WO2015151170A1 - Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell - Google Patents

Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell Download PDF

Info

Publication number
WO2015151170A1
WO2015151170A1 PCT/JP2014/059488 JP2014059488W WO2015151170A1 WO 2015151170 A1 WO2015151170 A1 WO 2015151170A1 JP 2014059488 W JP2014059488 W JP 2014059488W WO 2015151170 A1 WO2015151170 A1 WO 2015151170A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
charge
lithium ion
secondary battery
state
Prior art date
Application number
PCT/JP2014/059488
Other languages
French (fr)
Japanese (ja)
Inventor
栄二 關
尚貴 木村
心 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/059488 priority Critical patent/WO2015151170A1/en
Publication of WO2015151170A1 publication Critical patent/WO2015151170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for accurately detecting a charging state of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material in a short time, and controlling the charging / discharging, a control device for the method, and a lithium ion secondary battery module.
  • lithium ion secondary batteries have attracted particular attention as secondary batteries having high energy density, and their research, development, and commercialization are rapidly progressing.
  • small consumer lithium-ion secondary batteries are now widely used for mobile phones and notebook computers.
  • large-scale secondary batteries with higher capacity than conventional batteries are required as storage batteries for home use, industrial use, and in-vehicle use.
  • research using a layered solid solution compound as a positive electrode active material is underway.
  • Patent Document 1 discloses a control device that calculates a charging state from an open circuit voltage when switching from charging to discharging.
  • Patent Document 2 as an apparatus and method for detecting the charge rate (SOC) of a battery mounted on a vehicle, the battery is discharged after stopping charging or charged after stopping discharging, and then the terminal voltage is detected, A technique for calculating the state of charge is disclosed.
  • SOC charge rate
  • the open circuit time is expected to be several minutes. Since several tens of minutes are necessary to stabilize the voltage of a lithium ion secondary battery using a layered solid solution compound as the positive electrode active material, the charge state calculation method of Patent Document 1 is a measurement in the middle of fluctuation of the open circuit voltage. Circuit voltage measurement can be difficult.
  • Patent Document 2 Although details of the battery are not described in Patent Document 2, it is considered that a lead storage battery is generally used for vehicles.
  • An object of the present invention is to provide a control method and a control device for accurately identifying a charged state of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material in a short time and performing appropriate battery control. is there.
  • the control device for a lithium ion secondary battery of the present invention is a device for controlling charge / discharge of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material, and is an open circuit after charging of the lithium ion secondary battery Sometimes the lithium-ion secondary battery is discharged, and the lithium-ion secondary battery is charged at the open circuit after the lithium-ion secondary battery is discharged, and the secondary battery is charged after the discharge and the discharge after the charge. It has a function of acquiring an open circuit voltage, specifying a charging state of the lithium ion secondary battery from the acquired open circuit voltage of the lithium ion secondary battery, and controlling the lithium ion secondary battery based on the specified result. It is characterized by that.
  • another control device for a lithium ion secondary battery includes a voltage information collection unit that acquires open circuit voltage information of a lithium ion secondary battery, and an operation that specifies a charge state based on the acquired open circuit voltage.
  • a processing unit and a charge / discharge control unit that charges and discharges the lithium ion secondary battery based on the state of charge, and the voltage information collecting unit is configured to store the lithium ion secondary battery during open circuit after charging the lithium ion secondary battery.
  • To discharge or to charge the lithium ion secondary battery at the time of open circuit after discharging the lithium ion secondary battery and to acquire the open circuit voltage of the secondary battery after charging after discharging and discharging after charging It is characterized by.
  • the method for controlling a lithium ion secondary battery according to the present invention is a method for controlling a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material, and at the time of open circuit after charging of the lithium ion secondary battery. Measured after the step of discharging the lithium ion secondary battery or the step of charging the lithium ion secondary battery during the open circuit after the discharge of the lithium ion secondary battery and the charge after the discharge or the discharge after the charge The method includes a step of measuring an open circuit voltage of a lithium ion secondary battery, and a step of specifying a state of charge of the lithium ion secondary battery from the open circuit voltage.
  • the lithium ion secondary battery module of the present invention includes one or more lithium ion secondary batteries using a layered solid solution compound as a positive electrode active material, a control device for controlling charge / discharge of the lithium ion secondary battery, A voltage measuring circuit for measuring an open circuit voltage of the ion secondary battery, and the control device described above.
  • the state of charge of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material can be accurately grasped in a short time, and the battery can be appropriately controlled. It becomes possible.
  • the state of charge of the battery corresponds to the battery voltage
  • the state of charge is specified based on the measurement result of the voltage.
  • the battery voltage at the end of charging / discharging of the lithium ion secondary battery using the layered solid solution compound does not correspond to the charging state of the secondary battery, and after charging / discharging stops, the battery voltage changes to the charging state of the secondary battery. The voltage changes until it corresponds.
  • the time until the voltage change ends and the state of charge and the open circuit voltage become a corresponding value is referred to as a relaxation time.
  • the relaxation time is several hours, and the potential difference before and after the relaxation time elapses is close to 0.1V.
  • the potential difference is 10% or more when converted to the charging depth, and greatly affects charge / discharge control.
  • discharging is performed after charging, charging is performed after discharging, and then an open circuit voltage (OCV) is measured by a voltage detector, and charging is performed from the measurement result.
  • OCV open circuit voltage
  • the state (SOC) is calculated, and the secondary battery is controlled based on the calculated SOC.
  • the OCV Since the OCV is charged / discharged in the direction in which the OCV is relaxed according to the first aspect, the OCV can be accurately detected in a short time and the state of charge (SOC) can be grasped.
  • SOC state of charge
  • the amount of change in the state of charge after charging and discharging after charging is equivalent to SOC 0.1 to 5%.
  • SOC is less than 0.1%, the effect of shortening the OCV relaxation time is small, and when the SOC exceeds 5%, the capacity consumption during discharge is large, which is not practical.
  • charging after discharging and discharging after charging are performed at a constant voltage or a constant current.
  • a constant voltage after discharging, the battery is relaxed without charging after discharging and reaches an equilibrium state.
  • the lithium ion secondary battery is composed of a positive electrode, a negative electrode, a separator, and the like.
  • the positive electrode material of the lithium ion secondary battery is a positive electrode active material (general formula xLi 2 M 1 O 3- (1- x) represented by LiM 2 O 2 ).
  • x satisfies 0.3 ⁇ x ⁇ 0.7
  • M 1 is one or more elements selected from the group consisting of Mn, Ti and Zr
  • M 2 is Ni, Co, Mn, One or more elements selected from Fe, Ti, Zr, Al, Mg, Cr and V.
  • M 1 is preferably composed mainly of Mn. A part of M 1 and M 2 may be substituted with other elements.
  • M 1 preferably contains Mn
  • M 2 preferably contains at least one of Ni, Mn, and Co.
  • the layered solid solution compound is also expressed in a form such as another general formula, typically Li 1.2 M 0.8 O 2 (M is a metal element containing a transition metal), and lithium is compared with the layered compound. Since about 20% more can be occluded, it is attracting attention as a material that can achieve a high-capacity lithium ion secondary battery.
  • the amount of oxygen may vary depending on the ratio and valence of transition metal, lithium, and the like.
  • the above-exemplified compounds are Li 1.17 Mn 0.33 Ni 0.5 O 2 + ⁇ and Li 1.17 Mn 0.5 Ni 0.17 Co 0.17 O 2 + ⁇ when rewritten.
  • the lithium ion secondary battery module includes a voltage information collecting unit that detects an open circuit voltage, an arithmetic processing unit that calculates a charge state based on the open circuit voltage, and a charge / discharge control based on the charge state.
  • a charging / discharging control unit that discharges a predetermined amount after stopping the charging of the lithium ion secondary battery, or charges a predetermined amount after stopping the discharging, measures the open circuit voltage thereafter, and is charged And charge / discharge of the lithium ion secondary battery is controlled based on the calculated state of charge.
  • FIG. 1 is a block circuit diagram showing an outline of a lithium ion secondary battery module.
  • the secondary battery module 40 (lithium ion secondary battery module) includes a battery unit 25 including a cylindrical lithium ion secondary battery 20 and battery states of the lithium ion secondary batteries 20.
  • a battery control device 27 for controlling the voltage and a voltage measurement circuit 29 are provided.
  • the battery unit 25 is configured by connecting six lithium ion secondary batteries 20 in series.
  • the battery control device 27 uses the voltage measurement circuit 29 to detect the open circuit voltage of the lithium ion secondary battery, and uses information registered in advance such as a relational expression between the voltage and the charge state to open the battery.
  • An arithmetic processing unit 22 that calculates the state of charge from the circuit voltage and a charge / discharge control unit 23 that controls charging / discharging of the lithium ion secondary battery are provided.
  • the charge / discharge control unit 23 controls charging and discharging of the lithium ion secondary battery based on the charge state calculated by the arithmetic processing unit 22.
  • the battery controller 27 is a central processing unit CPU, a ROM (Read Only Memory) that stores basic control programs and other various setting values, and serves as a work area for the CPU and temporarily stores various data.
  • a microcomputer A microcontroller including a RAM (Random Access Memory) to be connected and an internal bus connecting them.
  • the microcomputer A is operated by a power source from a power supply unit (not shown).
  • each lithium ion secondary battery 20 which comprises the battery part 25 are detected by the battery control apparatus 27.
  • FIG. The negative electrode terminal of the lowest-order lithium ion secondary battery 20 is connected to the ground.
  • the positive terminal of the uppermost lithium ion secondary battery 20 is connected to one end of the switch SW2.
  • the positive electrode terminal of each lithium ion secondary battery 20 and the negative electrode terminal of the lowest lithium ion secondary battery 20 constituting the battery unit 25 are input side terminals of a voltage measurement circuit 29 that measures the voltage of each lithium ion secondary battery 20. It is connected to the.
  • the voltage measurement circuit 29 (voltage measurement unit) can be configured by a differential amplifier circuit that converts the voltage of each lithium ion secondary battery 20 into a voltage with reference to the negative electrode terminal.
  • the output side terminal of the voltage measurement circuit 29 is connected to the A / D input port of the voltage information collection unit 21 for A / D converting the voltage of the lithium ion secondary battery 20.
  • the voltage measurement circuit 29 is connected to the battery designation port of the voltage information collection unit 21 in order to receive designation of the voltage measurement target lithium ion secondary battery 20 from the voltage information collection unit 21. Therefore, the voltage information collecting unit 21 can capture the voltage data of each lithium ion secondary battery 20.
  • each lithium ion secondary battery 20 is connected to one end of a bypass resistor R for capacity adjustment (the same resistance value for each lithium ion secondary battery), and the other end of the bypass resistor R is a lithium ion secondary. It is connected to one end of a switch SW1 that adjusts the capacity of the battery 20. The other end of the switch SW1 is connected to the negative terminal of each lithium ion secondary battery 20.
  • the switch SW1 is connected to an output port of the voltage information collection unit 21 that outputs a control signal (high level signal, low level signal). Therefore, when the switch SW1 is turned on by the control signal from the voltage information collecting unit 21, the current flowing through the lithium ion secondary battery 20 is thermally consumed by the bypass resistor R, and the capacity of each lithium ion secondary battery 20 is Adjustment is possible.
  • the charge / discharge control unit 23 has an output port for outputting a control signal to the switch SW2.
  • the other end of the switch SW2 is connected to one end of the external load 32, and the other end of the external load 32 is connected to the ground. For this reason, the switch SW ⁇ b> 2 is turned on by the control signal from the charge / discharge control unit 23, whereby the electric power from the secondary battery module 40 is supplied to the external load 32.
  • switches SW1 and SW2 for example, FETs that function as switching elements can be used. That is, the output port of the battery control device 27 is connected to the gate of the FET. Therefore, when a weak high level signal is input from the output port of the battery control device 27 to the gate of the FET, a current flows between the drain and the source, and the switches SW1 and SW2 are turned on.
  • FIG. 2 is a cross-sectional view schematically showing a cylindrical lithium ion secondary battery constituting the secondary battery module of FIG.
  • the lithium ion secondary battery 20 includes a bottomed cylindrical battery can 4 made of nickel-plated steel.
  • the battery can 4 accommodates an electrode group G in which a positive electrode plate 1 (positive electrode) and a negative electrode plate 2 (negative electrode) are wound through a separator 3.
  • a positive electrode current collecting lead portion 7 made of aluminum for collecting a potential from the positive electrode plate 1 is arranged on a substantially extended line of the winding center.
  • the positive electrode current collecting lead portion 7 is ultrasonically bonded to the end portion of the positive electrode current collecting lead piece 5 led out from the positive electrode plate 1.
  • a disk-shaped battery lid 9 serving as a positive electrode external terminal is disposed above the positive electrode current collecting lead portion 7.
  • the battery lid 9 is composed of a steel disc-shaped terminal plate whose central portion protrudes upward, and an aluminum annular plate having a gas discharge opening formed in the central portion.
  • An annular positive terminal portion 11 is disposed between the protruding portion of the terminal plate and the flat plate.
  • the upper surface and the lower surface of the positive electrode terminal portion 11 are in contact with the lower surface of the terminal plate and the upper surface of the flat plate, respectively.
  • the inner diameter of the positive electrode terminal portion 11 is larger than the inner diameter of the opening formed in the flat plate.
  • a rupture valve 10 that cleaves when the battery internal pressure rises is installed above the flat plate opening so as to close the opening.
  • the peripheral edge portion of the rupture valve 10 is sandwiched between the lower surface of the inner edge portion of the positive electrode terminal portion 11 and the flat plate.
  • the peripheral part of the terminal plate and the peripheral part of the flat plate are fixed.
  • the upper surface of the positive electrode current collector lead portion 7 is joined to the lower surface of the flat plate, that is, the bottom surface of the battery lid 9 (surface on the electrode group G side) by resistance welding.
  • a negative electrode current collecting lead portion 8 made of nickel for collecting a potential from the negative electrode plate 2 is disposed below the electrode group G.
  • the negative electrode current collecting lead portion 8 is ultrasonically bonded to the end portion of the negative electrode current collecting lead piece 6 led out from the negative electrode plate 2.
  • the negative electrode current collecting lead portion 8 is joined by resistance welding to the inner bottom portion of the battery can 4 that also serves as a negative electrode external terminal.
  • a non-aqueous electrolyte is injected into the battery can 4.
  • the non-aqueous electrolyte is 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed organic solvent having a volume ratio of 1: 2 of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). What was dissolved so that it might become the density
  • a battery lid 9 is caulked and fixed to the upper part of the battery can 4 via a gasket 12. For this reason, the inside of the lithium ion secondary battery 20 is sealed.
  • the electrode group G accommodated in the battery can 4 is such that the positive electrode plate 1 and the negative electrode plate 2 are not in contact with each other via a microporous separator 3 made of polyethylene or the like. Has been wounded.
  • the positive electrode current collecting lead piece 5 and the negative electrode current collecting lead piece 6 are respectively disposed on opposite end surfaces of the electrode group G.
  • the entire outer peripheral surface of the electrode group G is provided with an insulating coating to prevent electrical contact with the battery can 4.
  • the positive electrode plate 1 has an aluminum foil as a positive electrode current collector.
  • the thickness of the aluminum foil is set to 20 ⁇ m in this example.
  • a positive electrode mixture containing a positive electrode active material is applied substantially evenly.
  • Li 2 MnO 3 —LiNiO 2 is used as the positive electrode active material.
  • graphite as a conductive material
  • PVDF polyvinylidene fluoride
  • binder binder
  • the mixing ratio of the positive electrode active material, graphite, and PVDF is adjusted to a weight ratio of 80: 15: 5.
  • a positive electrode mixture kneaded by a kneader is applied to an aluminum foil, dried, and then roll-formed by a press machine.
  • a positive electrode current collecting lead piece 5 is led out to a side edge on one side in the longitudinal direction of the aluminum foil.
  • the negative electrode plate 2 has a copper foil as a negative electrode current collector.
  • the thickness of the copper foil is set to 10 ⁇ m in this example.
  • a negative electrode mixture containing a negative electrode active material is applied to both sides of the copper foil substantially evenly.
  • graphite is used for the negative electrode active material.
  • a binder PVDF is blended in addition to the negative electrode active material. In this example, the blend ratio of the negative electrode active material and PVDF is adjusted to a weight ratio of 90:10.
  • the produced positive electrode plate 1 and negative electrode plate 2 are vacuum dried at 100 ° C. for 24 hours, and then wound through the separator 3 to produce the electrode group G. At this time, the positive electrode plate 1 and the negative electrode plate 2 are wound so that the positive electrode current collecting lead piece 5 and the negative electrode current collecting lead piece 6 are positioned in opposite directions.
  • the electrode rod is passed through the winding center portion of the electrode group G, and the negative electrode current collector lead portion 8 and the inner bottom portion of the battery can 4 are resistance welded, and then the positive electrode current collector lead portion 7 and the battery lid 9 are resistance welded. Join. Then, after pouring a non-aqueous electrolyte into the battery can 4, the battery lid 9 is caulked and fixed to the battery can 4 via the gasket 12, thereby completing the lithium ion secondary battery 20 having a battery capacity of 1 Ah.
  • FIG. 3A is a flowchart showing the discharge of the lithium ion secondary battery and the subsequent control procedure.
  • This figure shows an example of charging after discharging and then detecting the state of charge.
  • discharging is performed with the lithium ion secondary battery connected to an external load (S101). After the discharge is stopped, a predetermined amount of charge is performed (S102). Thereafter, the open circuit voltage (OCV) of the lithium ion secondary battery is measured (S103). And the charge state of a lithium ion secondary battery is detected using the measured open circuit voltage. The state of charge can be uniquely calculated from the open circuit voltage. In the case of a lithium ion secondary battery module having a plurality of lithium ion secondary batteries, these operations are desirably performed for each lithium ion secondary battery.
  • the average value of the charging state of all the lithium ion secondary batteries constituting the lithium ion secondary battery module is 20% or more, it can be determined that discharging is possible and power can be supplied to the external load. On the other hand, when the average value of the state of charge is less than 20%, it is determined that discharging is impossible and charging is performed.
  • FIG. 3B is a flowchart showing charging of the lithium ion secondary battery and subsequent control procedures.
  • the battery is discharged after charging, and then the state of charge is detected.
  • the lithium ion secondary battery is charged (S201).
  • a predetermined amount of discharge is performed (S202).
  • the open circuit voltage of the lithium ion secondary battery is measured (S203).
  • the charge state of a lithium ion secondary battery is detected using the measured open circuit voltage.
  • these operations are desirably performed for each lithium ion secondary battery.
  • the average value of the state of charge of all the lithium ion secondary batteries that make up the lithium ion secondary battery module exceeds 80%, it is determined that charging is sufficient and further charging is not appropriate, and the external load To supply power. On the other hand, when the average value of the state of charge is 80% or less, it may be determined that charging is possible and charging may be performed.
  • the battery control device 27 determines that the average charge state of all the lithium ion secondary batteries 20 is 20% or more, the battery control device 27 outputs a control signal from the output port and turns on the switch SW2. Thereby, the power from the battery unit 25 is supplied to the external load 32.
  • a power supply unit connected in parallel (not shown) Each lithium ion secondary battery 20 is charged with electric power from The power supply unit is not particularly limited as long as it has a capacity of 1/20 or more with respect to the module, and examples thereof include a lead battery, a Ni—H battery, a lithium ion secondary battery, and a capacitor.
  • the state of charge (SOC) of the lithium ion secondary battery 20 is calculated.
  • Battery control device 27 detects open circuit voltage (OCV) data for each lithium ion secondary battery 20 at a rate of once every fixed time (for example, 30 seconds). That is, the battery control device 27 designates the measurement target lithium ion secondary battery 20 from the battery designation port to the voltage measurement circuit 29, so that the measurement target lithium ion is obtained from the voltage measurement circuit 29 via the A / D input port.
  • the open circuit voltage of the secondary battery 20 is taken in.
  • the battery control device 27 uses the data of each open circuit voltage to charge each lithium ion secondary battery 20 according to a battery state map (or relational expression) stored in advance in the ROM and expanded in the RAM in the initial setting. (SOC) is calculated.
  • the battery state map is developed in the RAM with the open circuit voltage and the state of charge (SOC) corresponding to each other.
  • the battery control device 27 calculates the average charge state of all the lithium ion secondary batteries as the charge state (SOC) of the battery unit 25. It is also possible to detect the temperature data of the battery unit 25 with a thermistor or the like and add temperature correction when calculating the state of charge (SOC).
  • a model of a secondary battery module using a layered solid solution compound was created, and the control method of this embodiment was evaluated. After charging the secondary battery, after discharging to a predetermined voltage, in the embodiment, a predetermined amount of charge is performed, the open circuit voltage is measured, and the open circuit voltage is stabilized with reference to the voltage after the end of charging and discharging. The amount of change in voltage was measured.
  • a positive electrode mixture mixed in a ratio was used. In addition, it describes together about the comparative experiment example performed for the comparison. Further, the present invention is not limited to the examples described below.
  • Example 1 a constant current charge of SOC 0.1% was performed after 1 CA discharge. The amount of voltage change until the open circuit voltage was stabilized was 0.15V.
  • Example 2 a constant current charge of SOC 0.2% was performed after 1 CA discharge. *
  • the amount of change in voltage until the open circuit voltage was stabilized was 0.10V.
  • Example 3 a constant current charge of SOC 1.0% was performed after 1 CA discharge. *
  • the amount of change in voltage until the open circuit voltage was stabilized was 0.05V.
  • Example 4 a constant voltage of SOC 5.0% was charged after 1 CA discharge at a voltage 0.1 V higher than the 1 CA discharge end voltage.
  • the amount of voltage change until the open circuit voltage was stabilized was less than 0.01V.
  • Comparative Example 1 In Comparative Example 1, only 1 CA discharge was used.
  • FIG. 4 is a graph showing the process of change in the open circuit voltage after discharging and stopping in Examples and Comparative Examples. After discharging until the point S is reached, in the embodiment, a predetermined amount of charge is performed (the open circuit voltage is raised to the point CS). On the other hand, in the comparative example (dashed line), after discharging until reaching point S, the battery was left uncharged.
  • the state of ions inside the battery, in particular, the positive electrode active material is considered to be in an equilibrium state. That is, it is considered that the arrangement of ions (particularly lithium ions) constituting the positive electrode active material crystal tends to a stable equilibrium state.
  • the equilibrium state is a state in which the state of ions inside the battery, particularly the arrangement of ions (particularly lithium ions) constituting the crystal of the positive electrode active material is stable.
  • FIG. 4 shows a state after discharging, a similar change in the open circuit voltage can be seen after charging.
  • FIG. 5 shows voltage change curves of Examples 1 to 4 and Comparative Example 1.
  • the amount of voltage change until the open circuit voltage stabilizes is less than 0.01V. Therefore, it is difficult to expect a further effect even if charging is performed more than SOC 5.0% after discharging, and the charging amount is preferably set to a capacity corresponding to SOC 5.0% or less. Also when discharging after charging, for the same reason, the discharge amount is preferably set to SOC 5.0% or less.

Abstract

 This device for controlling a lithium-ion secondary cell controls the operation of detecting the state of charge of a lithium-ion secondary cell in which a layered solid solution compound is used as a positive electrode active material, wherein the device is characterized in having: a function of emitting a signal to discharge the lithium-ion secondary cell when the circuit is open after the lithium-ion secondary cell is charged, and emitting a signal to charge the lithium-ion secondary cell from a power supply feed unit other than the lithium-ion secondary cell when the circuit is open after the lithium-ion secondary cell is discharged; and a function of detecting the state of charge of the lithium-ion secondary cell from the open circuit voltage of the lithium-ion secondary cell measured after the post-discharge charging and the post-charge discharging. It is thereby possible to quickly and accurately establish the state of charge of the lithium-ion secondary cell in which a solid solution is used in the positive electrode active material.

Description

リチウムイオン二次電池の制御装置及び制御方法並びにリチウムイオン二次電池モジュールControl device and control method for lithium ion secondary battery, and lithium ion secondary battery module
 本発明は、層状固溶体化合物を正極活物質として用いたリチウムイオン二次電池の充電状態を短時間で正確に検出し、充放電を制御する方法及びその制御装置並びにリチウムイオン二次電池モジュールに関する。 The present invention relates to a method for accurately detecting a charging state of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material in a short time, and controlling the charging / discharging, a control device for the method, and a lithium ion secondary battery module.
 近年、高エネルギー密度を有する二次電池として、特にリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められている。その結果、現在では、携帯電話やノートパソコン向けに小型民生用リチウムイオン二次電池が幅広く普及している。さらに、地球温暖化、燃料枯渇、脱原発などの問題から、家庭用、産業用、車載用などの蓄電池として、従来用よりも高容量な大型二次電池が求められている。その中で、高容量化のための方策として、正極活物質に層状固溶体化合物を用いる研究が進められている。 In recent years, lithium ion secondary batteries have attracted particular attention as secondary batteries having high energy density, and their research, development, and commercialization are rapidly progressing. As a result, small consumer lithium-ion secondary batteries are now widely used for mobile phones and notebook computers. Furthermore, due to problems such as global warming, fuel depletion, and nuclear power plants, large-scale secondary batteries with higher capacity than conventional batteries are required as storage batteries for home use, industrial use, and in-vehicle use. Among them, as a measure for increasing the capacity, research using a layered solid solution compound as a positive electrode active material is underway.
 正極活物質に層状固溶体化合物を用いたリチウムイオン二次電池の場合、開回路時における電圧変化が大きく、さらに、電圧が安定するまでに長い時間を要する。このため、電圧の測定により充電状態を短時間で正確に検出することが困難である。このような状態下で、充電状態の検出に遅れが生じた場合、予期せず電池の残量が無くなり、機器の停止を招く。 In the case of a lithium ion secondary battery using a layered solid solution compound as the positive electrode active material, the voltage change during open circuit is large, and it takes a long time for the voltage to stabilize. For this reason, it is difficult to accurately detect the state of charge in a short time by measuring the voltage. Under such conditions, if a delay occurs in the detection of the state of charge, the remaining battery level is unexpectedly lost, causing the device to stop.
 特許文献1には、充電から放電に切替えた際の開回路電圧より充電状態を算出する制御装置について開示されている。 Patent Document 1 discloses a control device that calculates a charging state from an open circuit voltage when switching from charging to discharging.
 特許文献2には、車両に搭載されたバッテリの充電率(SOC)を検出する装置及び方法として、バッテリの充電停止後に放電し又は放電停止後に充電し、その後、端子電圧を検出し、バッテリの充電状態を算出する技術が開示されている。 In Patent Document 2, as an apparatus and method for detecting the charge rate (SOC) of a battery mounted on a vehicle, the battery is discharged after stopping charging or charged after stopping discharging, and then the terminal voltage is detected, A technique for calculating the state of charge is disclosed.
特開2013-105519号公報JP 2013-105519 A 特開2005-147930号公報JP 2005-147930 A
 リチウムイオン二次電池の実使用時は、開回路時間は数分程度と予想される。正極活物質に層状固溶体化合物を用いたリチウムイオン二次電池の電圧安定には数十分必要であるため、特許文献1の充電状態算出方法では、開回路電圧の変動途中での測定となり、開回路電圧測定が困難となる可能性がある。 開 During actual use of lithium ion secondary batteries, the open circuit time is expected to be several minutes. Since several tens of minutes are necessary to stabilize the voltage of a lithium ion secondary battery using a layered solid solution compound as the positive electrode active material, the charge state calculation method of Patent Document 1 is a measurement in the middle of fluctuation of the open circuit voltage. Circuit voltage measurement can be difficult.
 特許文献2にはバッテリの詳細は記載されていないが、車両用としては鉛蓄電池が一般的であると考えられる。 Although details of the battery are not described in Patent Document 2, it is considered that a lead storage battery is generally used for vehicles.
 本発明の目的は、正極活物質に層状固溶体化合物を用いたリチウムイオン二次電池の充電状態を短時間で正確に特定し、適切な電池制御を実施する制御方法及び制御装置を提供することにある。 An object of the present invention is to provide a control method and a control device for accurately identifying a charged state of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material in a short time and performing appropriate battery control. is there.
 本発明のリチウムイオン二次電池の制御装置は、正極活物質として層状固溶体化合物を用いたリチウムイオン二次電池の充放電を制御する装置であって、リチウムイオン二次電池の充電後の開回路時にリチウムイオン二次電池の放電をさせ、かつ、リチウムイオン二次電池の放電後の開回路時にリチウムイオン二次電池の充電をさせ、放電後の充電及び充電後の放電の後に二次電池の開回路電圧を取得し、取得されたリチウムイオン二次電池の開回路電圧からリチウムイオン二次電池の充電状態を特定し、特定された結果に基づきリチウムイオン二次電池の制御を行う機能を有することを特徴とする。 The control device for a lithium ion secondary battery of the present invention is a device for controlling charge / discharge of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material, and is an open circuit after charging of the lithium ion secondary battery Sometimes the lithium-ion secondary battery is discharged, and the lithium-ion secondary battery is charged at the open circuit after the lithium-ion secondary battery is discharged, and the secondary battery is charged after the discharge and the discharge after the charge. It has a function of acquiring an open circuit voltage, specifying a charging state of the lithium ion secondary battery from the acquired open circuit voltage of the lithium ion secondary battery, and controlling the lithium ion secondary battery based on the specified result. It is characterized by that.
 また、他の本発明のリチウムイオン二次電池の制御装置は、リチウムイオン二次電池の開回路電圧情報を取得する電圧情報収集部と、取得された開回路電圧に基づき充電状態を特定する演算処理部と、充電状態に基づきリチウムイオン二次電池の充放電を行う充放電制御部とを備え、電圧情報収集部は、リチウムイオン二次電池の充電後の開回路時にリチウムイオン二次電池の放電をさせ、または、リチウムイオン二次電池の放電後の開回路時にリチウムイオン二次電池の充電をさせ、放電後の充電及び充電後の放電の後に二次電池の開回路電圧を取得することを特徴とする。 また、本発明のリチウムイオン二次電池の制御方法は、正極活物質として層状固溶体化合物を用いたリチウムイオン二次電池を制御する方法であって、リチウムイオン二次電池の充電後の開回路時にリチウムイオン二次電池の放電をする工程、又は、リチウムイオン二次電池の放電後の開回路時にリチウムイオン二次電池の充電をする工程と、放電後の充電又は充電後の放電の後に測定したリチウムイオン二次電池の開回路電圧を測定する工程と、開回路電圧からリチウムイオン二次電池の充電状態を特定する工程と、を含むことを特徴とする。 In addition, another control device for a lithium ion secondary battery according to the present invention includes a voltage information collection unit that acquires open circuit voltage information of a lithium ion secondary battery, and an operation that specifies a charge state based on the acquired open circuit voltage. A processing unit and a charge / discharge control unit that charges and discharges the lithium ion secondary battery based on the state of charge, and the voltage information collecting unit is configured to store the lithium ion secondary battery during open circuit after charging the lithium ion secondary battery. To discharge or to charge the lithium ion secondary battery at the time of open circuit after discharging the lithium ion secondary battery, and to acquire the open circuit voltage of the secondary battery after charging after discharging and discharging after charging It is characterized by. The method for controlling a lithium ion secondary battery according to the present invention is a method for controlling a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material, and at the time of open circuit after charging of the lithium ion secondary battery. Measured after the step of discharging the lithium ion secondary battery or the step of charging the lithium ion secondary battery during the open circuit after the discharge of the lithium ion secondary battery and the charge after the discharge or the discharge after the charge The method includes a step of measuring an open circuit voltage of a lithium ion secondary battery, and a step of specifying a state of charge of the lithium ion secondary battery from the open circuit voltage.
 また、本発明のリチウムイオン二次電池モジュールは、正極活物質として層状固溶体化合物を用いた一または複数のリチウムイオン二次電池と、リチウムイオン二次電池の充放電を制御する制御装置と、リチウムイオン二次電池の開回路電圧を測定する電圧測定回路とを備えるものであって、前述の制御装置を備えるものである。 Further, the lithium ion secondary battery module of the present invention includes one or more lithium ion secondary batteries using a layered solid solution compound as a positive electrode active material, a control device for controlling charge / discharge of the lithium ion secondary battery, A voltage measuring circuit for measuring an open circuit voltage of the ion secondary battery, and the control device described above.
 本発明によれば、正極活物質に層状固溶体化合物を用いたリチウムイオン二次電池の充電状態を短時間で、且つ、正確に把握することができ、適切に当該電池の制御を実施することが可能となる。 According to the present invention, the state of charge of a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material can be accurately grasped in a short time, and the battery can be appropriately controlled. It becomes possible.
実施形態の二次電池モジュールの概略を示すブロック回路図である。It is a block circuit diagram which shows the outline of the secondary battery module of embodiment. 実施形態の二次電池モジュールを構成する円筒型リチウムイオン二次電池を模式的に示す断面図である。It is sectional drawing which shows typically the cylindrical lithium ion secondary battery which comprises the secondary battery module of embodiment. 実施形態の二次電池モジュールの放電後に開回路電圧を測定し充電状態を検出する動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure which measures an open circuit voltage after discharge of the secondary battery module of embodiment, and detects a charge state. 実施形態の二次電池モジュールの充電後に開回路電圧を測定し充電状態を検出する動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure which measures an open circuit voltage after charge of the secondary battery module of embodiment, and detects a charge state. 実施例及び比較例において放電しその後開回路電圧を測定する過程を示すグラフである。It is a graph which shows the process in which it discharges in an Example and a comparative example, and measures an open circuit voltage after that. 実施例及び比較例において開回路電圧の経時変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured the time-dependent change of the open circuit voltage in an Example and a comparative example.
 通常、電池の充電状態は電池電圧と対応するため、電圧の測定結果に基づき充電状態特定する。しかしながら、層状固溶体化合物を用いたリチウムイオン二次電池の充放電終了時の電池電圧は、当該二次電池の充電状態と対応するものでなく、充放電停止後に、当該二次電池の充電状態に対応するまで電圧が変化する。以下、電圧変化が終了し、充電状態と開回路電圧が対応する値となるまでの時間を緩和時間とする。層状固溶体化合物を正極として使用した電池の場合、緩和時間は数時間であり、緩和時間経過前後の電位差は0.1V近くになる。当該電位差は、充電深度に換算すると10%以上であり、充放電制御に大きな影響を与える。 Usually, since the state of charge of the battery corresponds to the battery voltage, the state of charge is specified based on the measurement result of the voltage. However, the battery voltage at the end of charging / discharging of the lithium ion secondary battery using the layered solid solution compound does not correspond to the charging state of the secondary battery, and after charging / discharging stops, the battery voltage changes to the charging state of the secondary battery. The voltage changes until it corresponds. Hereinafter, the time until the voltage change ends and the state of charge and the open circuit voltage become a corresponding value is referred to as a relaxation time. In the case of a battery using a layered solid solution compound as a positive electrode, the relaxation time is several hours, and the potential difference before and after the relaxation time elapses is close to 0.1V. The potential difference is 10% or more when converted to the charging depth, and greatly affects charge / discharge control.
 本発明の第1の態様は、リチウムイオン二次電池の制御方法において、充電後に放電を、放電後に充電を行い、その後、開回路電圧(OCV)を電圧検出器により測定し、測定結果より充電状態(SOC)を算出し、算出されたSOCに基づき二次電池を制御するというものである。  According to a first aspect of the present invention, in the method for controlling a lithium ion secondary battery, discharging is performed after charging, charging is performed after discharging, and then an open circuit voltage (OCV) is measured by a voltage detector, and charging is performed from the measurement result. The state (SOC) is calculated, and the secondary battery is controlled based on the calculated SOC. *
 第1の態様によりOCVが緩和する方向に充放電するため、短時間で、且つ、正確にOCVを検出し、充電状態(SOC)を把握できる。  Since the OCV is charged / discharged in the direction in which the OCV is relaxed according to the first aspect, the OCV can be accurately detected in a short time and the state of charge (SOC) can be grasped. *
 第2の態様では、放電後の充電及び充電後の放電における充電状態の変化量は、SOC0.1~5%に相当するものとする。SOCが0.1%未満の場合OCV緩和時間短縮の効果が小さく、SOC5%を超えると放電時の容量消費が大きいため、実用的ではない。  In the second aspect, the amount of change in the state of charge after charging and discharging after charging is equivalent to SOC 0.1 to 5%. When the SOC is less than 0.1%, the effect of shortening the OCV relaxation time is small, and when the SOC exceeds 5%, the capacity consumption during discharge is large, which is not practical. *
 第3の形態では、放電後の充電及び充電後の放電は、定電圧又は定電流で行い、定電圧の場合は、放電後の場合は放電後に充電をすることなく緩和され平衡状態に達した後の充電状態に対応する開回路電圧以上の電圧に設定し、充電後の場合は充電後に放電をすることなく緩和され平衡状態に達した後の充電状態に対応する開回路電圧以下の電圧に設定する。 In the third mode, charging after discharging and discharging after charging are performed at a constant voltage or a constant current. In the case of a constant voltage, after discharging, the battery is relaxed without charging after discharging and reaches an equilibrium state. Set to a voltage equal to or higher than the open circuit voltage corresponding to the subsequent charging state, and in the case of after charging, to a voltage equal to or lower than the open circuit voltage corresponding to the charging state after reaching the equilibrium state after being relaxed without discharging after charging. Set.
 リチウムイオン二次電池は、正極と、負極と、セパレータなどで構成され、リチウムイオン二次電池の正極材料は、層状固溶体化合物である正極活物質(一般式xLi-(1-x)LiMで表される。)を含むことを特徴とする。ここで、xは0.3<x<0.7を満たし、Mは、Mn、Ti及びZrからなる群から選ばれる1種類以上の元素であり、Mは、Ni、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr及びVから選ばれる1種類以上の元素である。なお、Mは、Mnを主成分とすることが望ましい。また、M及びMの一部は、他の元素で置換されていてもよい。MにはMnを含むことが好ましく、MにはNi,Mn、Coの少なくともいずれかを含むことが好ましい。例えば、0.5LiMnO-0.5LiNiO、0.5LiMnO-0.5LiNi1/3Co1/3Mn1/3などである。層状固溶体化合物は、他の一般式、代表的にはLi1.20.8(Mは遷移金属を含む金属元素)のような形態でも表され、リチウムを層状化合物に比して約20%多く吸蔵することが可能であるため、高容量なリチウムイオン二次電池を達成可能な材料として注目されている。なお、いずれの一般式も、酸素量は遷移金属、リチウム等の比率、価数に応じて変化する場合がある。例えば、上記の例示した化合物は、書き換えるとLi1.17Mn0.33Ni0.52+α、Li1.17Mn0.5Ni0.17Co0.172+αとなる。 The lithium ion secondary battery is composed of a positive electrode, a negative electrode, a separator, and the like. The positive electrode material of the lithium ion secondary battery is a positive electrode active material (general formula xLi 2 M 1 O 3- (1- x) represented by LiM 2 O 2 ). Here, x satisfies 0.3 <x <0.7, M 1 is one or more elements selected from the group consisting of Mn, Ti and Zr, and M 2 is Ni, Co, Mn, One or more elements selected from Fe, Ti, Zr, Al, Mg, Cr and V. Note that M 1 is preferably composed mainly of Mn. A part of M 1 and M 2 may be substituted with other elements. M 1 preferably contains Mn, and M 2 preferably contains at least one of Ni, Mn, and Co. For example, 0.5Li 2 MnO 3 -0.5LiNiO 2 , 0.5Li 2 MnO 3 -0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. The layered solid solution compound is also expressed in a form such as another general formula, typically Li 1.2 M 0.8 O 2 (M is a metal element containing a transition metal), and lithium is compared with the layered compound. Since about 20% more can be occluded, it is attracting attention as a material that can achieve a high-capacity lithium ion secondary battery. In any general formula, the amount of oxygen may vary depending on the ratio and valence of transition metal, lithium, and the like. For example, the above-exemplified compounds are Li 1.17 Mn 0.33 Ni 0.5 O 2 + α and Li 1.17 Mn 0.5 Ni 0.17 Co 0.17 O 2 + α when rewritten.
 本発明の他の態様は、正極、負極、セパレータなどで構成され、正極に層状固溶体化合物を用いたリチウムイオン二次電池と、リチウムイオン二次電池の充放電を制御する電池制御装置とを備えるリチウムイオン二次電池モジュールであって、電池制御装置は、開回路電圧を検出する電圧情報収集部と、開回路電圧に基づき充電状態を算出する演算処理部と、充電状態に基づき充放電を制御する充放電制御部とを備え、充放電制御部は、リチウムイオン二次電池の充電停止後に所定量放電し、又は、放電停止後に所定量充電し、その後の開回路電圧を測定するとともに充電状態を算出し、算出された充電状態に基づきリチウムイオン二次電池の充放電を制御するものである。 Another aspect of the present invention includes a lithium ion secondary battery that includes a positive electrode, a negative electrode, a separator, and the like and uses a layered solid solution compound for the positive electrode, and a battery control device that controls charging and discharging of the lithium ion secondary battery. The lithium ion secondary battery module includes a voltage information collecting unit that detects an open circuit voltage, an arithmetic processing unit that calculates a charge state based on the open circuit voltage, and a charge / discharge control based on the charge state. A charging / discharging control unit that discharges a predetermined amount after stopping the charging of the lithium ion secondary battery, or charges a predetermined amount after stopping the discharging, measures the open circuit voltage thereafter, and is charged And charge / discharge of the lithium ion secondary battery is controlled based on the calculated state of charge.
 以下、図面を参照して、本発明を適用したリチウムイオン二次電池を備えた二次電池システムの実施の形態について説明する。 Hereinafter, embodiments of a secondary battery system including a lithium ion secondary battery to which the present invention is applied will be described with reference to the drawings.
 (構成) 図1は、リチウムイオン二次電池モジュールの概略を示すブロック回路図である。 (Configuration) FIG. 1 is a block circuit diagram showing an outline of a lithium ion secondary battery module.
 本図に示すように、二次電池モジュール40(リチウムイオン二次電池モジュール)は、円筒型のリチウムイオン二次電池20で構成された電池部25と、各リチウムイオン二次電池20の電池状態を制御するための電池制御装置27と、電圧測定回路29と、を備えている。電池部25は、本例では、6個のリチウムイオン二次電池20が直列に接続され構成されている。 As shown in the figure, the secondary battery module 40 (lithium ion secondary battery module) includes a battery unit 25 including a cylindrical lithium ion secondary battery 20 and battery states of the lithium ion secondary batteries 20. A battery control device 27 for controlling the voltage and a voltage measurement circuit 29 are provided. In this example, the battery unit 25 is configured by connecting six lithium ion secondary batteries 20 in series.
 電池制御装置27は、電圧測定回路29を用いてリチウムイオン二次電池の開回路電圧を検出する電圧情報収集部21、電圧と充電状態の関係式など、事前に登録された情報を用い、開回路電圧より充電状態を算出する演算処理部22、リチウムイオン二次電池の充放電を制御する充放電制御部23を備える。充放電制御部23は、演算処理部22で算出された充電状態に基づきリチウムイオン二次電池の充電、放電を制御する。 The battery control device 27 uses the voltage measurement circuit 29 to detect the open circuit voltage of the lithium ion secondary battery, and uses information registered in advance such as a relational expression between the voltage and the charge state to open the battery. An arithmetic processing unit 22 that calculates the state of charge from the circuit voltage and a charge / discharge control unit 23 that controls charging / discharging of the lithium ion secondary battery are provided. The charge / discharge control unit 23 controls charging and discharging of the lithium ion secondary battery based on the charge state calculated by the arithmetic processing unit 22.
 電池制御装置27は、中央演算処理装置であるCPUと、基本制御プログラムその他種々の設定値等を記憶したROM(Read Only Memory)と、CPUのワークエリアとして働くと共に種々のデータを一時的に記憶するRAM(Random Access Memory)と、これらを接続する内部バスとを含むマイコンA(マイクロコントローラ)である。このマイコンAは、図示を省略した電源供給部からの電源で作動する。 The battery controller 27 is a central processing unit CPU, a ROM (Read Only Memory) that stores basic control programs and other various setting values, and serves as a work area for the CPU and temporarily stores various data. A microcomputer A (microcontroller) including a RAM (Random Access Memory) to be connected and an internal bus connecting them. The microcomputer A is operated by a power source from a power supply unit (not shown).
 電池部25を構成する各リチウムイオン二次電池20は、電池制御装置27により電圧等が検出される。最下位のリチウムイオン二次電池20の負極端子は、グランドに接続されている。最上位のリチウムイオン二次電池20の正極端子は、スイッチSW2の一端に接続されている。電池部25を構成する各リチウムイオン二次電池20の正極端子および最下位リチウムイオン二次電池20の負極端子は、各リチウムイオン二次電池20の電圧を測定する電圧測定回路29の入力側端子に接続されている。 The voltage etc. of each lithium ion secondary battery 20 which comprises the battery part 25 are detected by the battery control apparatus 27. FIG. The negative electrode terminal of the lowest-order lithium ion secondary battery 20 is connected to the ground. The positive terminal of the uppermost lithium ion secondary battery 20 is connected to one end of the switch SW2. The positive electrode terminal of each lithium ion secondary battery 20 and the negative electrode terminal of the lowest lithium ion secondary battery 20 constituting the battery unit 25 are input side terminals of a voltage measurement circuit 29 that measures the voltage of each lithium ion secondary battery 20. It is connected to the.
 電圧測定回路29(電圧測定部)は、各リチウムイオン二次電池20の電圧を、負極端子を基準とした電圧に変換する差動増幅回路等により構成することができる。電圧測定回路29の出力側端子は、リチウムイオン二次電池20の電圧をA/D変換するための電圧情報収集部21のA/D入力ポートに接続されている。また、電圧測定回路29は、電圧情報収集部21から電圧測定対象のリチウムイオン二次電池20の指定を受けるために電圧情報収集部21の電池指定ポートに接続されている。したがって、電圧情報収集部21は、各リチウムイオン二次電池20の電圧のデータを取り込むことが可能である。 The voltage measurement circuit 29 (voltage measurement unit) can be configured by a differential amplifier circuit that converts the voltage of each lithium ion secondary battery 20 into a voltage with reference to the negative electrode terminal. The output side terminal of the voltage measurement circuit 29 is connected to the A / D input port of the voltage information collection unit 21 for A / D converting the voltage of the lithium ion secondary battery 20. In addition, the voltage measurement circuit 29 is connected to the battery designation port of the voltage information collection unit 21 in order to receive designation of the voltage measurement target lithium ion secondary battery 20 from the voltage information collection unit 21. Therefore, the voltage information collecting unit 21 can capture the voltage data of each lithium ion secondary battery 20.
 各リチウムイオン二次電池20の正極端子は、容量調整用のバイパス抵抗R(各リチウムイオン二次電池で同一抵抗値)の一端に接続されており、バイパス抵抗Rの他端はリチウムイオン二次電池20の容量調整を行うスイッチSW1の一端に接続されている。スイッチSW1の他端は、各リチウムイオン二次電池20の負極端子に接続されている。 The positive terminal of each lithium ion secondary battery 20 is connected to one end of a bypass resistor R for capacity adjustment (the same resistance value for each lithium ion secondary battery), and the other end of the bypass resistor R is a lithium ion secondary. It is connected to one end of a switch SW1 that adjusts the capacity of the battery 20. The other end of the switch SW1 is connected to the negative terminal of each lithium ion secondary battery 20.
 また、スイッチSW1には、制御信号(ハイレベル信号、ローレベル信号)を出力する電圧情報収集部21の出力ポートが接続されている。したがって、電圧情報収集部21からの制御信号によりスイッチSW1がオン状態とされることで、リチウムイオン二次電池20に流れる電流はバイパス抵抗Rにより熱消費され、各リチウムイオン二次電池20の容量調整が可能である。 The switch SW1 is connected to an output port of the voltage information collection unit 21 that outputs a control signal (high level signal, low level signal). Therefore, when the switch SW1 is turned on by the control signal from the voltage information collecting unit 21, the current flowing through the lithium ion secondary battery 20 is thermally consumed by the bypass resistor R, and the capacity of each lithium ion secondary battery 20 is Adjustment is possible.
 また、充放電制御部23は、スイッチSW2に制御信号を出力する出力ポートを有している。スイッチSW2の他端は外部負荷32の一端に接続されており、外部負荷32の他端はグランドに接続されている。このため、充放電制御部23からの制御信号によりスイッチSW2がオン状態とされることで、外部負荷32には、二次電池モジュール40からの電力が供給される。 The charge / discharge control unit 23 has an output port for outputting a control signal to the switch SW2. The other end of the switch SW2 is connected to one end of the external load 32, and the other end of the external load 32 is connected to the ground. For this reason, the switch SW <b> 2 is turned on by the control signal from the charge / discharge control unit 23, whereby the electric power from the secondary battery module 40 is supplied to the external load 32.
 スイッチSW1、SW2には、例えば、スイッチ素子として機能するFETを用いることができる。すなわち、FETのゲートには、電池制御装置27の出力ポートが接続されている。したがって、電池制御装置27の出力ポートからFETのゲートに微弱なハイレベル信号が入力されると、ドレインとソースとの間に電流が流れ、スイッチSW1、SW2がオン状態となる。 As the switches SW1 and SW2, for example, FETs that function as switching elements can be used. That is, the output port of the battery control device 27 is connected to the gate of the FET. Therefore, when a weak high level signal is input from the output port of the battery control device 27 to the gate of the FET, a current flows between the drain and the source, and the switches SW1 and SW2 are turned on.
 図2は、図1の二次電池モジュールを構成する円筒型リチウムイオン二次電池を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a cylindrical lithium ion secondary battery constituting the secondary battery module of FIG.
 本図に示すように、リチウムイオン二次電池20は、ニッケルメッキが施されたスチール製で有底円筒状の電池缶4を備えている。電池缶4には、正極板1(正極)および負極板2(負極)がセパレータ3を介して捲回された電極群Gが収容されている。 As shown in the figure, the lithium ion secondary battery 20 includes a bottomed cylindrical battery can 4 made of nickel-plated steel. The battery can 4 accommodates an electrode group G in which a positive electrode plate 1 (positive electrode) and a negative electrode plate 2 (negative electrode) are wound through a separator 3.
 電極群Gの上側には、捲回中心のほぼ延長線上に正極板1からの電位を集電するためのアルミニウム製の正極集電リード部7が配されている。正極集電リード部7には、正極板1から導出された正極集電リード片5の端部が超音波接合されている。正極集電リード部7の上方には、正極外部端子となる円盤状の電池蓋9が配置されている。 On the upper side of the electrode group G, a positive electrode current collecting lead portion 7 made of aluminum for collecting a potential from the positive electrode plate 1 is arranged on a substantially extended line of the winding center. The positive electrode current collecting lead portion 7 is ultrasonically bonded to the end portion of the positive electrode current collecting lead piece 5 led out from the positive electrode plate 1. A disk-shaped battery lid 9 serving as a positive electrode external terminal is disposed above the positive electrode current collecting lead portion 7.
 電池蓋9は、スチール製の円盤状で中央部が上方に向けて突出した端子板と、アルミニウム製の円環状で中央部にガス排出用の開口が形成された平板とで構成されている。端子板の突出部と平板との間には、円環状の正極端子部11が配されている。正極端子部11は上面および下面がそれぞれ端子板の下面および平板の上面に接触している。正極端子部11の内径は、平板に形成された開口の内径より大きく形成されている。 The battery lid 9 is composed of a steel disc-shaped terminal plate whose central portion protrudes upward, and an aluminum annular plate having a gas discharge opening formed in the central portion. An annular positive terminal portion 11 is disposed between the protruding portion of the terminal plate and the flat plate. The upper surface and the lower surface of the positive electrode terminal portion 11 are in contact with the lower surface of the terminal plate and the upper surface of the flat plate, respectively. The inner diameter of the positive electrode terminal portion 11 is larger than the inner diameter of the opening formed in the flat plate.
 平板の開口の上側には、電池内圧の上昇時に開裂する破裂弁10が開口を塞ぐように設置されている。破裂弁10の周縁部は、正極端子部11の内縁部下面と平板とで挟まれている。端子板の周縁部と、平板の周縁部とが固定されている。平板の下面、すなわち、電池蓋9の底面(電極群G側の面)には、正極集電リード部7の上面が抵抗溶接で接合されている。 A rupture valve 10 that cleaves when the battery internal pressure rises is installed above the flat plate opening so as to close the opening. The peripheral edge portion of the rupture valve 10 is sandwiched between the lower surface of the inner edge portion of the positive electrode terminal portion 11 and the flat plate. The peripheral part of the terminal plate and the peripheral part of the flat plate are fixed. The upper surface of the positive electrode current collector lead portion 7 is joined to the lower surface of the flat plate, that is, the bottom surface of the battery lid 9 (surface on the electrode group G side) by resistance welding.
 一方、電極群Gの下側には負極板2からの電位を集電するためのニッケル製の負極集電リード部8が配置されている。負極集電リード部8には、負極板2から導出された負極集電リード片6の端部が超音波接合されている。負極集電リード部8は、負極外部端子を兼ねる電池缶4の内底部に抵抗溶接で接合されている。 On the other hand, a negative electrode current collecting lead portion 8 made of nickel for collecting a potential from the negative electrode plate 2 is disposed below the electrode group G. The negative electrode current collecting lead portion 8 is ultrasonically bonded to the end portion of the negative electrode current collecting lead piece 6 led out from the negative electrode plate 2. The negative electrode current collecting lead portion 8 is joined by resistance welding to the inner bottom portion of the battery can 4 that also serves as a negative electrode external terminal.
 また、電池缶4内には、非水電解液が注液されている。非水電解液には、本例では、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との体積比1:2の混合有機溶媒中に6フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度になるように溶解させたものが用いられている。電池缶4の上部には、電池蓋9がガスケット12を介してカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。 In addition, a non-aqueous electrolyte is injected into the battery can 4. In this example, the non-aqueous electrolyte is 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) in a mixed organic solvent having a volume ratio of 1: 2 of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). What was dissolved so that it might become the density | concentration of a liter is used. A battery lid 9 is caulked and fixed to the upper part of the battery can 4 via a gasket 12. For this reason, the inside of the lithium ion secondary battery 20 is sealed.
 電池缶4内に収容された電極群Gは、正極板1と負極板2とが、例えばポリエチレン製等の微多孔性のセパレータ3を介して正極板1、負極板2が互いに接触しないように捲回されている。正極集電リード片5と負極集電リード片6とがそれぞれ電極群Gの互いに反対側の両端面に配されている。電極群Gの外周面全周には、電池缶4との電気的接触を防止するために絶縁被覆が施されている。 The electrode group G accommodated in the battery can 4 is such that the positive electrode plate 1 and the negative electrode plate 2 are not in contact with each other via a microporous separator 3 made of polyethylene or the like. Has been wounded. The positive electrode current collecting lead piece 5 and the negative electrode current collecting lead piece 6 are respectively disposed on opposite end surfaces of the electrode group G. The entire outer peripheral surface of the electrode group G is provided with an insulating coating to prevent electrical contact with the battery can 4.
 正極板1は、正極集電体としてアルミニウム箔を有している。アルミニウム箔の厚さは、本例では、20μmに設定されている。アルミニウム箔の両面には、正極活物質を含む正極合材が略均等に塗着されている。正極活物質には、LiMnO-LiNiOが用いられている。正極合材には、正極活物質以外に、導電材である黒鉛、バインダ(結着材)であるポリフッ化ビニリデン(以下、PVDFと略記する。)が配合されている。本例では、正極活物質、黒鉛及びPVDFの配合割合が80:15:5の重量比に調整されている。正極板1には、混練機で混練された正極合材がアルミニウム箔に塗着され、乾燥後、プレス機で圧延成型されている。アルミニウム箔の長寸方向一側の側縁には、正極集電リード片5が導出されている。  The positive electrode plate 1 has an aluminum foil as a positive electrode current collector. The thickness of the aluminum foil is set to 20 μm in this example. On both surfaces of the aluminum foil, a positive electrode mixture containing a positive electrode active material is applied substantially evenly. Li 2 MnO 3 —LiNiO 2 is used as the positive electrode active material. In addition to the positive electrode active material, graphite as a conductive material and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) are blended in the positive electrode mixture. In this example, the mixing ratio of the positive electrode active material, graphite, and PVDF is adjusted to a weight ratio of 80: 15: 5. On the positive electrode plate 1, a positive electrode mixture kneaded by a kneader is applied to an aluminum foil, dried, and then roll-formed by a press machine. A positive electrode current collecting lead piece 5 is led out to a side edge on one side in the longitudinal direction of the aluminum foil.
 一方、負極板2は、負極集電体として銅箔を有している。銅箔の厚さは、本例では、10μmに設定されている。銅箔の両面には、負極活物質を含む負極合材が略均等に塗着されている。負極活物質には、本例では黒鉛が用いられている。負極極活物質以外にバインダのPVDFが配合されている。本例では、負極活物質及びPVDFの配合割合が90:10の重量比に調整されている。 Meanwhile, the negative electrode plate 2 has a copper foil as a negative electrode current collector. The thickness of the copper foil is set to 10 μm in this example. A negative electrode mixture containing a negative electrode active material is applied to both sides of the copper foil substantially evenly. In this example, graphite is used for the negative electrode active material. A binder PVDF is blended in addition to the negative electrode active material. In this example, the blend ratio of the negative electrode active material and PVDF is adjusted to a weight ratio of 90:10.
 (電池組立)
 リチウムイオン二次電池20の製造では、作製した正極板1と負極板2とを100℃で24時間真空乾燥させた後、セパレータ3を介して捲回し電極群Gを作製する。このとき、正極板1、負極板2が適切に対向し、かつ、正極集電リード片5と負極集電リード片6とが互いに反対方向に位置するように捲回する。
(Battery assembly)
In the manufacture of the lithium ion secondary battery 20, the produced positive electrode plate 1 and negative electrode plate 2 are vacuum dried at 100 ° C. for 24 hours, and then wound through the separator 3 to produce the electrode group G. At this time, the positive electrode plate 1 and the negative electrode plate 2 are wound so that the positive electrode current collecting lead piece 5 and the negative electrode current collecting lead piece 6 are positioned in opposite directions.
 次に、正極集電リード片5の全てを正極集電リード部7に超音波接合し、負極集電リード片6の全てを負極集電リード部8に超音波接合した後、電極群Gの周囲に絶縁被覆を施す。そして、正極集電リード部7、負極集電リード部8がそれぞれ接続された電極群Gを、負極集電リード部8を底側に向けて電池缶4内に挿入する。 Next, all of the positive electrode current collector lead pieces 5 are ultrasonically bonded to the positive electrode current collector lead part 7, and all of the negative electrode current collector lead pieces 6 are ultrasonically bonded to the negative electrode current collector lead part 8. Insulate the surrounding area. Then, the electrode group G to which the positive current collecting lead portion 7 and the negative current collecting lead portion 8 are connected is inserted into the battery can 4 with the negative current collecting lead portion 8 facing the bottom side.
 それから、電極群Gの捲回中心部分に電極棒を通し負極集電リード部8と電池缶4の内底部とを抵抗溶接した後、正極集電リード部7と電池蓋9とを抵抗溶接で接合する。そして、電池缶4内に非水電解液を注液した後、電池缶4にガスケット12を介して電池蓋9をカシメ固定することで、電池容量が1Ah級のリチウムイオン二次電池20を完成させる。 Then, the electrode rod is passed through the winding center portion of the electrode group G, and the negative electrode current collector lead portion 8 and the inner bottom portion of the battery can 4 are resistance welded, and then the positive electrode current collector lead portion 7 and the battery lid 9 are resistance welded. Join. Then, after pouring a non-aqueous electrolyte into the battery can 4, the battery lid 9 is caulked and fixed to the battery can 4 via the gasket 12, thereby completing the lithium ion secondary battery 20 having a battery capacity of 1 Ah. Let
 (動作)
 まず、リチウムイオン二次電池の放電後の充電状態(SOC)を検出する場合について説明する。
(Operation)
First, the case where the state of charge (SOC) after discharging of a lithium ion secondary battery is detected will be described.
 図3Aは、リチウムイオン二次電池の放電及びその後の制御手順を示すフローチャートである。 FIG. 3A is a flowchart showing the discharge of the lithium ion secondary battery and the subsequent control procedure.
 本図においては、放電後に充電し、その後、充電状態を検出する例を示す。 This figure shows an example of charging after discharging and then detecting the state of charge.
 まず、リチウムイオン二次電池を外部負荷に接続した状態で放電を行う(S101)。放電停止後、所定量の充電を行う(S102)。その後、リチウムイオン二次電池の開回路電圧(OCV)を測定する(S103)。そして、測定した開回路電圧を用いてリチウムイオン二次電池の充電状態を検出する。充電状態は、開回路電圧により一意的に算出できる。これらの操作は、複数個のリチウムイオン二次電池を備えたリチウムイオン二次電池モジュールの場合、それぞれのリチウムイオン二次電池について行うことが望ましい。 First, discharging is performed with the lithium ion secondary battery connected to an external load (S101). After the discharge is stopped, a predetermined amount of charge is performed (S102). Thereafter, the open circuit voltage (OCV) of the lithium ion secondary battery is measured (S103). And the charge state of a lithium ion secondary battery is detected using the measured open circuit voltage. The state of charge can be uniquely calculated from the open circuit voltage. In the case of a lithium ion secondary battery module having a plurality of lithium ion secondary batteries, these operations are desirably performed for each lithium ion secondary battery.
 リチウムイオン二次電池モジュールを構成するすべてのリチウムイオン二次電池の充電状態の平均値が20%以上の場合、放電可能と判定し、外部負荷に電力を供給することができる。一方、当該充電状態の平均値が20%未満の場合、放電不可能と判定し、充電を行う。 When the average value of the charging state of all the lithium ion secondary batteries constituting the lithium ion secondary battery module is 20% or more, it can be determined that discharging is possible and power can be supplied to the external load. On the other hand, when the average value of the state of charge is less than 20%, it is determined that discharging is impossible and charging is performed.
 つぎに、リチウムイオン二次電池の充電後の充電状態を検出する場合について説明する。 Next, the case where the state of charge after charging of the lithium ion secondary battery is detected will be described.
 図3Bは、リチウムイオン二次電池の充電及びその後の制御手順を示すフローチャートである。 FIG. 3B is a flowchart showing charging of the lithium ion secondary battery and subsequent control procedures.
 本図においては、充電後に放電し、その後、充電状態を検出する。 In this figure, the battery is discharged after charging, and then the state of charge is detected.
 まず、リチウムイオン二次電池の充電を行う(S201)。つぎに、所定量の放電を行う(S202)。その後、リチウムイオン二次電池の開回路電圧を測定する(S203)。そして、測定した開回路電圧を用いてリチウムイオン二次電池の充電状態を検出する。これらの操作は、複数個のリチウムイオン二次電池を備えたリチウムイオン二次電池モジュールの場合、それぞれのリチウムイオン二次電池について行うことが望ましい。 First, the lithium ion secondary battery is charged (S201). Next, a predetermined amount of discharge is performed (S202). Thereafter, the open circuit voltage of the lithium ion secondary battery is measured (S203). And the charge state of a lithium ion secondary battery is detected using the measured open circuit voltage. In the case of a lithium ion secondary battery module having a plurality of lithium ion secondary batteries, these operations are desirably performed for each lithium ion secondary battery.
 リチウムイオン二次電池モジュールを構成するすべてのリチウムイオン二次電池の充電状態の平均値が80%を超えている場合、充電が十分であってこれ以上の充電は適切でないと判定し、外部負荷に電力を供給する。一方、当該充電状態の平均値が80%以下の場合、充電可能と判定し、充電を行ってもよい。 If the average value of the state of charge of all the lithium ion secondary batteries that make up the lithium ion secondary battery module exceeds 80%, it is determined that charging is sufficient and further charging is not appropriate, and the external load To supply power. On the other hand, when the average value of the state of charge is 80% or less, it may be determined that charging is possible and charging may be performed.
 図1において、電池制御装置27は、全リチウムイオン二次電池20の平均充電状態が20%以上と判定したときに、出力ポートから制御信号を出力し、スイッチSW2をオン状態にする。これにより、外部負荷32に電池部25からの電力が供給される。供給停止後、全リチウムイオン二次電池20の放電時の電圧が予め単セルで測定していた充電状態が20%以下のOCVよりも低い場合、図示しない並列接続されている電源部(電源供給部)からの電力により各リチウムイオン二次電池20を充電する。電源部は、モジュールに対して1/20以上の容量であれば特に定めないが、鉛電池、Ni-H電池、リチウムイオン二次電池、キャパシタ等が挙げられる。  In FIG. 1, when the battery control device 27 determines that the average charge state of all the lithium ion secondary batteries 20 is 20% or more, the battery control device 27 outputs a control signal from the output port and turns on the switch SW2. Thereby, the power from the battery unit 25 is supplied to the external load 32. After the supply is stopped, when the state of charge of the all lithium-ion secondary battery 20 is previously measured in a single cell is lower than an OCV of 20% or less, a power supply unit connected in parallel (not shown) Each lithium ion secondary battery 20 is charged with electric power from The power supply unit is not particularly limited as long as it has a capacity of 1/20 or more with respect to the module, and examples thereof include a lead battery, a Ni—H battery, a lithium ion secondary battery, and a capacitor. *
 充電後、リチウムイオン二次電池20の充電状態(SOC)を演算する。 After charging, the state of charge (SOC) of the lithium ion secondary battery 20 is calculated.
 この時の充電状態(SOC)の演算について説明する。 The calculation of the state of charge (SOC) at this time will be described.
 電池制御装置27は、一定時間(例えば、30秒)毎に1回の割合で、それぞれのリチウムイオン二次電池20について開路電圧(OCV)のデータを検出する。すなわち、電池制御装置27は、電池指定ポートから電圧測定回路29に測定対象のリチウムイオン二次電池20を指定することで、A/D入力ポートを介して電圧測定回路29から測定対象のリチウムイオン二次電池20の開路電圧を取り込む。電池制御装置27は、各開路電圧のデータを用いて、ROMに予め記憶されており初期設定においてRAMに展開されている電池状態マップ(または関係式)により各リチウムイオン二次電池20の充電状態(SOC)を算出する。ここでは、電池状態マップは、開路電圧および充電状態(SOC)が対応した状態でRAMに展開されている。また、電池制御装置27は、全リチウムイオン二次電池の平均充電状態を電池部25の充電状態(SOC)として算出する。なお、電池部25の温度データをサーミスタ等で検出するようにし、充電状態(SOC)の算出時に温度補正を加えるようにすることも可能である。 Battery control device 27 detects open circuit voltage (OCV) data for each lithium ion secondary battery 20 at a rate of once every fixed time (for example, 30 seconds). That is, the battery control device 27 designates the measurement target lithium ion secondary battery 20 from the battery designation port to the voltage measurement circuit 29, so that the measurement target lithium ion is obtained from the voltage measurement circuit 29 via the A / D input port. The open circuit voltage of the secondary battery 20 is taken in. The battery control device 27 uses the data of each open circuit voltage to charge each lithium ion secondary battery 20 according to a battery state map (or relational expression) stored in advance in the ROM and expanded in the RAM in the initial setting. (SOC) is calculated. Here, the battery state map is developed in the RAM with the open circuit voltage and the state of charge (SOC) corresponding to each other. In addition, the battery control device 27 calculates the average charge state of all the lithium ion secondary batteries as the charge state (SOC) of the battery unit 25. It is also possible to detect the temperature data of the battery unit 25 with a thermistor or the like and add temperature correction when calculating the state of charge (SOC).
 通常、層状固溶体化合物を正極に用いたリチウムイオン二次電池では、開回路時に電圧変化が大きく、さらに、電圧が安定するまでに時間を要するため、電圧による充電状態を短時間で正確に検出することが困難である。このような状態下で、充電状態の検出に遅れが生じた場合、予期せず充電が無くなり、機器の停止を招く。 Normally, in lithium ion secondary batteries using a layered solid solution compound as the positive electrode, the voltage change is large during open circuit, and it takes time for the voltage to stabilize, so the state of charge due to voltage can be detected accurately in a short time. Is difficult. Under such a condition, when a delay occurs in the detection of the charging state, the charging is unexpectedly stopped, and the device is stopped.
 これに対して、充電後の開回路時に放電、放電後の開回路時に充電とOCVが緩和する方向に充放電することで短時間、且つ正確にOCVを検出し、充電状態を把握できる。 On the other hand, it is possible to detect the OCV accurately in a short time and grasp the state of charge by discharging in the open circuit after charging and charging / discharging in the direction in which charging and OCV relax in the open circuit after discharging.
 次に、実施例について説明する。層状固溶体化合物を用いた二次電池モジュールのモデルを作成し、本実施形態の制御方法の評価を行った。二次電池を充電した後、所定の電圧まで放電した後、実施例においては所定量の充電をし、開回路電圧を測定するとともに、充放電終了後の電圧を基準に開回路電圧が安定するまでの電圧の変化量を測定した。正極活物質としてLi1.47Mn0.6Ni0.2Co0.2の組成の層状固溶体化合物を用い、正極活物質:導電材:バインダ=86.5:10:3.5の比で混合した正極合剤を用いた。なお、比較のために行った比較実験例についても併記する。また、本発明は以下に述べる実施例に制限されるものではない。 Next, examples will be described. A model of a secondary battery module using a layered solid solution compound was created, and the control method of this embodiment was evaluated. After charging the secondary battery, after discharging to a predetermined voltage, in the embodiment, a predetermined amount of charge is performed, the open circuit voltage is measured, and the open circuit voltage is stabilized with reference to the voltage after the end of charging and discharging. The amount of change in voltage was measured. A layered solid solution compound having a composition of Li 1.47 Mn 0.6 Ni 0.2 Co 0.2 O 2 was used as the positive electrode active material, and the positive electrode active material: conductive material: binder = 86.5: 10: 3.5 A positive electrode mixture mixed in a ratio was used. In addition, it describes together about the comparative experiment example performed for the comparison. Further, the present invention is not limited to the examples described below.
 実施例1では、1CA放電後にSOC0.1%の定電流充電をした。 開回路電圧が安定するまでの電圧の変化量は、0.15Vであった。 In Example 1, a constant current charge of SOC 0.1% was performed after 1 CA discharge. The amount of voltage change until the open circuit voltage was stabilized was 0.15V.
 実施例2では、1CA放電後にSOC0.2%の定電流充電をした。  In Example 2, a constant current charge of SOC 0.2% was performed after 1 CA discharge. *
 開回路電圧が安定するまでの電圧の変化量は、0.10Vであった。 The amount of change in voltage until the open circuit voltage was stabilized was 0.10V.
 実施例3では、1CA放電後にSOC1.0%の定電流充電をした。  In Example 3, a constant current charge of SOC 1.0% was performed after 1 CA discharge. *
 開回路電圧が安定するまでの電圧の変化量は、0.05Vであった。 The amount of change in voltage until the open circuit voltage was stabilized was 0.05V.
 実施例4では、1CA放電後に1CA放電終止電圧より0.1V高い電圧でSOC5.0%の定電圧充電をした。  In Example 4, a constant voltage of SOC 5.0% was charged after 1 CA discharge at a voltage 0.1 V higher than the 1 CA discharge end voltage. *
 開回路電圧が安定するまでの電圧の変化量は、0.01V未満であった。 The amount of voltage change until the open circuit voltage was stabilized was less than 0.01V.
 (比較例1)
 比較例1では1CA放電のみとした。 
(Comparative Example 1)
In Comparative Example 1, only 1 CA discharge was used.
 開回路電圧が安定するまでの電圧の変化量は、0.4Vであった。  The amount of change in voltage until the open circuit voltage was stabilized was 0.4V. *
 (評価)
 図4は、実施例及び比較例において、放電し、停止した後の開回路電圧の変化の過程を示すグラフである。点Sに達するまで放電を行った後、実施例においては所定量の充電をし(開回路電圧を点CSに上げ)ている。一方、比較例(一点鎖線)においては、点Sに達するまで放電を行った後、充電をしない放置した。
(Evaluation)
FIG. 4 is a graph showing the process of change in the open circuit voltage after discharging and stopping in Examples and Comparative Examples. After discharging until the point S is reached, in the embodiment, a predetermined amount of charge is performed (the open circuit voltage is raised to the point CS). On the other hand, in the comparative example (dashed line), after discharging until reaching point S, the battery was left uncharged.
 実施例の場合は、放電後の充電操作により開回路電圧が早期に安定に向かうため、開回路電圧が安定するまでの時間(緩和時間)が短く、放電後の充電操作の後における電圧の変化量が小さい。このため、充電状態を早期に算出することができる。 In the case of the example, since the open circuit voltage is stabilized early by the charging operation after discharging, the time until the open circuit voltage is stabilized (relaxation time) is short, and the voltage change after the charging operation after discharging The amount is small. For this reason, the state of charge can be calculated early.
 一方、比較例の場合は、充電の操作を行わないため、緩和時間が長く、放電後の充電操作の後における電圧の変化量が大きい。このため、短時間での充電状態の算出は困難である。 On the other hand, in the case of the comparative example, since the charging operation is not performed, the relaxation time is long and the amount of change in voltage after the charging operation after discharging is large. For this reason, it is difficult to calculate the state of charge in a short time.
 ここで、「開回路電圧が安定するまで」の過程においては、電池の内部のイオンの状態、特に正極活物質が平衡状態に向かうものと考えられる。すなわち、正極活物質の結晶を構成するイオン(特にリチウムイオン)の配置が安定な平衡状態に向かうものと考えられる。平衡状態は、電池の内部のイオンの状態、特に正極活物質の結晶を構成するイオン(特にリチウムイオン)の配置が安定した状態である。 Here, in the process of “until the open circuit voltage is stabilized”, the state of ions inside the battery, in particular, the positive electrode active material is considered to be in an equilibrium state. That is, it is considered that the arrangement of ions (particularly lithium ions) constituting the positive electrode active material crystal tends to a stable equilibrium state. The equilibrium state is a state in which the state of ions inside the battery, particularly the arrangement of ions (particularly lithium ions) constituting the crystal of the positive electrode active material is stable.
 なお、図4においては放電後の状態を示したが、充電後においても同様の開回路電圧の変化が見られる。 Although FIG. 4 shows a state after discharging, a similar change in the open circuit voltage can be seen after charging.
 図5は、実施例1~4及び比較例1の電圧変化曲線を示したものである。 FIG. 5 shows voltage change curves of Examples 1 to 4 and Comparative Example 1.
 実施例1~4は、比較例1と比較して電圧変化の幅が小さく、電圧が安定する時間が速いことが分かった。 In Examples 1 to 4, it was found that the voltage change width was smaller than that of Comparative Example 1, and the voltage stabilization time was fast.
 各実施例より明らかな通り、放電後に充電を行うことにより、行わなかった比較例1に比して開回路電圧が安定するまでの電圧の変化量を小さくすることが可能であった。すなわち、開回路電圧の誤差を小さくし、充電状態を正確に把握することを可能とできた。 As is clear from each example, by performing charging after discharging, it was possible to reduce the amount of change in voltage until the open circuit voltage was stabilized as compared with Comparative Example 1 that was not performed. That is, it was possible to reduce the error of the open circuit voltage and accurately grasp the state of charge.
 SOC0.1%の充電では、充電を行わなかった場合に比して電圧変化量及び電圧が安定するまでの時間を半分以下とすることが可能となった。充電量を多くすると、電圧変化はさらに抑制されるとともに、安定化までの時間は短縮された。 With SOC 0.1% charging, the amount of voltage change and the time until the voltage stabilizes can be reduced to less than half compared to when charging was not performed. When the amount of charge was increased, the voltage change was further suppressed and the time to stabilization was shortened.
 SOC5.0%の充電では、開回路電圧が安定するまでの電圧の変化量は0.01V未満である。したがって、放電後にSOC5.0%よりも多くの充電を行ってもさらなる効果は期待しにくく、充電量はSOC5.0%以下に相当する容量とすることが好ましい。充電後に放電を行う場合にも同様の理由により、放電量はSOC5.0%以下とすることが好ましい。 In SOC 5.0% charge, the amount of voltage change until the open circuit voltage stabilizes is less than 0.01V. Therefore, it is difficult to expect a further effect even if charging is performed more than SOC 5.0% after discharging, and the charging amount is preferably set to a capacity corresponding to SOC 5.0% or less. Also when discharging after charging, for the same reason, the discharge amount is preferably set to SOC 5.0% or less.
 したがって、従来の層状固溶体化合物正極を用いたリチウムイオン二次電池の制御方法と比較して、前述の充電後の開回路時に放電、放電後の開回路時に充電とOCVが緩和する方向に充放電することにより、短時間で且つ正確にOCVを検出し、充電状態を把握できることが明らかとなった。 Therefore, compared to the conventional control method of a lithium ion secondary battery using a layered solid solution compound positive electrode, discharging is performed during open circuit after charging, and charging and discharging are performed in a direction in which charging and OCV are relaxed during open circuit after discharging. By doing this, it became clear that the OCV can be detected accurately in a short time and the state of charge can be grasped.
 1:正極板、2:負極板、3:セパレータ、4:電池缶、9:電池蓋、20:リチウムイオン二次電池、21:電圧情報収集部、22:演算処理部、23:充放電制御部、25:電池部、27:電池制御装置、40:二次電池モジュール。 1: positive electrode plate, 2: negative electrode plate, 3: separator, 4: battery can, 9: battery lid, 20: lithium ion secondary battery, 21: voltage information collecting unit, 22: arithmetic processing unit, 23: charge / discharge control Part, 25: battery part, 27: battery control device, 40: secondary battery module.

Claims (11)

  1. リチウムイオン二次電池の充放電を制御する装置であって、
     リチウムイオン二次電池の開回路電圧を検出する電圧情報収集部と、
     開回路電圧に基づき充電状態を算出する演算処理部と、
     充電状態に基づき充放電を制御する充放電制御部と、を備え、
     前記リチウムイオン二次電池の充電停止後に所定量放電し、かつ、放電停止後に所定量充電し、その後の前記開回路電圧を測定し、測定された前記開回路電圧に基づき前記充電状態を算出し、算出された前記充電状態に基づき前記リチウムイオン二次電池の充放電を制御することを特徴とするリチウムイオン二次電池の制御装置。
    An apparatus for controlling charging / discharging of a lithium ion secondary battery,
    A voltage information collecting unit for detecting an open circuit voltage of the lithium ion secondary battery;
    An arithmetic processing unit for calculating the state of charge based on the open circuit voltage;
    A charge / discharge control unit for controlling charge / discharge based on the state of charge,
    Discharge a predetermined amount after stopping the charging of the lithium ion secondary battery, charge a predetermined amount after stopping the discharge, measure the open circuit voltage thereafter, and calculate the state of charge based on the measured open circuit voltage A control device for a lithium ion secondary battery, which controls charge / discharge of the lithium ion secondary battery based on the calculated state of charge.
  2. 正極活物質として層状固溶体化合物を用いたリチウムイオン二次電池を対象とし、
     前記リチウムイオン二次電池の充電後の開回路時に前記リチウムイオン二次電池の放電をする信号を発し、かつ、前記リチウムイオン二次電池の放電後の開回路時に前記リチウムイオン二次電池の充電をする信号を発する機能を有し、前記放電後の前記充電及び前記充電後の前記放電の後に測定した前記リチウムイオン二次電池の開回路電圧から前記リチウムイオン二次電池の前記充電状態を検出する機能を有することを特徴とする請求項1記載のリチウムイオン二次電池の制御装置。
    Targeting lithium ion secondary batteries using layered solid solution compounds as positive electrode active materials,
    The lithium ion secondary battery emits a signal for discharging the lithium ion secondary battery during an open circuit after charging, and the lithium ion secondary battery is charged during an open circuit after the lithium ion secondary battery is discharged. And detecting the charge state of the lithium ion secondary battery from the open circuit voltage of the lithium ion secondary battery measured after the charge after the discharge and the discharge after the charge. The control device for a lithium ion secondary battery according to claim 1, wherein
  3. 前記放電後の前記充電及び前記充電後の前記放電における前記充電状態の変化量は、0.1~5%に相当するものであることを特徴とする請求項1記載のリチウムイオン二次電池の制御装置。 The lithium ion secondary battery according to claim 1, wherein the amount of change in the state of charge in the charge after the discharge and in the discharge after the charge corresponds to 0.1 to 5%. Control device.
  4. 前記放電後の前記充電及び前記充電後の前記放電は、定電圧又は定電流で行い、前記定電圧の場合は、前記放電後の場合は前記放電後に充電をすることなく緩和され平衡状態に達した後の前記充電状態に対応する前記開回路電圧以上の電圧に設定し、前記充電後の場合は前記充電後に放電をすることなく緩和され平衡状態に達した後の前記充電状態に対応する前記開回路電圧以下の電圧に設定することを特徴とする請求項1記載のリチウムイオン二次電池の制御装置。 The charging after the discharging and the discharging after the charging are performed at a constant voltage or a constant current. In the case of the constant voltage, the case after the discharging is relaxed without being charged after the discharging and reaches an equilibrium state. Set to a voltage equal to or higher than the open circuit voltage corresponding to the state of charge after the charge, and in the case of the charge, the state corresponding to the state of charge after reaching the equilibrium state is relaxed without discharging after the charge. 2. The control device for a lithium ion secondary battery according to claim 1, wherein the control device is set to a voltage equal to or lower than an open circuit voltage.
  5. リチウムイオン二次電池の充電後の開回路時に前記リチウムイオン二次電池の放電をする工程、又は、前記リチウムイオン二次電池の放電後の開回路時に前記リチウムイオン二次電池の充電をする工程と、
     前記放電後の前記充電又は前記充電後の前記放電の後に測定した前記リチウムイオン二次電池の開回路電圧から前記リチウムイオン二次電池の前記充電状態を算出する工程と、
     算出された前記充電状態に基づき前記リチウムイオン二次電池の充放電を制御する工程と、を含むことを特徴とするリチウムイオン二次電池の制御方法。
    The step of discharging the lithium ion secondary battery at the time of the open circuit after charging of the lithium ion secondary battery, or the step of charging the lithium ion secondary battery at the time of the open circuit after discharging of the lithium ion secondary battery When,
    Calculating the state of charge of the lithium ion secondary battery from the open circuit voltage of the lithium ion secondary battery measured after the charge after the discharge or the discharge after the charge;
    And a step of controlling charging / discharging of the lithium ion secondary battery based on the calculated state of charge.
  6. 正極活物質として層状固溶体化合物を用いたリチウムイオン二次電池を対象とすることを特徴とする請求項5記載のリチウムイオン二次電池の制御方法。 6. The method for controlling a lithium ion secondary battery according to claim 5, wherein the method is directed to a lithium ion secondary battery using a layered solid solution compound as a positive electrode active material.
  7. 前記放電後の前記充電又は前記充電後の前記放電における前記充電状態の変化量は、0.1~5%に相当するものであることを特徴とする請求項5記載のリチウムイオン二次電池の制御方法。 The lithium ion secondary battery according to claim 5, wherein the amount of change in the state of charge in the charge after the discharge or in the discharge after the charge corresponds to 0.1 to 5%. Control method.
  8. 前記放電後の前記充電又は前記充電後の前記放電は、定電圧又は定電流で行い、前記定電圧の場合は、前記放電後の場合は前記放電後に充電をすることなく緩和され平衡状態に達した後の前記充電状態に対応する前記開回路電圧以上の電圧に設定し、前記充電後の場合は前記充電後に放電をすることなく緩和され平衡状態に達した後の前記充電状態に対応する前記開回路電圧以下の電圧に設定することを特徴とする請求項5記載のリチウムイオン二次電池の制御方法。 The charge after the discharge or the discharge after the charge is performed at a constant voltage or a constant current. In the case of the constant voltage, the case after the discharge is relaxed without charging after the discharge and reaches an equilibrium state. Set to a voltage equal to or higher than the open circuit voltage corresponding to the state of charge after the charge, and in the case of the charge, the state corresponding to the state of charge after reaching the equilibrium state is relaxed without discharging after the charge. 6. The method for controlling a lithium ion secondary battery according to claim 5, wherein the voltage is set to a voltage equal to or lower than an open circuit voltage.
  9. リチウムイオン二次電池と、
     前記リチウムイオン二次電池の開回路電圧を測定する電圧測定装置と、
     請求項1~4のいずれか一項に記載の制御装置と、を備えたことを特徴とするリチウムイオン二次電池モジュール。
    A lithium ion secondary battery;
    A voltage measuring device for measuring an open circuit voltage of the lithium ion secondary battery;
    A lithium ion secondary battery module comprising the control device according to any one of claims 1 to 4.
  10.  xLi-(1-x)LiM(但し、0.3<x<0.7であり、MはMn、Ti及びZrからなる群から選ばれた少なくとも1種であり、MはNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr及びVからなる群から選ばれた少なくとも1種である。)で表される正極活物質を正極に用いたリチウムイオン二次電池と、
     前記リチウムイオン二次電池の開回路電圧を測定する電圧測定装置と、
     前記リチウムイオン二次電池の開回路電圧を検出する電圧情報収集部、前記電圧情報収集部で検出された開回路電圧に基づき、充電状態を算出する演算処理部、及び前記演算処理部で算出された充電状態に基づき前記リチウムイオン二次電池の充放電を制御する充放電制御部を有する電池制御装置と、を備え、
     前記充放電制御部は、前記リチウムイオン二次電池の充電停止後に所定量放電し、又は、放電停止後に所定量充電し、
     前記電圧情報収集部は、充電停止後に所定量放電した後の開回路電圧、又は、放電停止後に所定量充電した後の開回路電圧を測定し、
     前記演算処理部は、前記開回路電圧に基づき前記充電状態を算出し、
     前記充放電制御部は、前記充電状態に基づき前記リチウムイオン二次電池の充放電を制御することを特徴とするリチウムイオン二次電池モジュール。
    xLi 2 M 1 O 3 — (1-x) LiM 2 O 2 (provided that 0.3 <x <0.7, and M 1 is at least one selected from the group consisting of Mn, Ti and Zr) M 2 is at least one selected from the group consisting of Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr and V.) A lithium ion secondary battery;
    A voltage measuring device for measuring an open circuit voltage of the lithium ion secondary battery;
    Calculated by a voltage information collecting unit for detecting an open circuit voltage of the lithium ion secondary battery, an arithmetic processing unit for calculating a charge state based on the open circuit voltage detected by the voltage information collecting unit, and the arithmetic processing unit. A battery control device having a charge / discharge control unit for controlling charge / discharge of the lithium ion secondary battery based on the charged state,
    The charge / discharge control unit discharges a predetermined amount after stopping the charging of the lithium ion secondary battery, or charges a predetermined amount after stopping the discharge,
    The voltage information collecting unit measures an open circuit voltage after discharging a predetermined amount after stopping charging, or an open circuit voltage after charging a predetermined amount after stopping discharging,
    The arithmetic processing unit calculates the state of charge based on the open circuit voltage,
    The said charge / discharge control part controls charge / discharge of the said lithium ion secondary battery based on the said charge state, The lithium ion secondary battery module characterized by the above-mentioned.
  11. 前記放電後の前記充電及び前記充電後の前記放電における前記充電状態の変化量は、0.1~5%に相当するものであることを特徴とする請求項10記載のリチウムイオン二次電池モジュール。 11. The lithium ion secondary battery module according to claim 10, wherein a change amount of the state of charge in the charge after the discharge and the discharge after the charge corresponds to 0.1 to 5%. .
PCT/JP2014/059488 2014-03-31 2014-03-31 Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell WO2015151170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059488 WO2015151170A1 (en) 2014-03-31 2014-03-31 Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059488 WO2015151170A1 (en) 2014-03-31 2014-03-31 Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell

Publications (1)

Publication Number Publication Date
WO2015151170A1 true WO2015151170A1 (en) 2015-10-08

Family

ID=54239540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059488 WO2015151170A1 (en) 2014-03-31 2014-03-31 Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell

Country Status (1)

Country Link
WO (1) WO2015151170A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362828A (en) * 2003-06-02 2004-12-24 Auto Network Gijutsu Kenkyusho:Kk Stabilization method of storage battery open-circuit voltage and detecting method of storage battery open-circuit voltage
JP2005147930A (en) * 2003-11-18 2005-06-09 Nissan Motor Co Ltd Device and method for detecting charged state of battery
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage
JP2012083149A (en) * 2010-10-08 2012-04-26 Honda Motor Co Ltd Capacitor control device
JP2013254644A (en) * 2012-06-07 2013-12-19 Hitachi Ltd Lithium ion secondary battery control system, battery system, and mobile entity and power storage system incorporating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362828A (en) * 2003-06-02 2004-12-24 Auto Network Gijutsu Kenkyusho:Kk Stabilization method of storage battery open-circuit voltage and detecting method of storage battery open-circuit voltage
JP2005147930A (en) * 2003-11-18 2005-06-09 Nissan Motor Co Ltd Device and method for detecting charged state of battery
JP2011257219A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Internal resistance of secondary battery and calculation device for calculating open voltage
JP2012083149A (en) * 2010-10-08 2012-04-26 Honda Motor Co Ltd Capacitor control device
JP2013254644A (en) * 2012-06-07 2013-12-19 Hitachi Ltd Lithium ion secondary battery control system, battery system, and mobile entity and power storage system incorporating the same

Similar Documents

Publication Publication Date Title
KR101951067B1 (en) Secondary battery control device and soc detection method
US9935477B2 (en) Charge/discharge control method and charge/discharge control apparatus for lithium ion battery
TWI470252B (en) Control device for secondary battery and detection method of SOC
JP5235959B2 (en) Battery controller and voltage abnormality detection method
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
WO2013133017A1 (en) Method for controlling charging/discharging of lithium-ion secondary cell, and charging/discharging controller
JP6500789B2 (en) Control system of secondary battery
US11181584B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP2014222603A (en) Inspection method for battery
JP6478121B2 (en) Secondary battery recovery processing method and reuse processing method
JP2016110917A (en) Lithium ion secondary battery and battery system
WO2018062394A1 (en) Power storage element soc estimation device, power storage device, and power storage element soc estimation method
JP6165620B2 (en) Secondary battery module and secondary battery monitoring device
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
WO2014122776A1 (en) Apparatus and method for controlling lithium-ion secondary cell
JPWO2019230464A1 (en) Non-aqueous electrolyte secondary battery charging method and non-aqueous electrolyte secondary battery charging system
JP2012016109A (en) Method and device of charging lithium ion battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6090750B2 (en) Power storage device
WO2015145616A1 (en) Lithium ion secondary battery control device and control method, and lithium ion secondary battery module
JP5122899B2 (en) Discharge control device
JP5284029B2 (en) Battery pack and method of manufacturing battery pack
WO2015151170A1 (en) Lithium-ion secondary cell module and device and method for controlling lithium-ion secondary cell
CN116724440A (en) Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP