battery health degree prediction method and terminal equipment
KR102617005B1 (en) * 2022-05-09 2023-12-22 한국자동차연구원 Apparatus for estimating soh of electric vehicle battery and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849541B2 (en) * 2002-02-20 2006-11-22 トヨタ自動車株式会社 Charge / discharge control method for battery pack
JP2004301779A (en) * 2003-03-31 2004-10-28 Yazaki Corp Battery state monitoring device and its method
JP2005263080A (en) * 2004-03-19 2005-09-29 Auto Network Gijutsu Kenkyusho:Kk In-vehicle power source distribution device with battery state detecting function

Also Published As

Publication number Publication date
JP2010078530A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5348987B2 (en) How to detect battery deterioration
JP6073686B2 (en) How to detect battery deterioration
JP5004557B2 (en) How to detect battery deterioration
WO2012091077A1 (en) Battery degradation level detection method
CN105378497B (en) Method for assessing hybrid vehicle cell health state
US9634498B2 (en) Electrical storage system and equalizing method
JP5389425B2 (en) Charge / discharge control method for hybrid car
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
JP5419831B2 (en) Battery degradation degree estimation device
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JP5784108B2 (en) Charge control device
JP5397013B2 (en) Battery control device
JPWO2012105492A1 (en) Battery full charge capacity detection method
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
JP2007187533A (en) Judging technique for length of life of battery
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
JP2010019664A (en) Battery deterioration detection device and method
WO2014147899A1 (en) Method for estimating fully-charged power capacity, and device
JP2006153663A (en) Method of determining lifetime of secondary battery
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP2004271342A (en) Charging and discharging control system
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
JP5454027B2 (en) Charge control device and charge control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R151 Written notification of patent or utility model registration

Ref document number: 5348987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees