JP4248854B2 - Battery management system and battery pack - Google Patents

Battery management system and battery pack Download PDF

Info

Publication number
JP4248854B2
JP4248854B2 JP2002339366A JP2002339366A JP4248854B2 JP 4248854 B2 JP4248854 B2 JP 4248854B2 JP 2002339366 A JP2002339366 A JP 2002339366A JP 2002339366 A JP2002339366 A JP 2002339366A JP 4248854 B2 JP4248854 B2 JP 4248854B2
Authority
JP
Japan
Prior art keywords
battery
charging
value
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002339366A
Other languages
Japanese (ja)
Other versions
JP2004172058A (en
Inventor
猪一郎 森
進 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002339366A priority Critical patent/JP4248854B2/en
Publication of JP2004172058A publication Critical patent/JP2004172058A/en
Application granted granted Critical
Publication of JP4248854B2 publication Critical patent/JP4248854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池と共通の電池パック内に収められ、その二次電池の状態を監視しかつ制御し、又は充電器等、外部の制御装置へ通知するための装置、すなわち電池管理システムに関する。ここで、二次電池は例えば、電池式電気機器、携帯用電子機器、非常用電源、補助電源、若しくは自動車に内蔵され電源として用いられ、又は電力貯蔵に用いられる。
【0002】
【従来の技術】
二次電池の有効な利用には、その最大容量までの充電が望ましい。
しかし、過充電は、例えば、電解液の分解によるガスの発生、又は電解液の漏れ等の原因となり、二次電池の安全性を損なうので好ましくない。更に、過充電及び過大な充電電流は二次電池を著しく劣化させるので好ましくない。
従って、二次電池の充電には厳密な制御が必要であり、すなわち、電池電圧と充電電流とが高精度で管理されなければならない。
【0003】
二次電池に対する充電制御は、例えば、充電器又は電子機器本体内の充電器制御部と、電池パック内の電池管理システムとの協働により実現する。
電池管理システムは、二次電池の充電に先立ち、所定の充電条件を充電器制御部へ通知する。充電器制御部はその充電条件に従い、充電器から二次電池への出力電圧と出力電流とを制御する。ここで、充電条件とは、充電期間中、例えば電池電圧、充電電流、及び電池温度が満たすべき条件(例えば、変化パターン又は変動の許容範囲等)をいう。
電池管理システムは、充電期間中、電池電圧、充電電流、及び電池温度を監視し、それらの測定値を充電器制御部へフィードバックする。充電器制御部はそれらの測定値に基づき、充電器の出力を充電条件に合うように調整する。
【0004】
二次電池は通常、満充電(完全充電ともいう)、すなわち実質的な最大容量まで充電されたときの電池状態、に達するまで充電される。二次電池の満充電は、電池電圧、充電電流、及び電池温度の測定値、又はそれらの一定時間内での変化量に基づき検知される。
電池管理システムは電池電圧、充電電流、及び電池温度の測定値に基づき満充電を検知し、充電器制御部へ通知する。そのとき、充電器制御部は、充電電流を遮断し、充電を終了する。ここで、充電器制御部が満充電を検知しても良い。
以下、電池管理システム又は充電器制御部により充電終了が判断されるための条件(例えば満充電の検知条件等)を充電終止条件という。充電終止条件は上記の充電条件の一部として含まれる。
【0005】
電池管理システムは充電条件を二次電池の充電特性に応じて定める。二次電池の充電特性は二次電池の種類ごとに異なるので、具体的な充電条件、特に充電終止条件は二次電池の種類ごとに異なる。
ニッケル−カドミウム蓄電池の充電は定電流方式で行われる。電池電圧は充電開始から徐々に上昇し、満充電でピークを迎え、以後降下する。このような充電特性に基づき、電池管理システムは、一定時間内の電池電圧の変化量が正から負へ転じることを充電終止条件として定める(−ΔV方式)。
【0006】
ニッケル−水素蓄電池の充電は定電流方式で行われる。電池温度の時間微分は充電開始から徐々に減少し、満充電で増大に転じ、過充電領域では増大する。このような充電特性に基づき、電池管理システムは、一定の微小時間内の電池温度の変化量の急増を充電終止条件として定める(dT/dt方式)。
【0007】
リチウムイオン二次電池では、ニッケル−カドミウム蓄電池及びニッケル−水素蓄電池に比べ、過充電による危険性が高い。そこで、リチウムイオン二次電池の充電は定電流定電圧方式(CCCV方式)で行われる。充電開始からしばらくは定電流制御が行われ、充電電流値が所定値に維持される。定電流制御期間では電池電圧が上昇する。充電が進み、電池電圧が所定の上限に達するとき、定電流制御は定電圧制御へ切り換えられ、充電電圧値がその上限値に維持される。定電圧制御期間では充電電流は徐々に減少する。充電電流値が所定の閾値(以下、充電終止電流値という)を下回るとき、充電が終了する。このように、CCCV方式ではその充電条件の一つとして、電池電圧の上限値が設定される。それにより過充電が確実に回避される。
【0008】
二次電池の充電特性は、その二次電池の種類の他に、その電池状態の履歴にも依存し変化する。例えば、充放電サイクル数の増大に伴い二次電池は劣化し、特にその電池容量が減少する。従って、充電条件は例えば充放電サイクル数に応じ修正され、充放電サイクル数の増大に関わらず過充電が確実に回避されなければならない。
【0009】
二次電池の充電時、その二次電池の充放電サイクル数に基づき充電条件を修正する充電システムとして、次のようなものが知られる(特許文献1参照)。その充電システムは、例えば、ノート型パーソナルコンピュータ(以下、ノートPCと略す)に内蔵された充電器とその制御部、及び電池パック内の電池管理システムとを含む。
【0010】
図2は、二次電池41の充電に関するノートPC3と電池パック40との従来の構成を示すブロック図である。ここで、電池パック40内の二次電池41は例えばリチウムイオン二次電池である。ノートPC3内の充電器制御部32と電池管理システム42内の制御部43とは協働し、CCCV方式に従い二次電池41の充電を制御する。充電器31は商用交流電源1からACアダプタ2を通し電力を入力する。更に、充電器制御部32の制御下でその入力電力を変換し、出力電圧又は出力電流を所定値に安定に維持し、電池パック40へ供給する。
【0011】
電池パック40では、二次電池41が充電器31からの電力供給により充電される。二次電池41の充電期間中、電池管理システム42では電池状態監視部が二次電池41の状態を監視する。ここで、電池状態監視部は電流検出部44、温度検出部45、及び電圧検出部46の三つのセンサを含む。電流検出部44は充電電流を、電流検出用抵抗44Aによる電圧降下量から計測する。温度検出部45は電池温度を、二次電池41に近接したサーミスタ45Aの抵抗値から計測する。電圧検出部46は二次電池41の両端間の電圧を計測し、セル当たりの電池電圧を換算する。
制御部43は、電流検出部44、温度検出部45、及び電圧検出部46のそれぞれから測定値を一定の時間間隔で入力し、それらの測定値をノートPC3内の充電器制御部32へ通知する。充電器制御部32は通知された電池状態に基づき、充電器31の出力電圧又は出力電流を、所定の充電条件に合うように調整する。
【0012】
一方、制御部43は充電期間中、充電電流の測定値を積算し、充電電気量を算定する。更にその充電電気量を充電後も保持する。複数回の充電にわたる充電電気量の累積が所定の電池容量と実質的に等しいとき、例えばその電池容量の0.9倍を超えるとき、制御部43は充放電サイクル数を1だけ加算する。ここで、電池容量は、例えば制御部43により二次電池41の放電ごとに放電電流の積算値から学習された値である。こうして、充放電サイクル数が放電深度による重み付きでカウントされる。
【0013】
上記の重み付き充放電サイクル数が所定の閾値(例えば50)を超えるとき、制御部43は充電器制御部32へ通知する。その通知に応じ、充電器制御部32は、例えばCCCV方式での電池電圧の上限値を所定量だけ低減させる(例えば、4.20V/セルから0.10V/セルだけ下げる)。それにより、一回の充電当たりの充電電気量の実質的な上限が下がる。
こうして、充放電サイクル数の増大に伴い二次電池41が劣化し、その電池容量が減少するときでも、過充電が確実に回避される。
【0014】
【特許文献1】
特開2001−309568号公報
【0015】
【発明が解決しようとする課題】
特許文献1で開示される充電システムは、二次電池の劣化を上記の重み付き充放電サイクル数で評価し、判定する。更に、その劣化判定の結果に応じ、例えば電池電圧の上限値を下げる等、充電条件を適切に修正する。その結果、充電条件は一般に、電池パックごとに、更に充電ごとに異なる。
従って、このような従来の充電システムでは、充電器がその出力を、充電条件の変動範囲を十分にカバーできるだけの広範囲で可変とし、充電器制御部がその充電器の広範囲で可変な出力を高精度に制御可能としなければならない。これらの要請は充電器及びその制御部の構成を複雑化し、制御精度の更なる向上を困難にしていた。
【0016】
本発明は、外部の充電器制御部に設定される充電条件の標準化を実現し、それにより、充電器の出力制御に関するその充電器及び充電器制御部の構成を簡素化し、その出力制御の精度の更なる向上を可能にする電池管理システムの提供を目的とする。
【0017】
【課題を解決するための手段】
本発明による電池管理システムは、
(A) 二次電池について、(a) 電池電圧を測るための電圧検出部、(b) 電池電流を測るための電流検出部、及び、(c) 電池温度を測るための温度検出部、を含む電池状態監視部;
(B) 二次電池の充電特性に応じ、その二次電池の充電条件を設定するための充電条件設定部;
(C) 上記の充電条件と、外部の充電器制御部により保持される標準の充電条件との相違に基づき、電池状態監視部による二次電池の電池電圧、充電電流、及び電池温度の測定値をそれぞれ補正するものであり、電池電圧の測定値を実際の上限値に対する標準値の比だけ増大させる補正、定電流定電圧方式における定電流制御期間中、充電電流の実際の目標値を標準値より小さく設定するとき、当該実際の目標値に対する標準値の比だけ充電電流の測定値を増大させる補正、若しくは、定電流定電圧方式における定電圧制御期間中、実際の充電終止電流値を標準値より小さく設定するとき、当該実際の充電終止電流値に対する標準値の比だけ充電電流の測定値を増大させる補正、の少なくともいずれか1つの補正を行うための電池状態補正部;並びに、
(D) 電池状態補正部により補正された二次電池の電池電圧、充電電流、及び電池温度の測定値を充電器制御部へ送出するための通信部;を有する。
ここで、電池管理システムは、二次電池と共通の電池パック内に収められ、その二次電池の状態を監視しかつ制御し、又は充電器等、外部の制御装置へ通知するための装置である。
【0018】
充電条件とは、二次電池の充電期間中、電池電圧、充電電流、及び電池温度が満たすべき条件(例えば、変化パターン又は変動の許容範囲)をいう。充電条件は特に、例えば満充電の検知条件等、充電終了を判断するための条件(以下、充電終止条件という)を含む。
例えば、−ΔV方式では、充電電流の目標値、及び一定時間内の電池電圧の変化量に対する閾値が、充電条件として含まれる。dT/dt方式では、充電電流の目標値、及び一定時間内の電池温度の変化量に対する閾値が、充電条件として含まれる。CCCV方式では、充電電流の目標値、電池電圧の上限値、及び充電終止電流値が、充電条件として含まれる。
【0019】
上記の電池管理システムは、二次電池の充電条件をその二次電池の充電特性に応じて設定する。二次電池の充電特性は二次電池ごとに異なり、更に、二次電池の劣化により経年変化を生じる。特に、二次電池の電池容量が使用時間の経過と共に減少する。従って、電池管理システムにより設定される実際の充電条件は一般に、電池パックごとに、及び充電ごとに異なる。
【0020】
上記の電池管理システムは、実際の充電条件と標準の充電条件とを比較する。ここで、その標準の充電条件は外部の充電器制御部により保持され、実質的に一定である。
上記の電池管理システムは更に、実際の充電条件と標準の充電条件との相違に基づき、電池電圧、充電電流、及び電池温度の測定値を補正する。その補正は、実際の充電条件に対応する電池電圧等の目標値を、標準の充電条件に対応する目標値に修正するものである。従って、外部の充電器制御部がその補正された電池電圧等の測定値に基づき、充電器の出力を標準の充電条件に合致させるとき、二次電池の電池状態が実際の充電条件に合致する。
【0021】
CCCV方式による充電では、上記の電池管理システムは例えば、二次電池の劣化による電池容量の減少に応じ、電池電圧の実際の上限値を下げる。一方、外部の充電器制御部は電池電圧の上限を標準値に維持する。
上記の電池管理システムはそのとき、電池電圧の上限について実際の値に対する標準値の比を求める。更に、電池電圧の測定値をその比だけ増大させ、その増大された電池電圧の測定値を外部の充電器制御部へ送出する。それにより、充電器制御部は、特に電池電圧の測定値による実際の上限値への到達を、標準の上限値への到達として判定する。
【0022】
こうして、外部の充電器制御部は、上記の電池管理システムにより補正された電池電圧等の測定値に基づき充電器の出力制御を行うことで、充電条件を標準のものに維持したまま、二次電池の良好な充電制御を達成できる。そのとき、その充電器及びその制御部は、少なくとも標準の充電条件にさえ適合した構成であれば良い。その結果、それらの制御精度の向上は従来の装置より容易である。
【0023】
【発明の実施の形態】
以下、本発明の最適な実施の形態について、その好ましい実施例を挙げて、図面を参照しつつ説明する。
【0024】
《実施例1》
本発明の実施例1による電池管理システムはノートPC用電池パックに搭載される。図1は、二次電池41の充電に関するノートPC3と電池パック4との構成を示すブロック図である。
ノートPC3は充電器31と充電器制御部32とを含む。
電池パック4は二次電池41と電池管理システム5とを含む。
二次電池41は例えばリチウムイオン二次電池である。ノートPC3と電池パック4内の電池管理システム5とは協働し、CCCV方式に従い二次電池41を充電する。
【0025】
ノートPC3内の充電器31は、ACアダプタ2を通し商用交流電源1へ接続される。それにより、ACアダプタ2から直流電力を入力する。更に、充電器制御部32の制御下でその入力電力を変換し、出力電圧又は出力電流を所定値に安定に維持し、電池パック4へ供給する。
充電器制御部32は標準の充電条件に従い、充電器31の出力電圧と出力電流とを制御する。ここで、標準の充電条件は、二次電池41の種類及びその充電方式ごとに規定される。
充電器制御部32は特に、電池管理システム5から二次電池41の電池状態に関する情報をフィードバックされ、それらのフィードバックに基づき、充電器31の出力と標準の充電条件による目標値とのずれを補償する。
【0026】
例えばCCCV方式では、定電流制御期間での充電電流の目標値と充電電圧の実質的な上限値、及び、定電圧制御期間での充電終止電流値が充電条件として含まれる。充電器制御部32はそれらの値として標準値を保持し、充電器31の出力制御では一律に、それらの標準値を目標値として設定する。例えば二次電池41がリチウムイオン二次電池であるとき、充電器制御部32は電池電圧の上限値として約4.20V/セルを一律に設定する。
充電器制御部32は、充電初期では定電流制御を実行し、充電器の出力電流を充電電流の標準の目標値に安定に維持する。電池管理システム5からの通知に基づき電池電圧の上限への到達が判定されるとき、充電器制御部32は定電流制御を定電圧制御へ切り替え、充電器の出力電圧を電池電圧の標準の上限値に安定に維持する。更に、電池管理システム5からの通知に基づき充電電流の充電終止電流値までの降下が判定されるとき、充電器制御部32は充電器31の出力を遮断し、二次電池41の充電を終了する。
