JP2003132960A - Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery - Google Patents

Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery

Info

Publication number
JP2003132960A
JP2003132960A JP2001326251A JP2001326251A JP2003132960A JP 2003132960 A JP2003132960 A JP 2003132960A JP 2001326251 A JP2001326251 A JP 2001326251A JP 2001326251 A JP2001326251 A JP 2001326251A JP 2003132960 A JP2003132960 A JP 2003132960A
Authority
JP
Japan
Prior art keywords
storage battery
charge
state
external load
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001326251A
Other languages
Japanese (ja)
Inventor
Shinichi Arisaka
伸一 有坂
Kiichi Koike
喜一 小池
Hiroyuki Jinbo
裕行 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001326251A priority Critical patent/JP2003132960A/en
Publication of JP2003132960A publication Critical patent/JP2003132960A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system comprising an independent power source such as a fuel cell and a storage battery, in which the charged state of the storage battery is accurately detected, and the degradation of the storage battery is accurately decided, based on the acquired charged state value. SOLUTION: A method for detecting the charged state of a storage battery is provided which uses a power supply system that supplies power to a load 3 by implementing a fuel cell 1 of an independent power source and a storage battery 7, and supplies an output to the load 3 while charging the storage battery 7 if the power consumption of the load 3 is less than a specific output which is set to be an output value or less of the fuel cell 1, while the storage battery 7 compensates the output to the load 3 if the power consumption of the load 3 exceeds the specific output. When the power consumption of the load 3 is less than the specific output of the fuel cell 1, charging/discharging of the storage battery 7 is suspended for a prescribed period so that the storage battery is opened in terms of circuit. During this period, an open-circuit voltage value of the storage battery is measured, and based on the relationship between an OCV value and an SOC value of the storage battery, the SOC of the storage battery is detected from the measured open-circuit voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池等の独立
型電源と蓄電池を用いた電力供給システムにおける蓄電
池の充電状態検出方法と劣化判定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery charge state detection method and a deterioration determination method in a power supply system using a storage battery and an independent power source such as a fuel cell.

【0002】[0002]

【従来の技術】近年、効率的なエネルギー利用の視点か
ら燃料電池発電システムが注目されている。しかし、燃
料電池のみで発電させようとした場合、外部負荷の変動
に対して燃料電池の出力応答性が悪いため、発電システ
ムに蓄電池を併設し、この蓄電池が燃料電池の余剰電力
を蓄電するとともに不足電力を供給するシステムが提案
されている。このようなシステムに用いる蓄電池として
は、特に経済性に優れており、信頼性、安全性の実績が
あり、またリサイクル体制が確立されている鉛蓄電池が
適している。
2. Description of the Related Art In recent years, fuel cell power generation systems have attracted attention from the viewpoint of efficient energy use. However, when attempting to generate power using only the fuel cell, the output response of the fuel cell is poor with respect to fluctuations in external load, so a storage battery is installed side by side with the power generation system, and this storage battery stores excess power of the fuel cell. A system for supplying a power shortage has been proposed. As a storage battery used in such a system, a lead storage battery, which has excellent economical efficiency, has a track record of reliability and safety, and has a established recycling system, is suitable.

【0003】従来の燃料電池発電システムは、図4に示
したように燃料電池41の出力と蓄電池42との間にD
C−DCコンバータ等で構成され、燃料電池41からの
出力を制御することが可能な充電器43を設けることが
提案されている。燃料電池41の出力が負荷44の消費
電力に対して余剰を有している場合には燃料電池41か
らの出力の一部は電力変換装置45を介して負荷44に
接続されるとともに、燃料電池41の余剰出力は充電器
43を介して蓄電池42に蓄電される。
In the conventional fuel cell power generation system, as shown in FIG. 4, D is provided between the output of the fuel cell 41 and the storage battery 42.
It has been proposed to provide a charger 43 configured by a C-DC converter or the like and capable of controlling the output from the fuel cell 41. When the output of the fuel cell 41 has a surplus with respect to the power consumption of the load 44, a part of the output from the fuel cell 41 is connected to the load 44 via the power conversion device 45, and The surplus output of 41 is stored in the storage battery 42 via the charger 43.

【0004】さらに、負荷44の消費電力が燃料電池4
1の最大出力未満に設定される特定出力を超える場合に
は蓄電池42からの出力が電力変換装置45を介して負
荷44に供給される。このような発電システムにおいて
燃料電池41の余剰電力を効率的に蓄電池42に蓄電す
るためには、蓄電池42の充電状態(以下SOCと云
う)を100%未満の低い状態で制御することが必要で
ある。蓄電池42のSOCが100%近くに常に制御さ
れると蓄電池42は余剰電力を蓄電することができない
ばかりか、過充電を受けるので蓄電池42の寿命が低下
してしまうからである。
Further, the power consumption of the load 44 is the fuel cell 4
When the output exceeds the specific output set to be less than the maximum output of 1, the output from the storage battery 42 is supplied to the load 44 via the power conversion device 45. In such a power generation system, in order to efficiently store the surplus power of the fuel cell 41 in the storage battery 42, it is necessary to control the state of charge of the storage battery 42 (hereinafter referred to as SOC) in a low state of less than 100%. is there. This is because if the SOC of the storage battery 42 is constantly controlled to be close to 100%, the storage battery 42 will not be able to store surplus power and will be overcharged, which will shorten the life of the storage battery 42.

【0005】このようなシステムにおける蓄電池のSO
Cの検出方法は蓄電池の開路電圧(以下OCVと云
う)から検出する方法、蓄電池の内部抵抗から検出す
る方法、蓄電池の充放電電流を時間積算して得た充放
電電気量から検出する等の方法が用いられている。
SO of a storage battery in such a system
The method of detecting C includes a method of detecting from the open circuit voltage of the storage battery (hereinafter referred to as OCV), a method of detecting from the internal resistance of the storage battery, and a detection from the amount of charge / discharge electricity obtained by integrating the charging / discharging current of the storage battery over time. Method is used.

【0006】特に、蓄電池として鉛蓄電池やリチウム二
次電池を用いる場合、蓄電池のSOCと蓄電池のOCV
との間には強い相関関係があるので、これらの蓄電池を
用いる場合には前記したの方法は有効な手段となる。
また、前記の方法も有効な方法ではあるが、電解液の
硫酸濃度が減少することによる内部抵抗の上昇を検出す
ることによって、蓄電池の経年変化(電解液の減少、電
極格子および活物質の劣化等の変化)によって値が変化
するため、何らかの形で補正する必要がある。また、蓄
電池のOCVを精度よく測定するためには、蓄電池の充
放電後、無負荷状態で放置する時間が必要であるが、従
来の燃料電池発電システムでは蓄電池が常時充放電され
ていて、蓄電池のOCVを見ることは困難である。
Particularly, when a lead storage battery or a lithium secondary battery is used as the storage battery, the SOC of the storage battery and the OCV of the storage battery
Since there is a strong correlation with the above, the above method becomes an effective means when these storage batteries are used.
The above method is also an effective method, but by detecting an increase in internal resistance due to a decrease in sulfuric acid concentration of the electrolytic solution, secular change of the storage battery (decrease in electrolytic solution, deterioration of electrode grid and active material) (Changes in etc.) change the values, so it is necessary to correct them in some way. Further, in order to accurately measure the OCV of a storage battery, it is necessary to leave the storage battery in a non-loaded state after charging / discharging, but in the conventional fuel cell power generation system, the storage battery is constantly charged / discharged, and It is difficult to see the OCV of.

【0007】さらに、前記したの方法は、充放電電流
を積算する以前の蓄電池のSOCを正確に把握していれ
ば、それ以後の蓄電池のSOCを検出することが可能と
なる。しかし、蓄電池の充放電電気量を検出する際、正
確に数値を検出するためには広い測定範囲において精度
よく測定できる検出器が必要である。現在のところ、検
出器の精度の問題、すなわち電流、電圧が大きい値を検
出するのは比較的容易であるが、小さい値を正確に検出
するのが困難であることから、充放電電気量の積算のみ
で長期間SOCを誤差なく検出することは難しい。
Further, in the above-mentioned method, if the SOC of the storage battery before accumulating the charging / discharging current is accurately grasped, it becomes possible to detect the SOC of the storage battery after that. However, when detecting the amount of charge and discharge electricity of the storage battery, a detector capable of performing accurate measurement in a wide measurement range is required in order to accurately detect the numerical value. At present, it is relatively easy to detect the problem of the accuracy of the detector, that is, the large value of the current and voltage, but it is difficult to detect the small value accurately, so It is difficult to detect SOC for a long time without error by only integrating.

【0008】鉛蓄電池の劣化状態の判定については、
放電電圧値による判定、OCV値による判定および
蓄電池内部抵抗値による測定から判定する方法がある
が、前記したSOCの検出と同様、これらの方法だけで
は蓄電池の劣化状態を正確に判定することは困難であっ
た。
Regarding the determination of the deterioration state of the lead acid battery,
Although there is a method of making a determination based on the discharge voltage value, an OCV value, and a measurement based on the internal resistance value of the storage battery, it is difficult to accurately determine the deterioration state of the storage battery only by these methods as in the case of detecting the SOC described above. Met.

【0009】そして、蓄電池のSOCが正確に検出でき
ない場合には蓄電池のSOCが適正範囲を逸脱して蓄電
池が過充電により劣化したり、充電不足となって容量低
下を引き起こし、発電システムの機能に支障をきたすと
いう課題がある。さらに、蓄電池の劣化を正確に判定で
きない場合には蓄電池交換等の適切な保守点検がなされ
ず、結果として発電システムの信頼性を低下させるとい
う課題があった。
When the SOC of the storage battery cannot be accurately detected, the SOC of the storage battery deviates from the proper range and the storage battery is deteriorated due to overcharging or insufficient charging causes a decrease in capacity, which causes the power generation system to function. There is a problem that it causes trouble. Further, when the deterioration of the storage battery cannot be accurately determined, appropriate maintenance and inspection such as replacement of the storage battery is not performed, resulting in a problem that the reliability of the power generation system is reduced.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記課題を
解決するものであり、燃料電池等の独立型電源に蓄電池
が併設された構成の電力供給システムにおいて蓄電池の
SOC検出と劣化判定を精度よく行う方法を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and in an electric power supply system having a storage battery attached to an independent power source such as a fuel cell, the SOC detection and deterioration determination of the storage battery can be performed accurately. It is intended to provide a method of doing well.

【0011】[0011]

【課題を解決するための手段】前記した課題を解決する
ために本発明の請求項1記載に係る発明は、独立型電源
と蓄電池とを備えて外部負荷に電力を供給し、前記外部
負荷の消費電力が前記独立型電源の出力値以下に設定さ
れる特定出力未満であるとき、この独立型電源は蓄電池
に充電しながら外部負荷に出力を供給し、消費電力が前
記特定出力を上回ったとき、前記蓄電池から外部負荷に
出力を補う電力供給システムに用いる蓄電池のSOC検
出方法において、前記外部負荷の消費電力が前記特定出
力未満である時点で前記蓄電池の充放電を所定の期間停
止し、この所定期間内に蓄電池のOCV値を測定し、蓄
電池のOCV値と蓄電池のSOC値との関係に基づき電
力供給システムに用いられている前記蓄電池のSOCを
検出することを特徴とする電力供給システムに用いる蓄
電池の充電状態検出方法を示すものである。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention comprises an independent power source and a storage battery to supply electric power to an external load, When the power consumption is less than the specific output set below the output value of the independent power supply, the independent power supply supplies the output to the external load while charging the storage battery, and when the power consumption exceeds the specific output. In the method for detecting the SOC of a storage battery used in a power supply system that supplements the output from the storage battery to an external load, the charging / discharging of the storage battery is stopped for a predetermined period at a time when the power consumption of the external load is less than the specific output, The OCV value of the storage battery is measured within a predetermined period, and the SOC of the storage battery used in the power supply system is detected based on the relationship between the OCV value of the storage battery and the SOC value of the storage battery. Shows a charging state detecting method of the battery used in the power supply system according to.

【0012】本発明の請求項2記載に係る発明は、独立
型電源と蓄電池とを備えて外部負荷に電力を供給し、前
記外部負荷の消費電力が独立型電源の出力値以下に設定
される特定出力未満であるとき、前記独立型電源は前記
蓄電池に充電しながら外部負荷に出力を供給し、前記外
部負荷の消費電力が前記特定出力を上回ったとき、前記
蓄電池から外部負荷に出力を補うとともに、前記蓄電池
のSOCを100%未満で充電制御するとともに、所定
時間毎に前記SOCを100%まで充電し、さらに過充
電を行う電力供給システムに用いる蓄電池の充電状態検
出方法であって、前記蓄電池のSOCは前記蓄電池の充
放電電気量を積算して求められ、前記過充電後に前記S
OC値を100に設定することを特徴とする電力供給シ
ステムに用いる蓄電池の充電状態検出方法を示すもので
ある。
According to a second aspect of the present invention, an independent power source and a storage battery are provided to supply power to an external load, and the power consumption of the external load is set to an output value of the independent power source or less. When it is less than a specific output, the independent power source supplies an output to an external load while charging the storage battery, and when the power consumption of the external load exceeds the specific output, the output from the storage battery is supplemented to the external load. Along with, the SOC of the storage battery is controlled to be charged at less than 100%, the SOC is charged to 100% at predetermined time intervals, and a state of charge detection method for the storage battery used in a power supply system for overcharging is further provided. The SOC of the storage battery is obtained by integrating the charge / discharge electricity amount of the storage battery, and after the overcharge, the S
1 shows a method for detecting the state of charge of a storage battery used in a power supply system, which is characterized by setting an OC value to 100.

【0013】本発明の請求項3記載に係る発明は、独立
型電源と蓄電池とを備えて外部負荷に電力を供給し、前
記外部負荷の消費電力が独立型電源の出力値以下に設定
される特定出力未満であるとき、前記独立型電源は前記
蓄電池に充電しながら外部負荷に出力を供給し、前記外
部負荷の消費電力が前記特定出力を上回ったとき、前記
蓄電池から外部負荷に出力を補うとともに、前記蓄電池
のSOCを100%未満で充電制御するとともに、所定
時間毎に前記SOCを100%まで充電し、さらに過充
電を行う電力供給システムに用いる蓄電池の劣化判定方
法であって、前記外部負荷の消費電力が前記特定出力未
満である時点で蓄電池の充放電を所定の期間停止し、前
記所定期間内に前記蓄電池のOCV値を測定し、蓄電池
のOCV値と蓄電池のSOC値との関係から求めた第1
のSOC値と前記蓄電池の充放電電流を積算して設けた
第2のSOC値とを比較して蓄電池の劣化状態を判定す
ることを示すものである。
According to a third aspect of the present invention, an independent power source and a storage battery are provided to supply power to an external load, and the power consumption of the external load is set to an output value of the independent power source or less. When it is less than a specific output, the independent power source supplies an output to an external load while charging the storage battery, and when the power consumption of the external load exceeds the specific output, the output from the storage battery is supplemented to the external load. At the same time, a method for determining deterioration of a storage battery used in a power supply system, wherein the SOC of the storage battery is controlled to be less than 100%, the SOC is charged to 100% at predetermined time intervals, and further overcharged. When the power consumption of the load is less than the specific output, charging / discharging of the storage battery is stopped for a predetermined period, the OCV value of the storage battery is measured within the predetermined period, and the OCV value of the storage battery and the storage of electricity are stored. The first, which was determined from the relationship between the SOC value of
It is shown that the deterioration state of the storage battery is determined by comparing the SOC value of the storage battery and the second SOC value provided by integrating the charging / discharging current of the storage battery.

【0014】本発明の請求項4記載に係る発明は、請求
項1または2に記載の構成による電力供給システムに用
いる蓄電池の充電状態検出方法において独立型電源とし
て燃料電池を用いることを特徴とするものである。
The invention according to claim 4 of the present invention is characterized in that a fuel cell is used as an independent power source in the method for detecting the state of charge of a storage battery used in the power supply system according to the structure of claim 1 or 2. It is a thing.

【0015】さらに、本発明の請求項5記載に係る発明
は、請求項3に記載の構成による電力供給システムに用
いる蓄電池の劣化判定方法において独立型電源として燃
料電池を用いることを特徴とするものである。
Further, the invention according to claim 5 of the present invention is characterized in that a fuel cell is used as an independent power source in a method for judging deterioration of a storage battery used in a power supply system according to the structure of claim 3. Is.

【0016】[0016]

【発明の実施の形態】図1は本発明を適用しうる電力供
給システムの構成を示すブロック図である。
1 is a block diagram showing the configuration of a power supply system to which the present invention can be applied.

【0017】独立型電源としての燃料電池1の出力は電
力変換装置2(DC−AC変換)に接続され、負荷3に
必要な電力を供給する構成になっている。電力変換装置
2は負荷3が必要とする出力に応じてDC−AC変換器
やDC−DC変換器が用いられる。
The output of the fuel cell 1 as a stand-alone power source is connected to a power converter 2 (DC-AC converter) to supply the load 3 with necessary power. As the power conversion device 2, a DC-AC converter or a DC-DC converter is used according to the output required by the load 3.

【0018】また、燃料電池1の出力の一部は逆流防止
ダイオード4、充電制御用スイッチ5および充電電気量
検出手段6を介して燃料電池1と接続されている。燃料
電池1の最大出力未満に設定される特定出力よりも負荷
3の消費電力が小であるとき、すなわち燃料電池1の出
力に余剰があるときや、蓄電池7のSOCを上昇させる
ときに、充電制御用スイッチ5を閉じて燃料電池1の出
力の一部が蓄電池7に充電される。このときに燃料電池
1から蓄電池7に流れた充電電気量は、充電電気量検出
手段6によって検出され、その情報は第1のSOC検出
手段8に送られる。
A part of the output of the fuel cell 1 is connected to the fuel cell 1 via the backflow prevention diode 4, the charge control switch 5 and the charge quantity detecting means 6. When the power consumption of the load 3 is smaller than the specific output set to be less than the maximum output of the fuel cell 1, that is, when the output of the fuel cell 1 has a surplus or when the SOC of the storage battery 7 is increased, charging is performed. The control switch 5 is closed and a part of the output of the fuel cell 1 is charged in the storage battery 7. At this time, the charge electricity amount flowing from the fuel cell 1 to the storage battery 7 is detected by the charge electricity amount detecting means 6, and the information thereof is sent to the first SOC detecting means 8.

【0019】蓄電池7の出力は、放電電気量検出手段
9、放電制御用スイッチ10を通して電力変換装置2の
入力に接続され、負荷3の消費電力が増大し、燃料電池
1の特定出力以上となり、燃料電池1のみでは負荷3に
追従できないときに放電制御用スイッチ10を閉じ、蓄
電池7より電力変換装置2を通して負荷3に電力が供給
される。このときに蓄電池7から電力変換装置2に流れ
た放電電気量は、放電電気量検出手段9によって値を検
出され、その情報は第1のSOC検出手段8に送られ
る。
The output of the storage battery 7 is connected to the input of the power conversion device 2 through the discharge electricity amount detecting means 9 and the discharge control switch 10, the power consumption of the load 3 increases, and the output exceeds the specific output of the fuel cell 1. When the fuel cell 1 alone cannot follow the load 3, the discharge control switch 10 is closed and power is supplied from the storage battery 7 to the load 3 through the power converter 2. At this time, the discharge electricity amount flowing from the storage battery 7 to the power conversion device 2 is detected by the discharge electricity amount detecting means 9, and the information thereof is sent to the first SOC detecting means 8.

【0020】本発明の第1の実施の形態による電力供給
システムに用いる蓄電池のSOC検出方法において、負
荷3の消費電力が燃料電池1の特定出力以下の時点で、
燃料電池1から蓄電池7への充電および放電を所定期間
停止する。図1に示した例では充電制御用スイッチ5お
よび放電制御用スイッチ10を開放する。この所定期間
内にOCV検出手段11によって蓄電池7のOCVを検
出する。
In the SOC detecting method for the storage battery used in the power supply system according to the first embodiment of the present invention, when the power consumption of the load 3 is equal to or lower than the specific output of the fuel cell 1,
Charging and discharging from the fuel cell 1 to the storage battery 7 is stopped for a predetermined period. In the example shown in FIG. 1, the charge control switch 5 and the discharge control switch 10 are opened. The OCV detecting means 11 detects the OCV of the storage battery 7 within this predetermined period.

【0021】このOCV値と図2に示したようなあらか
じめ設定されたOCV−SOC関係とを比較することに
よりSOCを第1のSOC検出手段8で検出する。この
ようなSOC検出方法は蓄電池からの電力供給を必要と
しない期間に蓄電池を意図的に開路状態とするので正確
なOCV値が得られ、SOCの検出精度を高めることが
できる。また、蓄電池7を開路状態とするタイミングに
おいては燃料電池1が負荷3に対して余剰電力を有して
いるので、燃料電池1より負荷3への安定した電力供給
を行うことができる。
The SOC is detected by the first SOC detecting means 8 by comparing this OCV value with a preset OCV-SOC relationship as shown in FIG. In such an SOC detection method, since the storage battery is intentionally opened in a period in which power supply from the storage battery is not required, an accurate OCV value can be obtained and the SOC detection accuracy can be improved. Further, at the timing when the storage battery 7 is opened, the fuel cell 1 has surplus electric power with respect to the load 3, so that stable supply of electric power from the fuel cell 1 to the load 3 can be performed.

【0022】ここで、蓄電池を開路状態に保持する期間
は、例えば図2に例示したように、数秒〜数100秒の
間で設定することができる。また、図2においては公称
電圧12V、10時間率放電における定格容量48Ah
の制御弁式鉛蓄電池であり、この蓄電池温度が25℃で
の例を示したが、蓄電池の品種や温度によってOCV−
SOCの相関関係は変化するので、蓄電池温度を検出
し、この温度データによってSOC値を補正することが
好ましい。
Here, the period during which the storage battery is held in the open circuit state can be set, for example, between a few seconds and a few hundred seconds, as illustrated in FIG. Further, in FIG. 2, the rated capacity is 48 Ah at a nominal voltage of 12 V and a 10-hour rate discharge.
This is an example of a control valve type lead-acid storage battery of which the storage battery temperature is 25 ° C, but depending on the type and temperature of the storage battery, the OCV-
Since the SOC correlation changes, it is preferable to detect the storage battery temperature and correct the SOC value based on this temperature data.

【0023】次に、本発明の第2の実施の形態において
SOC検出を蓄電池の充放電電気量の測定によって行う
ものである。充電電気量検出手段6および放電電気量検
出手段9によって得られた充電電気量と放電電気量の値
から第2のSOC検出手段12により蓄電池7のSOC
を検出する。
Next, in the second embodiment of the present invention, SOC detection is performed by measuring the amount of charge and discharge electricity of the storage battery. The SOC of the storage battery 7 is detected by the second SOC detecting means 12 from the values of the charge electricity quantity and the discharge electricity quantity obtained by the charge electricity quantity detecting means 6 and the discharge electricity quantity detecting means 9.
To detect.

【0024】そして、本発明を適用する電力供給システ
ムでは、蓄電池7のSOCは燃料電池1の余剰電力を効
率よく蓄電するために通常では100%未満に制御され
ているが、常時SOCを100%未満に制御している
と、蓄電池7の容量劣化が進行する。特に蓄電池7とし
て鉛蓄電池を用いる場合には蓄電池活物質中に放電生成
物である硫酸鉛が蓄積する。
In the power supply system to which the present invention is applied, the SOC of the storage battery 7 is usually controlled to less than 100% in order to store the surplus power of the fuel cell 1 efficiently, but the SOC is always 100%. If it is controlled to be less than 1, the capacity deterioration of the storage battery 7 progresses. In particular, when a lead storage battery is used as the storage battery 7, lead sulfate, which is a discharge product, accumulates in the storage battery active material.

【0025】このような硫酸鉛の蓄積は所定の時間間隔
で充電を行えば解消するものの、SOCを100%未満
で保持し続けると蓄積した硫酸鉛が固定化して充電によ
っても容量回復しなくなる。したがって、所定の時間間
隔で蓄電池7のSOCを100%近辺にまで上昇させ、
さらに蓄電池容量に対して過充電となるようにリフレッ
シュ充電を行う。
Although the accumulation of lead sulfate is eliminated by charging at a predetermined time interval, if the SOC is kept below 100%, the accumulated lead sulfate is fixed and the capacity does not recover even by charging. Therefore, the SOC of the storage battery 7 is raised to around 100% at a predetermined time interval,
Further, refresh charging is performed so that the storage battery capacity is overcharged.

【0026】本発明においてはこの過充電となるリフレ
ッシュ充電後にSOC値を100に再設定し、充放電電
気量の積算を再開する。このような本発明の方法によれ
ば、充放電電気量測定の累積誤差はリフレッシュ充電が
行われる毎に解消されるので正確なSOC検出を行うこ
とができる。
In the present invention, the SOC value is reset to 100 after the refresh charge, which is the overcharge, and the integration of the charge / discharge electric quantity is restarted. According to the method of the present invention as described above, the accumulated error of the charge / discharge electric quantity measurement is eliminated every time refresh charging is performed, so that accurate SOC detection can be performed.

【0027】これらの発明によれば、電力供給システム
に用いる蓄電池のSOCを正確に検出することができる
ので、蓄電池が過充電したり、あるいは充電不足に陥っ
て容量低下することがなく、電力供給システムを安定し
て運転することができる。
According to these aspects of the invention, since the SOC of the storage battery used in the power supply system can be accurately detected, the storage battery will not be overcharged or will fall into insufficient charge and the capacity will not be reduced, and the power supply The system can be operated stably.

【0028】本発明の第3の実施の形態による電力供給
システムに用いる蓄電池の劣化判定は、前記した第1の
実施の形態により検出されたSOC値(以下、第1のS
OC値と云う)と同じく前記した第2の実施の形態によ
り検出されたSOC値(以下、第2のSOC値と云う)
を用いて行う。
The deterioration of the storage battery used in the power supply system according to the third embodiment of the present invention is determined by the SOC value detected by the above-described first embodiment (hereinafter referred to as the first S value).
Similarly to the OC value), the SOC value detected by the second embodiment described above (hereinafter referred to as the second SOC value).
Using.

【0029】本発明の発明者らは蓄電池のOCV値を測
定して、そのOCV値から検出される第1のSOC値と
蓄電池の充放電電気量から検出される第2のSOC値と
の差分すなわち第1のSOC−第2のSOC(以下これ
をΔSOCと云う)が蓄電池の容量劣化程度と密接に関
連することを見出した。図3は蓄電池が前述の12V4
8Ahの制御弁式鉛蓄電池であって、蓄電池温度を25
℃とした場合における蓄電池の放電容量(初期放電容量
に対する百分率を表示する)−ΔSOCとの関係を示す
図である。
The inventors of the present invention measure the OCV value of the storage battery, and determine the difference between the first SOC value detected from the OCV value and the second SOC value detected from the charge / discharge electricity of the storage battery. That is, it was found that the first SOC minus the second SOC (hereinafter referred to as ΔSOC) is closely related to the degree of capacity deterioration of the storage battery. In FIG. 3, the storage battery is the above-mentioned 12V4.
Control valve type lead-acid battery of 8Ah, storage battery temperature 25
It is a figure which shows the relationship of the discharge capacity (displaying the percentage with respect to initial discharge capacity)-(DELTA) SOC of a storage battery in the case of (degreeC).

【0030】本発明においてはこの図3に例示した関係
に基づき、ΔSOC値から劣化判定手段13によって蓄
電池7の容量劣化を判定する。より具体的にはΔSOC
値がある所定範囲内から逸脱したときに劣化判定を行っ
たり、図3に示したようにあらかじめ設定されたΔSO
C値−蓄電池容量との関係に基づいて劣化程度を判定す
る。劣化判定表示は点灯ランプやディスプレイ等の表示
手段を用いて行うことができる。そして、このような容
量劣化判定方法によれば、蓄電池を放電することなく、
蓄電池の劣化程度を正確に判定することができ、電力供
給システムの使用者はこの判定結果に基づき、蓄電池の
交換等の保守点検作業を行うことができる。
In the present invention, based on the relationship illustrated in FIG. 3, the deterioration determining means 13 determines the capacity deterioration of the storage battery 7 from the ΔSOC value. More specifically, ΔSOC
When the value deviates from a certain range, the deterioration is judged, or as shown in FIG.
The degree of deterioration is determined based on the relationship between the C value and the storage battery capacity. The deterioration determination display can be performed using a display means such as a lighting lamp or a display. Then, according to such a capacity deterioration determination method, without discharging the storage battery,
The degree of deterioration of the storage battery can be accurately determined, and the user of the power supply system can perform maintenance and inspection work such as replacement of the storage battery based on the determination result.

【0031】[0031]

【発明の効果】以上のように本発明によれば、燃料電池
等の独立型電源と蓄電池とを組合せた電力供給システム
において蓄電池のSOCを正確に検出することができる
ので、蓄電池の劣化を抑制でき、電力供給システムを安
定して運転することができる。また、蓄電池の劣化状態
を正確に判定することによって、電力供給システムの保
守・点検を容易にできるので、本発明は、工業上、極め
て有用である。
As described above, according to the present invention, since the SOC of the storage battery can be accurately detected in the power supply system in which the independent power source such as the fuel cell and the storage battery are combined, the deterioration of the storage battery can be suppressed. Therefore, the power supply system can be operated stably. Further, since the maintenance / inspection of the power supply system can be facilitated by accurately determining the deterioration state of the storage battery, the present invention is industrially extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用しうる電力供給システムの構成を
示すブロック図
FIG. 1 is a block diagram showing a configuration of a power supply system to which the present invention can be applied.

【図2】蓄電池開路電圧であるOCVとSOCとの関係
を示す図
FIG. 2 is a diagram showing a relationship between OCV, which is an open circuit voltage of a storage battery, and SOC.

【図3】蓄電池放電容量とΔSOCとの関係を示す図FIG. 3 is a diagram showing a relationship between a storage battery discharge capacity and ΔSOC.

【図4】従来の燃料電池を用いた電力供給システムの構
成を示すブロック図
FIG. 4 is a block diagram showing the configuration of a conventional power supply system using a fuel cell.

【符号の説明】[Explanation of symbols]

1,41 燃料電池 2,45 電力変換装置 3,44 負荷 4 逆流防止ダイオード 5 充電制御用スイッチ 6 充電電気量検出手段 7,42 蓄電池 8 第1のSOC検出手段 9 放電電気量検出手段 10 放電制御用スイッチ 11 OCV検出手段 12 第2のSOC検出手段 13 劣化判定手段 43 充電器 1,41 Fuel cell 2,45 Power converter 3,44 load 4 Backflow prevention diode 5 Charge control switch 6 Charge amount detection means 7,42 storage battery 8 First SOC detecting means 9 Discharge electricity amount detection means 10 Discharge control switch 11 OCV detection means 12 Second SOC detecting means 13 Deterioration determination means 43 charger

フロントページの続き (72)発明者 神保 裕行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G016 CB11 CB12 CB22 CB32 CC02 CC06 CC07 CC12 CC23 CD09 CE01 CE03 5G003 AA05 BA01 DA07 DA18 EA05 EA08 GB06 5H030 AA06 AS03 AS18 BB08 BB22 DD02 DD06 FF41 FF46 Continued front page    (72) Inventor Hiroyuki Jimbo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 2G016 CB11 CB12 CB22 CB32 CC02                       CC06 CC07 CC12 CC23 CD09                       CE01 CE03                 5G003 AA05 BA01 DA07 DA18 EA05                       EA08 GB06                 5H030 AA06 AS03 AS18 BB08 BB22                       DD02 DD06 FF41 FF46

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 独立型電源と蓄電池とを備えて外部負荷
に電力を供給し、前記外部負荷の消費電力が前記独立型
電源の出力値以下に設定される特定出力未満であると
き、前記独立型電源は前記蓄電池に充電しながら外部負
荷に出力を供給し、前記外部負荷の消費電力が前記特定
出力を上回ったとき、前記蓄電池から外部負荷に出力を
補う電力供給システムに用いる蓄電池の充電状態検出方
法において、前記外部負荷の消費電力が前記特定出力未
満である時点で前記蓄電池の充放電を所定の期間停止
し、前記所定期間内に前記蓄電池の開路電圧値を測定
し、蓄電池の開路電圧値と蓄電池の充電状態値との関係
に基づき電力供給システムに用いられている前記蓄電池
の充電状態を検出することを特徴とする電力供給システ
ムに用いる蓄電池の充電状態検出方法。
1. An independent power source and a storage battery are provided to supply electric power to an external load, and when the power consumption of the external load is less than a specific output set below an output value of the independent power source, the independent power source is provided. The type power supply supplies an output to an external load while charging the storage battery, and when the power consumption of the external load exceeds the specific output, the charging state of the storage battery used in the power supply system that supplements the output from the storage battery to the external load. In the detection method, when the power consumption of the external load is less than the specific output, the charging and discharging of the storage battery is stopped for a predetermined period, the open circuit voltage value of the storage battery is measured within the predetermined period, and the open circuit voltage of the storage battery is measured. The state of charge of the storage battery used in the power supply system is characterized by detecting the state of charge of the storage battery used in the power supply system based on the relationship between the value and the state of charge value of the storage battery. State detection method.
【請求項2】 独立型電源と蓄電池とを備えて外部負荷
に電力を供給し、前記外部負荷の消費電力が前記独立型
電源の出力値以下に設定される特定出力未満であると
き、前記独立型電源は前記蓄電池に充電しながら外部負
荷に出力を供給し、前記外部負荷の消費電力が前記特定
出力を上回ったとき、前記蓄電池から外部負荷に出力を
補うとともに、前記蓄電池の充電状態を100%未満で
充電制御するとともに、所定時間毎に前記蓄電池の充電
状態を100%まで充電し、さらに過充電を行う電力供
給システムに用いる蓄電池の充電状態検出方法であっ
て、前記蓄電池の充電状態は前記蓄電池の充放電電気量
を積算して求められ、前記過充電後に前記充電状態値を
100に設定することを特徴とする電力供給システムに
用いる蓄電池の充電状態検出方法。
2. An independent power source and a storage battery are provided to supply power to an external load, and when the power consumption of the external load is less than a specific output set below the output value of the independent power source, the independent power source is provided. The mold power supply supplies an output to an external load while charging the storage battery. When the power consumption of the external load exceeds the specific output, the output from the storage battery to the external load is supplemented and the state of charge of the storage battery is set to 100. A method of detecting the state of charge of a storage battery used in an electric power supply system that performs charge control at less than%, charges the state of charge of the storage battery to 100% at predetermined time intervals, and further performs overcharge, wherein the state of charge of the storage battery is The state of charge of the storage battery used in the power supply system, which is obtained by integrating the amount of charge and discharge electricity of the storage battery and sets the state of charge value to 100 after the overcharge. Detection method.
【請求項3】 独立型電源と蓄電池とを備えて外部負荷
に電力を供給し、前記外部負荷の消費電力が前記独立型
電源の出力値以下に設定される特定出力未満であると
き、前記独立型電源は前記蓄電池に充電しながら外部負
荷に出力を供給し、前記外部負荷の消費電力が前記特定
出力を上回ったとき、前記蓄電池から外部負荷に出力を
補うとともに、前記蓄電池の充電状態を100%未満で
充電制御するとともに、所定時間毎に前記充電状態を1
00%まで充電し、さらに過充電を行う電力供給システ
ムに用いる蓄電池の劣化判定方法であって、前記外部負
荷の消費電力が前記特定出力未満である時点で前記蓄電
池の充放電を所定の期間停止し、前記所定期間内に前記
蓄電池の開路電圧値を測定し、蓄電池の開路電圧値と蓄
電池の充電状態値との関係から求めた第1の充電状態値
と前記蓄電池の充放電電流を積算して設けた第2の充電
状態値とを比較して蓄電池の劣化状態を判定することを
特徴とする電力供給システムに用いる蓄電池の劣化判定
方法。
3. An independent power source and a storage battery are provided to supply electric power to an external load, and when the power consumption of the external load is less than a specific output set below an output value of the independent power source, the independent power source is provided. The mold power supply supplies an output to an external load while charging the storage battery. When the power consumption of the external load exceeds the specific output, the output from the storage battery to the external load is supplemented and the state of charge of the storage battery is set to 100. The charge state is controlled to be less than 1%, and the charge state is set to 1 every predetermined time.
A method for determining the deterioration of a storage battery used in a power supply system that charges up to 00% and further overcharges, wherein charging / discharging of the storage battery is stopped for a predetermined period when the power consumption of the external load is less than the specific output. Then, the open circuit voltage value of the storage battery is measured within the predetermined period, and the first charge state value obtained from the relationship between the open circuit voltage value of the storage battery and the charge state value of the storage battery and the charge / discharge current of the storage battery are integrated. A method for determining deterioration of a storage battery used in an electric power supply system, comprising: determining a deterioration state of the storage battery by comparing a second state-of-charge value provided in the storage battery.
【請求項4】 前記独立型電源として燃料電池を用いる
ことを特徴とする請求項1または2に記載の電力供給シ
ステムに用いる蓄電池の充電状態検出方法。
4. The method for detecting the state of charge of a storage battery used in a power supply system according to claim 1, wherein a fuel cell is used as the independent power source.
【請求項5】 前記独立型電源として燃料電池を用いる
ことを特徴とする請求項3に記載の電力供給システムに
用いる蓄電池の劣化判定方法。
5. The deterioration determination method for a storage battery used in a power supply system according to claim 3, wherein a fuel cell is used as the independent power source.
JP2001326251A 2001-10-24 2001-10-24 Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery Pending JP2003132960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326251A JP2003132960A (en) 2001-10-24 2001-10-24 Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326251A JP2003132960A (en) 2001-10-24 2001-10-24 Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery

Publications (1)

Publication Number Publication Date
JP2003132960A true JP2003132960A (en) 2003-05-09

Family

ID=19142660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326251A Pending JP2003132960A (en) 2001-10-24 2001-10-24 Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery

Country Status (1)

Country Link
JP (1) JP2003132960A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066795A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Fuel battery system
WO2012049973A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
CN103010046A (en) * 2012-12-27 2013-04-03 惠州市亿能电子有限公司 Method for dynamically estimating state of charge (SOC)
DE112012000108T5 (en) 2011-07-14 2013-08-08 Panasonic Corporation Fuel cell system and method for controlling this
US8603687B2 (en) 2007-12-28 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN108459272A (en) * 2017-02-20 2018-08-28 株式会社杰士汤浅国际 Condition estimating device and method, battery pack, vehicle, accumulating system, memory
CN110431571A (en) * 2017-03-22 2019-11-08 本田技研工业株式会社 Managing device, program, management method and production method
CN111446512A (en) * 2020-03-25 2020-07-24 一汽奔腾轿车有限公司 Active maintenance method for storage battery
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11962243B2 (en) 2021-06-10 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574777B2 (en) 2005-12-07 2013-11-05 Toyota Jodosha Kabushiki Kaisha Fuel cell system
JP2007184243A (en) * 2005-12-07 2007-07-19 Toyota Motor Corp Fuel cell system
WO2007066795A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Fuel battery system
US8343675B2 (en) 2005-12-07 2013-01-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US8603687B2 (en) 2007-12-28 2013-12-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
WO2012049973A1 (en) * 2010-10-15 2012-04-19 三洋電機株式会社 Power management system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
DE112012000108T5 (en) 2011-07-14 2013-08-08 Panasonic Corporation Fuel cell system and method for controlling this
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
CN103010046A (en) * 2012-12-27 2013-04-03 惠州市亿能电子有限公司 Method for dynamically estimating state of charge (SOC)
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
CN108459272A (en) * 2017-02-20 2018-08-28 株式会社杰士汤浅国际 Condition estimating device and method, battery pack, vehicle, accumulating system, memory
CN108459272B (en) * 2017-02-20 2022-07-15 株式会社杰士汤浅国际 State estimation device and method, battery pack, vehicle, power storage system, and memory
CN110431571B (en) * 2017-03-22 2024-01-09 本田技研工业株式会社 Management device, program, management method, and production method
CN110431571A (en) * 2017-03-22 2019-11-08 本田技研工业株式会社 Managing device, program, management method and production method
CN111446512A (en) * 2020-03-25 2020-07-24 一汽奔腾轿车有限公司 Active maintenance method for storage battery
US11962243B2 (en) 2021-06-10 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2023-05-05 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources

Similar Documents

Publication Publication Date Title
JP2003132960A (en) Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
US8581554B2 (en) Battery charging method and apparatus
US8150642B2 (en) Secondary battery deterioration judging device and backup power supply
US20070222418A1 (en) Method for Managing a Pool or Rechargeable Batteries
US20090072788A1 (en) Method for Managing a Bank of Rechargeable Batteries Using the Coup De Fouet Effect on Charging
US20060113959A1 (en) Rechargeable battery life judging method
WO2011048471A1 (en) Power supply apparatus
US7135839B2 (en) Battery pack and method of charging and discharging the same
JP2002017045A (en) Secondary battery device
JPH08140270A (en) Method of measuring parameter of secondary cell, method of controlling charging/discharging of secondary cell by using the parameter measuring method, method of predicting life of secondary cell by using the parameter measuring method, device for controlling charging/discharging of secondary cell, and power storage device using the charging/discharging controlling device
JP2010098866A (en) Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method
JPH0997629A (en) Plural lithium ion secondary battery charging method
JP2013160582A (en) Battery pack system and management method of battery pack system
CN111557067A (en) Power storage device, power storage system, power supply system, and method for controlling power storage device
EP1278072B1 (en) Device for judging life of auxiliary battery
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JPH0869820A (en) Charging method of pack battery enclosing plural secondary batteries
JPH07183050A (en) Method for judging life of lead-acid battery
WO2023159708A1 (en) Control method for normally-electrically charged self-maintenance of battery, and normally-electrically charged self-maintenance battery
JP2001286064A (en) Capacity estimating method for lithium ion battery, method and apparatus for judging deterioration and lithium ion battery pack
CN114879059A (en) Storage battery state monitoring system
JPH1118314A (en) Method and equipment for charging lithium ion secondary battery
JP2000278874A (en) Charging of storage battery
JP2000150000A (en) Backup power supply control method