JP5454027B2 - Charge control device and charge control method - Google Patents

Charge control device and charge control method Download PDF

Info

Publication number
JP5454027B2
JP5454027B2 JP2009208049A JP2009208049A JP5454027B2 JP 5454027 B2 JP5454027 B2 JP 5454027B2 JP 2009208049 A JP2009208049 A JP 2009208049A JP 2009208049 A JP2009208049 A JP 2009208049A JP 5454027 B2 JP5454027 B2 JP 5454027B2
Authority
JP
Japan
Prior art keywords
threshold voltage
charging
voltage
charger
predetermined threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009208049A
Other languages
Japanese (ja)
Other versions
JP2011061947A (en
Inventor
幸紀 塚本
宇貴 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009208049A priority Critical patent/JP5454027B2/en
Publication of JP2011061947A publication Critical patent/JP2011061947A/en
Application granted granted Critical
Publication of JP5454027B2 publication Critical patent/JP5454027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、充電制御装置及び充電制御方法に関する。     The present invention relates to a charge control device and a charge control method.

二次電池の内部抵抗による電圧降下を加味して、二次電池の満充電電圧より高い閾値電圧を固定値として設定し、二次電池の端子間電圧が当該閾値電圧に達するまで充電することにより、充電時間を短縮する二次電池の充電方法が知られている(特許文献1)。 By taking into account the voltage drop due to the internal resistance of the secondary battery, a threshold voltage higher than the fully charged voltage of the secondary battery is set as a fixed value, and charging is performed until the voltage between the terminals of the secondary battery reaches the threshold voltage. A charging method for a secondary battery that shortens the charging time is known (Patent Document 1).

特開平6−325794号公報JP-A-6-325794

しかしながら、二次電池の内部抵抗が低い場合、二次電池の開放電圧が満充電電圧より高くなり、二次電池が過充電になる可能性があり、逆に内部抵抗が高い場合、満充電までの時間が長くなる可能性があった。   However, when the internal resistance of the secondary battery is low, the open voltage of the secondary battery becomes higher than the full charge voltage, which may cause the secondary battery to be overcharged. There was a possibility that the time would be longer.

そこで本発明は、二次電池の充電の過不足を防ぐ充電制御装置を提供する。   Therefore, the present invention provides a charge control device that prevents excessive and insufficient charging of a secondary battery.

本発明は、充電時間に応じて、所定の閾値電圧を設定し、二次電池の端子間電圧と当該所定の閾値電圧とを比較して、充電電力を制御することによって上記課題を解決する。 The present invention solves the above-described problem by setting a predetermined threshold voltage according to the charging time, comparing the voltage between the terminals of the secondary battery with the predetermined threshold voltage, and controlling the charging power.

本発明によれば、充電時間に応じて、所定の閾値電圧を設定し、二次電池の端子間電圧と当該所定の閾値電圧とを比較して、充電電力を制御するため、二次電池の内部抵抗の大きさに応じて、当該所定の閾値電圧を設定することができ、その結果、二次電池の充電の過不足を防ぐことができる。 According to the present invention, a predetermined threshold voltage is set according to the charging time, and the voltage between the terminals of the secondary battery is compared with the predetermined threshold voltage to control the charging power. The predetermined threshold voltage can be set according to the magnitude of the internal resistance, and as a result, excessive or insufficient charging of the secondary battery can be prevented.

発明の実施形態に係る充電制御装置を含む強電システムのブロック図である。1 is a block diagram of a high-power system including a charge control device according to an embodiment of the invention. 図1に示す組電池の充電時間に対する内部抵抗の特性を示すグラフである。It is a graph which shows the characteristic of the internal resistance with respect to the charging time of the assembled battery shown in FIG. 図1に示す組電池の内部抵抗に対する電圧の特性を示すグラフである。It is a graph which shows the characteristic of the voltage with respect to the internal resistance of the assembled battery shown in FIG. 図1に示す組電池の電池温度に対する内部抵抗の特性を示すグラフである。It is a graph which shows the characteristic of the internal resistance with respect to the battery temperature of the assembled battery shown in FIG. 図1に示す強電システムにおける、制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the high electric power system shown in FIG. 他の発明の実施形態に係る充電制御装置を含む強電システムのブロック図である。It is a block diagram of a high-power system including a charge control device according to another embodiment of the present invention. 図6に示す組電池の劣化度に対する内部抵抗の特性を示すグラフである。It is a graph which shows the characteristic of internal resistance with respect to the deterioration degree of the assembled battery shown in FIG. 図6に示す強電システムにおける、制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the high electric power system shown in FIG.

以下、発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the invention will be described with reference to the drawings.

《第1実施形態》
本発明の充電制御装置を含むシステムを、例えば電気車両に使用される場合を例として説明する。図1は、本発明の充電制御装置を含む強電システムのブロック図を示す。
<< First Embodiment >>
A system including the charge control device of the present invention will be described by way of example in which it is used in an electric vehicle, for example. FIG. 1 shows a block diagram of a high voltage system including a charge control device of the present invention.

図1に強電システムは、直列に接続された複数の二次電池の単電池100を含む組電池101と、組電池101に充電電力を供給し組電池101を充電する充電器102と、組電池101の端子間電圧を検出する電圧センサ103と、充電器102から組電池101に供給される充電電流を検出する電流センサ104と、組電池101の温度を検出するサーミスタ105と、各単電池100の電圧を検出するセルコントローラ106を有する。   In FIG. 1, a high-voltage system includes an assembled battery 101 including a plurality of secondary battery cells 100 connected in series, a charger 102 that supplies charging power to the assembled battery 101 and charges the assembled battery 101, and an assembled battery. 101, a voltage sensor 103 that detects a voltage between terminals, a current sensor 104 that detects a charging current supplied from the charger 102 to the assembled battery 101, a thermistor 105 that detects the temperature of the assembled battery 101, and each unit cell 100. A cell controller 106 for detecting the voltage of

組電池101の正極は、正極用強電ハーネス107を介して充電器102に接続され、組電池101の負極は、負極用強電ハーネス108を介して充電器102に接続される。各単電池100は、セル電圧検出線109を介して、セルコントローラ106に接続される。充電器102は、電源ハーネス111を介して接続される電源プラグ112を、電源コンセント113に接続する。また充電器102は、組電池1の充電時間を測定するタイマ110を有する。電圧センサ103は、組電池3の両端子に接続され、当該センサにより検出される、組電池101の端子間電圧は、制御信号により充電器102へ送信される。また電流センサ104は、正極用強電ハーネス107に接続され、当該センサにより検出される、組電池101への入出力電流は、制御信号により充電器102へ送信される。   The positive electrode of the assembled battery 101 is connected to the charger 102 via the high-voltage harness 107 for positive electrode, and the negative electrode of the assembled battery 101 is connected to the charger 102 via the high-voltage harness 108 for negative electrode. Each unit cell 100 is connected to the cell controller 106 via the cell voltage detection line 109. The charger 102 connects a power plug 112 connected via a power harness 111 to a power outlet 113. The charger 102 has a timer 110 that measures the charging time of the assembled battery 1. The voltage sensor 103 is connected to both terminals of the assembled battery 3, and the voltage between the terminals of the assembled battery 101 detected by the sensor is transmitted to the charger 102 by a control signal. The current sensor 104 is connected to the high-voltage harness 107 for positive electrode, and the input / output current to the assembled battery 101 detected by the sensor is transmitted to the charger 102 by a control signal.

セルコントローラ106は、セル電圧検出線109を介して各単電池100の電圧を検出し、検出電圧は制御信号により充電器102へ送信される。またセルコントローラ106は、単電池100の端子間に接続される容量調整用抵抗(図示しない)を、スイッチング素子(図示しない)の制御により、導通させて、単電池100の容量を調整する。   The cell controller 106 detects the voltage of each cell 100 via the cell voltage detection line 109, and the detected voltage is transmitted to the charger 102 by a control signal. In addition, the cell controller 106 adjusts the capacity of the unit cell 100 by causing a capacity adjustment resistor (not shown) connected between the terminals of the unit cell 100 to be conducted under the control of a switching element (not shown).

充電器102は、電圧センサ103及び電流センサ104からの信号を受信し、組電池101の総電圧、入出力電流を、所定のサンプリング周期でサンプリングする。また充電器102は、サーミスタからの信号に基づいて、組電池101の温度を検出する。また充電器102には、タイマー110が備え付けられ、当該タイマー110は、充電器102から組電池101に対して充電電流を供給する時点からの充電時間、または、充放電が切り替わる時点からの充電時間を検出する。   The charger 102 receives signals from the voltage sensor 103 and the current sensor 104, and samples the total voltage and input / output current of the assembled battery 101 at a predetermined sampling period. Further, the charger 102 detects the temperature of the assembled battery 101 based on a signal from the thermistor. The charger 102 is provided with a timer 110, and the timer 110 is a charging time from the time when the charging current is supplied from the charger 102 to the assembled battery 101, or the charging time from the time when charging / discharging is switched. Is detected.

ここで、組電池101の内部抵抗、組電池101の温度及び組電池101の充電電圧について、説明する。図2は組電池101の充電時間に対する内部抵抗の特性を、図3は、組電池101の内部抵抗に対する電圧の特性を、図4は、組電池101の電池温度に対する内部抵抗の特性を示すグラフである。組電池101の内部抵抗は、図2に示すように、充電が開始される時点から又は充放電が切り替わる時点から、充電時間と共に上昇する特性を有している(例えば、特公開2008−89447を参照)。そして、図3に示すように、組電池101の内部抵抗が高くなると、組電池101の開放電圧が一定の状態であっても、組電池101の端子間電圧が高くなる特性を有している。また、組電池101の内部抵抗は温度依存性を有しており、図4に示すように、組電池101の内部抵抗は、温度に上昇に伴って、減少する特性を有している。   Here, the internal resistance of the assembled battery 101, the temperature of the assembled battery 101, and the charging voltage of the assembled battery 101 will be described. 2 shows the characteristics of the internal resistance with respect to the charging time of the assembled battery 101, FIG. 3 shows the characteristics of the voltage with respect to the internal resistance of the assembled battery 101, and FIG. 4 shows the characteristics of the internal resistance with respect to the battery temperature of the assembled battery 101. It is. As shown in FIG. 2, the internal resistance of the assembled battery 101 has a characteristic of increasing with the charging time from the time when charging is started or the time when charging / discharging is switched (for example, see Japanese Patent Publication No. 2008-89447). reference). As shown in FIG. 3, when the internal resistance of the assembled battery 101 increases, the voltage across the terminals of the assembled battery 101 increases even when the open voltage of the assembled battery 101 is constant. . Further, the internal resistance of the assembled battery 101 has temperature dependency, and as shown in FIG. 4, the internal resistance of the assembled battery 101 has a characteristic of decreasing as the temperature increases.

充電器102には、充電の対象となる電池に関する上記特性が、パラメータとして予め設定されており、充電器102は、タイマー110により計測される充電時間から組電池101の内部抵抗を推定し、当該充電時間に応じて閾値電圧を設定する。また充電器102は、温度センサ105により検出される温度により当該閾値電圧を補正する。そして、組電池101の検出電圧が当該閾値電圧に達した場合、充電器102から組電池101へ供給される充電電力を下げる。   The charger 102 has the above-described characteristics relating to the battery to be charged set in advance as a parameter. The charger 102 estimates the internal resistance of the assembled battery 101 from the charging time measured by the timer 110, and A threshold voltage is set according to the charging time. Further, the charger 102 corrects the threshold voltage based on the temperature detected by the temperature sensor 105. When the detection voltage of the assembled battery 101 reaches the threshold voltage, the charging power supplied from the charger 102 to the assembled battery 101 is reduced.

以下、図5を用いて、本例の充電制御装置の制御手順を説明する。図5は、本例の充電制御装置の制御手順を示すフローチャートである。   Hereinafter, the control procedure of the charge control apparatus of this example will be described with reference to FIG. FIG. 5 is a flowchart showing a control procedure of the charging control apparatus of this example.

組電池101が充電器102に接続され、充電が開始されると、タイマー110は、充電開始時からの経過時間である、充電時間tを計測する(ステップS1)。次に、ステップS2にて、充電器102は、サーモメータ105により検出される組電池101の検出温度を検出する。   When the assembled battery 101 is connected to the charger 102 and charging is started, the timer 110 measures a charging time t, which is an elapsed time from the start of charging (step S1). Next, in step S <b> 2, the charger 102 detects the detected temperature of the assembled battery 101 detected by the thermometer 105.

ステップS3にて、充電器102は、予め設定されている所定の時間tcと、ステップS1にて計測される充電時間tを比較する。当該所定の時間tcは、組電池1の電池の特性に応じて、予め設定されている値であって、充電時間tが当該所定の時間tcを経過しているか否かによって、後述する通り、充電器102により推定される、組電池101の内部抵抗の抵抗値が異なる。   In step S3, charger 102 compares predetermined time tc set in advance with charging time t measured in step S1. The predetermined time tc is a value set in advance according to the characteristics of the battery of the assembled battery 1, and depending on whether the charging time t has passed the predetermined time tc, as will be described later. The resistance value of the internal resistance of the assembled battery 101 estimated by the charger 102 is different.

そして、充電時間tが所定の時間tcより小さい場合、ステップS41にて、充電器102は閾値電圧Vcを電圧閾値V1として設定する。ここで、閾値電圧Vcについて、組電池101の端子間電圧Vsが閾値電圧Vcに達するまでは、充電器102は、組電池101を定充電電流で充電し、端子間電圧Vsが閾値電圧Vcに達すると、充電器102は、充電電流を小さくし、組電池101を充電する。そのため、閾値電圧Vcは充電電流の制御モードを変更するための閾値となる電圧を示す。また電圧閾値Vcは、閾値電圧V1又は閾値電圧V2に設定され、閾値電圧V2は、閾値電圧V1より高い。   If the charging time t is smaller than the predetermined time tc, the charger 102 sets the threshold voltage Vc as the voltage threshold V1 in step S41. Here, for the threshold voltage Vc, the charger 102 charges the assembled battery 101 with a constant charging current until the inter-terminal voltage Vs of the assembled battery 101 reaches the threshold voltage Vc, and the inter-terminal voltage Vs becomes the threshold voltage Vc. When it reaches, the charger 102 reduces the charging current and charges the assembled battery 101. Therefore, the threshold voltage Vc indicates a voltage that becomes a threshold for changing the control mode of the charging current. The voltage threshold Vc is set to the threshold voltage V1 or the threshold voltage V2, and the threshold voltage V2 is higher than the threshold voltage V1.

閾値電圧V1は、組電池1の満充電電圧Vと、組電池101の内部抵抗により電圧降下分を加えた電圧である。満充電電圧Vは、組電池101が満充電の状態の電圧であり、組電池101に含まれる単電池100の設計時の設定により定まる電圧である。組電池101の内部抵抗は、図2を参照して、充電時間に伴って変化する特性を有しているため、本例の充電器102は、充電時間tが所定の時間tcを経過している否かによって、推定される内部抵抗の大きさを変える。充電時間tが所定の充電時間tcより長い場合、内部抵抗r2が推定され、充電時間tが所定の充電時間tcより短い場合、内部抵抗r1が推定される。内部抵抗r2は、内部抵抗r1より大きい。 Threshold voltage V1, the full charge voltage V 0 which the assembled battery 1, a voltage obtained by adding a voltage drop by the internal resistance of the battery pack 101. The full charge voltage V 0 is a voltage when the assembled battery 101 is in a fully charged state, and is a voltage determined by setting at the time of designing the unit cell 100 included in the assembled battery 101. Since the internal resistance of the assembled battery 101 has a characteristic that varies with the charging time with reference to FIG. 2, the charger 102 of this example has a charging time t that has passed a predetermined time tc. The magnitude of the estimated internal resistance is changed depending on whether or not it is present. When the charging time t is longer than the predetermined charging time tc, the internal resistance r2 is estimated, and when the charging time t is shorter than the predetermined charging time tc, the internal resistance r1 is estimated. The internal resistance r2 is larger than the internal resistance r1.

また、図4に示すように、内部抵抗は、温度依存性を有しているため、充電器102は、温度に応じて変化する温度補正係数αを内部抵抗に乗じることにより、内部抵抗を補正する。組電池101の温度が高い場合、内部抵抗は低くなり、組電池101の温度が低い場合、内部抵抗は高くなる(図4参照)。そのため、例えば、閾値温度を予め設定し、充電器101に格納し、充電器102は、ステップS2にて検出される検出温度が当該閾値温度より高い場合、補正値α1を抽出し、検出温度が当該閾値温度より低い場合、補正値α2を抽出し、温度補正係数とする。ただし、補正値α1は、補正値α2より小さい。   As shown in FIG. 4, since the internal resistance has temperature dependence, the charger 102 corrects the internal resistance by multiplying the internal resistance by a temperature correction coefficient α that changes according to the temperature. To do. When the temperature of the assembled battery 101 is high, the internal resistance is low, and when the temperature of the assembled battery 101 is low, the internal resistance is high (see FIG. 4). Therefore, for example, a threshold temperature is set in advance and stored in the charger 101. If the detected temperature detected in step S2 is higher than the threshold temperature, the charger 102 extracts the correction value α1, and the detected temperature is When the temperature is lower than the threshold temperature, a correction value α2 is extracted and used as a temperature correction coefficient. However, the correction value α1 is smaller than the correction value α2.