【0027】
電池パック4内の電池管理システム5は、電池状態監視部と制御部51とを含む。電池状態監視部は電流検出部44、温度検出部45、及び電圧検出部46の三つのセンサを含む。電流検出部44は充電電流を、電流検出用抵抗44Aによる電圧降下量から計測する。温度検出部45は電池温度を、二次電池41に近接したサーミスタ45Aの抵抗値から計測する。電圧検出部46は二次電池41の両端間の電圧を計測し、セル当たりの電池電圧を換算する。ここで、電圧検出部45は二次電池41のセルごとに電圧を直接計測しても良い。
【0028】
制御部51はCPUとメモリ(例えば、RAMとフラッシュメモリ)とを含む(図示せず)。
メモリは充放電制御プログラムと二次電池41に関する情報とを記憶する。その二次電池41に関する情報には、例えば、電池電圧、電池電流、電池温度、及び充電状態の履歴、電池容量の初期値と放電ごとの学習値、充放電サイクル数、充放電サイクル数と電池容量との対応関係を示すリスト、電池状態と充電状態との対応関係を示すリスト、並びに、充電条件が含まれる。特に充電条件としては、充電器制御部32により保持されるものと同じ標準の充電条件と、電池管理システム5により設定される実際の充電条件とが含まれる。
【0029】
ここで、二次電池の充電状態とは電池容量に対する残存容量の割合をいう。
充電状態は、例えば、電池電流の積算値、すなわち充電電気量又は放電電気量と、電池容量とから算定される。その他に、二次電池固有の充放電特性に基づき電池状態(電池電圧、電池電流、及び電池温度の組)と充電状態との対応関係が二次電池の製造時に記憶され、その対応関係から、電池状態の測定値に対応する充電状態が決定されても良い。
【0030】
二次電池41の充電時、CPUはメモリに記憶された充電制御プログラムを実行する。それにより、制御部51は、充電条件設定部51A、電池状態補正部51B、及び通信部51Cのそれぞれとして、以下の機能を実現する。
【0031】
充電条件設定部51Aは二次電池41の充電ごとに、その実際の充電特性に応じ充電条件を設定する。
例えば、二次電池41は充放電サイクル数の増大に伴い劣化するので、その電池容量が充放電サイクル数の増大と共に低減する。制御部51は二次電池41の使用開始以降、その充放電サイクル数をカウントし、保持する。充電条件設定部51Aはその充放電サイクル数に基づき、充電ごとに電池容量を予測する。その予測は例えば、充放電サイクル数と電池容量との対応関係を示すリストに基づく。そのリストは例えば二次電池41の製造時の実験で設定される。
予測される電池容量の初期値(二次電池41の製造時での値)からの減少量が所定の範囲を超えるごとに、充電条件設定部51Aは定電流制御期間での充電電流の目標値若しくは電池電圧の上限値を所定量だけ低減させ、又は、充電終止電流値を所定量だけ増加させる。具体的には例えば、予測される電池容量が初期値の約5%だけ減少するごとに、電池電圧の上限値が約0.05V/セルずつ下げられる。
【0032】
電池状態補正部51Bはまず、充電条件設定部51Aによる実際の充電条件と標準の充電条件とを比較し、それらの相違を求める。例えば、電池電圧の上限について実際の値に対する標準値の比を求める。
電池状態補正部51Bは次に、電流検出部44、温度検出部45、及び電圧検出部46のそれぞれから測定値を一定の時間間隔(例えば約2秒間隔)で入力し、電池電圧、電池電流、及び電池温度の充電期間中で変化を監視する。更に、実際の充電条件と標準の充電条件との相違に基づき、電池電圧、充電電流、及び電池温度の測定値を補正する。その補正は、実際の充電条件に対応する電池電圧等の目標値を、標準の充電条件に対応する目標値に修正するものである。
具体的には例えば、電池電圧の測定値を実際の上限値に対する標準値の比だけ増大させる。その他に、定電流制御期間中、充電電流の実際の目標値を標準値より小さく設定するとき、その実際の目標値に対する標準値の比だけ充電電流の測定値を増大させる。更に、定電圧制御期間中、実際の充電終止電流値を標準値より小さく設定するとき、その実際の値に対する標準値の比だけ充電電流の測定値を増大させる。
【0033】
通信部51CはノートPC3との通信を実現し、二次電池41の電池状態をノートPC3へ提供する。特に充電期間中では、二次電池41の電池電圧、充電電流、及び電池温度の測定値を、電池状態補正部51Bによる上記の補正後に、充電器制御部32へ通知する。充電器制御部32はその補正された電池電圧等の測定値に基づき、充電器31の出力を標準の充電条件に合致させる。そのとき、電池パック4内では二次電池41の電池状態が充電条件設定部51Aによる実際の充電条件に合致する。
【0034】
こうして、実施例1による電池管理システム5は、二次電池41に関する電池電圧等の測定値を、充電条件設定部51Aによる実際の充電条件と標準の充電条件との相違に基づき補正した上で、充電器制御部32へフィードバックする。それにより、充電器制御部32に充電器31の出力制御を、その補正された測定値に基づき実行させる。その結果、充電器制御部32は充電条件を標準のものに維持したまま、二次電池41の良好な充電制御を達成できる。すなわち、二次電池41の劣化による電池容量の減少に適切に応じ、過充電及び過大な充電電流の発生が確実に回避される。
そのとき、充電器31及び充電器制御部32はいずれも、少なくとも標準の充電条件にさえ適合した構成であれば良い。従って、それらの構成は従来の装置より簡素であり、特に制御精度の向上が従来の装置より容易である。
【0035】
【発明の効果】
本発明による電池管理システムは、二次電池の充電条件をその二次電池の充電特性に応じて設定し、実際の充電条件と標準の充電条件とを比較する。更に、実際の充電条件と標準の充電条件との相違に基づき、電池電圧、充電電流、及び電池温度の測定値を補正する。その補正は、実際の充電条件に対応する電池電圧等の目標値を、標準の充電条件に対応する目標値に修正するものである。従って、外部の充電器制御部がその補正された電池電圧等の測定値に基づき、充電器の出力を標準の充電条件に合致させるとき、二次電池の電池状態が実際の充電条件に合致する。
こうして、外部の充電器制御部は、上記の電池管理システムにより補正された電池電圧等の測定値に基づき充電器の出力制御を行うことで、充電条件を標準のものに維持したまま、二次電池の良好な充電制御を達成できる。そのとき、その充電器及びその制御部は、少なくとも標準の充電条件にさえ適合した構成であれば良い。その結果、それらの制御精度の向上は従来の装置より容易である。
【図面の簡単な説明】
【図1】本発明の実施例1について、二次電池41の充電に関するノートPC3と電池パック4との構成を示すブロック図である。
【図2】二次電池41の充電に関するノートPC3と電池パック40との従来の構成を示すブロック図である。
【符号の説明】
1 商用交流電源
41 二次電池
44A 電流検出用抵抗
45A サーミスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention is a battery management system that is housed in a battery pack common to a secondary battery, monitors and controls the state of the secondary battery, or notifies an external control device such as a charger. About. Here, the secondary battery is used, for example, as a battery-powered electric device, a portable electronic device, an emergency power source, an auxiliary power source, a built-in motor vehicle, or a power storage.
[0002]
[Prior art]
Charging up to its maximum capacity is desirable for effective use of secondary batteries.
However, overcharging is not preferable because, for example, gas generation due to decomposition of the electrolytic solution or leakage of the electrolytic solution is caused, and the safety of the secondary battery is impaired. Furthermore, overcharging and excessive charging current are undesirable because they significantly deteriorate the secondary battery.
Therefore, strict control is required for charging the secondary battery, that is, the battery voltage and the charging current must be managed with high accuracy.
[0003]
Charging control for the secondary battery is realized by, for example, cooperation between a charger or a charger control unit in the electronic device main body and a battery management system in the battery pack.
The battery management system notifies the charger controller of predetermined charging conditions prior to charging the secondary battery. The charger control unit controls the output voltage and output current from the charger to the secondary battery according to the charging condition. Here, the charging condition refers to a condition (for example, a change pattern or an allowable range of variation) that the battery voltage, the charging current, and the battery temperature should satisfy during the charging period.
The battery management system monitors the battery voltage, charging current, and battery temperature during the charging period, and feeds back these measured values to the charger controller. Based on these measured values, the charger controller adjusts the output of the charger to meet the charging conditions.
[0004]
Secondary batteries are typically charged until they reach full charge (also called full charge), i.e., the battery state when charged to a substantial maximum capacity. The full charge of the secondary battery is detected based on the measured values of the battery voltage, the charging current, and the battery temperature, or the amount of change within a certain time.
The battery management system detects full charge based on the measured values of battery voltage, charging current, and battery temperature, and notifies the charger controller. At that time, the charger controller cuts off the charging current and ends the charging. Here, the charger control unit may detect full charge.
Hereinafter, a condition for determining the end of charging by the battery management system or the charger control unit (for example, a full charge detection condition) is referred to as a charge termination condition. The charge termination condition is included as part of the above charge condition.
[0005]
The battery management system determines charging conditions according to the charging characteristics of the secondary battery. Since the charging characteristics of the secondary battery differ for each type of secondary battery, the specific charging conditions, particularly the charge termination conditions, differ for each type of secondary battery.
The nickel-cadmium battery is charged by a constant current method. The battery voltage gradually increases from the start of charging, reaches a peak at full charge, and then decreases. Based on such charging characteristics, the battery management system determines that the change amount of the battery voltage within a certain time shifts from positive to negative as a charge termination condition (−ΔV method).
[0006]
The nickel-hydrogen storage battery is charged by a constant current method. The time derivative of the battery temperature gradually decreases from the start of charging, starts increasing at full charge, and increases in the overcharge region. Based on such charging characteristics, the battery management system determines a sudden increase in the amount of change in battery temperature within a certain minute time as a charge termination condition (dT / dt method).
[0007]
Lithium ion secondary batteries have a higher risk of overcharging than nickel-cadmium storage batteries and nickel-hydrogen storage batteries. Therefore, charging of the lithium ion secondary battery is performed by a constant current constant voltage method (CCCV method). Constant current control is performed for a while from the start of charging, and the charging current value is maintained at a predetermined value. The battery voltage rises during the constant current control period. When charging proceeds and the battery voltage reaches a predetermined upper limit, the constant current control is switched to the constant voltage control, and the charging voltage value is maintained at the upper limit value. The charging current gradually decreases during the constant voltage control period. When the charging current value falls below a predetermined threshold value (hereinafter referred to as a charging end current value), charging ends. Thus, in the CCCV method, the upper limit value of the battery voltage is set as one of the charging conditions. Thereby, overcharging is reliably avoided.
[0008]
The charging characteristics of the secondary battery change depending on the battery state history in addition to the type of the secondary battery. For example, as the number of charge / discharge cycles increases, the secondary battery deteriorates, and in particular, its battery capacity decreases. Accordingly, the charging condition is corrected according to, for example, the number of charge / discharge cycles, and overcharge must be reliably avoided regardless of the increase in the number of charge / discharge cycles.
[0009]
The following is known as a charging system that corrects the charging conditions based on the number of charge / discharge cycles of the secondary battery when the secondary battery is charged (see Patent Document 1). The charging system includes, for example, a charger built in a notebook personal computer (hereinafter abbreviated as “notebook PC”), its control unit, and a battery management system in the battery pack.
[0010]
FIG. 2 is a block diagram showing a conventional configuration of the notebook PC 3 and the battery pack 40 relating to the charging of the secondary battery 41. As shown in FIG. Here, the secondary battery 41 in the battery pack 40 is, for example, a lithium ion secondary battery. The charger controller 32 in the notebook PC 3 and the controller 43 in the battery management system 42 cooperate to control charging of the secondary battery 41 according to the CCCV method. The charger 31 inputs power from the commercial AC power source 1 through the AC adapter 2. Further, the input power is converted under the control of the charger control unit 32, the output voltage or the output current is stably maintained at a predetermined value, and supplied to the battery pack 40.
[0011]
In the battery pack 40, the secondary battery 41 is charged by supplying power from the charger 31. During the charging period of the secondary battery 41, the battery state monitoring unit monitors the state of the secondary battery 41 in the battery management system 42. Here, the battery state monitoring unit includes three sensors: a current detection unit 44, a temperature detection unit 45, and a voltage detection unit 46. The current detection unit 44 measures the charging current from the amount of voltage drop caused by the current detection resistor 44A. The temperature detector 45 measures the battery temperature from the resistance value of the thermistor 45A adjacent to the secondary battery 41. The voltage detector 46 measures the voltage across the secondary battery 41 and converts the battery voltage per cell.
The control unit 43 inputs measurement values from the current detection unit 44, temperature detection unit 45, and voltage detection unit 46 at regular time intervals, and notifies the measurement values to the charger control unit 32 in the notebook PC 3. To do. Based on the notified battery state, the charger control unit 32 adjusts the output voltage or output current of the charger 31 so as to meet a predetermined charging condition.
[0012]
On the other hand, during the charging period, the control unit 43 integrates the measured values of the charging current and calculates the amount of charge electricity. Furthermore, the amount of charged electricity is retained after charging. When the accumulated amount of charge over a plurality of times of charging is substantially equal to a predetermined battery capacity, for example, when the battery capacity exceeds 0.9 times, the control unit 43 adds 1 to the number of charge / discharge cycles. Here, the battery capacity is a value learned from the integrated value of the discharge current for each discharge of the secondary battery 41 by the control unit 43, for example. Thus, the number of charge / discharge cycles is counted with a weight depending on the depth of discharge.
[0013]
When the number of weighted charge / discharge cycles exceeds a predetermined threshold (for example, 50), the control unit 43 notifies the charger control unit 32. In response to the notification, the charger control unit 32 reduces the upper limit value of the battery voltage in, for example, the CCCV method by a predetermined amount (for example, decreases from 4.20 V / cell by 0.10 V / cell). Thereby, the substantial upper limit of the amount of charged electricity per charge is lowered.
In this way, even when the secondary battery 41 deteriorates as the number of charge / discharge cycles increases and the battery capacity decreases, overcharge is reliably avoided.
[0014]
[Patent Document 1]
JP 2001-309568 A
[Problems to be solved by the invention]
The charging system disclosed in Patent Document 1 evaluates and determines the deterioration of the secondary battery based on the number of weighted charge / discharge cycles. Furthermore, according to the result of the deterioration determination, the charging condition is appropriately corrected, for example, by lowering the upper limit value of the battery voltage. As a result, charging conditions generally vary from battery pack to battery and from charge to charge.
Therefore, in such a conventional charging system, the charger makes its output variable over a wide range that can sufficiently cover the fluctuation range of the charging condition, and the charger controller increases the variable output of the charger over a wide range. It must be controllable with accuracy. These requests complicate the configuration of the charger and its control unit, making it difficult to further improve control accuracy.
[0016]
The present invention realizes standardization of the charging conditions set in the external charger control unit, thereby simplifying the configuration of the charger and the charger control unit regarding the output control of the charger, and the accuracy of the output control An object of the present invention is to provide a battery management system that enables further improvement of the battery.
[0017]
[Means for Solving the Problems]
The battery management system according to the present invention includes:
(A) For a secondary battery, (a) a voltage detector for measuring battery voltage, (b) a current detector for measuring battery current, and (c) a temperature detector for measuring battery temperature. Including battery status monitoring unit;
(B) a charging condition setting unit for setting the charging condition of the secondary battery according to the charging characteristics of the secondary battery;
(C) Based on the difference between the above charging conditions and the standard charging conditions held by the external charger control unit, the measured values of the battery voltage, charging current, and battery temperature of the secondary battery by the battery state monitoring unit Correction to increase the measured value of the battery voltage by the ratio of the standard value to the actual upper limit value, and the actual target value of the charging current during the constant current control period in the constant current constant voltage method. When setting a smaller value, a correction that increases the measured value of the charging current by the ratio of the standard value to the actual target value, or the actual charge end current value during the constant voltage control period in the constant current constant voltage method is the standard value. A battery state correction unit for performing at least one of the corrections that increase the measured value of the charging current by the ratio of the standard value to the actual charging end current value when setting a smaller value ; Bini,
(D) a communication unit for sending the measured values of the battery voltage, the charging current, and the battery temperature of the secondary battery corrected by the battery state correcting unit to the charger control unit;
Here, the battery management system is a device that is housed in a battery pack that is shared with the secondary battery, monitors and controls the state of the secondary battery, or notifies an external control device such as a charger. is there.
[0018]
The charging condition refers to a condition (for example, a change pattern or an allowable range of fluctuation) that the battery voltage, the charging current, and the battery temperature should satisfy during the charging period of the secondary battery. In particular, the charging condition includes a condition for determining the end of charging, such as a full charging detection condition (hereinafter referred to as a charging termination condition).
For example, in the −ΔV method, a charging current target value and a threshold value for the amount of change in battery voltage within a certain time are included as charging conditions. In the dT / dt method, a charging current target value and a threshold value for the amount of change in battery temperature within a predetermined time are included as charging conditions. In the CCCV method, a charging current target value, a battery voltage upper limit value, and a charging end current value are included as charging conditions.
[0019]
Said battery management system sets the charging condition of a secondary battery according to the charging characteristic of the secondary battery. The charging characteristics of the secondary battery are different for each secondary battery, and further, the secondary battery deteriorates over time. In particular, the battery capacity of the secondary battery decreases as the usage time elapses. Therefore, the actual charging conditions set by the battery management system are generally different for each battery pack and for each charge.
[0020]
The battery management system compares actual charging conditions with standard charging conditions. Here, the standard charging condition is maintained by an external charger control unit and is substantially constant.
The battery management system further corrects the measured values of battery voltage, charging current, and battery temperature based on the difference between actual charging conditions and standard charging conditions. The correction is to correct a target value such as a battery voltage corresponding to an actual charging condition to a target value corresponding to a standard charging condition. Therefore, when the external charger control unit matches the output of the charger with the standard charging condition based on the corrected measured value such as the battery voltage, the battery state of the secondary battery matches the actual charging condition. .
[0021]
In charging using the CCCV method, the battery management system described above lowers the actual upper limit value of the battery voltage in accordance with, for example, a decrease in battery capacity due to deterioration of the secondary battery. On the other hand, the external charger control unit maintains the upper limit of the battery voltage at a standard value.
The battery management system then determines the ratio of the standard value to the actual value for the upper limit of the battery voltage. Furthermore, the measured value of the battery voltage is increased by the ratio, and the increased measured value of the battery voltage is sent to the external charger control unit. As a result, the charger control unit determines that the actual upper limit value due to the measured value of the battery voltage is reached as the standard upper limit value.
[0022]
In this way, the external charger control unit performs the output control of the charger based on the measured value such as the battery voltage corrected by the battery management system, so that the secondary charging condition can be maintained while maintaining the standard charging condition. Good battery charge control can be achieved. At that time, the charger and the control unit need only have a configuration adapted to at least standard charging conditions. As a result, it is easier to improve their control accuracy than conventional devices.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, taking preferred examples.
[0024]
Example 1
The battery management system according to the first embodiment of the present invention is mounted on a battery pack for a notebook PC. FIG. 1 is a block diagram showing the configuration of the notebook PC 3 and the battery pack 4 relating to the charging of the secondary battery 41. As shown in FIG.
The notebook PC 3 includes a charger 31 and a charger controller 32.
The battery pack 4 includes a secondary battery 41 and a battery management system 5.
The secondary battery 41 is, for example, a lithium ion secondary battery. The notebook PC 3 and the battery management system 5 in the battery pack 4 cooperate to charge the secondary battery 41 according to the CCCV method.
[0025]
The charger 31 in the notebook PC 3 is connected to the commercial AC power source 1 through the AC adapter 2. Thereby, DC power is input from the AC adapter 2. Further, the input power is converted under the control of the charger control unit 32, and the output voltage or output current is stably maintained at a predetermined value and supplied to the battery pack 4.
The charger control unit 32 controls the output voltage and output current of the charger 31 according to standard charging conditions. Here, the standard charging conditions are defined for each type of secondary battery 41 and its charging method.
In particular, the charger control unit 32 is fed back information on the battery status of the secondary battery 41 from the battery management system 5, and based on those feedbacks, compensates for the deviation between the output of the charger 31 and the target value due to standard charging conditions. To do.
[0026]
For example, in the CCCV method, the charging current target value and the substantial upper limit value of the charging voltage in the constant current control period, and the charging end current value in the constant voltage control period are included as charging conditions. The charger control unit 32 holds standard values as those values, and uniformly sets these standard values as target values in the output control of the charger 31. For example, when the secondary battery 41 is a lithium ion secondary battery, the charger control unit 32 uniformly sets approximately 4.20 V / cell as the upper limit value of the battery voltage.
The charger control unit 32 performs constant current control at the initial stage of charging, and stably maintains the output current of the charger at the standard target value of the charging current. When it is determined that the upper limit of the battery voltage is reached based on the notification from the battery management system 5, the charger control unit 32 switches the constant current control to the constant voltage control, and changes the output voltage of the charger to the standard upper limit of the battery voltage. Keep the value stable. Further, when it is determined that the charging current has dropped to the charge end current value based on the notification from the battery management system 5, the charger control unit 32 shuts off the output of the charger 31 and ends the charging of the secondary battery 41. To do.
[0027]
The battery management system 5 in the battery pack 4 includes a battery state monitoring unit and a control unit 51. The battery state monitoring unit includes three sensors: a current detection unit 44, a temperature detection unit 45, and a voltage detection unit 46. The current detection unit 44 measures the charging current from the amount of voltage drop caused by the current detection resistor 44A. The temperature detector 45 measures the battery temperature from the resistance value of the thermistor 45A adjacent to the secondary battery 41. The voltage detector 46 measures the voltage across the secondary battery 41 and converts the battery voltage per cell. Here, the voltage detection unit 45 may directly measure the voltage for each cell of the secondary battery 41.
[0028]
The control unit 51 includes a CPU and a memory (for example, a RAM and a flash memory) (not shown).
The memory stores a charge / discharge control program and information related to the secondary battery 41. Information on the secondary battery 41 includes, for example, battery voltage, battery current, battery temperature, and charge state history, battery capacity initial value and learning value for each discharge, number of charge / discharge cycles, number of charge / discharge cycles and battery. A list showing the correspondence with the capacity, a list showing the correspondence between the battery state and the charging state, and the charging condition are included. In particular, the charging conditions include the same standard charging conditions as those held by the charger control unit 32 and the actual charging conditions set by the battery management system 5.
[0029]
Here, the state of charge of the secondary battery refers to the ratio of the remaining capacity to the battery capacity.
The state of charge is calculated from, for example, the integrated value of the battery current, that is, the amount of charge or discharge, and the battery capacity. In addition, the correspondence between the battery state (battery voltage, battery current, and battery temperature) and the state of charge based on the charge / discharge characteristics unique to the secondary battery is stored when the secondary battery is manufactured. A state of charge corresponding to the measured value of the battery state may be determined.
[0030]
When the secondary battery 41 is charged, the CPU executes a charge control program stored in the memory. Thereby, the control part 51 implement | achieves the following functions as each of the charge condition setting part 51A, the battery state correction | amendment part 51B, and the communication part 51C.
[0031]
Each time the secondary battery 41 is charged, the charging condition setting unit 51A sets the charging condition according to the actual charging characteristics.
For example, since the secondary battery 41 deteriorates as the number of charge / discharge cycles increases, the battery capacity decreases as the number of charge / discharge cycles increases. The control unit 51 counts and holds the number of charge / discharge cycles after the use of the secondary battery 41 is started. The charge condition setting unit 51A predicts the battery capacity for each charge based on the number of charge / discharge cycles. The prediction is based on, for example, a list indicating the correspondence between the number of charge / discharge cycles and the battery capacity. The list is set, for example, in an experiment at the time of manufacturing the secondary battery 41.
Each time the amount of decrease from the initial value of the predicted battery capacity (value at the time of manufacturing the secondary battery 41) exceeds a predetermined range, the charging condition setting unit 51A sets the target value of the charging current in the constant current control period. Alternatively, the upper limit value of the battery voltage is reduced by a predetermined amount, or the charge end current value is increased by a predetermined amount. Specifically, for example, every time the predicted battery capacity decreases by about 5% of the initial value, the upper limit value of the battery voltage is lowered by about 0.05 V / cell.
[0032]
First, the battery state correction unit 51B compares the actual charging condition by the charging condition setting unit 51A with the standard charging condition, and obtains the difference therebetween. For example, the ratio of the standard value to the actual value for the upper limit of the battery voltage is obtained.
Next, the battery state correction unit 51B inputs measurement values from the current detection unit 44, the temperature detection unit 45, and the voltage detection unit 46 at regular time intervals (for example, at intervals of about 2 seconds). And monitoring the change in battery temperature during the charging period. Further, the measured values of the battery voltage, the charging current, and the battery temperature are corrected based on the difference between the actual charging condition and the standard charging condition. The correction is to correct a target value such as a battery voltage corresponding to an actual charging condition to a target value corresponding to a standard charging condition.
Specifically, for example, the measured value of the battery voltage is increased by the ratio of the standard value to the actual upper limit value. In addition, when the actual target value of the charging current is set smaller than the standard value during the constant current control period, the measured value of the charging current is increased by the ratio of the standard value to the actual target value. Further, during the constant voltage control period, when the actual charge end current value is set to be smaller than the standard value, the measured value of the charge current is increased by the ratio of the standard value to the actual value.
[0033]
The communication unit 51C realizes communication with the notebook PC 3 and provides the battery state of the secondary battery 41 to the notebook PC 3. In particular, during the charging period, measured values of the battery voltage, charging current, and battery temperature of the secondary battery 41 are notified to the charger control unit 32 after the above correction by the battery state correction unit 51B. The charger controller 32 matches the output of the charger 31 with the standard charging condition based on the corrected measured value such as the battery voltage. At that time, in the battery pack 4, the battery state of the secondary battery 41 matches the actual charging condition by the charging condition setting unit 51A.
[0034]
Thus, the battery management system 5 according to the first embodiment corrects the measured value of the battery voltage and the like related to the secondary battery 41 based on the difference between the actual charging condition and the standard charging condition by the charging condition setting unit 51A. Feedback to the charger control unit 32. This causes the charger control unit 32 to execute the output control of the charger 31 based on the corrected measurement value. As a result, the charger control unit 32 can achieve good charge control of the secondary battery 41 while maintaining the charging condition at a standard one. That is, overcharge and generation of an excessive charge current are reliably avoided in response to a decrease in battery capacity due to deterioration of the secondary battery 41.
At that time, both the charger 31 and the charger control unit 32 may be configured to be compatible with at least standard charging conditions. Therefore, their configuration is simpler than that of the conventional apparatus, and in particular, improvement of control accuracy is easier than that of the conventional apparatus.
[0035]
【The invention's effect】
The battery management system according to the present invention sets the charging condition of the secondary battery according to the charging characteristic of the secondary battery, and compares the actual charging condition with the standard charging condition. Further, the measured values of the battery voltage, the charging current, and the battery temperature are corrected based on the difference between the actual charging condition and the standard charging condition. The correction is to correct a target value such as a battery voltage corresponding to an actual charging condition to a target value corresponding to a standard charging condition. Therefore, when the external charger control unit matches the output of the charger with the standard charging condition based on the corrected measured value such as the battery voltage, the battery state of the secondary battery matches the actual charging condition. .
In this way, the external charger control unit performs the output control of the charger based on the measured value such as the battery voltage corrected by the battery management system, so that the secondary charging condition can be maintained while maintaining the standard charging condition. Good battery charge control can be achieved. At that time, the charger and the control unit need only have a configuration adapted to at least standard charging conditions. As a result, it is easier to improve their control accuracy than conventional devices.
[Brief description of the drawings]
FIG. 1 is a block diagram showing configurations of a notebook PC 3 and a battery pack 4 related to charging of a secondary battery 41 in Example 1 of the present invention.
2 is a block diagram showing a conventional configuration of a notebook PC 3 and a battery pack 40 relating to charging of a secondary battery 41. FIG.
[Explanation of symbols]
1 Commercial AC power supply
41 Secondary battery
44A current detection resistor
45A thermistor

Claims (2)

(A) 二次電池について、(a) 電池電圧を測るための電圧検出部、(b) 電池電流を測るための電流検出部、及び、(c) 電池温度を測るための温度検出部、を含む電池状態監視部;
(B) 前記二次電池の充電特性に応じ、前記二次電池の充電条件を設定するための充電条件設定部;
(C) 前記充電条件と、外部の充電器制御部により保持される標準の充電条件との相違に基づき、前記電池状態監視部による前記二次電池の電池電圧、充電電流、及び電池温度の測定値をそれぞれ補正するものであり、電池電圧の測定値を実際の上限値に対する標準値の比だけ増大させる補正、定電流定電圧方式における定電流制御期間中、充電電流の実際の目標値を標準値より小さく設定するとき、当該実際の目標値に対する標準値の比だけ充電電流の測定値を増大させる補正、若しくは、定電流定電圧方式における定電圧制御期間中、実際の充電終止電流値を標準値より小さく設定するとき、当該実際の充電終止電流値に対する標準値の比だけ充電電流の測定値を増大させる補正、の少なくともいずれか1つの補正を行うための電池状態補正部;並びに、
(D) 前記電池状態補正部により補正された前記二次電池の電池電圧、充電電流、及び電池温度の測定値を前記充電器制御部へ送出するための通信部;
を有する電池管理システム。
(A) For a secondary battery, (a) a voltage detector for measuring battery voltage, (b) a current detector for measuring battery current, and (c) a temperature detector for measuring battery temperature. Including battery status monitoring unit;
(B) a charging condition setting unit for setting charging conditions for the secondary battery according to the charging characteristics of the secondary battery;
(C) Measurement of the battery voltage, charging current, and battery temperature of the secondary battery by the battery state monitoring unit based on the difference between the charging condition and the standard charging condition held by an external charger control unit Each value is corrected, correction to increase the measured value of the battery voltage by the ratio of the standard value to the actual upper limit, and the actual target value of the charging current is standard during the constant current control period in the constant current constant voltage method. When setting a value smaller than the value, a correction that increases the measured value of the charging current by the ratio of the standard value to the actual target value, or the actual charge end current value during the constant voltage control period in the constant current constant voltage method is standard A battery state correction for correcting at least one of a correction for increasing the measured value of the charge current by a ratio of the standard value to the actual charge end current value when the value is set smaller than the value. Part; and
(D) a communication unit for sending measured values of the battery voltage, charging current, and battery temperature of the secondary battery corrected by the battery state correcting unit to the charger control unit;
A battery management system.
請求項1記載の電池管理システムと前記二次電池とを有する電池パック。  A battery pack comprising the battery management system according to claim 1 and the secondary battery.
JP2002339366A 2002-11-22 2002-11-22 Battery management system and battery pack Expired - Fee Related JP4248854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339366A JP4248854B2 (en) 2002-11-22 2002-11-22 Battery management system and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339366A JP4248854B2 (en) 2002-11-22 2002-11-22 Battery management system and battery pack

Publications (2)

Publication Number Publication Date
JP2004172058A JP2004172058A (en) 2004-06-17
JP4248854B2 true JP4248854B2 (en) 2009-04-02

Family

ID=32702323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339366A Expired - Fee Related JP4248854B2 (en) 2002-11-22 2002-11-22 Battery management system and battery pack

Country Status (1)

Country Link
JP (1) JP4248854B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091268B1 (en) * 2005-04-25 2011-12-07 주식회사 엘지화학 Battery pack management method for hev ? ev
JP4907113B2 (en) * 2005-07-05 2012-03-28 株式会社リコー Secondary battery charging system device
JP4539640B2 (en) * 2006-11-08 2010-09-08 トヨタ自動車株式会社 Secondary battery input / output control device and vehicle
US20080218127A1 (en) * 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
US8222870B2 (en) 2007-03-07 2012-07-17 O2Micro, Inc Battery management systems with adjustable charging current
JP4398489B2 (en) 2007-05-29 2010-01-13 レノボ・シンガポール・プライベート・リミテッド Battery pack, device, and charge control method
JP2009112111A (en) 2007-10-30 2009-05-21 Toshiba Corp Battery pack, charger, and battery pack system
JP2010016976A (en) * 2008-07-03 2010-01-21 Hitachi Koki Co Ltd Charging system
JP2010033168A (en) * 2008-07-25 2010-02-12 Makita Corp Charging system, battery, battery charger, and program
JP2011017619A (en) * 2009-07-09 2011-01-27 Mitsumi Electric Co Ltd Battery pack, semiconductor device, portable device, notification method, and notification program
JP2011205839A (en) * 2010-03-26 2011-10-13 Hitachi Koki Co Ltd Charger and battery pack
CN102064575B (en) * 2010-11-22 2013-06-12 奇瑞汽车股份有限公司 Method and device for correcting deviation of voltage collection in battery management system of electric automobile
CN102479984A (en) * 2010-11-30 2012-05-30 新德科技股份有限公司 Battery module capable of reducing waiting time for charging and method for increasing charging security
CN103121412A (en) * 2011-11-18 2013-05-29 北汽福田汽车股份有限公司 Method and system for deviation correction of signal acquisition of electric vehicle battery management system
JP2014109918A (en) * 2012-12-03 2014-06-12 Nec Personal Computers Ltd Information processing device, control method therefor, and program
KR101726384B1 (en) * 2015-04-02 2017-04-12 주식회사 엘지화학 Apparatus and method for controlling charging of secondary battery
CN105509912A (en) * 2015-12-15 2016-04-20 赵晓玲 Vehicle-mounted battery safety detection system applied to electric vehicle
JP6641334B2 (en) 2017-09-29 2020-02-05 本田技研工業株式会社 Battery capacity estimation device, method and program
CN108037446B (en) * 2017-12-07 2021-03-09 中船重工远舟(北京)科技有限公司 Lithium battery parameter acquisition management system
CN111983494B (en) * 2020-08-19 2023-06-02 重庆金康动力新能源有限公司 Method and system for prolonging service life of battery system
CN112285586A (en) * 2020-10-19 2021-01-29 广州极飞科技有限公司 BMS test method, device and system, simulation test equipment and storage medium

Also Published As

Publication number Publication date
JP2004172058A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4248854B2 (en) Battery management system and battery pack
JP4009537B2 (en) Charge control device, battery management system, battery pack, and secondary battery deterioration determination method using the same
US7990109B2 (en) Temperature and polarization voltage compensation system
KR102119154B1 (en) Battery pack
EP2065997B1 (en) Battery charger and method
EP2869392A2 (en) Charging method of battery and battery charging system
US7714531B2 (en) Power system and management method thereof
WO2009107335A1 (en) Recharging device and recharging method
US20130249494A1 (en) Battery pack
US9780592B2 (en) Battery pack for selectively setting a high capacity mode having a high charge capacity until a full charge of a secondary battery
US11196096B2 (en) Battery pack and method for charging battery pack
JP6500789B2 (en) Control system of secondary battery
US20090295335A1 (en) Battery pack and charging method for the same
JP5410248B2 (en) Charging system that guarantees the lifetime of secondary batteries
US20110025272A1 (en) Charging method, charging device, and battery pack
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
KR20180135675A (en) Method and system for controling temperature of a battery pack
JP2007267498A (en) Charger, charging system and electric apparatus
KR20170122063A (en) Method for controlling start of fuel cell vehicle
US20190023147A1 (en) Control device and method for charging a rechargeable battery
KR102564716B1 (en) Battery management system and method for protecting a battery from over-discharge
CN111799517A (en) Method for charging secondary battery
JP2009112180A (en) Battery pack and control method thereof
JP5454027B2 (en) Charge control device and charge control method
JP2004015876A (en) Charging voltage setting device for lithium ion battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees