JP2010019664A - Battery deterioration detection device and method - Google Patents

Battery deterioration detection device and method Download PDF

Info

Publication number
JP2010019664A
JP2010019664A JP2008179899A JP2008179899A JP2010019664A JP 2010019664 A JP2010019664 A JP 2010019664A JP 2008179899 A JP2008179899 A JP 2008179899A JP 2008179899 A JP2008179899 A JP 2008179899A JP 2010019664 A JP2010019664 A JP 2010019664A
Authority
JP
Japan
Prior art keywords
open
battery
circuit voltage
charge
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008179899A
Other languages
Japanese (ja)
Inventor
Kenji Tomita
健児 冨田
Masahiko Mitsui
正彦 三井
Kosuke Suzui
康介 鈴井
Yuji Nishi
勇二 西
Masaru Takagi
優 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2008179899A priority Critical patent/JP2010019664A/en
Publication of JP2010019664A publication Critical patent/JP2010019664A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for detecting deterioration in a battery used for a motor drive vehicle, or the like. <P>SOLUTION: An analysis section 14 obtains estimated full charging capacities Qab, Qbc, Qcd corresponding to three open voltage variation ranges. The analysis section 14 obtains a first determination value D1 obtained by subtracting the estimated full charging capacity Qab from the estimated full charging capacity Qbc, and further obtains a second determination value D2 obtained by subtracting the estimated full charging capacity Qbc from the estimated full charging capacity Qcd. The analysis section 14 determines whether the first determination value D1 is larger than a prescribed threshold T1 and the second determination value D2 is larger than a prescribed threshold T2. When the first determination value D1 is larger than the prescribed threshold T1 and the second determination value D2 is larger than the prescribed threshold T2, the analysis section 14 stores information on detection of a lithium deposition phenomenon in a fault information storage section 22, and the analysis section 14 operates a warning device 24. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充放電特性の変化に基づいて電池の劣化を検出する装置および方法に関する。   The present invention relates to an apparatus and a method for detecting battery deterioration based on changes in charge / discharge characteristics.

ハイブリッド自動車、電気自動車等のモータ駆動車両が広く用いられている。モータ駆動車両には、モータに電力を供給するための電池が搭載される。この電池には、リチウムイオン電池が広く用いられる。リチウムイオン電池は繰り返し充放電することが可能である。モータ駆動車両に用いられるリチウムイオン電池は、モータに電力を供給すると共に、モータの回生制動発電によって充電される。   Motor-driven vehicles such as hybrid vehicles and electric vehicles are widely used. A battery for supplying electric power to the motor is mounted on the motor-driven vehicle. A lithium ion battery is widely used as this battery. Lithium ion batteries can be repeatedly charged and discharged. A lithium ion battery used in a motor-driven vehicle supplies power to the motor and is charged by regenerative braking power generation of the motor.

リチウムイオン電池は、過大な電流によって充電を行う等、過酷な条件で用いると、電極にリチウムが析出する。このようなリチウム析出現象は、リチウムイオン電池の電力供給性能を低下させ、モータ駆動車両の走行性能を低下させるおそれがある。   When a lithium ion battery is used under severe conditions such as charging with an excessive current, lithium is deposited on the electrode. Such a lithium deposition phenomenon may reduce the power supply performance of the lithium ion battery and may reduce the running performance of the motor-driven vehicle.

本発明は、このような課題に対してなされたものである。すなわち、モータ駆動車両等に用いる電池の劣化を検出する装置および方法を提供することを目的とする。   The present invention has been made for such a problem. That is, an object of the present invention is to provide an apparatus and method for detecting deterioration of a battery used in a motor-driven vehicle or the like.

本発明は、電池の開放電圧を測定するOCV測定手段と、予め設定された複数の開放電圧範囲の各範囲について、測定開放電圧の開放電圧範囲内での変動に対する充電深度の変動値を、開放電圧に対する充電深度の初期特性に基づいて求めるSOC変動取得手段と、各開放電圧範囲内の測定開放電圧の変動に対し、電池の充放電電流積算値を求める電流積算手段と、求められた充電深度変動値および充放電電流積算値に基づいて、各開放電圧範囲に対する推定満充電容量を求める満充電容量推定手段と、各開放電圧範囲に対して求められた推定満充電容量に基づいて前記電池の劣化を検出する劣化検出手段と、を備えることを特徴とする。   The present invention provides an OCV measuring means for measuring the open circuit voltage of a battery, and for each range of a plurality of preset open circuit voltage ranges, the variation value of the charging depth with respect to the variation within the open circuit voltage range of the measured open circuit voltage is opened. SOC fluctuation acquisition means determined based on initial characteristics of charge depth with respect to voltage, current integration means for determining a charge / discharge current integrated value of the battery for fluctuations in measured open voltage within each open voltage range, and determined charge depth Based on the fluctuation value and the integrated charge / discharge current value, a full charge capacity estimating means for obtaining an estimated full charge capacity for each open voltage range, and the battery based on the estimated full charge capacity obtained for each open voltage range. Deterioration detecting means for detecting deterioration.

また、本発明に係る電池劣化検出装置においては、前記劣化検出手段は、求められた推定満充電容量の開放電圧範囲ごとの相違に基づいて、前記電池の劣化を検出することが好適である。   Moreover, in the battery deterioration detection apparatus according to the present invention, it is preferable that the deterioration detection means detects the deterioration of the battery based on a difference of the estimated full charge capacity obtained for each open voltage range.

また、本発明に係る電池劣化検出装置においては、前記電池はリチウムイオン電池であり、前記劣化検出手段は、求められた推定満充電容量の開放電圧範囲ごとの相違と、リチウム析出現象が生じた場合の当該相違との比較に基づいて、リチウム析出現象を検出することが好適である。   Further, in the battery deterioration detection device according to the present invention, the battery is a lithium ion battery, and the deterioration detection means causes a difference in the estimated full charge capacity for each open voltage range and a lithium precipitation phenomenon. It is preferable to detect the lithium precipitation phenomenon based on a comparison with the difference in the case.

また、本発明は、モータ駆動車両に搭載され、前記電池が駆動用モータに電力を供給する前記電池劣化検出装置において、前記モータ駆動車両は、前記電池の充電深度の範囲を所定範囲に制限する充電状態制限部を備え、前記複数の開放電圧範囲は、前記充電状態制限部によって制限される充電深度範囲に基づいて定められた開放電圧範囲であることを特徴とする。   Further, the present invention is mounted on a motor-driven vehicle, and in the battery deterioration detection device in which the battery supplies power to a driving motor, the motor-driven vehicle limits a range of charging depth of the battery to a predetermined range. A charge state limiting unit is provided, and the plurality of open voltage ranges are open voltage ranges determined based on a charge depth range limited by the charge state limit unit.

また、本発明に係る電池劣化検出装置においては、前記電池の開放電圧を変化させる充放電部を備えることが好適である。   Moreover, in the battery deterioration detection apparatus according to the present invention, it is preferable to include a charge / discharge unit that changes an open circuit voltage of the battery.

また、本発明は、電池の開放電圧を測定するステップと、予め設定された複数の開放電圧範囲の各範囲について、測定開放電圧の開放電圧範囲内での変動に対する充電深度の変動値を、開放電圧に対する充電深度の初期特性に基づいて求めるステップと、各開放電圧範囲内の測定開放電圧の変動に対し、電池の充放電電流積算値を求めるステップと、求められた充電深度変動値および充放電電流積算値に基づいて、各開放電圧範囲に対する推定満充電容量を求めるステップと、各開放電圧範囲に対して求められた推定満充電容量に基づいて前記電池の劣化を検出するステップと、を含むことを特徴とする。   Further, the present invention provides a step of measuring the open circuit voltage of the battery, and for each range of a plurality of preset open circuit voltage ranges, the variation value of the charging depth with respect to the variation within the open circuit voltage range of the measured open circuit voltage is opened. A step of obtaining based on an initial characteristic of a charge depth with respect to a voltage, a step of obtaining a charge / discharge current integrated value of a battery with respect to a change in a measured open voltage within each open voltage range, and a obtained charge depth fluctuation value and charge / discharge Determining an estimated full charge capacity for each open voltage range based on the integrated current value; and detecting deterioration of the battery based on the estimated full charge capacity determined for each open voltage range. It is characterized by that.

本発明によれば、リチウムイオン電池等、充放電が可能な電池の劣化を検出することができる。   According to the present invention, it is possible to detect deterioration of a battery that can be charged and discharged, such as a lithium ion battery.

図1に本発明の実施形態に係る電池劣化検出機能付き車両駆動システムの構成を示す。電池劣化検出機能付き車両駆動システムは、リチウムイオン電池を用いるモータ駆動車両に搭載され、リチウムイオン電池におけるリチウム析出現象を検出する。リチウム析出現象の検出は、使用に伴って表れる充放電性能の劣化に基づいて行う。   FIG. 1 shows a configuration of a vehicle drive system with a battery deterioration detection function according to an embodiment of the present invention. The vehicle drive system with a battery deterioration detection function is mounted on a motor-driven vehicle using a lithium ion battery, and detects a lithium deposition phenomenon in the lithium ion battery. The detection of the lithium precipitation phenomenon is performed based on the deterioration of the charge / discharge performance that appears with use.

電池劣化検出機能付き車両駆動システムがリチウム析出現象の検出を行うに場合には、リチウムイオン電池10の満充電容量の推定値を求める。そこで、ここでは満充電容量の推定値を求める基本技術について説明する。OCV測定部12は、リチウムイオン電池10の開放電圧を測定し、測定結果を解析部14に出力する。ここで、開放電圧は、モータ駆動車両の停止中等リチウムイオン電池10に電流が流れていない状態における、リチウムイオン電池10の出力電圧であり、一般に、OCV(Open Circuit Voltage)と称される。電流計16は、電池の正極端子に流入する向きを正として、電池に流れる電流を測定し、測定結果を解析部14に出力する。   When the vehicle drive system with the battery deterioration detection function detects the lithium deposition phenomenon, an estimated value of the full charge capacity of the lithium ion battery 10 is obtained. Therefore, here, a basic technique for obtaining an estimated value of the full charge capacity will be described. The OCV measurement unit 12 measures the open voltage of the lithium ion battery 10 and outputs the measurement result to the analysis unit 14. Here, the open circuit voltage is an output voltage of the lithium ion battery 10 in a state where no current flows through the lithium ion battery 10 such as when the motor-driven vehicle is stopped, and is generally referred to as OCV (Open Circuit Voltage). The ammeter 16 measures the current flowing through the battery with the direction flowing into the positive terminal of the battery as positive, and outputs the measurement result to the analysis unit 14.

解析部14は、開放電圧がある電圧V1であった時から、電圧V1とは異なる電圧V2となった時までの電池電流の積算値を充電量変動として求める。充電量変動は、開放電圧がV1からV2に変化するまでの間にリチウムイオン電池10に充放電された電荷量を示す。   The analysis unit 14 obtains the integrated value of the battery current from the time when the open circuit voltage is a certain voltage V1 to the time when the voltage V2 is different from the voltage V1 as the charge amount fluctuation. The charge amount variation indicates the amount of charge that is charged / discharged in the lithium ion battery 10 until the open circuit voltage changes from V1 to V2.

OCV−SOC特性記憶部20は、測定対象のリチウムイオン電池10について、開放電圧に対する充電深度の初期特性(OCV−SOC初期特性)を記憶する。ここで、充電深度は、満充電容量に対する充電電荷量の割合を百分率を以て表した値であり、一般に、SOC(State Of Charge)と称される。また、初期特性とは、リチウムイオン電池10にリチウム析出現象が生じていないときの特性、例えば、製造直後等、リチウムイオン電池10が設計特性を満足しているときの特性をいう。   The OCV-SOC characteristic storage unit 20 stores an initial characteristic (OCV-SOC initial characteristic) of the charging depth with respect to the open-circuit voltage for the lithium ion battery 10 to be measured. Here, the charge depth is a value representing the ratio of the charge amount to the full charge capacity as a percentage, and is generally referred to as SOC (State Of Charge). The initial characteristics refer to characteristics when the lithium precipitation phenomenon does not occur in the lithium ion battery 10, for example, characteristics when the lithium ion battery 10 satisfies the design characteristics such as immediately after manufacture.

解析部14は、OCV−SOC特性記憶部20に記憶されているOCV−SOC初期特性を参照し、開放電圧V1および開放電圧V2に対応する充電深度を、それぞれ、第1充電深度および第2充電深度として求める。そして、第2充電深度から第1充電深度を減じたSOC変動を求める。解析部14は、充電量変動をSOC変動で除した値に100を乗じた値を満充電容量の推定値として求める。すなわち、推定満充電容量を、次の(数1)に基づいて求める。
(数1)推定満充電容量(Ah)=充電量変動(Ah)×100/SOC変動
The analysis unit 14 refers to the OCV-SOC initial characteristics stored in the OCV-SOC characteristic storage unit 20, and sets the charging depth corresponding to the open circuit voltage V1 and the open circuit voltage V2 to the first charge depth and the second charge, respectively. Find as depth. Then, the SOC variation obtained by subtracting the first charging depth from the second charging depth is obtained. The analysis unit 14 obtains a value obtained by multiplying the value obtained by dividing the charge amount variation by the SOC variation by 100 as the estimated value of the full charge capacity. That is, the estimated full charge capacity is obtained based on the following (Equation 1).
(Equation 1) Estimated full charge capacity (Ah) = charge amount fluctuation (Ah) × 100 / SOC fluctuation

ここで、(数1)で求められる値を「推定値」としたのは、リチウムイオン電池10の特性が変化した場合であってもOCV−SOC初期特性を用いることにより、(数1)に基づいて求められる値が真の満充電容量からずれることがあるためである。電池劣化検出機能付き車両駆動システムは、このような処理によって、開放電圧がV1からV2に変化するのに伴って推定満充電容量を求める。   Here, the value obtained in (Equation 1) is set as the “estimated value” by using the OCV-SOC initial characteristics even when the characteristics of the lithium ion battery 10 are changed. This is because the value obtained based on the actual value may deviate from the true full charge capacity. The vehicle drive system with a battery deterioration detection function obtains an estimated full charge capacity as the open circuit voltage changes from V1 to V2 through such processing.

リチウムイオン電池10はモータ駆動装置18に接続され、モータ駆動装置18に電力を供給し、または、モータ駆動装置18の回生制動発電によって充電される。リチウムイオン電池10の開放電圧は、モータ駆動車両が走行すると共に変動する。解析部14は、予め定められた、Va〜Vb、Vb〜Vc、およびVc〜Vdの各開放電圧範囲について、各範囲内における開放電圧の変動に対し、上記処理に基づいて推定満充電容量を求める。これらの電圧には、Va<Vb<Vc<Vdの関係があるものとする。例えば、電圧VαおよびVβに、Va≦Vα<Vβ≦Vbの関係がある場合において、モータ駆動車両の走行に伴って、開放電圧が電圧Vαから電圧Vβに上昇または電圧Vβから電圧Vαに下降したときは、解析部14は、開放電圧Vα〜Vβの変動に基づいて推定満充電容量を求める。同様の処理によって、解析部14は、開放電圧Vb〜Vcの範囲内での開放電圧変動および開放電圧Vc〜Vdの範囲内での開放電圧変動に対する推定満充電容量を求める。   The lithium ion battery 10 is connected to the motor driving device 18 to supply electric power to the motor driving device 18 or to be charged by regenerative braking power generation of the motor driving device 18. The open circuit voltage of the lithium ion battery 10 varies as the motor-driven vehicle travels. The analysis unit 14 calculates the estimated full charge capacity based on the above processing with respect to fluctuations of the open-circuit voltage in each of the predetermined open-circuit voltage ranges Va to Vb, Vb to Vc, and Vc to Vd. Ask. These voltages are assumed to have a relationship of Va <Vb <Vc <Vd. For example, when the voltages Vα and Vβ have a relationship Va ≦ Vα <Vβ ≦ Vb, the open circuit voltage increases from the voltage Vα to the voltage Vβ or decreases from the voltage Vβ to the voltage Vα as the motor-driven vehicle travels. When, the analysis part 14 calculates | requires an estimated full charge capacity based on the fluctuation | variation of the open circuit voltage V (alpha) -V (beta). By the same processing, the analysis unit 14 obtains an estimated full charge capacity with respect to an open-circuit voltage fluctuation within the range of the open-circuit voltages Vb to Vc and an open-circuit voltage fluctuation within the range of the open-circuit voltages Vc to Vd.

電池劣化検出機能付き車両駆動システムは、各開放電圧変動範囲に対応して求められた推定満充電容量に基づいて、リチウム析出現象を検出する。以下に、その検出原理について説明する。   The vehicle drive system with a battery deterioration detection function detects a lithium deposition phenomenon based on an estimated full charge capacity obtained corresponding to each open-circuit voltage fluctuation range. Hereinafter, the detection principle will be described.

図2は、リチウムイオン電池10の充電量に対する開放電圧OCVの特性を示す。横軸は充電量を示し縦軸は開放電圧を示す。実線は初期特性を示し、破線はリチウム析出現象が生じた後の特性を示す。充電量QFは初期の満充電容量を示す。開放電圧VFは、満充電時における開放電圧を示す。開放電圧VEは充電量下限値(実用的な電力を得ることが困難となる値。)を示す。リチウム析出現象が生じた後の満充電容量QGは、初期の満充電容量QFに対しΔだけ低下する(以下、「リチウム析出現象が生じた後」という表現を、単に「リチウム析出後」とする。)。   FIG. 2 shows the characteristics of the open circuit voltage OCV with respect to the charge amount of the lithium ion battery 10. The horizontal axis indicates the amount of charge, and the vertical axis indicates the open circuit voltage. The solid line indicates the initial characteristics, and the broken line indicates the characteristics after the lithium precipitation phenomenon occurs. The charge amount QF indicates the initial full charge capacity. The open circuit voltage VF indicates the open circuit voltage when fully charged. The open circuit voltage VE indicates a charge amount lower limit value (a value at which it is difficult to obtain practical power). The full charge capacity QG after the lithium precipitation phenomenon occurs is reduced by Δ with respect to the initial full charge capacity QF (hereinafter, the expression “after the lithium precipitation phenomenon has occurred” is simply referred to as “after lithium precipitation”. .)

図3はリチウムイオン電池10の開放電圧に対する充電深度の特性(OCV−SOC特性)を示す。横軸は充電深度を示し縦軸は開放電圧を示す。実線は初期特性を示し、破線はリチウム析出後の特性を示す。初期における充電深度100%の状態は、図2の充電量が満充電容量QFに達している状態に対応し、リチウム析出後における充電深度100%の状態は、図2の充電量が満充電容量QGに達している状態に対応する。したがって、図3の特性は図2の特性の横軸を充電量から充電深度に変換したものに相当する。ハイブリッド自動車では、電池の充電深度の範囲を所定範囲に制限する充電状態制限部を備えることがある。この場合、充電深度40%〜80%の範囲で、リチウムイオン電池が用いられることが多い。そこで、充電深度40%〜80%の範囲でOCV−SOC特性を拡大したものを図4(a)に示す。   FIG. 3 shows the charge depth characteristics (OCV-SOC characteristics) with respect to the open-circuit voltage of the lithium ion battery 10. The horizontal axis indicates the charging depth, and the vertical axis indicates the open circuit voltage. The solid line shows the initial characteristics, and the broken line shows the characteristics after lithium deposition. The state where the charge depth is 100% in the initial stage corresponds to the state where the charge amount in FIG. 2 has reached the full charge capacity QF, and the state where the charge depth is 100% after lithium deposition is the charge amount shown in FIG. Corresponds to the state of reaching QG. Therefore, the characteristic of FIG. 3 corresponds to the characteristic obtained by converting the horizontal axis of the characteristic of FIG. 2 from the charge amount to the charge depth. A hybrid vehicle may include a state-of-charge limiting unit that limits the range of battery charging depth to a predetermined range. In this case, a lithium ion battery is often used within a range of a charging depth of 40% to 80%. FIG. 4A shows an enlarged OCV-SOC characteristic in the range of 40% to 80% charge depth.

図4(b)は、リチウム析出後の特性を初期特性と重ねるため、図4(a)のリチウム析出後の特性を充電深度の正方向にスライドさせたものである。開放電圧Va、Vb、VcおよびVdは、リチウム析出後の特性の傾きと、初期特性の傾きとの関係に応じて開放電圧の範囲を区切る開放電圧である。開放電圧がVa〜Vbの範囲では、リチウム析出後の傾きは、初期の傾きよりも大きい。また、開放電圧がVb〜Vcの範囲では、リチウム析出後と初期とでは傾きがほぼ等しい。そして、開放電圧がVc〜Vdの範囲では、リチウム析出後の傾きは、初期の傾きよりも小さい。   In FIG. 4B, the characteristics after lithium deposition in FIG. 4A are slid in the positive direction of the charging depth in order to overlap the characteristics after lithium deposition with the initial characteristics. The open-circuit voltages Va, Vb, Vc, and Vd are open-circuit voltages that delimit the open-circuit voltage range according to the relationship between the slope of the characteristics after lithium deposition and the slope of the initial characteristics. When the open circuit voltage is in the range of Va to Vb, the slope after lithium deposition is larger than the initial slope. In addition, when the open circuit voltage is in the range of Vb to Vc, the slopes are substantially the same after lithium deposition and in the initial stage. In the range of the open circuit voltage from Vc to Vd, the slope after lithium deposition is smaller than the initial slope.

(数1)に基づいて推定満充電容量を求める場合、解析部14は、リチウム析出現象が生じたか否かに関わらず、OCV−SOC初期特性を参照することで開放電圧の変動に対するSOC変動を求める。したがって、リチウム析出現象によってOCV−SOC特性の傾きが大きくなったVa〜Vbの開放電圧範囲では、解析部14は、SOC変動の真値よりも大きいSOC変動を求めることとなる。また、リチウム析出現象によってOCV−SOC特性の傾きに変化が見られないVb〜Vcの開放電圧範囲では、解析部14は、SOC変動の真値に近いSOC変動を求めることとなる。そして、リチウム析出現象によってOCV−SOC特性の傾きが小さくなったVc〜Vdの開放電圧範囲では、解析部14は、SOC変動の真値よりも小さいSOC変動を求めることとなる。また、解析部14が求める充電量変動は、電池電流の時間積算値に基づくため、リチウム析出現象が生じたか否かに関わらず、充放電された実際の電荷量にほぼ等しい。   When obtaining the estimated full charge capacity based on (Equation 1), the analysis unit 14 refers to the OCV-SOC initial characteristics to determine the SOC variation relative to the open circuit voltage variation, regardless of whether or not the lithium deposition phenomenon has occurred. Ask. Therefore, in the open-circuit voltage range from Va to Vb in which the slope of the OCV-SOC characteristic is increased due to the lithium precipitation phenomenon, the analysis unit 14 obtains an SOC fluctuation larger than the true value of the SOC fluctuation. In addition, in the open-circuit voltage range of Vb to Vc in which no change is observed in the slope of the OCV-SOC characteristic due to the lithium precipitation phenomenon, the analysis unit 14 obtains the SOC fluctuation close to the true value of the SOC fluctuation. Then, in the open circuit voltage range of Vc to Vd where the slope of the OCV-SOC characteristic is reduced due to the lithium precipitation phenomenon, the analysis unit 14 obtains an SOC fluctuation smaller than the true value of the SOC fluctuation. Moreover, since the charge amount variation obtained by the analysis unit 14 is based on the time integration value of the battery current, it is substantially equal to the actual charge amount that is charged or discharged regardless of whether or not the lithium deposition phenomenon has occurred.

したがって、リチウム析出後において、Va〜Vbの開放電圧範囲内おいて解析部14が求めた推定満充電容量Qabは、Vb〜Vcの開放電圧範囲内において解析部14が求めた推定満充電容量Qbcよりも小さくなる。また、リチウム析出後において、Vc〜Vdの開放電圧範囲内において解析部14が求めた推定満充電容量Qcdは、推定満充電容量Qbcよりも大きくなる。   Therefore, after lithium deposition, the estimated full charge capacity Qab obtained by the analysis unit 14 within the open voltage range of Va to Vb is the estimated full charge capacity Qbc obtained by the analysis unit 14 within the open voltage range of Vb to Vc. Smaller than. Further, after lithium deposition, the estimated full charge capacity Qcd obtained by the analysis unit 14 within the open-circuit voltage range of Vc to Vd is larger than the estimated full charge capacity Qbc.

本実施形態に係る電池劣化検出機能付き車両駆動システムは、このような原理を利用してリチウム析出現象を検出する。すなわち、Va〜Vb、Vb〜Vc、およびVc〜Vdの3つの開放電圧範囲について求められた各推定満充電容量の相違が、リチウム析出現象に基づいて見られる相違であるか否かを判断することでリチウム析出現象を検出することができる。より一般的には、電池劣化検出機能付き車両駆動システムは、開放電圧を複数の範囲に区切り、各開放電圧範囲に対して推定満充電容量を求め、各推定満充電容量の相違がリチウム析出現象に基づいて見られる相違であるか否かを判断することでリチウム析出現象を検出することができる。   The vehicle drive system with a battery deterioration detection function according to the present embodiment detects the lithium deposition phenomenon using such a principle. That is, it is determined whether or not the difference between the estimated full charge capacities obtained for the three open circuit voltage ranges Va to Vb, Vb to Vc, and Vc to Vd is a difference that is found based on the lithium deposition phenomenon. Thus, the lithium precipitation phenomenon can be detected. More generally, in a vehicle drive system with a battery deterioration detection function, an open voltage is divided into a plurality of ranges, an estimated full charge capacity is obtained for each open voltage range, and a difference in each estimated full charge capacity is a lithium precipitation phenomenon. The lithium precipitation phenomenon can be detected by determining whether or not the difference is found based on the above.

リチウム析出現象を検出する具体的な処理について説明する。図5はその処理を示すフローチャートである。開放電圧Va、Vb、Vc、およびVdは、開放電圧がVa〜Vbの範囲において、リチウム析出後のOCV−SOC初期特性の傾きが初期の傾きよりも大きくなり、さらに、開放電圧がVb〜Vcの範囲で、リチウム析出後と初期とで傾きがほぼ等しくなり、加えて、開放電圧がVc〜Vdの範囲で、リチウム析出後の傾きが初期の傾きよりも小さくなるように設定されるものとする。また、開放電圧Va〜Vdの範囲は、OCV−SOC初期特性において充電深度が40%〜80%である範囲に対応する開放電圧範囲内に設定されることが好ましい。   A specific process for detecting the lithium precipitation phenomenon will be described. FIG. 5 is a flowchart showing the processing. In the open circuit voltages Va, Vb, Vc, and Vd, when the open circuit voltage is in the range of Va to Vb, the slope of the OCV-SOC initial characteristic after lithium deposition is larger than the initial slope, and the open circuit voltage is Vb to Vc. In this range, the slope after the lithium deposition is almost equal to the initial slope, and in addition, the slope after the lithium deposition is set to be smaller than the initial slope when the open circuit voltage is in the range of Vc to Vd. To do. Moreover, it is preferable that the range of open circuit voltage Va-Vd is set in the open circuit voltage range corresponding to the range whose charge depth is 40%-80% in OCV-SOC initial characteristic.

リチウムイオン電池10の開放電圧は、モータ駆動車両を走行させると共に変動する。解析部14は、予め定められた、Va〜Vb、Vb〜Vc、およびVc〜Vdの各開放電圧範囲内での開放電圧変動に対応して、それぞれ、推定満充電容量Qab、Qbc、およびQcdを求める(S101)。解析部14は、推定満充電容量Qbcから推定満充電容量Qabを減じた第1判定値D1を求め(S102)、さらに、推定満充電容量Qcdから推定満充電容量Qbcを減じた第2判定値D2を求める(S103)。解析部14は、第1判定値D1が所定の閾値T1より大きく、かつ、第2判定値D2が所定の閾値T2より大きいか否かを判定する(S104)。解析部14は、第1判定値D1が所定の閾値T1より大きく、かつ、第2判定値D2が所定の閾値T2より大きいときは、故障情報記憶部22にリチウム析出現象を検出した旨の情報を記憶させる(S105)。さらに、解析部14は、警告装置24を動作させる(S106)。故障情報記憶部22は、モータ駆動車両に搭載される装置の故障情報を記憶する手段であり、モータ駆動車両の保守点検時に記憶内容が読み出される。警告装置24は、インジケータの点灯、警告音の鳴動等によって、リチウム析出現象を検出した旨をユーザに報知する。解析部14は、第1判定値D1が所定の閾値T1以下であるとき、または、第2判定値D2が所定の閾値T2以下であるときは、ステップS101の実行に戻る。   The open-circuit voltage of the lithium ion battery 10 varies as the motor-driven vehicle travels. The analysis unit 14 corresponds to the open-circuit voltage fluctuations within the open-circuit voltage ranges of Va to Vb, Vb to Vc, and Vc to Vd, which are determined in advance, respectively, and the estimated full charge capacities Qab, Qbc, and Qcd, respectively. Is obtained (S101). The analysis unit 14 obtains a first determination value D1 obtained by subtracting the estimated full charge capacity Qab from the estimated full charge capacity Qbc (S102), and further, a second determination value obtained by subtracting the estimated full charge capacity Qbc from the estimated full charge capacity Qcd. D2 is obtained (S103). The analysis unit 14 determines whether or not the first determination value D1 is greater than the predetermined threshold T1 and the second determination value D2 is greater than the predetermined threshold T2 (S104). When the first determination value D1 is greater than the predetermined threshold value T1 and the second determination value D2 is greater than the predetermined threshold value T2, the analysis unit 14 indicates that the lithium information phenomenon has been detected in the failure information storage unit 22. Is stored (S105). Further, the analysis unit 14 operates the warning device 24 (S106). The failure information storage unit 22 is means for storing failure information of a device mounted on a motor-driven vehicle, and the stored contents are read out during maintenance inspection of the motor-driven vehicle. The warning device 24 notifies the user that the lithium deposition phenomenon has been detected by lighting an indicator, sounding a warning sound, or the like. The analysis unit 14 returns to the execution of step S101 when the first determination value D1 is equal to or less than the predetermined threshold value T1 or when the second determination value D2 is equal to or less than the predetermined threshold value T2.

このような処理によれば、リチウムイオン電池10の析出現象を検出すると共に、モータ駆動車両のユーザ、保守点検者等にリチウムイオン電池10に析出現象が生じた旨を伝えることができる。   According to such a process, the precipitation phenomenon of the lithium ion battery 10 can be detected, and the fact that the precipitation phenomenon has occurred in the lithium ion battery 10 can be notified to the user of the motor-driven vehicle, the maintenance inspector, and the like.

なお、モータ駆動車両の走行状況によっては、開放電圧がVa〜Vb、Vb〜Vc、およびVc〜Vdの3つの開放電圧範囲内の電圧をとる頻度が低く、リチウムイオン析出現象の検出頻度を高くすることが困難な場合がある。この問題を解決するための、応用例に係る電池劣化検出機能付き車両駆動システムの構成を図6に示す。図1の構成部と同一の構成部については同一の符号を付してその説明を省略する。この構成では、リチウムイオン電池10の開放電圧を強制的に変化させる充放電装置26を、モータ駆動装置18に並列に接続する。充放電装置26は、解析部14の制御に基づいて、開放電圧がVa〜Vb、Vb〜Vc、およびVc〜Vdの3つの開放電圧範囲内の電圧となるよう、強制的にリチウムイオン電池10を充放電させる。解析部14は、3つの開放電圧範囲に対して推定満充電容量を求め、上記の処理に基づいてリチウム析出現象を検出する。   Depending on the driving situation of the motor-driven vehicle, the frequency with which the open voltage takes voltages within the three open voltage ranges Va to Vb, Vb to Vc, and Vc to Vd is low, and the detection frequency of the lithium ion precipitation phenomenon is high. It may be difficult to do. FIG. 6 shows a configuration of a vehicle drive system with a battery deterioration detection function according to an application example for solving this problem. The same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. In this configuration, the charging / discharging device 26 that forcibly changes the open-circuit voltage of the lithium ion battery 10 is connected in parallel to the motor driving device 18. Based on the control of the analysis unit 14, the charging / discharging device 26 forcibly forces the lithium ion battery 10 so that the open circuit voltage becomes a voltage within the three open circuit voltage ranges of Va to Vb, Vb to Vc, and Vc to Vd. Is charged and discharged. The analysis part 14 calculates | requires an estimated full charge capacity with respect to three open circuit voltage ranges, and detects a lithium precipitation phenomenon based on said process.

上記では、開放電圧の範囲をリチウム析出後の特性の傾きと、初期特性の傾きとの関係に基づいて3つの範囲に区切る例について説明した。このように開放電圧範囲を3つの範囲に区切る他、各推定満充電容量の相違がリチウム析出現象に基づいて見られる相違であるか否かを判断することが可能であれば、開放電圧範囲を任意の数に区切ることができる。   In the above description, the example in which the range of the open circuit voltage is divided into three ranges based on the relationship between the slope of the characteristic after lithium deposition and the slope of the initial characteristic has been described. In addition to dividing the open-circuit voltage range into three ranges in this way, if it is possible to determine whether the difference in each estimated full charge capacity is a difference seen based on the lithium deposition phenomenon, the open-circuit voltage range is It can be divided into any number.

実施形態に係る電池劣化検出機能付き車両駆動システムの構成を示す図である。It is a figure which shows the structure of the vehicle drive system with a battery degradation detection function which concerns on embodiment. リチウムイオン電池のOCV−充電量特性を示す図である。It is a figure which shows the OCV-charge amount characteristic of a lithium ion battery. リチウムイオン電池のOCV−SOC特性を示す図である。It is a figure which shows the OCV-SOC characteristic of a lithium ion battery. リチウムイオン電池のOCV−SOC特性の拡大図である。It is an enlarged view of the OCV-SOC characteristic of a lithium ion battery. リチウム析出現象を検出する処理を示すフローチャートである。It is a flowchart which shows the process which detects a lithium precipitation phenomenon. 応用例に係る電池劣化検出機能付き車両駆動システムの構成を示す図である。It is a figure which shows the structure of the vehicle drive system with a battery degradation detection function which concerns on an application example.

符号の説明Explanation of symbols

10 リチウムイオン電池、12 OCV測定部、14 解析部、16 電流計、18 モータ駆動装置、20 OCV−SOC特性記憶部、22 故障情報記憶部、24 警告装置、26 充放電装置。   DESCRIPTION OF SYMBOLS 10 Lithium ion battery, 12 OCV measurement part, 14 Analysis part, 16 Ammeter, 18 Motor drive device, 20 OCV-SOC characteristic memory | storage part, 22 Fault information memory | storage part, 24 Warning device, 26 Charging / discharging apparatus.

Claims (6)

電池の開放電圧を測定するOCV測定手段と、
予め設定された複数の開放電圧範囲の各範囲について、測定開放電圧の開放電圧範囲内での変動に対する充電深度の変動値を、開放電圧に対する充電深度の初期特性に基づいて求めるSOC変動取得手段と、
各開放電圧範囲内の測定開放電圧の変動に対し、電池の充放電電流積算値を求める電流積算手段と、
求められた充電深度変動値および充放電電流積算値に基づいて、各開放電圧範囲に対する推定満充電容量を求める満充電容量推定手段と、
各開放電圧範囲に対して求められた推定満充電容量に基づいて前記電池の劣化を検出する劣化検出手段と、
を備えることを特徴とする電池劣化検出装置。
OCV measuring means for measuring the open circuit voltage of the battery;
SOC fluctuation obtaining means for obtaining a fluctuation value of the charging depth with respect to fluctuation within the open voltage range of the measured open voltage for each range of a plurality of preset open voltage ranges based on an initial characteristic of the charging depth with respect to the open voltage. ,
Current integration means for obtaining a charge / discharge current integrated value of the battery with respect to fluctuations in measured open voltage within each open voltage range;
Full charge capacity estimation means for obtaining an estimated full charge capacity for each open-circuit voltage range based on the obtained charge depth variation value and charge / discharge current integrated value;
Deterioration detecting means for detecting deterioration of the battery based on the estimated full charge capacity obtained for each open-circuit voltage range;
A battery deterioration detecting device comprising:
請求項1に記載の電池劣化検出装置において、
前記劣化検出手段は、
求められた推定満充電容量の開放電圧範囲ごとの相違に基づいて、前記電池の劣化を検出することを特徴とする電池劣化検出装置。
The battery deterioration detection device according to claim 1,
The deterioration detecting means includes
A battery deterioration detection device that detects deterioration of the battery based on a difference between the obtained estimated full charge capacity for each open-circuit voltage range.
請求項2に記載の電池劣化検出装置において、
前記電池はリチウムイオン電池であり、
前記劣化検出手段は、
求められた推定満充電容量の開放電圧範囲ごとの相違と、リチウム析出現象が生じた場合の当該相違との比較に基づいて、リチウム析出現象を検出することを特徴とする電池劣化検出装置。
The battery deterioration detection device according to claim 2,
The battery is a lithium ion battery;
The deterioration detecting means includes
A battery deterioration detection device that detects a lithium deposition phenomenon based on a comparison between a difference in an estimated full charge capacity for each open-circuit voltage range and the difference when a lithium deposition phenomenon occurs.
モータ駆動車両に搭載され、前記電池が駆動用モータに電力を供給する請求項1から請求項3のいずれか1項に記載の電池劣化検出装置において、
前記モータ駆動車両は、
前記電池の充電深度の範囲を所定範囲に制限する充電状態制限部を備え、
前記複数の開放電圧範囲は、
前記充電状態制限部によって制限される充電深度範囲に基づいて定められた開放電圧範囲であることを特徴とする電池劣化検出装置。
The battery deterioration detection device according to any one of claims 1 to 3, wherein the battery deterioration detection device is mounted on a motor-driven vehicle and the battery supplies power to a drive motor.
The motor-driven vehicle is
A charge state limiter that limits a range of charge depth of the battery to a predetermined range;
The plurality of open circuit voltage ranges are:
The battery deterioration detection device, wherein the battery deterioration detection device is an open-circuit voltage range determined based on a charge depth range restricted by the charge state restriction unit.
請求項1から請求項4のいずれか1項に記載の電池劣化検出装置において、
前記電池の開放電圧を変化させる充放電部を備えることを特徴とする電池劣化検出装置。
In the battery deterioration detection device according to any one of claims 1 to 4,
A battery deterioration detection apparatus comprising a charge / discharge unit that changes an open circuit voltage of the battery.
電池の開放電圧を測定するステップと、
予め設定された複数の開放電圧範囲の各範囲について、測定開放電圧の開放電圧範囲内での変動に対する充電深度の変動値を、開放電圧に対する充電深度の初期特性に基づいて求めるステップと、
各開放電圧範囲内の測定開放電圧の変動に対し、電池の充放電電流積算値を求めるステップと、
求められた充電深度変動値および充放電電流積算値に基づいて、各開放電圧範囲に対する推定満充電容量を求めるステップと、
各開放電圧範囲に対して求められた推定満充電容量に基づいて前記電池の劣化を検出するステップと、
を含むことを特徴とする電池劣化検出方法。
Measuring the open circuit voltage of the battery;
For each range of a plurality of preset open-circuit voltage ranges, obtaining a variation value of the charge depth with respect to a variation in the open-circuit voltage range of the measured open-circuit voltage based on the initial characteristics of the charge depth with respect to the open-circuit voltage;
Obtaining a charge / discharge current integrated value of the battery with respect to fluctuations in the measured open-circuit voltage within each open-circuit voltage range;
Obtaining an estimated full charge capacity for each open-circuit voltage range based on the obtained charge depth variation value and charge / discharge current integrated value;
Detecting deterioration of the battery based on the estimated full charge capacity determined for each open voltage range;
A battery deterioration detection method comprising:
JP2008179899A 2008-07-10 2008-07-10 Battery deterioration detection device and method Withdrawn JP2010019664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179899A JP2010019664A (en) 2008-07-10 2008-07-10 Battery deterioration detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179899A JP2010019664A (en) 2008-07-10 2008-07-10 Battery deterioration detection device and method

Publications (1)

Publication Number Publication Date
JP2010019664A true JP2010019664A (en) 2010-01-28

Family

ID=41704728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179899A Withdrawn JP2010019664A (en) 2008-07-10 2008-07-10 Battery deterioration detection device and method

Country Status (1)

Country Link
JP (1) JP2010019664A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171213A (en) * 2010-02-22 2011-09-01 Toyota Motor Corp Device and method of discriminating lithium deposition of lithium ion secondary battery, and vehicle with the device mounted
WO2011122310A1 (en) * 2010-03-30 2011-10-06 本田技研工業株式会社 Method for detecting battery capacity of secondary battery
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
JP2012132761A (en) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp Battery full charge capacity estimation device
JP2012181976A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Lithium secondary battery abnormally charged state detection device and inspection method
JP2014134391A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Power supply control apparatus, power supply model update method, program, and medium
KR101500826B1 (en) * 2010-06-03 2015-03-09 닛산 지도우샤 가부시키가이샤 Battery charging apparatus and battery charging method
WO2016035337A1 (en) * 2014-09-05 2016-03-10 日本電気株式会社 Information processing device, information processing method, and recording medium
JP2017506795A (en) * 2014-03-18 2017-03-09 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to drive an intrinsically safe battery cell
CN106740594A (en) * 2016-11-30 2017-05-31 广州汽车集团股份有限公司 A kind of vehicle battery electric quantity reminding method, system and automobile gateway
CN107054107A (en) * 2015-10-07 2017-08-18 三菱自动车工业株式会社 Battery controller
WO2019199057A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Battery diagnostic device and method
JP2020034524A (en) * 2018-08-31 2020-03-05 株式会社デンソー Power supply system
CN111796187A (en) * 2019-04-05 2020-10-20 本田技研工业株式会社 Device and method for learning lithium metal deposition of secondary battery
CN112098877A (en) * 2020-09-15 2020-12-18 湖北亿纬动力有限公司 Battery detection method and device and battery system
CN112240979A (en) * 2019-07-16 2021-01-19 电计贸易(上海)有限公司 Method for detecting voltage critical point of lithium ion battery, electronic terminal and storage medium
WO2022009696A1 (en) 2020-07-08 2022-01-13 パナソニックIpマネジメント株式会社 Arithmetic system, battery inspection method, and battery inspection program
EP4191747A4 (en) * 2021-04-28 2024-05-15 LG Energy Solution, Ltd. Apparatus and method for detecting lithium precipitation

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171213A (en) * 2010-02-22 2011-09-01 Toyota Motor Corp Device and method of discriminating lithium deposition of lithium ion secondary battery, and vehicle with the device mounted
WO2011122310A1 (en) * 2010-03-30 2011-10-06 本田技研工業株式会社 Method for detecting battery capacity of secondary battery
US9566875B2 (en) 2010-03-30 2017-02-14 Honda Motor Co., Ltd. Method of detecting battery capacity of secondary battery
CN102869999A (en) * 2010-03-30 2013-01-09 本田技研工业株式会社 Method for detecting battery capacity of secondary battery
US20130013238A1 (en) * 2010-03-30 2013-01-10 Honda Motor Co., Ltd. Method of detecting battery capacity of secondary battery
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
KR101500826B1 (en) * 2010-06-03 2015-03-09 닛산 지도우샤 가부시키가이샤 Battery charging apparatus and battery charging method
JP2012132761A (en) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp Battery full charge capacity estimation device
JP2012181976A (en) * 2011-03-01 2012-09-20 Hitachi Ltd Lithium secondary battery abnormally charged state detection device and inspection method
JP2014134391A (en) * 2013-01-08 2014-07-24 Toyota Motor Corp Power supply control apparatus, power supply model update method, program, and medium
JP2017506795A (en) * 2014-03-18 2017-03-09 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング How to drive an intrinsically safe battery cell
US9859591B2 (en) 2014-03-18 2018-01-02 Robert Bosch Gmbh Method for operating intrinsically safe battery cells
WO2016035337A1 (en) * 2014-09-05 2016-03-10 日本電気株式会社 Information processing device, information processing method, and recording medium
JPWO2016035337A1 (en) * 2014-09-05 2017-07-20 日本電気株式会社 Information processing apparatus, information processing method, and program
CN107054107B (en) * 2015-10-07 2019-05-17 三菱自动车工业株式会社 Battery controller
CN107054107A (en) * 2015-10-07 2017-08-18 三菱自动车工业株式会社 Battery controller
CN106740594A (en) * 2016-11-30 2017-05-31 广州汽车集团股份有限公司 A kind of vehicle battery electric quantity reminding method, system and automobile gateway
CN111263894B (en) * 2018-04-10 2022-05-13 株式会社Lg化学 Battery diagnosis device, battery management system, battery pack, and battery diagnosis method
WO2019199057A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Battery diagnostic device and method
CN111263894A (en) * 2018-04-10 2020-06-09 株式会社Lg化学 Battery diagnosis device and method
EP3674730A4 (en) * 2018-04-10 2020-09-16 LG Chem, Ltd. Battery diagnostic device and method
US11391780B2 (en) 2018-04-10 2022-07-19 Lg Energy Solution, Ltd. Battery diagnostic device and method
JP2020034524A (en) * 2018-08-31 2020-03-05 株式会社デンソー Power supply system
CN111796187B (en) * 2019-04-05 2023-06-13 本田技研工业株式会社 Device and method for obtaining precipitation of metal lithium of secondary battery
CN111796187A (en) * 2019-04-05 2020-10-20 本田技研工业株式会社 Device and method for learning lithium metal deposition of secondary battery
CN112240979A (en) * 2019-07-16 2021-01-19 电计贸易(上海)有限公司 Method for detecting voltage critical point of lithium ion battery, electronic terminal and storage medium
CN112240979B (en) * 2019-07-16 2024-03-22 电计贸易(上海)有限公司 Method for detecting voltage critical point of lithium ion battery, electronic terminal and storage medium
WO2022009696A1 (en) 2020-07-08 2022-01-13 パナソニックIpマネジメント株式会社 Arithmetic system, battery inspection method, and battery inspection program
EP4181265A4 (en) * 2020-07-08 2024-01-03 Panasonic Intellectual Property Management Co., Ltd. Arithmetic system, battery inspection method, and battery inspection program
CN112098877A (en) * 2020-09-15 2020-12-18 湖北亿纬动力有限公司 Battery detection method and device and battery system
CN112098877B (en) * 2020-09-15 2023-06-30 湖北亿纬动力有限公司 Battery detection method, device and battery system
EP4191747A4 (en) * 2021-04-28 2024-05-15 LG Energy Solution, Ltd. Apparatus and method for detecting lithium precipitation

Similar Documents

Publication Publication Date Title
JP2010019664A (en) Battery deterioration detection device and method
US11054482B2 (en) Systems and methods for determining battery state of charge
US10044199B2 (en) Electric storage system that detects voltage values of a plurality of electric storage elements
JP6460860B2 (en) Method for estimating the health of battery cells
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
EP3410137B1 (en) Cell state estimation device, cell control device, cell system, and cell state estimation method
US11105861B2 (en) Device and method for estimating battery resistance
JP5348987B2 (en) How to detect battery deterioration
JP6668905B2 (en) Battery deterioration estimation device
EP3171187B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
EP3171186B1 (en) Battery state detection device, secondary battery system, program product, and battery state detection method
JP5419831B2 (en) Battery degradation degree estimation device
EP3002597A1 (en) Battery control device
CN110462916B (en) Power storage element management device and power storage element management method
KR20160004077A (en) Method and apparatus for estimating state of battery
JP2012145403A (en) Battery capacity detector of lithium ion secondary battery
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
JP2010217070A (en) Capacity estimation device and vehicle
JP6155743B2 (en) Charge state detection device and charge state detection method
JP5409840B2 (en) Apparatus for estimating cell state of battery pack
JP6460859B2 (en) Method for estimating and readjusting the state of charge of a battery cell
JP2017111058A (en) Battery resistance estimation device
JP2002093468A (en) Deterioration state detecting method for lead-acid battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004