そして、充電器102において、閾値電圧が、閾値電圧(V1)=満充電電圧(V)+温度補正係数(α1)・内部抵抗(r1)×充電電流により算出される。 In the charger 102, the threshold voltage is calculated by the following formula: threshold voltage (V1) = full charge voltage (V 0 ) + temperature correction coefficient (α1) · internal resistance (r1) × charge current.

一方、充電時間tが所定の時間tcより大きい場合、ステップS42にて、充電器102は閾値電圧Vcを電圧閾値V2として設定する。内部抵抗は、充電時間tが所定の時間tcより大きいため、内部抵抗r2として推定される。また、充電器102は、温度に応じて変化する温度補正係数αを抽出する。そして閾値電圧は、閾値電圧(V2)=満充電電圧(V)+温度補正係数(α2)・内部抵抗(r2)×充電電流により算出される。 On the other hand, when the charging time t is longer than the predetermined time tc, the charger 102 sets the threshold voltage Vc as the voltage threshold V2 in step S42. The internal resistance is estimated as the internal resistance r2 because the charging time t is longer than the predetermined time tc. Further, the charger 102 extracts a temperature correction coefficient α that changes according to the temperature. The threshold voltage is calculated by the following formula: threshold voltage (V2) = full charge voltage (V 0 ) + temperature correction coefficient (α2) · internal resistance (r2) × charge current.

次に、ステップS5にて、充電器102は、電圧センサ103から、現在の組電池の端子間電圧Vsを検出する。ステップS6にて、充電器102は、端子間電圧Vsと、ステップS41又はS42にて設定された閾値電圧Vcとを比較する。   Next, in step S <b> 5, the charger 102 detects the current inter-terminal voltage Vs of the assembled battery from the voltage sensor 103. In step S6, the charger 102 compares the inter-terminal voltage Vs with the threshold voltage Vc set in step S41 or S42.

端子間電圧Vsが閾値電圧Vcより低い場合、充電器102は、現在の充電電流を維持しつつ充電を続け、ステップS1に戻り、上記ステップを繰り返す。一方、端子間電圧Vsが閾値電圧Vcより高い場合、充電器102は、現在の充電電流を絞り、組電池101への出力電流を小さくして充電する(ステップS8)。そして、組電池101へ供給される充電電流の大きさがゼロに近づき、組電池101が満充電状態になったと判断されると(ステップS8)、充電器102は、充電を終了する。   When the inter-terminal voltage Vs is lower than the threshold voltage Vc, the charger 102 continues charging while maintaining the current charging current, returns to step S1, and repeats the above steps. On the other hand, when the inter-terminal voltage Vs is higher than the threshold voltage Vc, the charger 102 reduces the current charging current and reduces the output current to the assembled battery 101 for charging (step S8). When the magnitude of the charging current supplied to the assembled battery 101 approaches zero and it is determined that the assembled battery 101 is fully charged (step S8), the charger 102 ends the charging.

上記のように、本発明は、充電時間による内部抵抗の変化に着目し、本例の充電制御装置は、タイマー110により測定される充電時間に応じて、充電電力を制御する閾値である閾値電圧Vcを設定する。これにより、本例は、組電池101の充電の過不足を防ぎつつ、充電時間の短縮化を図ることができる。   As described above, the present invention pays attention to the change in internal resistance due to the charging time, and the charging control device of this example is a threshold voltage that is a threshold for controlling the charging power according to the charging time measured by the timer 110. Set Vc. Thereby, this example can aim at shortening of charge time, preventing the overcharge and shortage of charge of the assembled battery 101. FIG.

すなわち、本例は、組電池の内部抵抗の状態に応じて、内部抵抗の降下分に合わせた閾値電圧を設定する。これにより、本例は、組電池101の内部抵抗が低い場合、組電池101に対して過剰な電圧が加わることを抑制するため、組電池101の過充電を防ぐことができる。また組電池101の内部抵抗が高い場合、当該内部抵抗の降下分に合わせて、閾値電圧V2(>V1)を設定するため、組電池の充電が不足することを防ぎつつ、充電時間の短縮化を図ることができる。また、本例は、組電池101の内部抵抗を、直接、演算しなくても、内部抵抗の変化に応じて電圧閾値を変更させるため、制御部分の演算負荷の軽減させることができる。   That is, in this example, the threshold voltage is set in accordance with the amount of decrease in the internal resistance according to the state of the internal resistance of the assembled battery. Thereby, since this example suppresses that an excessive voltage is added with respect to the assembled battery 101 when the internal resistance of the assembled battery 101 is low, the overcharge of the assembled battery 101 can be prevented. Further, when the internal resistance of the assembled battery 101 is high, the threshold voltage V2 (> V1) is set in accordance with the drop in the internal resistance, so that the charging time is shortened while preventing the assembled battery from being insufficiently charged. Can be achieved. Further, in this example, even if the internal resistance of the assembled battery 101 is not directly calculated, the voltage threshold is changed according to the change of the internal resistance, so that the calculation load of the control part can be reduced.

また本発明において、充電時間tが所定の時間tcより長い場合に設定される閾値電圧V2が、充電時間tが所定の時間tcより短い場合に設定される閾値電圧V1より高くなるよう、閾値電圧が設定される。これにより、充電時間によって変化する内部抵抗の降下電圧の変動に対応させて、閾値電圧が設定されるため、組電池101の充電の過不足を防ぐことができる。   In the present invention, the threshold voltage V2 that is set when the charging time t is longer than the predetermined time tc is higher than the threshold voltage V1 that is set when the charging time t is shorter than the predetermined time tc. Is set. As a result, the threshold voltage is set in accordance with the fluctuation of the voltage drop of the internal resistance that changes depending on the charging time, so that overcharging or undercharging of the assembled battery 101 can be prevented.

また本発明は、組電池101の温度を検出するサーミスタ105を有し、検出温度に応じて、閾値電圧を設定する。また、検出温度が所定の温度より高い場合に設定される閾値電圧が、検出温度が当該所定の温度より低い場合に設定される閾値電圧より低くなるよう、温度補正係数が設定される。これにより本例は、組電池101の温度状態に応じて、閾値電圧Vcを補正するため、当該温度状態に適した閾値電圧を設定することができ、充電の過不足を防ぎつつ、充電時間の短縮を図ることができる。   The present invention also includes a thermistor 105 that detects the temperature of the assembled battery 101 and sets a threshold voltage according to the detected temperature. Further, the temperature correction coefficient is set so that the threshold voltage set when the detected temperature is higher than the predetermined temperature is lower than the threshold voltage set when the detected temperature is lower than the predetermined temperature. Thus, in this example, the threshold voltage Vc is corrected in accordance with the temperature state of the assembled battery 101. Therefore, a threshold voltage suitable for the temperature state can be set, and charging time can be reduced while preventing excessive or insufficient charging. Shortening can be achieved.

なお、本発明は、所定の時間tcを時間の閾値として用いて、閾値電圧V1またはV2を設定し、充電制御を行うが、時間の閾値は、必ずしも一つにする必要はなく複数であってもよく、また充電時間に連動する閾値電圧を設定してもよい。   In the present invention, the threshold voltage V1 or V2 is set and the charge control is performed using the predetermined time tc as the time threshold value. However, the time threshold value is not necessarily limited to one and may be a plurality. Alternatively, a threshold voltage linked to the charging time may be set.

また本例は、温度補正係数αを内部抵抗に乗ずることで閾値電圧を補正をするが、温度補正係数を加減算することのより、補正をして、閾値電圧Vcを設定してもよい。   In this example, the threshold voltage is corrected by multiplying the internal resistance by the temperature correction coefficient α. However, the threshold voltage Vc may be set by correcting by adding or subtracting the temperature correction coefficient.

また、図2に示すように、組電池101の内部抵抗は、充電時間開始から徐々に上昇し、ある時点から飽和する特性を有している。ここで飽和する内部抵抗を飽和内部抵抗(r)とし、対応する時間を飽和時間(t)とする。そして、充電器101は、充電開始時から飽和時間tまでは、充電時間tに対して閾値電圧Vcを連動させて増加させる。そして、充電時間tが飽和時間tに達してから、充電器102は、閾値電圧を固定させ維持する。 Further, as shown in FIG. 2, the internal resistance of the assembled battery 101 has a characteristic of gradually increasing from the start of the charging time and saturating from a certain point in time. Here, the saturated internal resistance is defined as saturated internal resistance (r f ), and the corresponding time is defined as saturation time (t f ). The charger 101, until saturation time t f from the time of start of charging increases in conjunction with the threshold voltage Vc respect charging time t. Then, since the charging time t has reached the saturation time t f, the charger 102 maintains to fix the threshold voltage.

これにより、本例は、内部抵抗が飽和する充電時間に応じて、閾値電圧Vcを設定するため、飽和内部抵抗rより高い内部抵抗が推定されない。そのため、充電時間を短縮化しつつ、過充電のおそれがある電圧が閾値電圧として設定されないため、組電池101の過充電を防ぐことができる。 Thus, this example, in accordance with the charging time that the internal resistance is saturated, for setting the threshold voltage Vc, the internal resistance higher than the saturated internal resistance r f is not estimated. Therefore, since the voltage that may cause overcharging is not set as the threshold voltage while shortening the charging time, overcharging of the assembled battery 101 can be prevented.

なお、本例は、充電開始時から飽和時間tまで、充電時間tに対して閾値電圧Vcを連動させて増加させるが、段階的な大きさをもつ閾値電圧を設定し、充電を制御してもよい。 In this example, the threshold voltage Vc is increased in conjunction with the charging time t from the start of charging to the saturation time t f . However, the threshold voltage having a stepwise magnitude is set to control charging. May be.

また、本例は、端子間電圧Vsが所定の閾値電圧Vc達した場合、組電池101への充電電流を小さくする。これにより、内部抵抗と充電電流の積による電圧上昇を抑えることができ、精度よく満充電まで充電させることができる。   Further, in this example, when the inter-terminal voltage Vs reaches a predetermined threshold voltage Vc, the charging current to the assembled battery 101 is reduced. Thereby, the voltage rise by the product of internal resistance and charging current can be suppressed, and it can charge to full charge accurately.

なお、本例は、電圧センサ103により組電池101の端子間電圧を検出し、上記制御を行うが、セルコントローラ106により検出される単電池100の検出電圧を用いて、上記制御を行ってもよい。   In this example, the voltage sensor 103 detects the voltage between the terminals of the assembled battery 101 and performs the above control. However, even if the above control is performed using the detection voltage of the cell 100 detected by the cell controller 106. Good.

また、本例は、充電時間により組電池101の内部抵抗を推定するが、内部抵抗を直接測定して、閾値電圧を設定し、充電電力を制御してもよい。これにより、精精度よく満充電まで充電させることができ、充電の過不足を防ぐことができる。   In this example, the internal resistance of the assembled battery 101 is estimated based on the charging time. However, the internal resistance may be directly measured, the threshold voltage may be set, and the charging power may be controlled. Thereby, it can be made to charge to full charge accurately, and the excess and deficiency of charge can be prevented.

なお、本例は、充電器102により組電池101を充電させるため充電電源を、コンセント113とするが、例えば車両に搭載されるモータの回生充電を発生電源としてもよい。また本システムは、組電池101をから取り外して、他の組電池101に取り替えることも可能である。   In this example, the charging power source for charging the assembled battery 101 by the charger 102 is the outlet 113. However, for example, regenerative charging of a motor mounted on the vehicle may be used as the generating power source. In the present system, the assembled battery 101 can be removed from the assembled battery 101 and replaced with another assembled battery 101.

なお、本例の電圧センサ103は「電圧検出手段」に相当し、タイマー110が「充電時間測定手段」に、サーミスタ105が「温度検出手段」に相当する。   The voltage sensor 103 in this example corresponds to “voltage detection means”, the timer 110 corresponds to “charging time measurement means”, and the thermistor 105 corresponds to “temperature detection means”.

《第2実施形態》
図6は、発明の他の実施形態に係る充電制御装置を含む強電システムのブロック図である。本例は上述した第1実施形態に対して、サーミスタ105の代わりに、劣化度測定部201を有する点が異なる。これ以外の構成で上述した第1実施形態と同じ構成は、その記載を援用する。
<< Second Embodiment >>
FIG. 6 is a block diagram of a high voltage system including a charge control device according to another embodiment of the invention. This example is different from the first embodiment described above in that a deterioration degree measuring unit 201 is provided instead of the thermistor 105. The description of the same structure as 1st Embodiment mentioned above by the structure except this is used.

図6に示すように、充電器102は劣化度測定部201を有し、劣化度測定部201は、電圧センサ103により検出電圧、電流センサ104により検出電流に基づいて、劣化度を測定する。   As shown in FIG. 6, the charger 102 includes a deterioration degree measuring unit 201, and the deterioration degree measuring unit 201 measures the degree of deterioration based on the detected voltage by the voltage sensor 103 and the detected current by the current sensor 104.

劣化度は、例えば、ある所定のSOC(State of Charge)における、初期の(劣化前の)電池容量に対する現在の(劣化後の)電池容量の割合により算出される。初期の電池容量は、組電池101に含まれる単電池の設計段階で予め定められている。また劣化後の電池容量は、充電開始時からある時点までの積算電流値を算出することで求めることができる。そして、図7に示すように、組電池101は劣化が進むと、内部抵抗が上昇する特性を有している。図7は、組電池101の劣化度に対する内部抵抗の特性を示すグラフである。   The degree of deterioration is calculated, for example, by the ratio of the current (after deterioration) battery capacity to the initial (before deterioration) battery capacity in a predetermined SOC (State of Charge). The initial battery capacity is determined in advance at the design stage of the unit cells included in the assembled battery 101. The battery capacity after deterioration can be obtained by calculating the integrated current value from the start of charging to a certain point. As shown in FIG. 7, the assembled battery 101 has a characteristic that the internal resistance increases as the deterioration progresses. FIG. 7 is a graph showing the characteristic of the internal resistance with respect to the degree of deterioration of the assembled battery 101.

次に、図8を用いて、本例の充電制御装置の制御手順を説明する。図8は、本例の充電制御装置の制御手順を示すフローチャートである。本例の充電制御装置において、ステップS1、ステップS3、ステップS5〜ステップS9の制御工程は、第1実施形態に係る充電制御装置の制御工程と同様のため、説明は省略し、異なる制御ステップについて、以下に説明する。   Next, the control procedure of the charging control apparatus of this example will be described with reference to FIG. FIG. 8 is a flowchart showing a control procedure of the charge control device of this example. In the charge control device of this example, the control process of Step S1, Step S3, Step S5 to Step S9 is the same as the control process of the charge control device according to the first embodiment, and thus the description thereof is omitted and different control steps are performed. This will be described below.

ステップS21にて、充電器101は、劣化度測定部201により、充電時間tにおける劣化度を測定する。そして、充電時間tが所定の時間tcより小さい場合、ステップS241にて、充電器102は閾値電圧Vcを電圧閾値V1として設定する。   In step S <b> 21, the charger 101 uses the deterioration level measurement unit 201 to measure the deterioration level during the charging time t. If the charging time t is smaller than the predetermined time tc, the charger 102 sets the threshold voltage Vc as the voltage threshold V1 in step S241.

図7に示すように、内部抵抗は、劣化度に依存するため、充電器102は、劣化度に応じて変化する劣化度補正係数βを内部抵抗に乗じることにより、内部抵抗を補正する。組電池101の劣化度が高い場合、内部抵抗は高くなり、組電池101の劣化度が低い場合、内部抵抗は低くなる(図4参照)。そのため、例えば、閾値劣化度を予め設定し、充電器101に格納し、充電器102は、ステップS21にて測定される劣化度が当該閾値劣化度より高い場合、補正値β1を抽出し、劣化度が当該閾値劣化度より低い場合、劣化度補正係数β2を抽出し、劣化度補正係数とする。ただし、補正値β1は、補正値β2より大きい。   As shown in FIG. 7, since the internal resistance depends on the degree of deterioration, the charger 102 corrects the internal resistance by multiplying the internal resistance by a deterioration degree correction coefficient β that changes according to the degree of deterioration. When the deterioration degree of the assembled battery 101 is high, the internal resistance is high, and when the deterioration degree of the assembled battery 101 is low, the internal resistance is low (see FIG. 4). Therefore, for example, the threshold deterioration degree is set in advance and stored in the charger 101. When the deterioration degree measured in step S21 is higher than the threshold deterioration degree, the charger 102 extracts the correction value β1 and deteriorates the deterioration degree. When the degree is lower than the threshold deterioration degree, the deterioration degree correction coefficient β2 is extracted and used as the deterioration degree correction coefficient. However, the correction value β1 is larger than the correction value β2.

そして、充電器102において、閾値電圧が、閾値電圧(V1)=満充電電圧(V)+劣化度補正係数(β1)・内部抵抗(r1)×充電電流により算出される。 In the charger 102, the threshold voltage is calculated by the following formula: threshold voltage (V1) = full charge voltage (V 0 ) + deterioration degree correction coefficient (β1) · internal resistance (r1) × charge current.

一方、充電時間tが所定の時間tcより大きい場合、ステップS242にて、充電器102は閾値電圧Vcを電圧閾値V2として設定する。内部抵抗は、充電時間tが所定の時間tcより大きいため、内部抵抗r2として推定される。また、充電器102は、劣化度に応じて変化する劣化度補正係数β2を抽出する。そして閾値電圧は、閾値電圧(V2)=満充電電圧(V)+劣化度補正係数(β2)・内部抵抗(r2)×充電電流により算出される。 On the other hand, when the charging time t is longer than the predetermined time tc, the charger 102 sets the threshold voltage Vc as the voltage threshold V2 in step S242. The internal resistance is estimated as the internal resistance r2 because the charging time t is longer than the predetermined time tc. Further, the charger 102 extracts a deterioration degree correction coefficient β2 that changes according to the deterioration degree. The threshold voltage is calculated by the following formula: threshold voltage (V2) = full charge voltage (V 0 ) + deterioration degree correction coefficient (β2) · internal resistance (r2) × charge current.

上記のように、本例は、組電池101の劣化度を測定する劣化度測定部201を有し、劣化度に応じて、閾値電圧を設定する。また、劣化度が所定の劣化度より高い場合に設定される閾値電圧が、劣化度が当該所定の劣化度より低い場合に設定される閾値電圧より高くなるよう、劣化度補正係数を設定する。これにより、組電池1の劣化状態に応じて、閾値電圧Vcを補正するため、当該劣化状態に適した閾値電圧を設定することができ、充電の過不足を防ぎつつ、充電時間の短縮を図ることができる。   As described above, the present example includes the deterioration degree measuring unit 201 that measures the deterioration degree of the assembled battery 101, and sets the threshold voltage according to the deterioration degree. Further, the deterioration degree correction coefficient is set so that the threshold voltage set when the deterioration degree is higher than the predetermined deterioration degree is higher than the threshold voltage set when the deterioration degree is lower than the predetermined deterioration degree. Thereby, since the threshold voltage Vc is corrected according to the deterioration state of the assembled battery 1, a threshold voltage suitable for the deterioration state can be set, and the charging time can be shortened while preventing excessive or insufficient charging. be able to.

なお、本例は、劣化度補正係数βを内部抵抗に乗ずることで補正をするが、劣化度補正係数を加減算することにより、補正をして、閾値電圧Vcを設定してもよい。   In this example, correction is performed by multiplying the deterioration degree correction coefficient β by the internal resistance. However, the threshold voltage Vc may be set by performing correction by adding or subtracting the deterioration degree correction coefficient.

なお、本例の劣化度測定部201は「劣化度測定手段」に相当する。   Note that the degradation level measurement unit 201 of this example corresponds to “a degradation level measurement unit”.

100…単電池
101…組電池
102…充電器
103…電圧センサ
104…電流センサ
105…サーミスタ
106…セルコントローラ
107…正極用ハーネス
108…負極用ハーネス
109…セル電圧検出線
110…タイマー
111…電源ハーネス
112…電源プラグ
113…コンセント
201…劣化度測定部
DESCRIPTION OF SYMBOLS 100 ... Single cell 101 ... Battery pack 102 ... Charger 103 ... Voltage sensor 104 ... Current sensor 105 ... Thermistor 106 ... Cell controller 107 ... Positive electrode harness 108 ... Negative electrode harness 109 ... Cell voltage detection wire 110 ... Timer 111 ... Power supply harness 112 ... Power plug 113 ... Outlet 201 ... Deterioration degree measuring unit

Claims (8)

二次電池の端子間電圧を検出する電圧検出手段と、
前記二次電池の充電時間を測定する充電時間測定手段と、
前記端子間電圧と所定の閾値電圧とを比較して前記二次電池への充電電力を制御する充電器とを有し、
前記充電器は、
前記充電時間が所定の時間より長い場合に設定される前記所定の閾値電圧を、前記充電時間が前記所定の時間より短い場合に設定される前記所定の閾値電圧より高くすることを特徴とする
充電制御装置。
Voltage detecting means for detecting a voltage between terminals of the secondary battery;
Charging time measuring means for measuring the charging time of the secondary battery;
A charger that controls the charging power to the secondary battery by comparing the voltage between the terminals and a predetermined threshold voltage;
The charger is
Charging characterized in that the predetermined threshold voltage set when the charging time is longer than a predetermined time is higher than the predetermined threshold voltage set when the charging time is shorter than the predetermined time. Control device.
前記二次電池の温度を検出する温度検出手段をさらに有し、
前記充電器は、前記温度検出手段より検出される温度に応じて、前記所定の閾値電圧を設定することを特徴とする
請求項記載の充電制御装置。
A temperature detecting means for detecting the temperature of the secondary battery;
2. The charging control apparatus according to claim 1 , wherein the charger sets the predetermined threshold voltage according to a temperature detected by the temperature detecting means.
前記充電器は、
前記温度が所定の温度より高い場合に設定される前記所定の閾値電圧を、前記温度が前記所定の温度より低い場合に設定される前記所定の閾値電圧より低くすることを特徴とする
請求項記載の充電制御装置。
The charger is
3. The predetermined threshold voltage that is set when the temperature is higher than a predetermined temperature is set lower than the predetermined threshold voltage that is set when the temperature is lower than the predetermined temperature. The charging control device described.
前記二次電池の劣化度を測定する劣化度測定手段をさらに有し、
前記充電器は、前記劣化度測定手段により測定される劣化度に応じて、前記所定の閾値電圧を設定する
請求項1からのいずれか一項に記載の充電制御装置。
A deterioration degree measuring means for measuring a deterioration degree of the secondary battery;
The charger, in accordance with the deterioration degree as measured by the deterioration degree measurement device, the charge control device according to any one of claims 1 to 3, setting the predetermined threshold voltage.
前記充電器は、
前記劣化度が所定の劣化度より高い場合に設定される前記所定の閾値電圧を、前記劣化度が所定の劣化度より低い場合に設定される前記所定の閾値電圧より高くすることを特徴とする
請求項記載の充電制御装置。
The charger is
The predetermined threshold voltage that is set when the degree of deterioration is higher than a predetermined degree of deterioration is higher than the predetermined threshold voltage that is set when the degree of deterioration is lower than a predetermined degree of deterioration. The charge control apparatus according to claim 4 .
前記充電器は、前記二次電池の内部抵抗が飽和する前記充電時間に応じて、前記所定の閾値電圧を設定する
請求項1〜のいずれか一項に記載する充電制御装置。
The charger, in accordance with the charging time internal resistance of the secondary battery is saturated, the charging control apparatus according to any one of claims 1 to 5 for setting the predetermined threshold voltage.
前記充電器は、前記端子間電圧が前記所定の閾値電圧に達した場合、前記二次電池への充電電流を小さくすることを特徴とする
請求項1〜のいずれか一項に記載する充電制御装置。
The charger, if the voltage between the terminals reaches the predetermined threshold voltage, set forth in any one of claims 1 to 6, characterized in that to reduce the charging current to the secondary battery charging Control device.
二次電池の端子間電圧を測定するステップと、
前記二次電池の充電時間を測定する充電時間測定ステップと、
前記充電時間測定ステップにより測定される充電時間に応じて、所定の閾値電圧を設定する設定ステップと、
前記端子間電圧と前記所定の閾値電圧とを比較して、前記二次電池への充電電力を制御し、二次電池を充電するステップとを有し、
前記設定ステップは、
前記充電時間が所定の時間より長い場合に設定される前記所定の閾値電圧を、前記充電時間が前記所定の時間より短い場合に設定される前記所定の閾値電圧より高くする
充電制御方法。
Measuring the voltage across the terminals of the secondary battery;
A charging time measuring step for measuring a charging time of the secondary battery;
A setting step for setting a predetermined threshold voltage according to the charging time measured by the charging time measuring step;
Comparing the inter-terminal voltage and the predetermined threshold voltage, controlling the charging power to the secondary battery, and charging the secondary battery,
The setting step includes
The predetermined threshold voltage that is set when the charging time is longer than the predetermined time is set higher than the predetermined threshold voltage that is set when the charging time is shorter than the predetermined time. Method.
JP2009208049A 2009-09-09 2009-09-09 Charge control device and charge control method Expired - Fee Related JP5454027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208049A JP5454027B2 (en) 2009-09-09 2009-09-09 Charge control device and charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208049A JP5454027B2 (en) 2009-09-09 2009-09-09 Charge control device and charge control method

Publications (2)

Publication Number Publication Date
JP2011061947A JP2011061947A (en) 2011-03-24
JP5454027B2 true JP5454027B2 (en) 2014-03-26

Family

ID=43948919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208049A Expired - Fee Related JP5454027B2 (en) 2009-09-09 2009-09-09 Charge control device and charge control method

Country Status (1)

Country Link
JP (1) JP5454027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021792A (en) * 2011-07-08 2013-01-31 Sanyo Denki Co Ltd Power supply system
KR20180107226A (en) * 2016-02-04 2018-10-01 닛산 가가쿠 가부시키가이샤 Method of producing polymer
JP7078890B2 (en) * 2018-02-13 2022-06-01 トヨタ自動車株式会社 Secondary battery controller
CN116472634A (en) * 2020-12-22 2023-07-21 日本汽车能源株式会社 Battery control device and battery system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194874B1 (en) * 1999-03-17 2001-02-27 Telefonaktiebolaget Lm Ericsson (Publ) System and method for maintenance charging of battery cells
JP2002142379A (en) * 2000-11-06 2002-05-17 Sanyo Electric Co Ltd Charging method for battery
JP3802379B2 (en) * 2001-07-31 2006-07-26 三洋電機株式会社 Charger

Also Published As

Publication number Publication date
JP2011061947A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CN105467324B (en) Battery degradation determination device, battery degradation determination method, and battery pack
KR101414287B1 (en) Arithmetic processing apparatus for calculating internal resistance/open-circuit voltage of secondary battery
US9438059B2 (en) Battery control apparatus and battery control method
US9071072B2 (en) Available charging/discharging current calculation method and power supply device
JP5348987B2 (en) How to detect battery deterioration
US7893652B2 (en) Battery control apparatus, electric vehicle, and computer-readable medium storing a program that causes a computer to execute processing for estimating a state of charge of a secondary battery
US9582468B2 (en) Capacity estimating apparatus for secondary battery
US20180372803A1 (en) Battery pack and method for calculating electric energy of battery pack
EP2058891B1 (en) Charging control device for a storage battery
US20050017725A1 (en) Method and device for estimating remaining capacity of secondary cell battery pack system and electric vehicle
US20080224709A1 (en) Battery management system and driving method thereof
JP4248854B2 (en) Battery management system and battery pack
JP5738784B2 (en) Power storage system
WO2008053969A1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded
KR20060130509A (en) Method and apparatus of controlling for charging/discharging voltage of battery
JP2012016263A (en) Device and method for charging battery
JP6520124B2 (en) Deterioration state estimation device for secondary battery
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP2010086901A (en) Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery
JP2014068468A (en) Charge control device
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP5454027B2 (en) Charge control device and charge control method
JP2004271342A (en) Charging and discharging control system
JP5640344B2 (en) Battery control device and battery internal resistance estimation method
JP2019041497A (en) Power source management device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees