WO2017179347A1 - Secondary battery system - Google Patents

Secondary battery system Download PDF

Info

Publication number
WO2017179347A1
WO2017179347A1 PCT/JP2017/009581 JP2017009581W WO2017179347A1 WO 2017179347 A1 WO2017179347 A1 WO 2017179347A1 JP 2017009581 W JP2017009581 W JP 2017009581W WO 2017179347 A1 WO2017179347 A1 WO 2017179347A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
state
internal resistance
charge
ratio
Prior art date
Application number
PCT/JP2017/009581
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 本蔵
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017179347A1 publication Critical patent/WO2017179347A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system.
  • the characteristic deterioration of the secondary battery is mainly regarded as a decrease in battery capacity and an increase in battery internal resistance.
  • the internal resistance continues to rise gradually with use.
  • a method for predicting the rate of increase of the internal resistance of the battery has been studied.
  • Patent Document 1 proposes a mathematical expression and a method for estimating an increase rate of internal resistance with respect to an initial state of a secondary battery.
  • Patent Document 1 describes a method for estimating the rate of increase in internal resistance by substituting appropriate values of elapsed time and coefficient into a predetermined mathematical expression. By estimating the rate of increase of the internal resistance in this way, it becomes possible to optimize the control of the apparatus.
  • Patent Document 1 the method for estimating the rate of increase of the internal resistance described in Patent Document 1 is effective only when the normal internal resistance continues to increase gradually. It was not applicable when rising.
  • the first reference value of the internal resistance in the first charge state lower than the predetermined charge state, and the second charge state higher than the first charge state.
  • a holding unit that holds a second reference value of an internal resistance; in a use state of the secondary battery; a first internal resistance of the secondary battery in the first charge state; and the second charge of the secondary battery.
  • a measuring unit that measures the second internal resistance in the state, a comparison between the first internal resistance and the first reference value in the first charging state measured by the measuring unit, and a second charging that is measured by the measuring unit
  • a detector that detects deterioration of the secondary battery based on a comparison between the second internal resistance in the state and the second reference value.
  • a rapid increase in the internal resistance of the secondary battery can be detected at an early stage.
  • the secondary battery 21 is configured such that an electrode group including a positive electrode, a separator, and a negative electrode is installed in a battery case.
  • the electrode group has a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked and wound, or a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked.
  • the shape of the secondary battery 21 is a cylindrical shape, a flat oval shape, or a square shape when the electrode group is wound, and a square shape, a laminate shape, or the like when the electrode group is wound. Yes, any shape may be selected.
  • the positive electrode and the negative electrode are arranged away from each other through the electrolytic solution.
  • the electrolytic solution for example, a non-aqueous solution in which 1 mol / l of lithium hexafluorophosphate as a lithium salt is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 is injected.
  • the positive electrode includes a positive electrode active material made of a lithium-containing oxide that can reversibly insert and desorb lithium ions.
  • the positive electrode active material include layered transition metal oxides with or without substitution elements, lithium transition metal phosphates, and spinel type transition metal oxides.
  • the layered transition metal oxide lithium nickelate LiNiO 2 or lithium cobaltate LiCoO 2
  • the transition metal lithium phosphate lithium iron phosphate LiFePO 4 manganese phosphate lithium LiMnPO 4
  • spinel type transition metal oxide examples thereof include lithium manganate LiMn 2 O 4 .
  • One kind or two or more kinds of the above materials may be contained as the positive electrode active material.
  • lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode are inserted in the discharging process.
  • the negative electrode is, for example, a carbon material capable of reversibly inserting and extracting lithium ions, silicon-based material Si, SiO, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium and metal, for example,
  • the negative electrode active material which consists of an alloy with tin, aluminum, antimony, etc. is included.
  • a carbon material as a raw material, natural graphite, a composite carbonaceous material obtained by forming a film on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing.
  • the above materials may be contained singly or in combination of two or more as the negative electrode active material.
  • the negative electrode active material in the negative electrode undergoes insertion / extraction reaction or conversion reaction of lithium ions during the charge / discharge process.
  • a polypropylene separator is used as the separator used between the positive electrode and the negative electrode.
  • a microporous film or non-woven fabric made of polyolefin such as polyethylene can be used.
  • FIG. 1 is a schematic configuration diagram of a secondary battery system according to the first embodiment.
  • the secondary battery system includes a battery management unit 10, a plurality of battery systems 20 connected in parallel to the battery management unit 10, and a memory 30 connected to the battery management unit 10.
  • the battery system 20 detects a plurality of secondary batteries 21 connected in series, a voltage detection unit 22 provided for each secondary battery 21, and a current flowing through the plurality of secondary batteries 21 connected in series. And a current control unit 24 that controls the current flowing through the plurality of secondary batteries 21 connected in series.
  • the voltage detector 22 detects the battery voltage of the secondary battery 21 and is constituted by a voltage sensor such as a voltmeter. Although the voltage detection part 22 demonstrates in the example which measures the battery voltage of each secondary battery 21, you may make it measure the whole battery voltage which connected the some secondary battery 21 in series. The voltage value detected by the voltage detection unit 22 is input to the battery management unit 10.
  • the current detection unit 23 detects the charge / discharge current of the secondary battery 21 and is configured by a current sensor such as an ammeter.
  • a current sensor such as an ammeter.
  • the ammeter used in the current detection unit 23 for example, a galvanometer, an ammeter using a shunt resistor, a clamp meter, and the like are conceivable.
  • the current detection method in the current detection unit 23 is not limited to this, and any method can be used as long as it detects the value of the current flowing in the secondary battery 21.
  • the current value detected by the current detection unit 23 is input to the battery management unit 10.
  • the current control unit 24 is a part for controlling the charge / discharge current of the secondary battery 21, and its operation is controlled by the battery management unit 10.
  • the current control unit 24 can be realized by controlling opening and closing of a switch such as a semiconductor switch or a mechanical switch according to the magnitude of the charge / discharge current.
  • a power conversion device such as an inverter or a DC-DC converter may be used as the current control unit 24.
  • the current control unit 24 is not limited to these as long as the current value when the secondary battery 21 is charged / discharged can be controlled from the battery management unit 10.
  • the memory 30 includes a first reference value R01 of internal resistance in the first charge state SOC1 lower than the predetermined charge state of the secondary battery 21 and a second reference of internal resistance in the second charge state SOC2 higher than the first charge state SOC1. Holds the value R02.
  • the first reference value R01 and the second reference value R02 are read from the battery management unit 10.
  • the battery management unit 10 controls charging / discharging of the secondary battery 21 according to a command from the host controller, and includes a microcomputer that operates according to a predetermined program, a CPU, a ROM, a RAM, and the like.
  • the battery management unit 10 is based on a process for obtaining a state of charge (SOC) of the secondary battery 21 from the voltage value measured by the voltage detection unit 22 and the current value measured by the current detection unit 23. Either or both of the processes for obtaining the state of charge of the secondary battery 21 from the accumulated charge / discharge electricity amount are included.
  • the open circuit voltage V1 of the secondary battery 21 corresponding to the first charge state SOC1 and the open circuit voltage V2 of the secondary battery 21 corresponding to the second charge state SOC2 are held in the memory 30.
  • the battery management unit 10 calculates the internal resistance of the secondary battery 21 based on the voltage value and the current value measured by the voltage detection unit 22 and the current detection unit 23, and at the same time, the secondary battery 21 at the present time. Has a function of determining the state of charge. Furthermore, it has the function as the measurement part 11 which calculates (measures) the internal resistance R1 in the 1st charge state SOC1 and the internal resistance R2 in the 2nd charge state SOC2 from the combination data group of a some charge state and internal resistance.
  • the deterioration of the secondary battery 21 is performed based on the comparison between the internal resistance R1 and the first reference value R01 in the first charge state SOC1 and the comparison between the internal resistance R2 and the second reference value R02 in the second charge state SOC2. It has a function as the detection part 12 to detect.
  • FIG. 2 is a flowchart showing the processing operation of the battery management unit 10 in the present embodiment.
  • step S11 in the usage state of the secondary battery 21, the internal resistances R1 and R2 are measured with respect to the two charged states SOC1 and SOC2 in the relationship of the first charged state SOC1 ⁇ the second charged state SOC2.
  • the first charge state SOC1 is preferably a predetermined charge state, for example, 50% or less, and more preferably 20% or less.
  • the second charging state SOC2 is higher than the first charging state SOC1, for example, preferably 30% or more, and more preferably 40% or more.
  • the usage state of the secondary battery 21 is a state after the use of the secondary battery 21 is started.
  • the battery management unit 10 In order to measure the internal resistance R1, the battery management unit 10 first charges or discharges the secondary battery 21 until the open circuit voltage V1 of the secondary battery 21 corresponding to the first charge state SOC1 is reached. Thereafter, the battery is allowed to stand for a certain period of time, and then a predetermined current value I0 is discharged, and the closed circuit voltage V of the battery at that time is measured. Similarly, in order to measure the internal resistance R2, the battery management unit 10 first charges or discharges the secondary battery 21 until the open circuit voltage V2 of the secondary battery 21 corresponding to the second charge state SOC2 is reached.
  • the battery management unit 10 obtains internal resistances R1 and R2 from the following equation (1).
  • R1 (V-V1) / I0
  • R2 (V-V2) / I0 (1)
  • the battery management unit 10 detects the battery voltage Vi, the current Ii, and the state of charge SOCi at a certain moment, and uses these detection results and the open circuit voltage Voi corresponding to the state of charge SOCi.
  • the internal resistance Ri (Vi ⁇ Voi) / Ii is calculated. Then, the obtained combination data of the state of charge SOCi and the internal resistance Ri is held in the memory 30.
  • the battery management unit 10 performs an averaging process of data and a complementary process by interpolation and extrapolation, and the internal resistance R1 corresponding to the first charge state SOC1 and the first resistance. 2. Calculate the internal resistance R2 corresponding to the state of charge SOC2. In this way, the internal resistances R1 and R2 may be measured. In any case, when the secondary battery 21 is in use, the battery management unit 10 measures the internal resistance R1 in the first charge state SOC1 and the internal resistance R2 in the second charge state SOC2 of the secondary battery 21. It functions as the unit 11.
  • a charging state in an appropriate range may be set instead of a single charging state.
  • the internal resistance R1 and the internal resistance R2 the average value of the internal resistance in the range set as the first charging state SOC1 and the second charging state SOC2 is used.
  • the first state of charge SOC1 is 0 to 20%
  • the second state of charge SOC2 is 40 to 100%.
  • step S12 the battery management unit 10 stores the first reference value R01 of the internal resistance in the first charging state SOC1 and the second reference value R02 of the internal resistance in the second charging state SOC2 stored in the memory 30. Is read.
  • the first reference value R01 and the second reference value R02 are previously measured or calculated in advance in the initial state of the secondary battery 21.
  • the initial state of the secondary battery 21 is an initial state before or after using the secondary battery 21.
  • the first charging state SOC1 and the second charging state SOC2 used in step S11 and step S12 are specific values determined in the above-described range.
  • step S13 battery management unit 10 calculates internal resistance increase rate R1 / R01 in first charge state SOC1 and internal resistance increase rate R2 / R02 in second charge state SOC2.
  • step S ⁇ b> 14 the battery management unit 10 calculates the ratio r of the increase rates of the two internal resistances according to the equation (2).
  • r (R1 / R01) / (R2 / R02) (2)
  • the difference r ′ between the ratios of the two internal resistances may be calculated by equation (3).
  • r ' (R1 / R01)-(R2 / R02) (3)
  • step S15 the battery management unit 10 determines whether the ratio r of the rate of increase in internal resistance is greater than a predetermined value r0.
  • the predetermined value r0 may be arbitrarily set to 1 or more, but is preferably set to 1.03 or more.
  • step S15 it may be determined whether the difference r ′ between the two internal resistances is greater than a predetermined value r′0.
  • the battery management unit 10 functions as the detection unit 12 that detects the deterioration of the secondary battery 21.
  • step S16 the battery management unit 10 transmits a warning signal to the host controller.
  • the host controller can take measures corresponding to the deterioration of the secondary battery 21.
  • FIG. 3 is a diagram showing a relationship between the charge state and the internal resistance in the initial state and the deteriorated state in the secondary battery 21 in which the internal resistance has rapidly increased.
  • the horizontal axis indicates the state of charge
  • the vertical axis indicates the internal resistance.
  • FIG. 4 is a diagram showing the relationship between the state of charge of the secondary battery 21 and the rate of increase in internal resistance.
  • the horizontal axis represents the value of the state of charge
  • the vertical axis represents the value of the rate of increase in internal resistance.
  • FIG. 5 is a diagram showing the relationship between the first charge state SOC1 and the ratio r of the increase rate of the internal resistance, assuming that the second charge state SOC2 is 50%.
  • the horizontal axis indicates the value of the first state of charge SOC1
  • the vertical axis indicates the value of the ratio r of the rate of increase in internal resistance.
  • a rapid increase in the internal resistance of the secondary battery can be detected at an early stage, prompting the user to replace the battery early, or taking measures corresponding to the deterioration of the secondary battery 21. be able to.
  • FIG. 6 is a flowchart showing the processing operation of the battery management unit 10 according to the second embodiment.
  • Steps S21 to S24 are the same as Steps S11 to S14 of FIG. 2 shown in the first embodiment, and thus description thereof is omitted.
  • step S25 the battery management unit 10 records the current date and time t and the calculated ratio r in the memory 30. Every time the current date and time t is updated, the process from step S21 to step S24 is executed, and the date and time t and the calculated ratio r are accumulated and recorded in the memory 30. Instead of the current date and time t, the total operating time of the apparatus and the accumulated charge / discharge electricity amount may be recorded. Alternatively, the previous ratio r may be recorded, and thereafter the difference from this ratio r may be recorded. Further, a plurality of these may be combined as appropriate and recorded. Hereinafter, a case where the current date and time is recorded will be described.
  • step S26 the battery management unit 10 calculates the date and time t0 at which the ratio r exceeds the predetermined value r0 based on the accumulated data of the date and time t and the ratio r recorded in the memory 30.
  • the difference r 'between the two internal resistances is obtained in step S24, the date and time t0 when the difference r' between the two internal resistances exceeds the predetermined value r'0 is calculated.
  • the calculation method may be arbitrary.
  • the date and time t is converted into the elapsed time t ′ from the reference date and time such as the device manufacturing date and the operation start date and time. Regress to an appropriate function, such as a power function at time t '.
  • a data group composed of a combination of the ratio r and the elapsed time t ′ is regressed to the mathematical expression (4) to determine the coefficient k.
  • t ′ t′0
  • t'0 [(r0-100) / k] 1 / 0.5 (5)
  • the reference date and time is added to t′0 to obtain the date and time t0.
  • step S27 the battery management unit 10 compares the calculated date and time t0 with the current date and time t. That is, it is determined whether the time (t0-t) until the date and time t0 is smaller than the predetermined value t1.
  • the process proceeds to step S28.
  • the predetermined value t1 may be arbitrary, but may be, for example, one year or less.
  • step S28 the battery management unit 10 transmits a warning signal to the host controller. As a result, the host controller can take measures corresponding to the deterioration of the secondary battery 21.
  • the present embodiment it is possible to estimate in advance the time until a sudden increase in the internal resistance of the secondary battery 21 occurs, and to prompt the user to replace the battery. Thereby, it is possible to prevent unexpected performance degradation of the apparatus and improve reliability.
  • FIG. 1 A third embodiment will be described with reference to FIG.
  • the schematic configuration diagram of the secondary battery system is the same as that of FIG. 1, and the configuration of the secondary battery 21 is also the same as that of the first embodiment. Further, the relationship between the state of charge and the internal resistance is the same as that in the first embodiment described with reference to FIGS.
  • FIG. 7 is a flowchart showing the processing operation of the battery management unit 10 according to the third embodiment.
  • Steps S31 to S35 are the same as Steps S11 to S15 of FIG. 2 shown in the first embodiment, and thus description thereof is omitted.
  • step S35 it is determined whether the ratio r of the increase rate of the internal resistance is greater than a predetermined value r0. If the ratio r of the increase rate of the internal resistance is greater than r0, the process proceeds to step S36.
  • step S ⁇ b> 36 the battery management unit 10 changes the operation condition of the secondary battery 21. That is, by restricting charging / discharging of the secondary battery 21, a rapid increase in internal resistance is suppressed.
  • the inventor has a situation in which the lower limit of the state of charge when operating the secondary battery 21 is low, a situation in which the current value is large, a situation in which the battery temperature is low, or the amount of electricity continuously charged without interruption, or continuous In the situation where the amount of electricity discharged is large, it was found that the internal resistance tends to increase rapidly. Therefore, in changing the operating conditions, for example, changing the lower limit of the charging state when operating the secondary battery 21, changing the current value, changing the battery temperature or the ambient temperature around the battery, continuously charging Change to suppress the amount of electricity to be discharged or the amount of electricity to be discharged continuously.
  • the following operational effects can be obtained.
  • the memory 30 that holds the second reference value R02 of the internal resistance in the second charge state SOC2 that is higher, and the first internal resistance R1 in the first charge state SOC1 of the secondary battery 21 when the secondary battery 21 is in use.
  • the battery management unit 10 (measurement unit 11, step S11) for measuring the second internal resistance R2 in the second charge state SOC2 of the secondary battery 21 and the first charge state measured by the battery management unit 10 (step S11).
  • step S11 For comparison between the first internal resistance R1 and the first reference value R01 in SOC1, and the comparison between the second internal resistance R2 and the second reference value R02 in the second charge state SOC2 measured by the battery management unit 10 (step S11).
  • step S11 On the basis of Comprising a battery management unit 10 (detecting unit 12, steps S12 ⁇ S15) for detecting the deterioration of the following cell 21 and, a. Thereby, a rapid increase in the internal resistance of the secondary battery can be detected at an early stage.
  • the present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment.

Abstract

This secondary battery system comprises: a retaining unit for retaining an internal resistance first reference value in a first state-of-charge that is lower than a predetermined state-of-charge, and an internal resistance second reference value in a second state-of-charge that is higher than the first state-of-charge, in the initial state of the secondary battery; a measurement unit for measuring, in an in-use state of the secondary battery, a first internal resistance of the secondary battery in the first state-of-charge, and a second internal resistance of the secondary battery in the second state-of-charge; and a detection unit detecting a deterioration of the secondary battery on the basis of a comparison between the first reference value and the first internal resistance in the first state-of-charge measured by the measurement unit, and a comparison between the second reference value and the second internal resistance in the second state-of-charge measured by the measurement unit.

Description

二次電池システムSecondary battery system
 本発明は、二次電池システムに関する。 The present invention relates to a secondary battery system.
 近年、リチウムイオン電池などの二次電池を車両やスマートハウスなどの蓄電用電源に使用することにより、効率的にエネルギーを利用する取り組みが進められている。二次電池は充放電および保管によって特性劣化を生じることが知られている。上記の蓄電用電源はその利用期間が長期に及ぶことが想定されるため、二次電池の特性劣化を抑制することが重要である。また、二次電池を安全に使用し続けることが重要である。 In recent years, efforts have been made to efficiently use energy by using secondary batteries such as lithium-ion batteries for power storage power sources for vehicles and smart houses. It is known that the secondary battery is deteriorated in characteristics by charging / discharging and storage. Since the above power storage power source is assumed to be used for a long time, it is important to suppress deterioration of the characteristics of the secondary battery. It is also important to continue to use the secondary battery safely.
 二次電池の特性劣化は主に、電池容量の減少と電池内部抵抗の上昇として捉えられる。通常、内部抵抗は使用に伴い徐々に上昇し続ける。二次電池の内部抵抗が一定以上に上昇すると、二次電池は要求された出力を得ることが難しくなる。そのため、二次電池の内部抵抗の上昇率を判定し、電源供給先の装置側の制御に反映することが一般的である。また、電池の内部抵抗の上昇率を予測する方法も検討されている。例えば特許文献1には、二次電池の初期状態に対する内部抵抗の上昇率を推定するための数式と方法が提案されている。この特許文献1には、所定の数式に、経過時間と係数の適切な値を代入することによって内部抵抗の上昇率を推定する方法が記載されている。このように内部抵抗の上昇率を推定することによって、装置の制御を最適化することが可能になる。 The characteristic deterioration of the secondary battery is mainly regarded as a decrease in battery capacity and an increase in battery internal resistance. Usually, the internal resistance continues to rise gradually with use. When the internal resistance of the secondary battery rises above a certain level, it becomes difficult for the secondary battery to obtain the required output. For this reason, it is common to determine the rate of increase of the internal resistance of the secondary battery and reflect it in the control on the power supply destination device side. Also, a method for predicting the rate of increase of the internal resistance of the battery has been studied. For example, Patent Document 1 proposes a mathematical expression and a method for estimating an increase rate of internal resistance with respect to an initial state of a secondary battery. This Patent Document 1 describes a method for estimating the rate of increase in internal resistance by substituting appropriate values of elapsed time and coefficient into a predetermined mathematical expression. By estimating the rate of increase of the internal resistance in this way, it becomes possible to optimize the control of the apparatus.
日本国特開2013-057576号公報Japanese Unexamined Patent Publication No. 2013-057576
 しかしながら、特許文献1に記載された内部抵抗の上昇率の推定方法は、通常の内部抵抗が徐々に上昇し続ける場合にのみ有効であり、内部抵抗がそれまでの上昇傾向から乖離して急激に上昇する場合には適用できなかった。 However, the method for estimating the rate of increase of the internal resistance described in Patent Document 1 is effective only when the normal internal resistance continues to increase gradually. It was not applicable when rising.
 本発明による二次電池システムは、二次電池の初期状態において、所定の充電状態より低い第1充電状態における内部抵抗の第1基準値と、前記第1充電状態よりも高い第2充電状態における内部抵抗の第2基準値とを保持する保持部と、前記二次電池の使用状態において、前記二次電池の前記第1充電状態における第1内部抵抗と、前記二次電池の前記第2充電状態における第2内部抵抗とを計測する計測部と、前記計測部で計測した第1充電状態における前記第1内部抵抗と前記第1基準値との比較、および前記計測部で計測した第2充電状態における前記第2内部抵抗と前記第2基準値との比較に基づいて前記二次電池の劣化を検出する検出部と、を備える。 In the secondary battery system according to the present invention, in the initial state of the secondary battery, the first reference value of the internal resistance in the first charge state lower than the predetermined charge state, and the second charge state higher than the first charge state. A holding unit that holds a second reference value of an internal resistance; in a use state of the secondary battery; a first internal resistance of the secondary battery in the first charge state; and the second charge of the secondary battery. A measuring unit that measures the second internal resistance in the state, a comparison between the first internal resistance and the first reference value in the first charging state measured by the measuring unit, and a second charging that is measured by the measuring unit A detector that detects deterioration of the secondary battery based on a comparison between the second internal resistance in the state and the second reference value.
 本発明によれば、二次電池の内部抵抗の急激な上昇を早期に検知することができる。 According to the present invention, a rapid increase in the internal resistance of the secondary battery can be detected at an early stage.
二次電池システムの概略構成図である。It is a schematic block diagram of a secondary battery system. 第1の実施形態に係わるバッテリ管理部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the battery management part concerning 1st Embodiment. 初期状態と劣化後状態における充電状態SOCと内部抵抗Rの関係を示す図である。It is a figure which shows the relationship between charge condition SOC and internal resistance R in an initial state and a state after deterioration. 二次電池の充電状態と内部抵抗の上昇率の関係を示す図である。It is a figure which shows the relationship between the charge condition of a secondary battery, and the raise rate of internal resistance. 第1充電状態SOC1の各SOCと内部抵抗の上昇率の比とを示した図である。It is the figure which showed each SOC of 1st charge state SOC1, and the ratio of the raise rate of internal resistance. 第2の実施形態に係わるバッテリ管理部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the battery management part concerning 2nd Embodiment. 第3の実施形態に係わるバッテリ管理部の処理動作を示すフローチャートである。It is a flowchart which shows the processing operation of the battery management part concerning 3rd Embodiment.
(第1の実施形態)
 まず、本実施形態の二次電池システムに用いる二次電池21の構成について説明する。
 二次電池21は、正極、セパレータ、負極を含む電極群が電池ケース内に設置され構成されている。電極群は正極、セパレータ、負極、セパレータを交互に重ね合わせて捲回した構成、または、正極、セパレータ、負極、セパレータを交互に重ね合わせて積層した構成となっている。二次電池21の形状は、電極群が捲回された構成の場合、円筒型、偏平長円形型、角型であり、電極群が捲回された構成の場合、角型、ラミネート型などがあり、いずれの形状を選択してもよい。
(First embodiment)
First, the structure of the secondary battery 21 used for the secondary battery system of this embodiment is demonstrated.
The secondary battery 21 is configured such that an electrode group including a positive electrode, a separator, and a negative electrode is installed in a battery case. The electrode group has a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked and wound, or a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked. The shape of the secondary battery 21 is a cylindrical shape, a flat oval shape, or a square shape when the electrode group is wound, and a square shape, a laminate shape, or the like when the electrode group is wound. Yes, any shape may be selected.
 正極、負極は、電解液を通じて互いに離れて配置されている。電解液として、例えば体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に、リチウム塩として六フッ化リン酸リチウムを1mol/l溶解させた非水溶液が注入される。 The positive electrode and the negative electrode are arranged away from each other through the electrolytic solution. As the electrolytic solution, for example, a non-aqueous solution in which 1 mol / l of lithium hexafluorophosphate as a lithium salt is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 is injected.
 正極は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有酸化物からなる正極活物質を含んでいる。正極活物質として、置換元素ありまたは置換元素無しの層状遷移金属酸化物、リン酸遷移金属リチウム、スピネル型遷移金属酸化物などが挙げられる。例えば、層状遷移金属酸化物としては、ニッケル酸リチウムLiNiOや、コバルト酸リチウムLiCoO、リン酸遷移金属リチウムとしてはリン酸鉄リチウムLiFePO、リン酸マンガンリチウムLiMnPO、スピネル型遷移金属酸化物としては、マンガン酸リチウムLiMnなどが挙げられる。正極活物質として上記の材料が一種単独または二種以上含まれていてもよい。正極中の正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において、負極中の負極活物質から脱離したリチウムイオンが挿入される。 The positive electrode includes a positive electrode active material made of a lithium-containing oxide that can reversibly insert and desorb lithium ions. Examples of the positive electrode active material include layered transition metal oxides with or without substitution elements, lithium transition metal phosphates, and spinel type transition metal oxides. For example, as the layered transition metal oxide, lithium nickelate LiNiO 2 or lithium cobaltate LiCoO 2 , as the transition metal lithium phosphate lithium iron phosphate LiFePO 4 , manganese phosphate lithium LiMnPO 4 , spinel type transition metal oxide Examples thereof include lithium manganate LiMn 2 O 4 . One kind or two or more kinds of the above materials may be contained as the positive electrode active material. In the positive electrode active material in the positive electrode, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode are inserted in the discharging process.
 負極は、例えば、リチウムイオンを可逆的に挿入脱離可能な炭素材料、シリコン系材料Si、SiO、置換元素ありまたは置換元素無しのチタン酸リチウム、リチウムバナジウム複合酸化物、リチウムと金属、例えば、スズ、アルミニウム、アンチモンなどとの合金からなる負極活物質を含んでいる。炭素材料として、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレイ法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、難黒鉛化炭素材などが挙げられる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。負極中の負極活物質は、充放電過程において、リチウムイオンが挿入脱離反応、もしくは、コンバージョン反応が進行する。 The negative electrode is, for example, a carbon material capable of reversibly inserting and extracting lithium ions, silicon-based material Si, SiO, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium and metal, for example, The negative electrode active material which consists of an alloy with tin, aluminum, antimony, etc. is included. As a carbon material, as a raw material, natural graphite, a composite carbonaceous material obtained by forming a film on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing. The above materials may be contained singly or in combination of two or more as the negative electrode active material. The negative electrode active material in the negative electrode undergoes insertion / extraction reaction or conversion reaction of lithium ions during the charge / discharge process.
 正極と負極との間に用いるセパレータには、例えばポリプロピレン製のセパレータを用いる。ポリプロピレン製以外にも、ポリエチレンなどのポリオレフィン製の微孔性フィルムや不織布などを用いることができる。 For example, a polypropylene separator is used as the separator used between the positive electrode and the negative electrode. In addition to polypropylene, a microporous film or non-woven fabric made of polyolefin such as polyethylene can be used.
 図1は、第1の実施形態に係わる二次電池システムの概略構成図である。この二次電池システムは、バッテリ管理部10と、バッテリ管理部10に対して並列に接続されている複数のバッテリーシステム20と、バッテリ管理部10に接続されているメモリ30を備えている。 FIG. 1 is a schematic configuration diagram of a secondary battery system according to the first embodiment. The secondary battery system includes a battery management unit 10, a plurality of battery systems 20 connected in parallel to the battery management unit 10, and a memory 30 connected to the battery management unit 10.
 バッテリーシステム20は、直列に接続された複数の二次電池21と、各二次電池21毎に設けられた電圧検出部22と、直列に接続された複数の二次電池21に流れる電流を検出する電流検出部23と、直列に接続された複数の二次電池21に流れる電流を制御する電流制御部24とを備えている。 The battery system 20 detects a plurality of secondary batteries 21 connected in series, a voltage detection unit 22 provided for each secondary battery 21, and a current flowing through the plurality of secondary batteries 21 connected in series. And a current control unit 24 that controls the current flowing through the plurality of secondary batteries 21 connected in series.
 電圧検出部22は、二次電池21の電池電圧を検出するものであり、電圧計などの電圧センサによって構成されている。電圧検出部22は、各二次電池21の電池電圧を測定する例で説明するが、複数の二次電池21を直列に接続した全体の電池電圧を測定するようにしてもよい。電圧検出部22で検出された電圧値はバッテリ管理部10へ入力される。 The voltage detector 22 detects the battery voltage of the secondary battery 21 and is constituted by a voltage sensor such as a voltmeter. Although the voltage detection part 22 demonstrates in the example which measures the battery voltage of each secondary battery 21, you may make it measure the whole battery voltage which connected the some secondary battery 21 in series. The voltage value detected by the voltage detection unit 22 is input to the battery management unit 10.
 電流検出部23は、二次電池21の充放電電流を検出するものであり、電流計などの電流センサによって構成される。電流検出部23において用いられる電流計としては、たとえば検流計、シャント抵抗を用いた電流計、クランプメータなどが考えられる。なお、電流検出部23における電流検出の方法はこれに限定されるものではなく、二次電池21に流れる電流値を検出するものであれば、いかなる方法も用いることができる。電流検出部23で検出された電流値はバッテリ管理部10へ入力される。 The current detection unit 23 detects the charge / discharge current of the secondary battery 21 and is configured by a current sensor such as an ammeter. As the ammeter used in the current detection unit 23, for example, a galvanometer, an ammeter using a shunt resistor, a clamp meter, and the like are conceivable. Note that the current detection method in the current detection unit 23 is not limited to this, and any method can be used as long as it detects the value of the current flowing in the secondary battery 21. The current value detected by the current detection unit 23 is input to the battery management unit 10.
 電流制御部24は、二次電池21の充放電電流を制御するための部分であり、バッテリ管理部10によってその動作が制御される。例えば、半導体スイッチや機械スイッチ等のスイッチを充放電電流の大きさに応じて開閉制御することで、電流制御部24を実現することができる。また、インバータやDC-DCコンバータ等の電力変換機器を電流制御部24としても用いてもよい。その他、二次電池21が充放電する際の電流値をバッテリ管理部10から制御することが可能であれば、電流制御部24はこれらのものに限定されない。 The current control unit 24 is a part for controlling the charge / discharge current of the secondary battery 21, and its operation is controlled by the battery management unit 10. For example, the current control unit 24 can be realized by controlling opening and closing of a switch such as a semiconductor switch or a mechanical switch according to the magnitude of the charge / discharge current. Further, a power conversion device such as an inverter or a DC-DC converter may be used as the current control unit 24. In addition, the current control unit 24 is not limited to these as long as the current value when the secondary battery 21 is charged / discharged can be controlled from the battery management unit 10.
 メモリ30は、二次電池21の所定の充電状態より低い第1充電状態SOC1における内部抵抗の第1基準値R01と第1充電状態SOC1よりも高い第2充電状態SOC2における内部抵抗の第2基準値R02とを保持する。この第1基準値R01および第2基準値R02は、バッテリ管理部10より読み出される。 The memory 30 includes a first reference value R01 of internal resistance in the first charge state SOC1 lower than the predetermined charge state of the secondary battery 21 and a second reference of internal resistance in the second charge state SOC2 higher than the first charge state SOC1. Holds the value R02. The first reference value R01 and the second reference value R02 are read from the battery management unit 10.
 バッテリ管理部10は、上位コントローラからの指令に応じて二次電池21の充放電を制御するものであり、所定のプログラムによって作動するマイクロコンピュータや、CPU、ROM、RAM等を有している。
 また、バッテリ管理部10は、電圧検出部22で計測された電圧値から二次電池21の充電状態(SOC:State Of Charge)を求める処理と、電流検出部23で計測された電流値に基づく累積充放電電気量から二次電池21の充電状態を求める処理のうちのいずれか、または両方を有している。また、第1充電状態SOC1に対応する二次電池21の開回路電圧V1と第2充電状態SOC2に対応する二次電池21の開回路電圧V2をメモリ30内に保持している。
The battery management unit 10 controls charging / discharging of the secondary battery 21 according to a command from the host controller, and includes a microcomputer that operates according to a predetermined program, a CPU, a ROM, a RAM, and the like.
In addition, the battery management unit 10 is based on a process for obtaining a state of charge (SOC) of the secondary battery 21 from the voltage value measured by the voltage detection unit 22 and the current value measured by the current detection unit 23. Either or both of the processes for obtaining the state of charge of the secondary battery 21 from the accumulated charge / discharge electricity amount are included. Further, the open circuit voltage V1 of the secondary battery 21 corresponding to the first charge state SOC1 and the open circuit voltage V2 of the secondary battery 21 corresponding to the second charge state SOC2 are held in the memory 30.
 また、バッテリ管理部10は、電圧検出部22、電流検出部23で計測された電圧値および電流値に基づいて、二次電池21の内部抵抗を計算し、同時に、現時点での二次電池21の充電状態を判定する機能を有する。さらに、複数の充電状態と内部抵抗の組み合わせデータ群から、第1充電状態SOC1における内部抵抗R1および第2充電状態SOC2における内部抵抗R2を算出(計測)する計測部11としての機能を有する。そして、第1充電状態SOC1における内部抵抗R1と第1基準値R01との比較、および第2充電状態SOC2における内部抵抗R2と第2基準値R02との比較に基づいて二次電池21の劣化を検出する検出部12としての機能を有する。 In addition, the battery management unit 10 calculates the internal resistance of the secondary battery 21 based on the voltage value and the current value measured by the voltage detection unit 22 and the current detection unit 23, and at the same time, the secondary battery 21 at the present time. Has a function of determining the state of charge. Furthermore, it has the function as the measurement part 11 which calculates (measures) the internal resistance R1 in the 1st charge state SOC1 and the internal resistance R2 in the 2nd charge state SOC2 from the combination data group of a some charge state and internal resistance. Then, the deterioration of the secondary battery 21 is performed based on the comparison between the internal resistance R1 and the first reference value R01 in the first charge state SOC1 and the comparison between the internal resistance R2 and the second reference value R02 in the second charge state SOC2. It has a function as the detection part 12 to detect.
 図2は、本実施形態におけるバッテリ管理部10の処理動作を示すフローチャートである。
 ステップS11では、二次電池21の使用状態において、第1充電状態SOC1<第2充電状態SOC2の関係にある2つの充電状態SOC1,SOC2に対して、それぞれの内部抵抗R1、R2を測定する。このとき、第1充電状態SOC1としては所定の充電状態、例えば50%以下であることが望ましく、20%以下であることがより望ましい。また、第2充電状態SOC2としては、第1充電状態SOC1より高く、例えば30%以上であることが望ましく、40%以上であることがより望ましい。また、二次電池21の使用状態とは、二次電池21の使用を開始した後の状態である。
FIG. 2 is a flowchart showing the processing operation of the battery management unit 10 in the present embodiment.
In step S11, in the usage state of the secondary battery 21, the internal resistances R1 and R2 are measured with respect to the two charged states SOC1 and SOC2 in the relationship of the first charged state SOC1 <the second charged state SOC2. At this time, the first charge state SOC1 is preferably a predetermined charge state, for example, 50% or less, and more preferably 20% or less. Further, the second charging state SOC2 is higher than the first charging state SOC1, for example, preferably 30% or more, and more preferably 40% or more. The usage state of the secondary battery 21 is a state after the use of the secondary battery 21 is started.
 ここで、バッテリ管理部10による内部抵抗R1、R2の測定方法について説明する。内部抵抗R1を測定するために、バッテリ管理部10はまず、二次電池21を、第1充電状態SOC1に対応する二次電池21の開回路電圧V1となるまで充電または放電する。その後、一定時間放置した後で所定の電流値I0を放電し、その際の電池の閉回路電圧Vを測定する。同様に、内部抵抗R2を測定するために、バッテリ管理部10はまず、二次電池21を、第2充電状態SOC2に対応する二次電池21の開回路電圧V2となるまで充電または放電する。その後、一定時間放置した後で所定の電流値I0を放電し、その際の電池の閉回路電圧Vを測定する。これらの測定結果に基づいて、バッテリ管理部10は、内部抵抗R1、R2を以下の式(1)より求める。なお、上述の測定方法では、電圧検出部22、電流検出部23による計測と、電流制御部24による電流制御とが行われる。
  R1=(V-V1)/I0、 R2=(V-V2)/I0  ・・・ (1)
Here, a method for measuring the internal resistances R1 and R2 by the battery management unit 10 will be described. In order to measure the internal resistance R1, the battery management unit 10 first charges or discharges the secondary battery 21 until the open circuit voltage V1 of the secondary battery 21 corresponding to the first charge state SOC1 is reached. Thereafter, the battery is allowed to stand for a certain period of time, and then a predetermined current value I0 is discharged, and the closed circuit voltage V of the battery at that time is measured. Similarly, in order to measure the internal resistance R2, the battery management unit 10 first charges or discharges the secondary battery 21 until the open circuit voltage V2 of the secondary battery 21 corresponding to the second charge state SOC2 is reached. Thereafter, the battery is allowed to stand for a certain period of time and then a predetermined current value I0 is discharged, and the closed circuit voltage V of the battery at that time is measured. Based on these measurement results, the battery management unit 10 obtains internal resistances R1 and R2 from the following equation (1). In the measurement method described above, measurement by the voltage detection unit 22 and current detection unit 23 and current control by the current control unit 24 are performed.
R1 = (V-V1) / I0, R2 = (V-V2) / I0 (1)
 また、バッテリ管理部10による内部抵抗R1、R2の他の測定方法について説明する。例えば、バッテリ管理部10は、ある瞬間の電池電圧Viと電流Iiと充電状態SOCiを検出して、これらの検出結果と、充電状態SOCiに対応する開回路電圧Voiとを用いて、その瞬間の内部抵抗Ri=(Vi-Voi)/Iiを計算する。そして、得られた充電状態SOCiと内部抵抗Riの組み合わせデータをメモリ30に保持する。その後、メモリ30に一定量のデータが蓄積された段階で、バッテリ管理部10は、データの平均化処理や内挿および外挿による補完処理によって第1充電状態SOC1に対応する内部抵抗R1と第2充電状態SOC2に対応する内部抵抗R2を計算する。このようにして内部抵抗R1、R2を測定してもよい。
 いずれの場合も、バッテリ管理部10は、二次電池21の使用状態において、第1充電状態SOC1における内部抵抗R1と、二次電池21の第2充電状態SOC2における内部抵抗R2とを計測する計測部11として機能する。
Further, another method for measuring the internal resistances R1 and R2 by the battery management unit 10 will be described. For example, the battery management unit 10 detects the battery voltage Vi, the current Ii, and the state of charge SOCi at a certain moment, and uses these detection results and the open circuit voltage Voi corresponding to the state of charge SOCi. The internal resistance Ri = (Vi−Voi) / Ii is calculated. Then, the obtained combination data of the state of charge SOCi and the internal resistance Ri is held in the memory 30. After that, when a certain amount of data is accumulated in the memory 30, the battery management unit 10 performs an averaging process of data and a complementary process by interpolation and extrapolation, and the internal resistance R1 corresponding to the first charge state SOC1 and the first resistance. 2. Calculate the internal resistance R2 corresponding to the state of charge SOC2. In this way, the internal resistances R1 and R2 may be measured.
In any case, when the secondary battery 21 is in use, the battery management unit 10 measures the internal resistance R1 in the first charge state SOC1 and the internal resistance R2 in the second charge state SOC2 of the secondary battery 21. It functions as the unit 11.
 また、第1充電状態SOC1および第2充電状態SOC2として、それぞれ1点の充電状態のかわりに、適切な範囲の充電状態を設定してもよい。その場合には、内部抵抗R1および内部抵抗R2としては、第1充電状態SOC1および第2充電状態SOC2として設定した範囲における内部抵抗の平均値を使用する。適切な充電状態SOC範囲としては、例えば第1充電状態SOC1は0~20%とし、第2充電状態SOC2は40~100%とする。 Also, as the first charging state SOC1 and the second charging state SOC2, a charging state in an appropriate range may be set instead of a single charging state. In that case, as the internal resistance R1 and the internal resistance R2, the average value of the internal resistance in the range set as the first charging state SOC1 and the second charging state SOC2 is used. As an appropriate state of charge SOC, for example, the first state of charge SOC1 is 0 to 20%, and the second state of charge SOC2 is 40 to 100%.
 次に、ステップS12では、バッテリ管理部10は、メモリ30に記憶されていた第1充電状態SOC1における内部抵抗の第1基準値R01と、第2充電状態SOC2における内部抵抗の第2基準値R02を読み込む。この第1基準値R01と、第2基準値R02は、二次電池21の初期状態において予め計測されたもの、若しくは予め計算されたものである。二次電池21の初期状態とは、二次電池21を使用する前、若しくは使用を開始した初期の状態である。また、ステップS11、ステップS12で用いる第1充電状態SOC1および第2充電状態SOC2は、前述した範囲で定めた特定の値である。 Next, in step S12, the battery management unit 10 stores the first reference value R01 of the internal resistance in the first charging state SOC1 and the second reference value R02 of the internal resistance in the second charging state SOC2 stored in the memory 30. Is read. The first reference value R01 and the second reference value R02 are previously measured or calculated in advance in the initial state of the secondary battery 21. The initial state of the secondary battery 21 is an initial state before or after using the secondary battery 21. Further, the first charging state SOC1 and the second charging state SOC2 used in step S11 and step S12 are specific values determined in the above-described range.
 ステップS13では、バッテリ管理部10は、第1充電状態SOC1における内部抵抗の上昇率R1/R01と、第2充電状態SOC2における内部抵抗の上昇率R2/R02を計算する。
 ステップS14では、バッテリ管理部10は、2つの内部抵抗の上昇率の比rを式(2)により計算する。
  r=(R1/R01)/(R2/R02)   ・・・ (2)
 なお、2つの内部抵抗の比の差r’を式(3)により計算してもよい。
  r’=(R1/R01)-(R2/R02)  ・・・ (3)
In step S13, battery management unit 10 calculates internal resistance increase rate R1 / R01 in first charge state SOC1 and internal resistance increase rate R2 / R02 in second charge state SOC2.
In step S <b> 14, the battery management unit 10 calculates the ratio r of the increase rates of the two internal resistances according to the equation (2).
r = (R1 / R01) / (R2 / R02) (2)
Note that the difference r ′ between the ratios of the two internal resistances may be calculated by equation (3).
r '= (R1 / R01)-(R2 / R02) (3)
 ステップS15では、バッテリ管理部10は、内部抵抗の上昇率の比rが所定値r0より大きいかどうかを判定する。所定値r0は1以上で任意に定めてよいが、1.03以上とすることが望ましい。なお、ステップS15で、2つの内部抵抗の差r’が所定値r’0より大きいかどうかを判定してもよい。このように、バッテリ管理部10は、二次電池21の劣化を検出する検出部12として機能する。 In step S15, the battery management unit 10 determines whether the ratio r of the rate of increase in internal resistance is greater than a predetermined value r0. The predetermined value r0 may be arbitrarily set to 1 or more, but is preferably set to 1.03 or more. In step S15, it may be determined whether the difference r ′ between the two internal resistances is greater than a predetermined value r′0. Thus, the battery management unit 10 functions as the detection unit 12 that detects the deterioration of the secondary battery 21.
 内部抵抗の上昇率の比rがr0より大きい場合には、次のステップS16の処理に進む。若しくは、ステップS15で、2つの内部抵抗の差r’が所定値r’0より大きい場合には、次のステップS16の処理に進む。
 ステップS16では、バッテリ管理部10は、上位コントローラに警告信号を発信する。これにより、上位コントローラは二次電池21の劣化に対応した処置を行うことができる。
When the ratio r of the increase rate of the internal resistance is larger than r0, the process proceeds to the next step S16. Alternatively, if the difference r ′ between the two internal resistances is larger than the predetermined value r′0 in step S15, the process proceeds to the next step S16.
In step S16, the battery management unit 10 transmits a warning signal to the host controller. As a result, the host controller can take measures corresponding to the deterioration of the secondary battery 21.
 ここで、二次電池21の急激な内部抵抗の上昇とその検出について、以下に説明する。
 図3は、内部抵抗の急激な上昇が起こった二次電池21において、初期状態と劣化後状態における充電状態と内部抵抗の関係を示す図である。図3において、横軸は充電状態を、縦軸は内部抵抗を示す。二次電池21の初期状態においても充電状態が低いほど内部抵抗が大きくなる傾向があるが、二次電池21の劣化後にはその傾向がさらに顕著になる。
Here, the rapid increase in internal resistance of the secondary battery 21 and its detection will be described below.
FIG. 3 is a diagram showing a relationship between the charge state and the internal resistance in the initial state and the deteriorated state in the secondary battery 21 in which the internal resistance has rapidly increased. In FIG. 3, the horizontal axis indicates the state of charge, and the vertical axis indicates the internal resistance. Even in the initial state of the secondary battery 21, the internal resistance tends to increase as the state of charge is lower, but the tendency becomes more prominent after the secondary battery 21 is deteriorated.
 図4は、二次電池21の充電状態と内部抵抗の上昇率の関係を示す図である。図4において、横軸は充電状態の値を、縦軸は内部抵抗の上昇率の値を示す。この図から分かるように、充電状態が25%以上の場合は、内部抵抗の上昇率は概ね1.5程度であるが、充電状態が25%以下では充電状態が低くなるほど内部抵抗の上昇率は大きくなる。 FIG. 4 is a diagram showing the relationship between the state of charge of the secondary battery 21 and the rate of increase in internal resistance. In FIG. 4, the horizontal axis represents the value of the state of charge, and the vertical axis represents the value of the rate of increase in internal resistance. As can be seen from this figure, when the state of charge is 25% or more, the increase rate of the internal resistance is about 1.5, but when the state of charge is 25% or less, the increase rate of the internal resistance increases as the state of charge decreases. .
 図5は、第2充電状態SOC2を50%として、第1充電状態SOC1と内部抵抗の上昇率の比rとの関係を示した図である。図5において、横軸は第1充電状態SOC1の値を、縦軸は内部抵抗の上昇率の比rの値を示す。図5の例では、第1充電状態SOC1が30%以下である場合には、所定値r0=1.03以上のときに内部抵抗の急激な上昇を検出できる。第1充電状態SOC1をより低くすれば、より早期に内部抵抗の急激な上昇を検出できる。
 本実施形態によれば、二次電池の内部抵抗の急激な上昇を早期に検知することができ、ユーザーに対して電池の早期交換を促したり、二次電池21の劣化に対応した処置を行うことができる。
FIG. 5 is a diagram showing the relationship between the first charge state SOC1 and the ratio r of the increase rate of the internal resistance, assuming that the second charge state SOC2 is 50%. In FIG. 5, the horizontal axis indicates the value of the first state of charge SOC1, and the vertical axis indicates the value of the ratio r of the rate of increase in internal resistance. In the example of FIG. 5, when the first state of charge SOC1 is 30% or less, a rapid increase in internal resistance can be detected when the predetermined value r0 = 1.03 or more. If the first state of charge SOC1 is made lower, a rapid increase in internal resistance can be detected earlier.
According to the present embodiment, a rapid increase in the internal resistance of the secondary battery can be detected at an early stage, prompting the user to replace the battery early, or taking measures corresponding to the deterioration of the secondary battery 21. be able to.
(第2の実施形態)
 第2の実施形態について、図6を参照して説明する。なお、二次電池システムの概略構成図は、図1と同様であり、二次電池21の構成も第1の実施形態と同様である。また、充電状態と内部抵抗の関係も図3~図5で説明した第1の実施形態と同様である。
(Second Embodiment)
A second embodiment will be described with reference to FIG. The schematic configuration diagram of the secondary battery system is the same as that of FIG. 1, and the configuration of the secondary battery 21 is also the same as that of the first embodiment. Further, the relationship between the state of charge and the internal resistance is the same as that in the first embodiment described with reference to FIGS.
 図6は、第2の実施形態に係わるバッテリ管理部10の処理動作を示すフローチャートである。図6において、ステップS21からステップS24までは、第1の実施形態で示した図2のステップS11からステップS14までと同様であるので説明を省略する。 FIG. 6 is a flowchart showing the processing operation of the battery management unit 10 according to the second embodiment. In FIG. 6, Steps S21 to S24 are the same as Steps S11 to S14 of FIG. 2 shown in the first embodiment, and thus description thereof is omitted.
 ステップS25において、バッテリ管理部10は、現在の日時tと計算した比rをメモリ30に記録する。現在の日時tが更新されるごとに、ステップS21からステップS24を実行して、その日時tと計算した比rをメモリ30に累積して記録する。なお、現在の日時tのかわりに、装置の総稼働時間や、累積充放電電気量を記録してもよい。また、前回の比rを記録して、以降はこの比rとの差分を記録してもよい。また、これらの複数を適宜組み合わせて記録してもよい。以下では、現在の日時が記録された場合について説明する。 In step S25, the battery management unit 10 records the current date and time t and the calculated ratio r in the memory 30. Every time the current date and time t is updated, the process from step S21 to step S24 is executed, and the date and time t and the calculated ratio r are accumulated and recorded in the memory 30. Instead of the current date and time t, the total operating time of the apparatus and the accumulated charge / discharge electricity amount may be recorded. Alternatively, the previous ratio r may be recorded, and thereafter the difference from this ratio r may be recorded. Further, a plurality of these may be combined as appropriate and recorded. Hereinafter, a case where the current date and time is recorded will be described.
 ステップS26において、バッテリ管理部10は、メモリ30に記録された日時tと比rの累積データに基づいて、比rが所定値r0を上回る日時t0を計算する。なお、ステップS24で、2つの内部抵抗の比の差r’を求めた場合には、2つの内部抵抗の比の差r’が所定値r’0を上回る日時t0を計算する。 In step S26, the battery management unit 10 calculates the date and time t0 at which the ratio r exceeds the predetermined value r0 based on the accumulated data of the date and time t and the ratio r recorded in the memory 30. When the difference r 'between the two internal resistances is obtained in step S24, the date and time t0 when the difference r' between the two internal resistances exceeds the predetermined value r'0 is calculated.
 計算方法は任意でよいが、例えば、日時tを装置の製造日時や稼働開始日時などの基準日時からの経過時間t’に変換し、比rの経時変化を経過時間t’の一次式や経過時間t’の冪関数などの適切な関数に回帰する。
 例えば、比rが経過時間t’の0.5乗に比例して増加する次式(4)に示す冪関数に回帰する場合について説明する。
  r = 100 + k ×t’0.5   ・・・(4)
The calculation method may be arbitrary.For example, the date and time t is converted into the elapsed time t ′ from the reference date and time such as the device manufacturing date and the operation start date and time. Regress to an appropriate function, such as a power function at time t '.
For example, a case will be described in which the ratio r returns to a power function represented by the following equation (4) that increases in proportion to the 0.5th power of the elapsed time t ′.
r = 100 + k x t ' 0.5 (4)
 まず、比rと経過時間t’の組み合わせよりなるデータ群を式(4)の数式に回帰して係数kを定める。次に、r=r0となるt’=t’0を式(4)を変形した式(5)によって求める。
   t’0 = [(r0-100)/k]1/0.5 ・・・(5)
 次に、t’0に基準日時を加えて日時t0を求める。
First, a data group composed of a combination of the ratio r and the elapsed time t ′ is regressed to the mathematical expression (4) to determine the coefficient k. Next, t ′ = t′0 where r = r0 is obtained by Expression (5) obtained by modifying Expression (4).
t'0 = [(r0-100) / k] 1 / 0.5 (5)
Next, the reference date and time is added to t′0 to obtain the date and time t0.
 ステップS27において、バッテリ管理部10は、計算した日時t0と現在の日時tを比較する。すなわち、日時t0までの時間(t0-t)が所定値t1より小さいかを判定する。日時t0までの時間(t0-t)が所定値t1より小さい場合は、ステップS28に進む。所定値t1は任意でよいが、例えば1年以下とすることができる。
 ステップS28では、バッテリ管理部10は、上位コントローラに警告信号を発信する。これにより、上位コントローラは二次電池21の劣化に対応した処置を行うことができる。
In step S27, the battery management unit 10 compares the calculated date and time t0 with the current date and time t. That is, it is determined whether the time (t0-t) until the date and time t0 is smaller than the predetermined value t1. When the time (t0-t) until the date and time t0 is smaller than the predetermined value t1, the process proceeds to step S28. The predetermined value t1 may be arbitrary, but may be, for example, one year or less.
In step S28, the battery management unit 10 transmits a warning signal to the host controller. As a result, the host controller can take measures corresponding to the deterioration of the secondary battery 21.
 本実施形態によれば、二次電池21の内部抵抗の急激な上昇が発生するまでの時間を事前に推定することができ、ユーザーに対して電池の交換を促すことができる。これにより、装置の不測の性能低下を防止し、信頼性を向上させることができる。 According to the present embodiment, it is possible to estimate in advance the time until a sudden increase in the internal resistance of the secondary battery 21 occurs, and to prompt the user to replace the battery. Thereby, it is possible to prevent unexpected performance degradation of the apparatus and improve reliability.
(第3の実施形態)
 第3の実施形態について、図7を参照して説明する。なお、二次電池システムの概略構成図は、図1と同様であり、二次電池21の構成も第1の実施形態と同様である。また、充電状態と内部抵抗の関係も図3~図5で説明した第1の実施形態と同様である。
(Third embodiment)
A third embodiment will be described with reference to FIG. The schematic configuration diagram of the secondary battery system is the same as that of FIG. 1, and the configuration of the secondary battery 21 is also the same as that of the first embodiment. Further, the relationship between the state of charge and the internal resistance is the same as that in the first embodiment described with reference to FIGS.
 図7は、第3の実施形態に係わるバッテリ管理部10の処理動作を示すフローチャートである。図7において、ステップS31からステップS35までは、第1の実施形態で示した図2のステップS11からステップS15までと同様であるので説明を省略する。 FIG. 7 is a flowchart showing the processing operation of the battery management unit 10 according to the third embodiment. In FIG. 7, Steps S31 to S35 are the same as Steps S11 to S15 of FIG. 2 shown in the first embodiment, and thus description thereof is omitted.
 ステップS35で、内部抵抗の上昇率の比rが所定値r0より大きいかどうかを判定し、内部抵抗の上昇率の比rがr0より大きい場合には、ステップS36に進む。
 ステップS36で、バッテリ管理部10は、二次電池21の運用条件を変更する。すなわち、二次電池21の充放電を制限することによって、内部抵抗の急激な上昇を抑制する。発明者は、二次電池21を運用する際の充電状態の下限が低い状況、あるいは電流値が大きい状況、あるいは電池温度が低い状況、あるいは休止を挟まずに連続して充電した電気量または連続して放電した電気量が大きい状況において、内部抵抗の急激な上昇が起き易いことを見出した。したがって、運用条件の変更では、例えば、二次電池21を運用する際の充電状態の下限を引き上げる変更、電流値を小さくする変更、電池温度または電池周辺の環境温度を上げる変更、連続して充電する電気量または連続して放電する電気量を抑制する変更などを行う。
In step S35, it is determined whether the ratio r of the increase rate of the internal resistance is greater than a predetermined value r0. If the ratio r of the increase rate of the internal resistance is greater than r0, the process proceeds to step S36.
In step S <b> 36, the battery management unit 10 changes the operation condition of the secondary battery 21. That is, by restricting charging / discharging of the secondary battery 21, a rapid increase in internal resistance is suppressed. The inventor has a situation in which the lower limit of the state of charge when operating the secondary battery 21 is low, a situation in which the current value is large, a situation in which the battery temperature is low, or the amount of electricity continuously charged without interruption, or continuous In the situation where the amount of electricity discharged is large, it was found that the internal resistance tends to increase rapidly. Therefore, in changing the operating conditions, for example, changing the lower limit of the charging state when operating the secondary battery 21, changing the current value, changing the battery temperature or the ambient temperature around the battery, continuously charging Change to suppress the amount of electricity to be discharged or the amount of electricity to be discharged continuously.
 二次電池を運用する際の充電状態の下限を引き上げる場合には、5%以上引き上げることが望ましい。例えば、元の充電状態の運用範囲が30-70%であった場合には、新しい充電状態の運用範囲を40-70%とすることによって急激な内部抵抗上昇を抑制することができる。
 本実施形態によれば、二次電池21の内部抵抗の急激な上昇を未然に防止することができ、二次電池の寿命を延長することができる。
When raising the lower limit of the state of charge when operating the secondary battery, it is desirable to raise it by 5% or more. For example, when the operating range of the original state of charge is 30-70%, a sudden increase in internal resistance can be suppressed by setting the operating range of the new state of charge to 40-70%.
According to the present embodiment, it is possible to prevent a sudden increase in internal resistance of the secondary battery 21 and to extend the life of the secondary battery.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)本実施形態による二次電池システムは、二次電池21の初期状態において、所定の充電状態より低い第1充電状態SOC1における内部抵抗の第1基準値R01と、第1充電状態SOC1よりも高い第2充電状態SOC2における内部抵抗の第2基準値R02とを保持するメモリ30と、二次電池21の使用状態において、二次電池21の第1充電状態SOC1における第1内部抵抗R1と、二次電池21の第2充電状態SOC2における第2内部抵抗R2とを計測するバッテリ管理部10(計測部11、ステップS11)と、バッテリ管理部10(ステップS11)で計測した第1充電状態SOC1における第1内部抵抗R1と第1基準値R01との比較、およびバッテリ管理部10(ステップS11)で計測した第2充電状態SOC2における第2内部抵抗R2と第2基準値R02との比較に基づいて二次電池21の劣化を検出するバッテリ管理部10(検出部12、ステップS12~S15)と、を備える。これにより、二次電池の内部抵抗の急激な上昇を早期に検知することができる。
According to the embodiment described above, the following operational effects can be obtained.
(1) In the secondary battery system according to the present embodiment, in the initial state of the secondary battery 21, the first reference value R01 of the internal resistance in the first charge state SOC1 lower than the predetermined charge state and the first charge state SOC1 The memory 30 that holds the second reference value R02 of the internal resistance in the second charge state SOC2 that is higher, and the first internal resistance R1 in the first charge state SOC1 of the secondary battery 21 when the secondary battery 21 is in use. The battery management unit 10 (measurement unit 11, step S11) for measuring the second internal resistance R2 in the second charge state SOC2 of the secondary battery 21 and the first charge state measured by the battery management unit 10 (step S11). For comparison between the first internal resistance R1 and the first reference value R01 in SOC1, and the comparison between the second internal resistance R2 and the second reference value R02 in the second charge state SOC2 measured by the battery management unit 10 (step S11). On the basis of Comprising a battery management unit 10 (detecting unit 12, steps S12 ~ S15) for detecting the deterioration of the following cell 21 and, a. Thereby, a rapid increase in the internal resistance of the secondary battery can be detected at an early stage.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2016年第78740号(2016年4月11日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 78740 in 2016 (filed on April 11, 2016)
10 バッテリ管理部
11 計測部
12 検出部
20 バッテリーシステム
21 二次電池
22 電圧検出部
23 電流検出部
24 電流制御部
30 メモリ
DESCRIPTION OF SYMBOLS 10 Battery management part 11 Measurement part 12 Detection part 20 Battery system 21 Secondary battery 22 Voltage detection part 23 Current detection part 24 Current control part 30 Memory

Claims (6)

  1.  二次電池の初期状態において、所定の充電状態より低い第1充電状態における内部抵抗の第1基準値と、前記第1充電状態よりも高い第2充電状態における内部抵抗の第2基準値とを保持する保持部と、
     前記二次電池の使用状態において、前記二次電池の前記第1充電状態における第1内部抵抗と、前記二次電池の前記第2充電状態における第2内部抵抗とを計測する計測部と、
     前記計測部で計測した第1充電状態における前記第1内部抵抗と前記第1基準値との比較、および前記計測部で計測した第2充電状態における前記第2内部抵抗と前記第2基準値との比較に基づいて前記二次電池の劣化を検出する検出部と、を備える二次電池システム。
    In the initial state of the secondary battery, the first reference value of the internal resistance in the first charging state lower than the predetermined charging state, and the second reference value of the internal resistance in the second charging state higher than the first charging state Holding part to hold;
    A measurement unit that measures a first internal resistance of the secondary battery in the first charging state and a second internal resistance of the secondary battery in the second charging state in the usage state of the secondary battery;
    Comparison between the first internal resistance and the first reference value in the first charge state measured by the measurement unit, and the second internal resistance and the second reference value in the second charge state measured by the measurement unit And a detector that detects deterioration of the secondary battery based on the comparison.
  2.  請求項1に記載の二次電池システムにおいて、
     前記検出部は、前記計測部で計測した第1充電状態における前記第1内部抵抗と前記第1基準値との比である第1比と、前記計測部で計測した第2充電状態における前記第2内部抵抗と前記第2基準値との比である第2比と、に基づいて前記二次電池の劣化を検出する二次電池システム。
    The secondary battery system according to claim 1,
    The detection unit includes a first ratio that is a ratio between the first internal resistance and the first reference value in the first charge state measured by the measurement unit, and the second ratio in the second charge state that is measured by the measurement unit. A secondary battery system that detects deterioration of the secondary battery based on a second ratio that is a ratio of two internal resistances to the second reference value.
  3.  請求項1に記載の二次電池システムにおいて、
     前記検出部は、前記計測部で計測した第1充電状態における前記第1内部抵抗と前記第1基準値との比である第1比と、前記計測部で計測した第2充電状態における前記第2内部抵抗と前記第2基準値との比である第2比と、を計時的に蓄積し、前記第1比と前記第2比との差、または前記第1比と前記第2比との比が所定値を上回るまでの時間を判定して出力する二次電池システム。
    The secondary battery system according to claim 1,
    The detection unit includes a first ratio that is a ratio between the first internal resistance and the first reference value in the first charge state measured by the measurement unit, and the second ratio in the second charge state that is measured by the measurement unit. A second ratio, which is a ratio between the two internal resistances and the second reference value, is accumulated in time, and the difference between the first ratio and the second ratio, or the first ratio and the second ratio, A secondary battery system that determines and outputs the time until the ratio exceeds a predetermined value.
  4.  請求項1から請求項3までのいずれか一項に記載の二次電池システムにおいて、
     前記検出部で前記二次電池の劣化が検出された場合には、前記二次電池の充放電を制限する二次電池システム。
    In the secondary battery system according to any one of claims 1 to 3,
    A secondary battery system that restricts charging and discharging of the secondary battery when the detection unit detects deterioration of the secondary battery.
  5.  請求項1から請求項3までのいずれか一項に記載の二次電池システムにおいて、
     前記二次電池の電圧を測定する電圧センサと、前記二次電池に流れる電流を測定する電流センサとを備え、
     前記保持部は、前記第1基準値と前記第2基準値とを保持するメモリである二次電池システム。
    In the secondary battery system according to any one of claims 1 to 3,
    A voltage sensor for measuring the voltage of the secondary battery; and a current sensor for measuring a current flowing in the secondary battery,
    The holding unit is a secondary battery system that is a memory that holds the first reference value and the second reference value.
  6.  請求項1から請求項3までのいずれか一項に記載の二次電池システムにおいて、
     前記第1充電状態は、20%以下のいずれかの充電状態であり、前記第2充電状態は、40%以上のいずれかの充電状態である二次電池システム。
    In the secondary battery system according to any one of claims 1 to 3,
    The secondary battery system in which the first charging state is any charging state of 20% or less, and the second charging state is any charging state of 40% or more.
PCT/JP2017/009581 2016-04-11 2017-03-09 Secondary battery system WO2017179347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-078740 2016-04-11
JP2016078740 2016-04-11

Publications (1)

Publication Number Publication Date
WO2017179347A1 true WO2017179347A1 (en) 2017-10-19

Family

ID=60041613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009581 WO2017179347A1 (en) 2016-04-11 2017-03-09 Secondary battery system

Country Status (1)

Country Link
WO (1) WO2017179347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008157A1 (en) * 2020-07-06 2022-01-13 Man Truck & Bus Se Method for determining mechanical stresses in a traction energy store
WO2023188573A1 (en) * 2022-03-31 2023-10-05 本田技研工業株式会社 Battery degradation state estimation device, degradation suppression system, degradation state estimation method, and degradation suppression method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195312A (en) * 2006-01-18 2007-08-02 Toyota Motor Corp Lifetime estimating device for secondary batteries
JP2010249797A (en) * 2009-03-26 2010-11-04 Primearth Ev Energy Co Ltd State determination device and control device of secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022008157A1 (en) * 2020-07-06 2022-01-13 Man Truck & Bus Se Method for determining mechanical stresses in a traction energy store
WO2023188573A1 (en) * 2022-03-31 2023-10-05 本田技研工業株式会社 Battery degradation state estimation device, degradation suppression system, degradation state estimation method, and degradation suppression method

Similar Documents

Publication Publication Date Title
US10483779B2 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
CN102655245B (en) Anomalously charged state detection device and test method for lithium secondary cell
US10135267B2 (en) Secondary battery system
JP4561859B2 (en) Secondary battery system
US9506988B2 (en) Condition estimation device and method of estimating condition
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP5191502B2 (en) Lithium ion secondary battery system and lithium ion secondary battery
JP6500789B2 (en) Control system of secondary battery
CN110061531B (en) Energy storage battery equalization method
JP5741348B2 (en) Secondary battery system and vehicle
JP2013092398A (en) Secondary battery deterioration determination system and deterioration determination method
JP2013019709A (en) Secondary battery system and vehicle
JP5699970B2 (en) Lithium ion secondary battery system and deposition determination method
JP2017133870A (en) Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
WO2015132891A1 (en) Secondary battery module
JP2012016109A (en) Method and device of charging lithium ion battery
WO2017179347A1 (en) Secondary battery system
JP6090750B2 (en) Power storage device
JP6115557B2 (en) Non-aqueous electrolyte secondary battery system
JP5779914B2 (en) Non-aqueous electrolyte type secondary battery system and vehicle
WO2015075785A1 (en) Lithium-ion secondary battery system and method for diagnosing deterioration of lithium-ion secondary battery
WO2023157506A1 (en) Secondary battery control device and secondary battery system
WO2023032544A1 (en) Secondary battery control device, secondary battery system, and secondary battery capacity recovery method
WO2022034717A1 (en) Capacity restoration device and program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782165

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP